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Abstract

Protein-tyrosine phosphatases (PTPs) are important regulators of cellular signaling and changes in PTP activity can
contribute to cell transformation. Little is known about the role of PTPs in Acute Myeloid Leukemia (AML). The aim
of this study was therefore to establish a PTP expression profile in AML cells and to explore the possible role of
FLT3 ITD (Fms-like tyrosine kinase 3 with internal tandem duplication), an important oncoprotein in AML for PTP
gene expression. PTP mRNA expression was analyzed in AML cells from patients and in cell lines using a RT-qPCR
platform for detection of transcripts of 92 PTP genes. PTP mRNA expression was also analyzed based on a public
microarray data set for AML patients. Highly expressed PTPs in AML belong to all PTP subfamilies. Very abundantly
expressed PTP genes include PTPRC, PTPN2, PTPN6, PTPN22, DUSP1, DUSP6, DUSP10, PTP4A1, PTP4A2, PTEN, and ACP1.
PTP expression was further correlated with the presence of FLT3 ITD, focusing on a set of highly expressed
dual-specificity phosphatases (DUSPs). Elevated expression of DUSP6 in patients harboring FLT3 ITD was detected in
this analysis. The mechanism and functional role of FLT3 ITD-mediated upregulation of DUSP6 was then explored
using pharmacological inhibitors of FLT3 ITD signal transduction and si/shRNA technology in human and murine
cell lines. High DUSP6 expression was causally associated with the presence of FLT3 ITD and dependent on FLT3
ITD kinase activity and ERK signaling. DUSP6 depletion moderately increased ERK1/2 activity but attenuated FLT3
ITD-dependent cell proliferation of 32D cells. In conclusion, DUSP6 may play a contributing role to FLT3
ITD-mediated cell transformation.

Keywords: Acute myeloid leukemia, Protein-tyrosine phosphatases, Dual-specificity phosphatases (DUSP), mRNA
expression, Fms-like tyrosine kinase (FLT3) with internal tandem duplication (ITD), DUSP6, ERK signaling
Lay abstract
In Acute Myeloid Leukemia (AML), cells in the bone
marrow, which normally give rise to functioning blood
cells like monocytes, have stopped their differentiation
at an early immature state. Moreover, the cells divide
rapidly and are largely autonomous, i.e. independent
form extracellular signals, in their capacity to proliferate.
The molecular reasons for these defects are only par-
tially understood. An important oncoprotein, which
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drives proliferation of leukemic cells in a subset of AML
patients, is named FLT3 ITD. ITD (internal tandem du-
plication) stands for a molecular alteration which makes
this molecule, an enzyme catalyzing the transfer of phos-
phate from ATP to tyrosine residues of proteins (a
protein-tyrosine kinase), highly and constitutively active.
This leads to many alterations in the affected cells, in-
cluding the re-programming of gene expression. In this
study we have analyzed most members of an enzyme
family designated protein-tyrosine phosphatases (PTPs,
enzymes which revert the action of protein-tyrosine
kinases by removing phosphate residues from phos-
phorylated tyrosines) for their abundance in AML cells.
Highly expressed PTPs may play a contributing role for
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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leukemic cell proliferation, lowly expressed members
may be required for regulation of normal cell prolifera-
tion. We observed that among the analyzed 92 genes,
one particular PTP designated DUSP6 is selectively
highly expressed in such AML cells which also
harbor the oncoprotein FLT3 ITD. Functional studies
suggest that this PTP seems to contribute to the
undesired cell proliferation driven by FLT3 ITD.
It may therefore be an interesting candidate as drug
target.

Background
Protein-tyrosine phosphatases (PTP) are important regu-
lators of cellular signal transduction [1]. Several types of
alterations of specific PTP functions have been reported
in cancer cells, including gene deletion, allele loss,
reduced expression by promoter methylation, or inacti-
vation by point mutation or oxidation, all leading to
loss-of function [1,2]. Upregulation of expression, or
gain-of-function mutations have also been found for
members of the PTP family, which have been shown or
presumed to promote oncogenesis [1-4].
Acute myeloid leukemia (AML) is the most frequent

leukemia in adults. Treatment options for AML are still
very limited [5], and the identification of suitable targets
for novel therapies is highly warranted. The analysis of
alterations in signal transduction in AML cells may re-
veal novel potential targets for therapy. Little is known
about the role PTPs may play in deregulated signal
transduction in AML.
Fms-like tyrosine kinase 3 (FLT3) is a class-III

