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Phosphotyrosine recognition domains:
the typical, the atypical and the versatile
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Abstract

SH2 domains are long known prominent players in the field of phosphotyrosine recognition within signaling
protein networks. However, over the years they have been joined by an increasing number of other protein
domain families that can, at least with some of their members, also recognise pTyr residues in a sequence-specific
context. This superfamily of pTyr recognition modules, which includes substantial fractions of the PTB domains, as
well as much smaller, or even single member fractions like the HYB domain, the PKCδ and PKCθ C2 domains and
RKIP, represents a fascinating, medically relevant and hence intensely studied part of the cellular signaling
architecture of metazoans. Protein tyrosine phosphorylation clearly serves a plethora of functions and pTyr
recognition domains are used in a similarly wide range of interaction modes, which encompass, for example,
partner protein switching, tandem recognition functionalities and the interaction with catalytically active protein
domains. If looked upon closely enough, virtually no pTyr recognition and regulation event is an exact mirror image
of another one in the same cell. Thus, the more we learn about the biology and ultrastructural details of pTyr
recognition domains, the more does it become apparent that nature cleverly combines and varies a few basic
principles to generate a sheer endless number of sophisticated and highly effective recognition/regulation events
that are, under normal conditions, elegantly orchestrated in time and space. This knowledge is also valuable when
exploring pTyr reader domains as diagnostic tools, drug targets or therapeutic reagents to combat human diseases.

Keywords: Posttranslational modification, Phosphotyrosine signaling, Ligand recognition specificity,
Cancer therapeutics, Signaling circuit
Background
Phosphotyrosine signaling
Intracellular communication is transmitted via networks
of molecules that execute information transfer using
protein-mediated interactions. Post-translational modifi-
cations (PTMs) such as protein phosphorylation, acetyla-
tion, methylation and ubiquitination confer spatiotemporal
dynamics to cell signaling [1]. Among these PTMs, the
tyrosine phosphorylation signaling system in eukaryotes,
especially in mammalian species, has been extensively
studied owing to its importance in numerous cellular
functions including differentiation, proliferation, motility
and apoptosis as well as its therapeutic potential. In
* Correspondence: sli@uwo.ca
†Equal contributors
1Department of Biochemistry and the Siebens-Drake Medical Research
Institute, Schulich School of Medicine and Dentistry, University of Western
Ontario, London, Ontario N6A 5C1, Canada
Full list of author information is available at the end of the article

© 2012 Kaneko et al.; licensee BioMed Central
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
particular, mutations and aberrant expression of kinases
are frequently associated with tumourigenesis [2,3].
Signaling proteins often possess a cassette-like archi-

tecture made up of catalytic domains and/or protein
interaction modules [4]. One important group of
protein-protein interaction modules are the autonomous
domains that recognize phosphorylated tyrosine (pTyr)
residues at specific sites on their target molecules [5].
These pTyr-binding protein modules and their targets
are a part of an elaborate pTyr signaling system that
consists of three major components that help relay mo-
lecular messages [6]. The pTyr signaling system is acti-
vated when a stimulus reaches catalytic proteins that act
as “writers” of phosphorylation, the protein tyrosine
kinases (PTKs). Most PTKs are phosphorylated on
themselves to attain an active state, and subsequently
phosphorylate other substrate proteins. A second group
of proteins that contain modular domains are capable
Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:sli@uwo.ca
http://creativecommons.org/licenses/by/2.0


Kaneko et al. Cell Communication and Signaling 2012, 10:32 Page 2 of 20
http://www.biosignaling.com/content/10/1/32
of recognizing or “reading” this phospho-modification
information and thereby linking the kinase signal to
downstream molecules. The phosphorylation can be sub-
sequently “erased” by a third group of proteins, the pro-
tein tyrosine phosphatases (PTPs), therefore terminating
the signal [7,8].
The human genome harbours 90 PTKs [9], hundreds

of pTyr-recognition domains that include 121 members
of the Src homology 2 (SH2) domain family [10-12], and
more than 10,000 tyrosine phosphorylation sites [12,13].
These signaling components form an enormous network
of pTyr signaling that is both robust and dynamic. Na-
ture is equipped with multiple strategies to reduce pos-
sible misfiring of pTyr signals due to the complexity of
pTyr signaling network. First, PTKs can remain inactive
until they are stimulated by a proper cue, most typically
by association of a specific ligand molecule to the PTK.
For example, receptor tyrosine kinases (RTKs), trans-
membrane proteins consisting of an extracellular ligand
binding site and an intracellular tyrosine kinase domain,
are designed inactive until a ligand binds to the extra-
cellular site of the RTK, which often induces RTK
oligomerization [14]. Structural studies have also
revealed the presence of both active and inactive con-
formations for many cytoplasmic and receptor kinases
[15,16]. Moreover, the level of PTP activity is very high
in cells, thereby ensuring that pTyr sites can be rapidly
dephosphorylated [17].
Second, each component of the pTyr signaling cir-

cuit, i.e., a PTK, PTP or pTyr-binding module, pos-
sesses substrate or ligand recognition specificity to
narrow down potential interaction partners [18-23].
Since all three components are the modules that bind
to linear motif peptides, the specificity at the molecular
or atomic level is defined by the ligand peptide se-
quence and can also be contributed by conformation of
the peptide. The interaction specificity is further
enhanced by spatiotemporal regulation of the network
components, including tissue-specific or cell cycle-
dependent protein expression, protein localization to
subcellular compartments or a scaffold protein, and
protein inactivation involving receptor internalization
(endocytosis) and/or protein degradation. These multiple
layers of regulatory mechanisms are essential for coor-
dinating such a complex functional network [1,15,24,25].
However, an unintended activation of pTyr signaling, or
misfiring, may occur when a circuit component malfunc-
tions, most commonly due to mutations, overexpression
or loss of a component or an element, as we will discuss
some cases below.
This review will focus on the pTyr "reader" proteins

contributing to this complex system. In addition to
the SH2 and phosphotyrosine-binding (PTB) domains,
the two archetype domain families known for pTyr
binding, recent studies have shown that at least a
handful of additional protein modules are capable of
reading out the tyrosine phosphorylation. Here we re-
view and explore the structure, function, specificity
and therapeutic potentials of a number of typical and
atypical members of the superfamily of pTyr-binding
protein modules.

The SH2 domain
The Src homology 2 (SH2) domains, a non-catalytic
module containing ~100 amino acids, was first disco-
vered by insertion-mutation analysis of the v-fps/fes
oncogene from the Fujinami sarcoma virus [26] (for his-
torical perspectives of tyrosine phosphorylation studies,
refer to reviews by Pawson [27] and Hunter [3]). Soon
thereafter, the SH2 domain was identified in oncogenes
such as v-crk and in the endogenous cytoplasmic pro-
teins phospholipase Cγ1 (PLCγ1) and the Ras GTPase
activating protein (RasGAP) [28,29]. SH2 domains have
since been identified in a wide range of eukaryotic spe-
cies, including yeast, but primarily in metazoans [7,11].
A recent tally finds 121 SH2 in 111 proteins in the
human genome [11]. Proteins containing SH2 domains
include those that function as kinases, adaptors, phos-
phatases, ubiquitin ligases, transcription factors, guan-
ine nucleotide exchange factors and phospholipid-based
secondary signaling molecules [5,12,30]. Studies in al-
most two decades have demonstrated the tyrosine
phosphorylation-dependent nature of typical SH2
domain-ligand interactions [31-34], the central role played
by SH2 domains in connecting activated receptor tyrosine
kinases, such as the epithelial growth factor receptor
(EGFR) and the platelet-derived growth factor receptor
(PDGFR), to cytoplasmic signaling molecules [29,35]. In
addition, kinase SH2 domains are essential in regulating
the catalytic activity of cytoplasmic kinases as exemplified
for the Src family as well as the Fes and Abl kinases [15].
A growing picture illustrates that kinase SH2 domains
may regulate catalytic activity utilizing diverse mecha-
nisms [16,36]. These and other lines of work establish the
SH2 domain as a key player in the cellular signaling sys-
tem in a pTyr-dependent manner [37].