receptor-tyrosine kinase, which is frequently mutated in
AML cells. Mutations resulting in internal tandem
duplications (ITD) of sequences of different length in
the juxtamembrane domain or the first part of the kin-
ase domain of FLT3 cause strong FLT3 activation, asso-
ciated with elevated and altered signal transduction.
Notably, in addition to activation of ERK1/2 and AKT,
FLT3 ITD can potently activate STAT5 [6,7]. We have
previously characterized PTPs involved in FLT3
signaling: SHP-1/PTPN6 and PTP1B/PTPN1, but not
SHP-2/PTPN11 can dephosphorylate FLT3 upon transi-
ent coexpression [8]. Consistent with findings of Heiss
et al. [9], SHP-2/PTPN11 was found to mediate ERK1/2
activation and proliferation by wildtype FLT3, but
appeared dispensable for transformation by FLT3 ITD
[10]. Using an shRNA-based screen, we identified DEP-1/
PTPRJ as a negative regulator of FLT3 autophosphoryla-
tion and signaling [11]. Very recently, PRL-3/ PTP4A3
has been identified as a downstream mediator of FLT3
signaling [12].
Gene expression analysis has been applied to AML

cells to identify signatures for AML subtypes and poten-
tial predictors for prognosis and treatment [13-16]. Little
has, however, been reported about PTP gene expression
in AML cells. Alterations in PTP expression in AML
cells may lead to silencing of PTPs with tumor-
suppressing functions, or enhance abundance of pro-
oncogenic PTPs. Along these lines, downregulation of
mRNA expression of SHP-1/PTPN6, a potential negative
regulator of FLT3 signaling, has been reported in pres-
ence of FLT3 ITD [17]. To obtain a more comprehensive
picture of PTPs, which may be relevant in the context of
AML, we have analyzed PTP mRNA expression in AML
patient cells and cultured AML cell lines. We employed
a RT-qPCR platform established for 92 members of the
PTP family [18], and compared these results with data
from published expression mRNA arrays. Among the
relatively highly expressed PTPs were several dual-
specificity PTPs (DUSPs). We correlated expression of
several DUSPs with the FLT3 status, and found a robust
upregulation of DUSP6 mRNA as well as DUSP6 protein
associated with FLT3 ITD expression. DUSP6 is an im-
portant negative regulator of the RAS-ERK pathway,
based on its capacity to potently dephosphorylate the
pThr-X-pTyr motif in ERK1/2 [19,20]. We could recap-
itulate a negative regulation of ERK1/2 by DUSP6 in
FLT3 ITD-expressing cells. Surprisingly, reduction of
DUSP6 protein by shRNA did not enhance but appeared
to diminish cell proliferation in this system, indicating a
contributing role for DUSP6 in sustaining FLT3 ITD-
dependent cell proliferation.

Results
Expression of PTP genes in AML cells
We first intended to obtain an overview of PTP expres-
sion in AML cells. mRNA expression of 92 PTP genes
was analyzed by RT-qPCR in primary AML cells (n = 9)
and compared with expression assessed in primary AML
cells by Affymetrix gene chips (n = 206) [14]. We also
performed PTP expression analysis by RT-qPCR in the
AML cell lines THP-1, EOL-1, MV4-11, and RS4-11
(Table 1). These cells were chosen since they represent
different AML subtypes. Moreover, they are widely used
to assess signaling of AML-related oncoproteins. Not-
ably, MV4-11 cells harbor the oncogenic version of
FLT3, FLT3 ITD, whereas the other cell lines express
wildtype FLT3. Affymetrix and RT-qPCR analysis results
were to a large extent in agreement with respect to iden-
tification of abundantly expressed PTP genes, with some
exceptions discussed later. Highly expressed PTPs were
found in all PTP classes. The most abundantly expressed
transmembrane PTPs were PTPRC (common protein
name CD45), and PTPRA (RPTPα) in all samples. Other
transmembrane PTPs showed relatively low-level expres-
sion. PTPRJ (DEP-1, CD148), and PTPRR were, however,
still clearly detectable by RT-qPCR in the patient sam-
ples. Only PTPRJ was well detectable also in all the cell



Table 1 Protein-tyrosine phosphatase (PTP) gene expression in Acute Myeloid Leukemia (AML) cells