Architecture of the SH2 domain
As represented by the v-Src SH2 domain (Figure 1A),
the structure of an SH2 domain features two α-helices
(αA and αB) sandwiching a β-sheet consisting of seven
anti-parallel strands (βA-βG) [38,39]. Based on the ex-
perimentally determined structures of ~ 70 unique SH2
domains in the Protein Data Bank (PDB), the N-
terminal region of the SH2 domain that provides a
pTyr-binding pocket is more conserved than the C-
terminal half of the SH2 domain that exhibits greater
structural variability (Figure 1B). For instance, sequence



Figure 1 Structure and sequence patterns of the SH2 domain. (A) Structure of the v-Src SH2 domain in complex with the pYEEI peptide (PDB
ID: 1SPS). The two conserved α-helices are coloured green, and the seven β-strands are coloured orange. The peptide is shown as grey sticks. The
phosphate group of pTyr binds to Arg175 located on the βB strand of the SH2 domain. The pTyr+3 Ile side chain is captured by a hydrophobic
pocket provided between the EF and BG loops. (B) Conservation and variation in the secondary structural elements of SH2 domains based on
experimentally determined structures. Refer to [40] for a list of SH2 domain structures. The N-terminal half of an SH2 domain is dedicated to pTyr
recognition and is much less variable than the C-terminal half where the specificity pocket is located. A dashed line indicates that the element
does not exist in an SH2 domain. Structural variations are observed more often in the C-terminal half. For example, the BG loop of the STAP
family (BRDG1 & BKS) and the Cbl family SH2 domains are much shorter than in other SH2 domains, which results in an open pocket capable of
binding a hydrophobic pTyr +4 residue [40,43]. Pro287 of the ITK SH2 domain is susceptible to cis-trans isomerization via its CD loop, which leads
to a switch of binding partners [44-46]. The long, proline-rich DE loop insertion in the Crk SH2 domain is the binding site for the Abl SH3 domain
[47]. (C) The tandem SH2 domains of the transcription factor Spt6. Four research groups have reported crystal and solution structures, which are
essentially identical to each other [48-51]. Shown here is the crystal structure of the Saccharomyces cerevisiae Spt6 with a sulfate ion located in
the "canonical" phospho-residue binding pocket of the N-terminal SH2 domain (PDB ID: 3PSK) [48]. Mutagenesis studies and NMR titration
analysis suggested that this pocket, involving Arg1282, as well as a positively charged patch, including Lys1435 of the C-terminal SH2 domain
(residues shown as cyan sticks), are the binding sites of the phosphorylated CTD peptides [49,50,52].
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deletion or insertion is found primarily in the βE-βF and
BG loop regions (Figure 1B). In addition, structure-
based sequence alignment revealed that the most con-
served residues are clustered on the βB strand [40]. For
the majority of experimentally solved SH2-ligand com-
plex structures, the bound pTyr-peptide forms an
extended conformation and binds perpendicular to the
central β-strands of the SH2 domain (Figure 1A). Specific
residues in the N-terminal region (αA to βD) form a
positively charged pocket for binding of the pTyr residue
[38,39,41]. A conserved arginine residue on the strand
βB (Arg175 in the v-Src SH2 domain) (Figure 1A) plays
the central role in forming bi-dentate hydrogen bonds
with the phosphate moiety of pTyr. In contrast, a hydro-
phobic pocket provided by the second half of the domain
(i.e. βD to βG) engages residues C-terminal to the pTyr
of a ligand peptide to confer specificity [12,30,42].

Specificity of the SH2 domain
SH2 domains are equipped for the specific recognition
of a subset of pTyr–containing ligands [20,22,53-55]. A
number of studies have established that binding affinity
of an SH2 domain to a pTyr-containing ligand is mode-
rate, with the typical affinity range between 0.1 μM and
10 μM for equilibrium dissociation constant values (KD)
[56-60]. This moderate affinity is considered to be cru-
cial for allowing transient association and dissociation
events in cell signaling. Indeed, artificially increased af-
finity using an engineered SH2 domain (called the pTyr
superbinder) has been shown to cause detrimental con-
sequences to cells [61]. While the pTyr-binding pocket,
which is present in the N-terminal half and highly con-
served in the SH2 domain, provides the basal affinity for
ligand binding with approximately a half of the total
binding free energy [62], the hydrophobic pocket
present in the C-terminal half of an SH2 domain pro-
vides specificity towards a hydrophobic residue in a
peptide ligand. Recent studies suggest that the major
positional specificity of an SH2 domain is conferred by
the EF and BG loops which regulate ligand access to
specificity pockets in an SH2 domain. Thus, distinct
loop composition and configuration determines whether
an SH2 domain has specificity for a residue at the sec-
ond, third or fourth position C-terminal to the pTyr
residue [10,11,20,40,63,64]. The wealth of experimen-
tally solved SH2 domain-ligand complex structures
allows the systematic ultrastructural investigation into
how variations in the specificity pocket leads to dis-
tinct specificities with bioinformatics tools. Meanwhile,
additional subtlety and sophistication in pTyr-peptide
discrimination have been demonstrated by a recent
study highlighting the importance of permissive and
non-permissive residues proximal to pTyr in the ligand
sequence [65]. The study provided evidence that local
sequence context provides an additional layer of spe-
cificity enhancement beyond the general sequence mo-
tifs uncovered by regular degenerate peptide library
screens [20,66].
The Spt6 SH2 domain: a common ancestor of pTyr
recognition?
The yeast genome encodes only one SH2 domain-
containing protein, the transcription factor Spt6 [7]. The
C-terminal region of the protein, initially predicted to
contain a single SH2 domain, binds to the C-terminal
domain (CTD) of the RNA polymerase II [52]. The CTD
consists of an abundance of repeats (52 in human, 26 in
yeast) of the heptad sequence YSPTSPS, in which each
tyrosine, serine, and threonine residues can be phos-
phorylated. Furthermore, prolines are subjected to cis-
trans isomerization, adding another layer of complexity
and dynamics to the CTD [67,68]. The SH2 domain of
Spt6 has been considered a prototypical SH2 domain for
several reasons. (I) Spt6 is present in yeast that does not
contain a PTK, (II) Yoh et al. demonstrated that the
Spt6 SH2 domain region binds to Ser-phosphorylated
CTD, and (III) Spt6 is conserved in eukaryotes including
slime moulds and plants [7,11,52,69]. Indeed, the re-
cently solved structures of the C-terminal region of Spt6
revealed that the region actually contains two SH2
domains in tandem that are intimately associated with
each other (Figure 1C) [48-51]. The phospho-binding
pocket of the N-terminal SH2 domain, which contri-
butes to CTD phosphopeptide binding, contains an ar-
ginine that is invariant among eukaryotic SH2 domains
[49,50,52]. In contrast, the corresponding pocket in the
C-terminal SH2 domain lacks an arginine, and NMR ti-
tration studies suggest that this pocket is not used for
peptide binding. Instead, a positively charged patch on
the surface of the C-terminal SH2 domain participates
in CTD binding (Figure 1C) [49,50]. Interestingly, the
tandem SH2 domains have shown low affinities (with
dissociation constants in the millimolar range) for both
pTyr- and pSer-containing peptides derived from the
CTD [50]. It is proposed that the binding of the Spt6
tandem SH2 domains to the polymerase may be sig-
nificantly enhanced in vivo as the CTD contains nume-
rous repeats of the phosphorylated heptad sequence that
can increase the effective local concentration of the
binding target for the tandem SH2 domains [50]. From
an evolutionary standpoint, it is likely that the Spt6 SH2
domains provided the prototype for a family of modular
domain for the phospho-specific interaction that have
later evolved to be specific for phosphotyrosine. Not-
withstanding this viewpoint, SH2 domains have been
identified in abundance in protozoans such as choano-
flagellates [7,8,70].
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Atypical ligand recognition modes
Although SH2 domains are the largest group of pTyr-
binding modules [5,10], it has been shown that certain
SH2 domains have the ability to bind ligands in a tyro-
sine phosphorylation-independent manner [10,34,71-78].
For example, the SH2 domains of tensins and SAP bind
to both phosphorylated and non-phosphorylated forms
of ligand peptides [73-75,78,79]. Some SH2 domains fea-
ture a secondary site located outside of the primary
ligand-binding site to engage a pTyr-ligand protein using
two sites [76,80]. In this regard, Anderson and collea-
gues identified a second binding site on the C-terminal
SH2 domain of the phosphoinositide 3-kinase p85α sub-
unit that binds the Raf family kinase member A-Raf in a
phosphorylation-independent manner [80]. The authors
posit that the second binding site increases the target se-
lectivity of the SH2 domain. Biochemical and structural
analysis illustrated pTyr-independent interaction be-
tween the N-terminal SH2 domain of PLCγ1 and the
tyrosine kinase domain of the fibroblast growth factor
receptor (FGFR) via a secondary binding site, in addition
to the canonical pTyr-binding primary site [76]. In ano-
ther scheme, an SH2 domain may contain sequence
motifs that are recognized by distinct types of modular
domains. A long, proline-rich insertion into the DE loop
of the Crk SH2 domain (Figure 1B) is recognized by the
Src homolgy 3 (SH3) domain of the Abl kinase [47]. Se-
quence analysis of Crk orthologs suggests that this inser-
tion is of recent evolutionary origin as it is identified
only in mammalian species [11]. This provides an ex-
ample of loop evolution that enriches the pTyr signaling
network by introducing a novel interaction.