RT-qPCR Affymetrix THP-1 EOL-1 MV4-11 RS4-11

n= 9 n=206 n= 3 n=3 n=3 n=3

Name % Mean SEM Mean SEM % Mean SD % Mean SD % Mean SD % Mean SD

A. Class Cys-Based PTPs

A.1. Classical PTPs

A.1.1. Transmembrane Classical PTPs

PTPRA 8.4 0.6 268.5 3.5 3.6 0.3 5.9 2.1 4.5 0.7 14.2 9.1

PTPRB n.d. 26.5 0.9 n.d. n.d. n.d. 1.2 0.5

PTPRC 51.2 3.6 84.3 5.1 6.5 0.6 28.6 15.5 4.6 0.9 48.3 12.6

PTPRD 0.1 0.0 23.3 1.4 n.d. n.d. n.d. n.d.

PTPRE 5.7 0.4 83.8 3.8 2.2 1.0 0.5 0.1 1.9 0.2 1.5 0.6

PTPRF 0.2 0.0 14.4 0.9 1.7 0.2 n.d. n.d. n.d.

PTPRG n.d. 6.6 0.5 0.1 0.1 n.d. 0.5 0.0 0.1 0.0

PTPRH 4.0 0.3 18.3 0.8 0.1 0.1 n.d. 0.1 0.0 0.0 0.1

PTPRJ 3.1 0.2 26.4 1.7 4.1 0.7 1.9 0.3 1.7 0.7 1.2 0.3

PTPRK n.d. 20.7 0.7 0.1 0.0 n.d. n.d. 0.0 0.2 0.1

PTPRM 0.3 0.0 7.7 0.5 n.d. n.d. n.d. n.d.

PTPRN n.d. 56.9 1.4 n.d. n.d. n.d. n.d.

PTPRN2 0.1 0.0 54.6 4.1 0.3 0.1 n.d. 0.2 0.1 0.1 0.0

PTPRO n.d. 7.2 0.4 n.d. n.d. n.d. n.d.

PTPRQ2 3.3 0.2 N.D. N.D. n.d. n.d. n.d. n.d.

PTPRR 4.8 0.3 7.4 0.4 0.2 0.1 0.5 0.4 0.9 0.5 16.9 3.3

PTPRS 0.4 0.0 5.4 0.4 2.3 0.2 n.d. n.d. n.d.

PTPRT n.d. 15.1 0.9 n.d. n.d. n.d. n.d.

PTPRU n.d. 64.8 1.5 0.2 0.1 0.1 0.0 0.1 0.0 n.d.

PTPRZ1 n.d. 8.9 0.5 n.d. n.d. n.d. n.d.

A.1.2. NRPTPs

PTPN1 0.2 0.0 188.2 3.3 n.d. 0.1 0.1 n.d. 0.2 0.1

PTPN2 16.2 1.1 33.7 1.0 4.3 0.8 7.7 1.4 6.1 0.2 10.5 0.7

PTPN3 n.d. 26.5 1.0 0.3 0.1 n.d. n.d. n.d.

PTPN4 2.0 0.1 145.7 5.4 0.4 0.1 0.4 0.1 0.2 0.0 1.2 0.3

PTPN5 n.d. 2.8 0.1 n.d. n.d. n.d. n.d.

PTPN6 43.4 3.0 1357.1 38.0 12.6 2.8 21.2 2.1 29.7 12.2 19.9 2.6

PTPN7 8.0 0.6 88.3 2.3 6.0 1.2 15.8 3.2 8.0 0.3 4.2 0.7

PTPN9 2.1 0.1 141.3 3.0 2.1 0.6 1.3 0.1 2.1 0.3 3.2 0.4

PTPN11 9.0 0.6 21.1 0.6 7.2 0.8 8.7 1.1 9.1 0.9 17.2 2.8

PTPN12 7.2 0.5 477.8 15.5 5.0 1.0 3.1 0.3 2.2 0.6 4.6 0.9

PTPN13 0.1 0.0 24.5 1.2 n.d. 0.5 0.2 n.d. 0.4 0.1

PTPN14 0.7 0.1 21.7 1.2 n.d. 0.1 0.1 0.6 0.2 3.8 0.4

PTPN18 0.6 0.0 30.6 1.4 0.1 0.0 0.1 0.0 0.3 0.1 0.2 0.0

PTPN21 n.d. 5.5 0.3 0.1 0.0 n.d. n.d. n.d.