Interplay between SH2 and kinase domains
Among the 90 PTKs in the human genome, 32 are cyto-
plasmic tyrosine kinases [81]. Notably, 28 of them also
contain an SH2 domain in tandem with the kinase do-
main (with the exceptions of TNK1, ACK, FAK and
Pyk2). This suggests a strong physical-functional rela-
tionship between the kinase and SH2 domains. Mayer
et al. demonstrated that a kinase-associated SH2 domain
promotes phosphorylation of substrates, which they
termed processive phosphorylation [82]. In the course of
processive phosphorylation, the kinase domain of a cyto-
plasmic tyrosine kinase phosphorylates a substrate on
the tyrosine site, that is then tightly bound by the SH2
domain, allowing the associated kinase domain to carry
out further phosphorylation of the substrate (or a second
substrate molecule associated with the first substrate)
[19,83]. Thus the assembly of SH2-kinase domain cas-
settes allows the physical association required for func-
tion of the two domains [4,5,15]. Moreover, recent
bioinformatics analysis of protein sequences for 330
bona fide SH2-binding motifs revealed that tyrosine
phosphorylation sites in human proteome are signifi-
cantly enriched in the vicinity of the SH2 domain-
binding sites [84], which may indicate that processive
phosphorylation is a rather common phenomenon. Pro-
cessive phosphorylation is perhaps unique to the SH2-
kinase domain combination, because the PTB domain
(see below) does not coexist with a tyrosine kinase do-
main in any human protein [85]. As we discuss later, di-
rect intramolecular interaction between the kinase and
SH2 domains is essential for activity in some PTKs,
which represents another physical and functional inter-
action between the two domains and a potential target
for treatment in cancer cells.

Multifunctional loops for the SHP SH2 domains
Interplay between an SH2 domain and a catalytic do-
main has also been observed for phosphatases. Pei et al.
reported that the SH2 domains of tyrosine phosphatase
SHP-1 regulates its catalytic activity via an auto-
inhibition mechanism [86]. Since then, structural studies
of SHP-1, and its paralog phosphatase SHP-2, have
revealed multiple conformations for the SHP phospha-
tases. The first crystal structure of SHP-2 demonstrated
its inactive conformation, in which Asp61 of the DE
loop from the N-terminal SH2 domain mimics pTyr
moiety and directly blocks the catalytic pocket of the
phosphatase domain (Figure 2A) [87]. Interestingly, in
this inactive conformation, the cleft between the EF and
BG loops of the N-SH2 domain is closed and ligand
binding is disabled. A similar inhibitory conformation
was also observed for SHP-1 [88]. A recent model pro-
posed that activation of the SHP-1 phosphatase requires
binding of a pTyr ligand to the SH2 domains and a sub-
sequent large structural rearrangement of the C-terminal
SH2 domain to allow dissociation of the N-terminal SH2
domain from the catalytic pocket [89]. A further struc-
tural study illustrated that the N-terminal SH2 domain of
SHP-2 possesses the ability to act either in the single-
peptide or in the double-peptide binding mode, depend-
ing on the peptide sequence [90]. The single-peptide
binding mode follows a canonical ligand binding mech-
anism, i.e., binding to an open cleft between the EF and
BG loops (Figure 2B). In the double-peptide binding
mode, one of the peptides binds the canonical pocket in
a pTyr-dependent manner whereas the other pairs up
with the first peptide to form a short antiparallel β-sheet
(Figure 2C). The authors propose that such a property of
the SH2-dual peptide interaction suggests the SH2 do-
main may serve as a scaffold for two ligand molecules.

Phosphorylation-dependent binding partner switching
Post-translational modification such as tyrosine phos-
phorylation may act as a switch for some proteins. For
instance, the presence or absence of phosphorylation



Figure 2 Surface loops in the SH2 domain confer multiple binding modes to the tyrosine phosphatase SHP2. The N-terminal SH2 (N-SH2),
C-terminal SH2 (C-SH2) and the phosphatase domains are coloured in light blue, orange, and cyan, respectively. The EF and BG loops of the
N-SH2 domain are coloured brown and magenta, respectively. Molecular orientation is aligned for the N-SH2 domain, and drawn to scale. (A) The
inhibitory state of SHP2 (PDB ID: 2SHP) [87]. The DE loop region of the N-SH2 domain, including the side chain of Asp61 (coloured red), mimics a
pTyr substrate and blocks the active site of the phosphatase domain. In this conformation, the BG loop contacts the EF loop and inhibits ligand
binding. (B) The 1:1 binding mode (PDB ID: 3TL0) [90]. The bound LNpYAQLW peptide is coloured yellow. The C-terminal region of the single
peptide binds to a cleft between the EF and BG loops. (C) The 1:2 binding mode, in which the two identical peptides, with a sequence VIpYFVPL,
form a short, antiparallel β-sheet and bind to a single SH2 domain (PDB ID: 3TKZ) [90]. The BG loop is positioned to accommodate the two
peptides.
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may provide a mechanism for alternative binding to dis-
tinct protein partners [84]. This type of regulation is
underscored in the multifaceted interaction between the
T-cell receptor subunit CD3ε and either the ZAP-70
tandem SH2 domains or the Eps8L1 and the N-terminal
NCK SH3 domains (Figure 3) [91-93]. CD3ε harbours
both an immunoreceptor tyrosine-based activation motif
(ITAM) and a PxxDY motif. These two motifs overlap at
Tyr166, which may be phosphorylated (Figure 3). While
phosphorylation of Tyr166, along with Tyr177 in the
Figure 3 Binding partner switch induced by tyrosine phosphorylation. T
interaction motifs overlapping at a tyrosine phosphorylation site. The two p
partners of the motifs, depending on the phosphorylation state, is schema
ITAM motif, promotes the binding of the tandem ZAP-
70 SH2 domains, the phosphorylation of Tyr166 also
abrogates SH3 domain binding via the PNPDY motif
(Figure 3) [91-93]. Bioinformatics analysis suggests that
there exist a plethora of such phosphorylation sites on
signaling proteins which could act as regulatory switches
for selective protein-protein interactions [84]. Moreover,
phosphorylation-dependent partner switching has been
documented to also occur on other modular domain-
mediated interactions, as elucidated below for the
he sequence of the T-cell receptor subunit, CD3ε, contains two
hosphorylation sites Tyr166 and 177 are coloured red. The binding
tically depicted as highlighted boxes.
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interaction between E-cadherin and the PTB and HYB
domains [94-96].

The PTB domain
The phosphotyrosine-binding (PTB) or phosphotyrosine-
interacting domain, first identified in the adaptor protein
Shc [97-99], is the second largest family of pTyr-binding
modules. Approximately 60 human proteins contain a
PTB domain [85]. Although none have been identified
from yeast or plants so far, two PTB domains have been
found in the slime mould Dictyostelium discoideum [85],
and 31 in the choanoflagellate Monosiga brevicollis
[100]. The proteins harbouring a PTB domain strictly
act as adaptors or molecular scaffolds [101], with pos-
sible exceptions at least in M. brevicollis, where multiple
tyrosine kinases that contain a PTB domain have been
identified [6]. Indeed, biochemical studies indicate that
the PTB domain of the M. brevicollis tyrosine kinase
HMTK1 assists in targeting of a pTyr-containing sub-
strate peptide [102]. While a third of all PTB-containing
proteins identified contain a single copy of the domain,
the remaining two-thirds feature a PTB domain occur-
ring in combination with other modular domains such
as SH2, SH3, PDZ or SAM [85]. PTB domain-containing
proteins are involved in a host of signaling processes, in-
cluding those involving receptor tyrosine kinases, cyto-
kines and lipoprotein receptors, and cellular functions
such as cell division and cell-cell adhesion [101].

Architecture of the PTB domain
Johnson and colleagues divided the PTB domain family
into three classes, namely Shc-like, IRS-like and Dab-
like, based on the domain structure [85]. Although, lig-
and recognition by the Shc-like and IRS-like PTB
domains is considered to be tyrosine phosphorylation-
dependent, the majority of the remaining PTB domains,
classified as the Dab-like domains, are phosphorylation-
independent in ligand binding [85]. Structural analysis
has revealed that the PTB domains are characterized
with the pleckstrin homology (PH) domain “superfold”,
although they share little sequence identity with PH
domains [103]. All PTB domains encompass a minimal
fold containing two orthogonally arranged β-sheets com-
posed of seven anti-parallel β-strands (Figure 4A). The
β-sheets pack against two α-helices, α2 and α3 (nomen-
clature of the secondary structures follows that defined
in [104]). The Shc-like and Dab-1-like PTB domains
have an additional N-terminal helix (α1 helix), whereas
the IRS-1-like domains have an extremely truncated α2
helix, which represents the minimal domain fold
(Figure 4A) [105-109]. The PTB domains bind peptide
ligands in an L-shaped hydrophobic groove contoured
by the β5 strand and the α3 helix [110]. The peptide
usually docks with its N-terminal residues forming an
anti-parallel β-strand and the C-terminal of the peptide
arranged as a type I β-turn.

Tyrosine phosphorylation-dependent and independent
ligand binding
Similar to the SH2 domain, PTB domains may bind
tyrosine phosphorylation sites in cellular proteins. Pro-
teomic studies have revealed that the two domain fami-
lies may in fact target overlapping pTyr sites with
micromolar affinities [57-59,113]. However, unlike SH2
domains, the specificity of a PTB domain is primarily fo-
cused towards amino acids N-terminal to the pTyr resi-
due in a peptide, most commonly in an NPXpY or
NPXY sequence motif [114]. Moreover, the majority of
PTB domains prefer a non-phosphorylated tyrosine resi-
due. In fact, phosphorylation of a peptide is inhibitory to
binding to some members of the Dab-1-like PTB do-
main group [85]. Interestingly, a number of PTB
domains can bind the head groups of inositol phos-
phates with varying affinities, a function observed also in
some of the structurally similar PH domains [85,110].
PTB domains appear to commonly bind to phospholi-
pids through a patch of basic residues on the surface of
the domain, although the actual residues that bind to
the phospholipid are variable or not resolved for most
PTB domains [85,103]. Interestingly, a phosphopeptide
and a phospholipid can compete against each other in
binding to a PTB domain, as has been shown for the
Shc PTB domain [115].

The versatile Numb PTB domain
Numb is an adaptor and endocytic protein that plays
an important role in asymmetric cell division and em-
bryogenesis [116]. It contains a Dab-1-like PTB domain
indispensable for its function. Biochemical and struc-
tural studies have suggested that the Numb PTB do-
main is capable of binding to either non-phosphorylated
sequences that contain an NXX[Y/F] motif or pTyr-
containing sequences [104,111,116,117]. Structural ana-
lysis unraveled the molecular basis of promiscuous
binding by the Numb PTB domain to peptides that pos-
sess distinct primary and secondary structures [104,111].
Figure 4B shows the complex structure of the Numb
PTB domain in complex with a non-phosphorylated pep-
tide that contains the sequence NMSF derived from the
Numb-associated kinase (NAK) [111]. Interestingly, mu-
tation of the sequence from NMSF to NAAF resulted in
15-fold increase in binding affinity, implying that the
physiological association between the Numb PTB do-
main and NAK may not be optimized for high affinity
[111]. Moreover, the Numb PTB domain provides a
binding site for another domain in an isoform-specific
manner. The p72 and p66 isoforms of Numb contain
an 11-residue insert within the PTB domain after the



Figure 4 Diversity in ligand recognition in the PTB domain family.
PTB domains are shown in ribbon representations, with α-helices in
green, and β-strands in orange. Bound peptides are drawn as gray
sticks. (A) The PTB domain of IRS-1 bound to a pTyr-containing
peptide derived from interleukin 4, containing an NPApY sequence
(PDB ID: 1IRS) [105]. The two arginine residues, Arg212 and Arg227
(coloured blue), provide electrostatic contacts with pTyr at position 0
(coloured yellow). (B) The Numb PTB domain bound to an NAK-
derived peptide (PDB ID: 1DDM) [111]. The peptide contains an
NMSF sequence, but not a tyrosine. Phe149 and Phe195 (coloured
magenta) of the PTB domain are essential for peptide binding.
(C) The tensin2 PTB domain bound to a peptide derived from DLC-1
(PDB ID: 2LOZ) [112]. The peptide, which does not contain an NXX
[Y/F] motif, binds to a novel site on the PTB domain that involves
the α1 helix.
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α2 helix, which serves as a binding site for the PDZ do-
main of LNX (Ligand-of-Numb), an E3 ubiquitin ligase
required for isoform-specific Numb degradation [118].
Recently, we found that Numb serves as a new player
in epithelial to mesenchymal transition, a critical step in
cancer progression and metastasis [94,119]. The Numb
PTB domain binds to the N751VYYY motif located in the
cytoplasmic region of E-cadherin, but phosphorylation of
the motif by Src results in dissociation of the PTB do-
main, suggesting that Src activation negatively regulates
the interaction between Numb and E-cadherin [94].