PTPN22 44.6 3.1 248.7 7.4 5.8 1.5 5.1 0.9 3.6 1.7 4.4 1.0

PTPN23 6.0 0.4 32.9 1.0 2.0 0.7 1.4 0.2 1.4 0.1 2.7 0.5
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Table 1 Protein-tyrosine phosphatase (PTP) gene expression in Acute Myeloid Leukemia (AML) cells (Continued)

A.2. DSPs or VH1-like

A.2.1. MKPs

DUSP1 85.1 5.9 4620.8 156.4 1.1 0.9 1.9 2.0 0.6 0.8 8.0 2.0

DUSP2 14.7 1.0 277.4 32.3 3.6 1.2 4.2 2.0 2.7 0.7 1.8 0.3

DUSP4 6.3 0.4 5.7 0.6 0.1 0.1 0.3 0.1 0.1 0.0 0.3 0.0

DUSP5 2.4 0.2 150.4 10.1 0.2 0.1 0.3 0.2 0.4 0.2 n.d.

DUSP6 52.2 3.6 1457.9 78.0 5.2 1.7 5.5 0.4 10.8 3.5 2.0 0.6

DUSP7 4.6 0.3 27.9 1.5 7.4 1.0 5.0 0.7 8.0 2.8 2.1 0.4

DUSP8 7.5 0.5 45.5 1.7 n.d. n.d. n.d. 0.1 0.1

DUSP9 1.1 0.1 18.3 0.7 0.2 0.1 0.1 0.0 n.d. n.d.

DUSP10 10.5 0.7 335.2 14.2 0.6 0.4 2.8 0.4 1.2 0.5 1.3 0.3

DUSP16 0.6 0.0 74.1 2.5 0.6 0.2 0.1 0.0 0.1 0.1 0.9 0.4

MK-ST 5.4 0.4 131.1 3.1 3.3 0.4 2.0 0.1 4.7 0.7 6.8 1.9

A.2.2. Atypical DSPs

DUSP3 5.0 0.4 502.8 16.5 3.8 0.2 5.9 1.2 5.1 1.1 1.6 0.4

DUSP11 3.5 0.2 239.3 4.7 0.7 0.1 1.4 0.2 1.1 0.1 2.7 0.1

DUSP12 6.9 0.5 211.2 3.0 4.4 0.4 5.7 1.1 4.1 0.3 7.3 2.2

DUSP14 5.4 0.4 114.4 3.4 1.0 0.1 2.0 0.3 1.1 0.1 2.2 0.3

DUSP15 2.4 0.2 26.7 0.9 0.1 0.1 n.d. n.d. 0.8 0.2

DUSP18 1.1 0.1 9.3 0.4 0.1 0.0 0.1 0.0 0.1 0.0 0.2 0.1

DUSP19 0.2 0.0 16.8 0.8 0.1 0.0 0.1 0.0 0.1 0.0 0.9 0.1

DUSP22 3.1 0.2 317.9 6.8 0.3 0.2 1.0 0.2 1.1 0.3 5.6 1.0

DUSP23 6.5 0.5 86.2 3.1 3.5 0.0 2.5 0.3 2.9 0.4 4.7 0.5

EPM2A 4.4 0.3 89.4 2.0 0.3 0.1 0.6 0.0 0.4 0.1 1.5 0.4

PTPMT1 7.8 0.5 128.2 3.1 3.3 0.3 3.9 0.4 4.3 0.3 8.2 0.8

RNGTT 1.9 0.1 162.4 2.4 1.4 0.3 2.2 0.5 1.5 0.2 2.7 0.3

STYX 5.3 0.4 279.5 5.3 4.1 0.4 4.1 0.8 5.1 0.6 6.4 1.2

A.2.3. Slingshots

SSH1 1.5 0.1 45.9 1.4 0.5 0.1 0.8 0.1 0.5 0.0 0.6 0.1

SSH2 7.6 0.5 48.5 2.0 1.9 0.3 3.0 1.1 2.5 0.4 4.6 0.9

SSH3 1.6 0.1 143.0 3.5 1.0 0.1 0.9 0.3 1.0 0.1 1.1 0.2

A.2.4. PRLs

PTP4A1 18.8 1.3 444.3 14.3 17.2 1.3 19.4 4.8 8.9 1.4 39.8 6.5

PTP4A2 50.2 3.5 1323.2 32.7 21.2 2.4 28.8 2.7 22.1 3.4 31.8 7.3

PTP4A3 1.6 0.1 92.2 7.7 0.2 0.1 1.5 0.0 1.7 0.4 0.2 0.0

A.2.5. CDC14s

CDC14A 3.1 0.2 98.2 2.9 1.3 0.2 1.0 0.3 0.9 0.1 1.2 0.3

CDC14B n.d. 25.0 1.0 0.2 0.0 n.d. 0.1 0.0 n.d.