The tensin family SH2 and PTB domains
Unlike SH2 domains, which often coexist with a kinase
or phosphatase domain in a protein, the human PTB
domain-containing proteins invariably lack a catalytic
domain, with the single exception of the presence of a
PTP-like domain in the tensin family (see a later section
for detail) [85,120,121]. Tensins 1–4 are focal adhesion
proteins that contain an SH2 domain and a PTB domain
in tandem [122]. Similar to the tensin-like lipid and tyro-
sine phosphatase PTEN [123], tensins 1–3 have been
identified as tumour suppressors. Tensins interact with
another tumour suppressor, deleted in liver cancer 1
(DLC1), and suppress focal adhesions and cell migration
in various cancers [122,124]. The SH2 domain of tensin3
is itself phosphorylated by the Src kinase [125]. Lowy
and colleagues suggest that tyrosine phosphorylation on
the tensin3 SH2 domain provides a mechanism for con-
trolling ligand binding and that phosphorylation of the
SH2 domain by the Src kinase endows tensin3 with
proto-oncogenic properties [125]. The study also indi-
cated that binding to DLC1 was not dependent on tyro-
sine phosphorylation of the SH2 domain of tensin3,
whereas binding to some other ligands such as the focal
adhesion kinase was enhanced by the SH2 phosphoryl-
ation. Another study showed that the SH2 of tensin2 has
the ability to bind non-phosphorylated DLC1 [78]. These
two observations indicate that the phosphorylation state
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of the ligand proteins as well as that of the SH2 domain
can regulate SH2-ligand interactions in tensins [78,125].
Moreover, the PTB domain of tensin2 displays a novel
peptide binding mode. Although it was observed that
the tensin1 PTB domain can bind an NPXY peptide in a
canonical manner [126], as well as a DLC1 peptide via a
yet uncharacterized mode [75], the tensin2 PTB domain,
which can also bind the NPXY motif [127], has been
determined to utilize its N-terminal helix (α1) to engage
a non-NPXY site in DLC1 [112]. The binding surface in
the latter PTB domain is opposite to the canonical
NPXY peptide binding site and the peptide ligand adopts
an elongated conformation rather than the conventional
β-turn structure (Figure 4C) [112]. These observations
indicate the presence of peptide binding surface speciali-
zations among the tensin family PTB domains.

Atypical pTyr recognition domains and proteins
The HYB domain
Hakai, a protein that binds to E-cadherin in a tyrosine
phosphorylation-dependent manner, serves as an E3 ubi-
quitin ligase for the latter and induces endocytosis and
degradation of E-cadherin [95]. Hakai is also known to
interact with an RNA-binding protein, the PTB-
associated splicing factor, that targets mRNAs encoding
cancer-related proteins [128]. Hakai resembles the E3
ligase c-Cbl in that they both harbour a pTyr binding
domain (an SH2 domain in the case of c-Cbl), a region
homologous to the RING finger motif and a proline-rich
region [95]. The pTyr binding region in Hakai was ini-
tially thought to be an SH2 domain, but this assumption
was proven to be incorrect by recent studies showing
that a unique, zinc co-ordinated domain formed by the
dimerization of two Hakai monomers is responsible for
pTyr recognition [95,96]. This novel pTyr recognition
domain, now named the HYB domain, is formed via the
dimerization of a 100-residue stretch, including the
RING finger motif, in an anti-parallel orientation
(Figure 5A). The dimer coordinates six zinc ions with a
total of 24 Cys or His residues (four residues per zinc
ion; Figure 5A). Crystallographic and NMR titration
experiments revealed that the positively charged pTyr-
binding pocket, which is responsible for binding phos-
phorylated E-cadherin, is situated in the interface of the
dimer. In particular, phosphorylation of the N751VYYY
motif on the Tyr residues and acidic residues flanking
the motif are necessary for binding to the HYB domain,
with a KD value of 7.2 μM for the N751VYpYY contain-
ing E-cadherin peptide [96]. Because this motif also
mediates the binding to the Numb PTB domain when it
is not phosphorylated [94], it provides yet another ex-
ample of the tyrosine phosphorylation-dependent bind-
ing partner switch. Interestingly, the HYB domain has
also been identified in the testis-specific ubiquitin ligase
ZNF645, but its target specificity is apparently distinct
from that of the Hakai HYB domain [96]. Moreover, se-
quence inspection suggests that the Numb-associated E3
ligase LNX may contain an HYB domain [96]. Thus, the
HYB domain appears to be a recurring feature in certain
E3 ligases and its presence in cell adhesion regulatory
proteins such as Hakai suggests a role for this domain in
cell-cell adhesion and cancer metastasis [129]. The HYB
domain is likely conserved through evolution as a se-
quence search identifies HYB-like domain sequences in
different animals and plants with complete conservation
of the zinc-coordinating residues (Figure 5B).

The GEP100 PH domain
The PH domain was first described in pleckstrin, a sub-
strate of protein kinase C (PKC) [131,132]. It has since
been identified in a large number of signaling and
cytoskeleton-associated proteins. By virtue of its ability
to bind phospholipids, in particular inositol phosphates,
the PH domain plays an important role in targeting the
corresponding protein to the plasma membrane
[103,133]. Interestingly, some PH domains are found to
bind to proteins in a phosphorylation-dependent manner
[110,133-137]. The PH domain of GEP100 (also known
as BRAG2 or IQSEC1), a guanine nucleotide exchange
factor for the small GTP-binding protein Arf6, binds to
the EGF receptor residues pTyr1068 and pTyr1086, both
of which are part of a YXNQ motif [138]. These two
pTyr sites are also known to recruit the adaptor proteins
Grb2 and Shc as well as the transcription factor STAT3
via their SH2 and/or PTB domains [139,140]. However,
it has been shown that the GEP100 pathway may not ne-
cessarily interfere with the Grb2 pathway in breast can-
cer [141]. Co-expression of GEP100 and Arf6 turned
non-invasive MCF7 cells to become invasive upon EGF
stimulation [138,142]. Therefore, this pathway is a po-
tential new target for breast cancer therapeutics. The
crystal structure of the GEP100 PH domain alone has
been solved (PDB database entry 3QWM), but a PH do-
main – pTyr-peptide complex structure is still missing,
since synthetic pTyr1068 and 1086 peptides immobilised
on a carrier membrane can directly bind to the GEP100
PH domain, but have a surprisingly low binding affinity
to it in solution (S.F. et al., unpublished data). The rea-
son for this currently remains unclear. By contrast, the
native EGFR receptor is effectively precipitated by the
GEP100 PH domain upon activation, i.e., when phos-
phorylated on pTyr1068 and/or pTyr1086.

The PKCδ and PKCθ C2 domains
The C2 domain belongs to one of the largest domain
families with over 200 members in human [103,143].
This ~130 residue module primarily binds to phosphati-
dylserine in the cell membrane in a calcium-dependent



Figure 5 The structure and sequence conservation of the HYB domain. (A) The HYB domain is coordinated with six zinc ions. Shown is the
homo-dimeric structure of the Hakai HYB domain (showing the two chains with different colours) (PDB ID: 3VK6) [96]. Zinc ions are depicted as
spheres. The 24 residues (12 per monomer) coordinating the zinc ions are shown as green sticks. The four residues, His127, Tyr176, His185, and
Arg189 from each monomer, identified as sticks, mainly contribute to pTyr binding by providing a positively charged pocket. (B) HYB domain-like
sequences identified in animals and plants. The alignment was generated by the program MAFFT [130]. The 12 zinc-binding residues are shaded
green, showing that all of them are strictly conserved within these species. The human Hakai HYB domain was aligned with following sequences
with UniProt IDs: zebrafish (Q5RGV5), fruit fly (Q9VIT1), Arabidopsis thaliana (Q9LFC0), wine grape (F6HKX7), and Japanese rice (Q0IWQ6).
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manner. The C2 domain has a core structure of a β-
sandwich formed by eight antiparallel strands
(Figure 6A). The calcium binding sites are located in the
inter-strand loops [103]. It has been shown that C2
domains have disparate calcium dependency for activity
and a weak affinity for most phospholipids, suggesting
that they may have other binding functions [103,144].
Benes et al. demonstrated that the C2 domain of the
Ser/Thr kinase PKCδ can recognize a pTyr peptide
derived from CDCP1 (CUB domain-containing protein 1)
in a sequence-specific manner, with a KD of 240 nM
[145,146]. CDCP1, a transmembrane protein overex-
pressed in a number of cancers, is a substrate of the Src
family kinases [147]. The C2 domain-containing PKCδ is
the first example of a Ser/Thr kinase displaying a pTyr
binding capability. Subsequently, the C2 domain of
PKCθ, which shares 70% sequence identity with that of
PKCδ [145], was also found to bind to the tyrosine-
phosphorylated CDCP1 peptide with a similar affinity
[148]. Importantly, this binding is the key for activation
of PKCθ from an autoinhibitory state, which is mediated
by an intramolecular interaction involving the C2 do-
main. The crystal structure of the PKCδ C2 domain in
complex with an optimal pTyr peptide demonstrates
that the pTyr-peptide binds in an elongated conform-
ation across two β-sheets (Figure 6A). The C2 domain
coordinates the phosphate group of pTyr in a deep
pocket using positively charged lysine and arginine



Figure 6 Atypical pTyr recognition proteins. On the left panels, molecular surface of each protein is overlaid on ribbon representation. (A) The
C2 domain from the human PKCδ bound to a pTyr-peptide (PDB ID: 1YRK) [145]. The peptide is shown as grey sticks. Positively charged residues
(green sticks) of the C2 domain that engage the pTyr moiety are shown to highlight the histidine-phenyl ring stacking feature. (B) pTyr binding
by the human RKIP (PDB ID: 2QYQ) [149]. The structure features a deep pocket complementary to the pTyr side chain. The structure also
highlights the lack of lysine and arginine in the binding pocket. (C) The homo-tetrameric active form of the human PKM2 bound to FBP (PDB ID:
3BJF) [150]. Each monomer is depicted with a different colour. The allosteric activator FBP is drawn as space-filling models. The distal active site
from a monomer is identified with a blue circle. In the inset, the "lip" of the FBP-binding pocket created by the Lys433 and Trp482 residues and a
loop region is coloured green. A pTyr ligand also binds to this region, and promotes the release of the FBP molecule, which results in inactivation
of PKM2.
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residues (Figure 6A). Moreover, the phenyl ring of pTyr
is stabilized by a unique ring-stacking interaction with a
histidine residue that is proximal to the phosphate-
binding arginine residue (Figure 6A) [145].
The catalytically inactive PTP domain
The protein tyrosine phosphatase (PTP) family proteins
dephosphorylate a pTyr residue of substrate proteins
("erasers" in the toolkit). There are 107 PTPs in human,
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of which 61 phosphatases are classified as the dual-
specificity phosphatase subfamily, which also possess
Ser/Thr phosphatase activity in addition to pTyr depho-
sphorylation [151]. The PTP family phosphatases share
a conserved domain fold and possess a catalytic cyst-
eine in the HCX5R motif located on the active site loop
[152-154]. However, sequence analysis led to the iden-
tification of PTP domain homologs that lack the cata-
lytic cysteine or another essential residue in the motif
(Figure 7) [153,154]. Such findings were first described
for the protein named STYX (phospho-serine or threo-
nine or tyrosine interaction protein), which is similar in
sequence to PTPs, except for a Cys to Gly substitution
in the signature motif (Figure 7) [152,155]. This renders
the STYX protein unable to catalyze dephosphorylation.
However, the STYX Gly-to-Cys mutant conferred cata-
lytic activity to the protein and the mutant demonstrated
phosphatase activity for both the pTyr and pThr residues
[152]. Since then, many more PTP-like domains have
been identified [153,154,156-159]. For example, EGG4
Figure 7 Mutations that confer PTP activity to catalytically-dead
phosphatases. The catalytic signature motif sequences are
extracted from the active phosphatases PTP1B and PTEN, along with
five phosphatase-like domains. The His, Cys and Arg residues in the
HCX5R motif, conserved among active PTP domains, are coloured
red. The arrowhead indicates the catalytic cysteine. Mutations that
have experimentally proven to restore catalytic activity are also
indicated, for STYX [152], MK-STYX [157] and HD-PTP [159]. EGG4/5,
Tensin1 and auxilin are predicted to be devoid of PTP activity owing
to the lack of a signature motif residue [121,158].
and EGG5, two almost identical proteins in Caenorhab-
ditis elegans, contain a PTP-like domain without a cata-
lytic Cys residue (Figure 7). Cheng, et al. reported that
the domain binds to tyrosine residues in the activation
loop of a kinase that regulates the oocyte-to-embryo tran-
sition [158]. This interaction is enhanced, although not
absolutely necessary, by phosphorylation of the tyrosines.
Haynie and Ponting have proposed that the N-terminal
regions of two proteins, tensin1 and auxilin, are PTP-like
domains, in which the former lacks the catalytic cysteine,
whereas the latter lacks the arginine of the HCX5R motif
(Figure 7) [121]. Interestingly, the PTP-like domain is im-
mediately followed by a C2 domain in both proteins, and
the PTP-C2 unit is homologous to the tumour suppres-
sor PTEN [160,161]. The PTP domain of PTEN possesses
an intact signature motif, and it displays phosphatase
activity for both phospholipids and phosphotyrosine
[162]. It is therefore possible that the PTP-like domain
of tensin1 and auxilin may be a phosphotyrosine or phos-
pholipid binding domain. Many PTP-like domains are
awaiting functional characterization.