CDKN3 1.3 0.1 103.6 6.3 1.1 0.3 2.4 0.5 1.9 0.7 3.4 1.1

PTP9Q22 0.3 0.0 8.2 0.5 0.2 0.0 0.1 0.0 0.4 0.0 0.6 0.1

A.2.6. PTENs

PTEN 12.3 0.9 641.8 13.4 5.4 1.0 5.4 1.4 9.4 1.8 8.5 2.2

TNS1 2.3 0.2 16.2 2.7 0.5 0.0 n.d. 0.6 0.3 0.7 0.4

TNS3 2.0 0.1 305.5 12.6 1.1 0.2 2.7 0.9 1.1 0.1 0.5 0.1

TENC1 n.d. 31.5 1.4 n.d. n.d. n.d. n.d.
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Table 1 Protein-tyrosine phosphatase (PTP) gene expression in Acute Myeloid Leukemia (AML) cells (Continued)

A.2.7. Myotubularins

MTM1 1.6 0.1 109.4 2.1 1.0 0.2 1.2 0.5 0.8 0.1 0.6 0.1

MTMR1 0.8 0.1 316.0 6.4 0.6 0.2 0.7 0.2 0.3 0.0 0.8 0.1

MTMR2 3.1 0.2 201.8 5.3 3.5 0.2 3.2 0.2 3.1 0.1 6.9 0.5

MTMR3 3.3 0.2 272.5 6.7 1.5 0.4 0.7 0.1 0.9 0.3 2.9 0.8

MTMR4 2.0 0.1 222.9 3.8 2.9 0.5 1.8 0.1 1.3 0.2 5.8 0.1

MTMR5 8.6 0.6 12.1 0.8 1.9 0.6 2.6 0.3 2.6 0.4 6.0 1.6

MTMR6 2.2 0.2 326.6 10.1 1.5 0.1 3.2 0.9 1.3 0.2 2.1 0.3

MTMR7 n.d. 12.0 0.5 n.d. n.d. n.d. n.d.

MTMR8 0.1 0.0 20.4 0.6 0.1 0.0 0.1 0.0 0.1 0.0 n.d.

MTMR9 1.5 0.1 113.9 2.7 1.2 0.1 1.4 0.3 1.7 0.3 1.7 0.4

MTMR10 2.6 0.2 14.6 1.1 1.4 0.2 1.1 0.2 1.1 0.3 4.8 1.1

MTMR11 n.d. 88.8 10.7 n.d. n.d. n.d. n.d.