Raf-1 kinase inhibitory protein
Raf-1 kinase inhibitory protein (RKIP), also known as
phosphatidylethanolamine binding protein 1, suppresses
Raf-1 kinase activity in the MAP kinase pathway [163].
RKIP binds to a 24 amino acid stretch in the N-terminal
of the Raf-1 kinase which has a central element
(S338SYY341) regulated by phosphorylation [164]. Substi-
tutions in the ligand binding site of RKIP compromise
the stability of the phosphorylated Raf-RKIP complex.
Additionally, mutation of the Ser residues or Tyr341 on
the Raf-1 kinase motif disrupts its interaction with RKIP.
This suggests that RKIP contains a novel phospho-
amino acid binding domain [165]. The structure of RKIP
bound to pTyr shows that RKIP indeed contains a deep
pocket molded complementary to the shape of the pTyr
side chain (Figure 6B) [149]. NMR titration studies fur-
ther confirmed that the pocket region is the binding site
for the tri-phosphorylated Raf-1 peptide, pS338pSYpY,
with a KD value of 45 μM [166]. However, direct, physio-
logical or structural, evidence for complex formation is
required before RKIP can be classified as a bona fide
pTyr binder.

Searching for novel pTyr recognition proteins
In the above sections, we have explored that, in addition
to the SH2 and PTB domains, there are more than a
handful of examples of atypical domains that can
recognize and bind pTyr-containing target proteins. So
does nature have more domain members capable of
pTyr-epitope binding that remain to be identified? Re-
cent advances in proteomic technologies are starting to
shed light on this question. Christofk et al. employed the
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SILAC (stable isotope labeling of amino acids in cell cul-
ture) technique in combination with a pTyr-peptide li-
brary to identify novel pTyr-binding proteins from
mammalian cell lysates [150]. Whereas the majority of
proteins identified were SH2 or PTB domain-containing
proteins, as expected, the screening also identified pyru-
vate kinase, a protein that does not have any known
pTyr-recognition domain. Pyruvate kinase (PK) regulates
the final rate-limiting step in glycolysis that converts cel-
lular metabolism from an anaerobic to an aerobic
process. The M2 isoform of the PK (PKM2) is the only
form of PK used for glycolysis in cancer cells, and it is
also the only one of the four isoforms that has the ability
to bind to pTyr targets [167,168]. The structure of
hPKM2 illustrates a homo-tetramer with each monomer
binding a fructose-1,6-bisphosphate (FBP) molecule in a
site distal to the active site (Figure 6C) [150,169]. Phos-
photyrosine ligand binding may be a key event in modu-
lating PK activity regulated by the allosteric activator
FBP [150]. The study demonstrated that PKM2 binds
pTyr peptides on the lip of the FBP binding pocket and
acts as a negative regulator of PK activity (Figure 6C)
[150]. Binding of the phosphopeptide releases FBP from
the active tetrameric form of PKM2 and dissociates the
enzyme into inactive dimers [168].
More recently, Christofk et al. identified a handful of

potential pTyr-binding proteins from SILAC experi-
ments. These include the serine/threonine-protein kinase
WNK1, 5-formyltetrahydrofolate cyclo-ligase, glycerol-3-
phosphate dehydrogenase, vimentin, 2,4-dienoyl-CoA re-
ductase, and the T-complex protein 1 subunit η [170].
Although biochemical characterization is required to as-
certain if these candidates are true pTyr-binders, results
from this study suggest that there may be more pTyr rec-
ognition domains or proteins in nature that await to be
discovered.

Phosphotyrosine recognition domains and therapeutic
applications
New insights into the molecular basis of cancer were
generated already decades ago by the analysis of SH2-
domain containing oncoproteins such as v-Src [27,171].
SH2-domain containing proteins have been implicated
in many diseases, including immune-related disorders,
metabolic syndromes, osteopathologic conditions and
different cancers [10,172]. Mutations in the SH2
domains that cause malignancies fall usually into one of
three categories: missense mutations of amino acids
involved in target binding, mutations in residues that
regulate catalytic activity or mutations on the SH2 do-
main, distal to the module core, that affect the architec-
tural integrity of the SH2 domain [16]. A number of
disease-causing mutations on SH2 domains have been
reported as compiled by Liu et al. [10] and Lappalainen,
et al. [173], including mutations related to the Noonan
syndrome, juvenile myelomonocytic leukemia and the X-
linked lymphoproliferative syndrome. X-chromosome-
linked agammaglobulinemia (XLA) is an example of a
disease where mutations are present in the SH2 domain
of the Bruton's tyrosine kinase (BTK), and many of these
mutations are located on the pTyr-ligand binding site,
including the indispensable arginine of the pTyr-binding
pocket as well as BG loop residues [16,173]. Moreover,
Hong et al. demonstrated that the BTK SH2 domain
binds to phospholipids and the XLA-causing mutations
alter lipid binding selectivity [174]. In another example,
multiple point mutations within the transcription factor
STAT3 SH2 domain have been identified and linked to
large granular lymphocytic leukemia and the hyper-IgE
syndrome [175,176]. In conjunction with the identifica-
tion and study of SH2 domain-related diseases, small
molecule inhibitors of SH2 domains, SH2 domain-
containing proteins or SH2 binding partners, are being
developed with some success as therapeutic reagents, al-
though the development of phosphomimetics faces hur-
dles due to the strong charge of the phosphate group
[177,178]. Besides SH2 domains, mutations in the PTB
domain have also been linked to diseases such as coron-
ary heart disease and type II diabetes [85].
Biochemical and structural studies have demonstrated

that direct intramolecular interactions between the SH2
and kinase domains are required for kinase activation in
some PTKs [15,16,36]. In the Fes kinase, electrostatic
interactions and shape complementarity between resi-
dues from the SH2 domain and the αC helix of the ki-
nase domain stabilize the active state of the kinase.
Similarly, in the Abl kinase, interaction between Ile164
of the SH2 domain and Thr291/Tyr331 in the kinase do-
main N lobe is essential for activity [179]. Subsequently,
this interface has been investigated intensively as a tar-
get for cancer intervention. A successful approach was
the creation of a protein-based agent called the mono-
body, derived from the fibronectin type III (FN3) domain
with engineered loops designed for high affinity bind-
ing to a specific target molecule [180]. Koide and col-
leagues created a monobody engineered to selectively
bind the SH2 domain of the Abl kinase [181]. They fur-
ther generated another monobody that targets the SH2-
kinase interface that involves Ile164 and then connected
the two monobodies with a linker. The resulting tandem
monobody disrupted the interface between the SH2 and
kinase domains to inhibit the catalytic activity of the
deregulated fusion kinase Bcr-Abl, both in vitro and
in vivo [179].
Due to its independently folding nature, a modular do-

main can often be successfully used as a tool in prote-
omic research. Jadwin et al. termed this "domainomics”
[182]. In particular, applications of phosphotyrosine-
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recognition domains have been reported for therapeutic
and diagnostic purposes. SH2 and PTB domain-based
probes have been developed and used to profile global
pTyr landscapes using innovative assays such as the pep-
tide dot blotting, Far Western blotting and oligonucleo-
tide tagged multiplex (OTM) assays [183-186]. The
OTM assay is designed for quantitative multiplexed pro-
filing of tyrosine-phosphorylated proteins from cell
extracts using DNA-tagged SH2 domains, and has been
successfully harnessed to discriminate tyrosine phos-
phorylation states in tumour cell lines and leukemia
samples from patients [184]. Similarly, Machida et al.
reported application of domain-based probe technology
to profile lung cancer cell lines, and demonstrated sig-
nificant correlation between EGFR mutations and the
Grb2 SH2 and ShcA PTB domain probe signals, suggest-
ing a diagnostic value [187]. A potential for application
of SH2 domains as non-invasive intracellular imaging or
as inhibitor reagents has also been demonstrated. An
SH2 domain from Grb2 or PLCγ1 fused with a protein
transduction tag (the TAT tag) [188] was used for SH2
domain delivery into cells. These TAT-tagged SH2
domains showed anti-tumour effects [189,190]. In
addition, the TAT-tagged Grb2 SH2 domain can be used
as a molecular probe for monitoring EGFR localization
in cells [191].
SH2 domains have also been incorporated as a biosensor

molecule that functions in live cells. Wang et al. created a
bipartite Src reporter biosensor protein that contains an
SH2 domain and a Src kinase substrate fused, respectively,
with the cyan and green fluorescent proteins [192]. Upon
phosphorylation of the substrate by endogenous Src ki-
nase, the SH2 domain of the biosensor binds to the sub-
strate in cis, and produces a change in the emission
spectrum. Using the Src reporter, the authors success-
fully visualized kinase activity in cells. In another exam-
ple, an engineered adenocarcinoma-derived cell line
that expresses an EGFR biosensor has been developed
[193]. This cell line expresses the Grb2 SH2 domain
fused to the green fluorescent protein, and can be used
to monitor EGFR internalization upon EGF stimulation.
The cell line may provide a useful tool for high-
throughput drug screening since effects of drug candi-
dates on modulating EGFR activity can be monitored in
live cells.
Lastly, understanding the evolution of phosphotyro-

sine recognition domains may inform cancer research
and treatment. In general, the degree of network com-
plexity in the phosphotyrosine signaling system has
increased during the course of evolution, and genetic
events, such as gene duplications to create paralog pro-
teins and gene fusions to create multi-domain proteins,
played a major role in expanding the network scale [4,11].
Robustness of the signaling network is partly conferred
by network redundancy and a collection of feedback
loops or cross-talks [194]. The network evolution creates
highly connected conserved nodes, called network hubs,
and cancer-causing mutations tend to be observed for
the network hub proteins [194]. Besides, Kitano argues
that cancer cells hijack the cellular signaling mechanisms
for their network robustness [195]. We have recently
analyzed the evolutionary origins of human pTyr signal-
ling circuits in 19 eukaryotic species by identifying ortho-
log proteins of the human circuit components in each
species (Figure 8) [8]. The 19 species were classified into
three groups (primitive organisms, bilaterians, and ver-
tebrates) based on their evolutionary distances from hu-
mans. In this study, a pTyr signalling circuit is defined to
comprise a tyrosine kinase, a substrate of the tyrosine
kinase, and an SH2 or PTB domain that binds to the
tyrosine-phosphorylated site. Statistical analysis showed
that the circuits for intracellular (cytoplasmic) signal-
ling (Figure 8: a, b, c, d, and e) largely originate from
primitive species. Circuits that involve receptor tyro-
sine kinases which phosphorylate cytoplasmic substrates
(Figure 8: a, f, c, d, and e) mainly originate from bilate-
rians. Conversely, vertebrate-origin circuits are enriched
with membrane protein substrates that are phosphory-
lated by primitive-origin cytoplasmic kinases (Figure 8;
g, b, h, i and e) in a tissue-specific manner. This study
underlined the importance of network hubs as hotspots
for tumourigenesis, as high frequency cancer pTyr sites
are involved in more circuits than low frequency sites,
and kinase substrate proteins that contain a PTK, SH2
or PTB domain are more frequently recruited for cancer
signalling [8].

Future perspectives
The genome sequence analysis of M. brevicollis, a uni-
cellular choanoflagellate that possesses a PTK signalling
system [70], brought a big surprise since the numbers of
PTKs, PTPs and SH2 domains are comparable to or
greater than those in mammals [6,100]. Numerous PTK,
PTP, SH2 and PTB domain-containing proteins have
been also identified in other pre-metazoan species
[196,197], challenging the simple notion of "expansion
from yeast to man" in terms of the evolution of phos-
photyrosine signalling. Since M. brevicollis contains a
plethora of putative PTK toolkit proteins, many of which
have no orthologs in humans [6,100,196], it suggests that
multiple evolutionary roads, which remain to be eluci-
dated, may have been used to mix and match different
pTyr signalling components in order to build the PTK
signalling pathways and networks unique to a particular
species. For example, bacteria may possess their own
phosphotyrosine signalling systems as bacterial tyrosine
kinases are found to be unrelated to eukaryotic PTKs
[198,199]. Nevertheless, bacteria do not only rely on



Figure 8 Evolution of the human PTK signalling circuit. A schematic depicting the evolution of the human PTK circuit, where a, b, c, d, and e
denote intracellular human circuits of a primitive origin, a, f, c, d, and e denote circuits with receptor tyrosine kinases and cytoplasmic substrates
of bilaterian origin, and g, b, h, i and e denote vertebrate-origin circuits in which membrane-bound substrates are phosphorylated by cytoplasmic
tyrosine kinases of a primitive origin in a tissue-specific manner. See reference [8] for more details.
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their own repertoire of pTyr signalling components.
Some pathogenic bacteria, for example the entero-
pathongenic Escherichia coli (EPEC) and Helicobacter
pylori, are known to hijack pTyr signalling system com-
ponents of their host by injecting a virulence factor into
the host cell during infection [200,201]. The injected bac-
terial protein is then phosphorylated by a host PTK, and
subsequently recruits SH2 domains of host proteins to
rewire the host signalling network for the bacteria's bene-
fit. The injected bacterial effectors have evolved to be
readily phosphorylated by host PTKs, and to recruit a
number of host SH2 domains after being phosphorylated
[201,202]. For instance, EPEC injects a transmembrane
effector protein Tir (translocated intimin receptor) to
host cells upon infection. The cytoplasmic YDXV motif
of Tir is then phosphorylated and recruits the SH2 do-
main of the adaptor protein NCK, which results in
pathological actin reorganization [200,203]. It is note-
worthy that a similar scenario is seen in the vaccinia
virus. A tyrosine residue in the viral membrane protein
named A36R is phosphorylated by host PTKs, and the
viral protein subsequently recruits the NCK and Grb2
SH2 domains to manipulate downstream actin regulation
of the host cell [204,205]. Intervention of pTyr-mediated
host-pathogen interactions could be a novel therapeutic
strategy, if sufficiently selective agents can be developed.
Conclusions
Much of what has been learnt in past decades about
pTyr reader domains, their interactions and the net-
works that they serve can now be utilised and also war-
rants further exploration into several directions. Firstly,
we need to make an effort to put more ‘puzzle pieces’
together to start seeing a more complete picture. This
includes analysing in much more detail how the com-
partmentalisation of pTyr writers and readers, i.e. the
architecture of the pTyr signalling machinery, generates
highly specific signals in vivo. Protein modification
reader domains should also be useful in a range of cli-
nical settings, for example for molecular diagnoses and
monitoring, but this potential remains untapped in cli-
nical routine settings. As demonstrated for the SH2
domains, e.g., specificity-switching mutants or affinity-
enhanced "pTyr superbinders" [40,61,63], engineering of
pTyr-binding domains may yield protein-based reagents
with desired specificities and affinities towards tyrosine
phosphorylated targets, which may provide an array of
novel agents for research and clinical purposes. Fur-
thermore, we are just beginning to realise that at least
some protein modification reader domains have the ca-
pacity to decipher combinations of modifications rather
than recognising just single site changes, and further re-
search in this area promises to provide additional clues
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to understanding the elegant ways in which cells man-
age to read and process a huge number of incoming sig-
nals and to translate them into a wide spectrum of
biochemical and biological responses. Hence, typical and
atypical pTyr reader domains should be considered to
be ‘old dogs up to new tricks’ which we are just starting
to grasp.
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