MTMR12 3.9 0.3 103.4 1.8 2.0 0.2 2.4 0.4 2.4 0.3 8.0 1.5

MTMR13 1.0 0.1 118.5 5.3 0.2 0.1 0.4 0.1 0.2 0.1 1.8 0.6

B. Class II Cys-Based PTPs

ACP1 24.5 1.7 18.7 0.7 11.9 1.1 21.5 1.8 18.1 0.9 52.7 2.6

C. Class III Cys-Based PTPs

CDC25A 0.9 0.1 67.3 3.4 2.6 0.2 2.9 0.3 1.8 0.7 4.3 1.0

CDC25B 2.5 0.2 285.0 11.3 0.4 0.1 2.2 0.4 1.8 0.1 2.4 1.0

CDC25C 0.4 0.0 44.4 1.8 0.4 0.1 0.8 0.1 0.9 0.1 1.0 0.3

mRNA expression of 92 members of the PTP family was assessed by RT-qPCR analysis in AML patient primary cells (duplicate determinations of the indicated
sample number, means in % of 3 housekeeping genes ± SEM). For comparison, PTP mRNA expression data for AML patient blasts were retrieved from an
Affymetrix analysis (means ± SEM). PTP gene expression was also analyzed by RT-qPCR in four AML cell lines (3 experiments with duplicate determinations, means
in % of 3 housekeeping genes ± SD). The 25% highest values in the respective sample type are highlighted in bold. n.d. – not detectable. Names of PTPs, which
fall in this category in at least two different sample types, or only in one sample type, are labeled bold or by underlining, respectively. Classification was taken
from Alonso et al. [21].
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lines, whereas PTPRR mRNA was only prominently
expressed in RS4-11 cells. Among the non-receptor
classical PTPs (NRPTPs), PTPN2 (TC-PTP), PTPN6
(SHP-1), PTPN7 (HePTP), PTPN11 (SHP-2), PTPN12
(PTP-PEST), and PTPN22 (Lyp) were expressed most
abundantly. High-level expression was observed for sev-
eral members of the MAPK-kinase phosphatase (MKP)
family of dual-specificity phosphatases (DUSPs): DUSP1
(MKP-1), DUSP2 (PAC-1), and DUSP6 (MKP-3). DUSP1
and DUSP10 were highly expressed in patient samples.
DUSP1 and DUSP6 were even the two most highly
expressed of all PTPs analyzed. Expression of these
DUSP species was, however, much lower in the cell lines.
mRNA of DUSP7 and of a catalytically inactive DUSP,
MK-STYX, were clearly detectable in all samples, but had
relatively lower expression in the primary AML cells.
Many atypical DUSPs were expressed at easily detectable
mRNA levels, including DUSP3, DUSP12, DUSP22,
DUSP23, PTPMT1, and the catalytically inactive atypical
DUSP STYX. Of the other subfamilies, SSH2, PTP4A1
(PRL-1), PTP4A2 (PRL-2), PTEN, and the myotubularins
MTMR2, MTMR4, MTMR5, and MTMR6 were well
detectable. ACP1 (LMW-PTP) was abundantly expressed
in all samples.

Role of FLT3 ITD for PTP expression
Specific genetic lesions in the AML cells could have an
impact on PTP gene expression. We were particularly
interested in a possible effect of FLT3 ITD. When
mRNA expression was compared using the initially ana-
lyzed set of 9 patients (five FLT3 wildtype, four FLT3
ITD), some PTPs appeared downregulated, including the
abundantly expressed DUSP species DUSP1 and 2 (data
not shown). Conversely, DUSP6 appeared elevated in ex-
pression. These DUSPs were therefore subjected to RT-
qPCR analysis for a larger number of patient samples to
compare patients with wildtype FLT3 (n = 17), with
patients harboring FLT3 ITD (n = 11). Also, patients
positive or negative for the FLT3 ITD mutation of the
Affymetrix data set were compared for the expression of
these DUSPs. As shown in Figure 1 A, B, downregula-
tion of DUSP2 expression was seen as a trend in the RT-
qPCR analysis and was significant in the Affymetrix data
set. Upregulation of DUSP6 with FLT3 ITD could not be



Figure 1 DUSP6 mRNA levels are elevated in cells with FLT3 ITD. mRNA expression of DUSP1, DUSP2, and DUSP6 in primary AML cells was
analyzed by RT-qPCR (A) or retrieved from Affymetrix data (B). mRNA expression of the murine genes was also analyzed by RT-qPCR in 32D cells
(C) and BA/F3 cells (D), either parental or expressing wildtype (WT) FLT3 or FLT3 ITD, as indicated. RT-qPCR data are based on duplicate
determinations for the indicated sample numbers (A), and on duplicate or triplicate determinations in 6 (C) or 8 (D) independent experiments,
and are presented as percentage of expression of the mean of 3 housekeeping genes. Values are expressed as means + SEM (A), means + 2SEM
(B), or means + SD (C, D). Statistic significance was tested by Mann–Whitney test (A, B) or Students’ test (C, D) using the software SPSS (*p< 0.05,
**p< 0.01). The different relative expression levels depicted in (A) versus panels (C, D) presumably relate to the different species background
(human in 1A, murine in 1 C, D), including different expression levels of housekeeping genes used for reference, and use of primary patient cells
(1A) versus established cell lines (1 C, D). DUSP expression levels were commonly lower in cell lines compared to primary cells (see Table 1).
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seen in the Affymetrix set, but was significant in the RT-
qPCR analysis. The initially observed apparent altera-
tions in DUSP1 expression could not be confirmed with
larger sample numbers. To test if the changes in DUSP
expression were indeed caused by the presence of FLT3
ITD, we included also 32D and Ba/F3 cell lines, parental
or stably expressing wildtype FLT3, or FLT3 ITD. As
shown in Figure 1 C, D, alterations of DUSP1 mRNA
levels in dependence of FLT3 ITD expression were not
observed. Likewise, regulation of DUSP2 expression
could not be correlated with presence of FLT3 ITD in
these cell lines, whereas induction of DUSP6 mRNA in
presence of FLT3 ITD was clearly seen in both cell
backgrounds.

DUSP6 expression is maintained by FLT3 ITD signaling
activity
To further analyze the link of DUSP6 expression and
FLT3 ITD signaling, we employed MV4-11 cells, en-
dogenously expressing FLT3 ITD, RS4-11 cells endogen-
ously expressing wildtype FLT3, and 32D cells without
or with expression of wildtype FLT3 or FLT3 ITD.
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Consistent with the mRNA data (Table 1, Figure 1C),
MV4-11 cells contained clearly higher levels of DUSP6
protein than RS4-11 cells (Figure 2A). Similarly, 32D
cells with FLT3 ITD had the highest DUSP6 protein ex-
pression, however, wildtype FLT3 expressing cells also
showed increased DUSP6 protein levels when compared
to parental 32D cells, possibly caused by basal activity of
the overexpressed FLT3 (Figure 2B). To further explore
a causal relationship between FLT3 ITD expression and
activity and high DUSP6 expression, MV4-11 cells were
employed. When endogenous FLT3 ITD in MV4-11 cells
was knocked down by siRNA, the DUSP6 level was
strongly reduced (Figure 3A). Moreover, inhibition of
FLT3 ITD kinase activity with the selective tyrosine kin-
ase inhibitor cpd.102 reduced DUSP6 protein as well as
DUSP6 mRNA levels in MV4-11 cells drastically
(Figure 3B, C). Similarly, AG1295, another FLT3 kinase
inhibitor, blocked DUSP6 mRNA expression in FLT3
ITD expressing cells. Downregulation of DUSP6 mRNA
by AG1295 was reversible, and recovered to control
levels 4 hours after inhibitor washout (Figure 3D). It has
previously been shown that DUSP6 expression down-
stream of different stimuli [22-24] is activated by ERK1/
2 signaling. We therefore also tested the role of this
pathway in the maintenance of high DUSP6 levels in
cells with FLT3 ITD. Treatment of MV4-11 cells with
Figure 2 FLT3 ITD expressing cells exhibit high DUSP6 protein expres
SDS-PAGE and immunoblotting to evaluate DUSP6 protein levels. For loadi
levels were assessed for comparison. (A) RS4-11 cells, endogenously expres
expressing FLT3 ITD. Numbers under the lanes represent mean values (± S
to 1.0). (B) 32D cell lines either mock-transfected (“parental”), or stably trans
compared. Numbers represent quantification of 4 separate experiments (DU
1.0; statistic significance was tested by Students’ test (*p< 0.05, **p< 0.01)
the MEK inhibitor UO126, which abrogates ERK1/2 ac-
tivation, indeed suppressed DUSP6 mRNA expression
almost completely (Figure 3E). Similar observations were
made in 32D cells expressing FLT3 ITD (not shown).
Taken together, we conclude that FLT3 ITD signaling ac-
tivity causes high DUSP6 levels in AML cells, mediated
by its kinase activity and downstream signaling via the
ERK pathway.

DUSP6 modulates FLT3 ITD dependent ERK1/2 signaling
and cell proliferation
To explore the role of DUSP6 for FLT3 ITD mediated
signaling and cell transformation, we chose to deplete
MV4-11 cells of DUSP6 by using siRNA. As shown in
Figure 4A, DUSP6 protein levels could be greatly
reduced, but not completely abolished in MV4-11 cells
by transient siRNA transfection. ERK1/2 activity under
basal growth conditions was clearly elevated. ERK1/2 ac-
tivation was also analyzed upon FL stimulation. Selected
time-points were chosen based on preliminary kinetic
experiments showing maximum stimulation at 2.5-
5 min, followed by decrease of the signal and partial re-
covery after prolonged stimulation of 1–6 h (not shown).
ERK1/2 phosphorylation under these conditions was
also elevated by DUSP6 knockdown, albeit moderately
reaching significance only at 2.5 min (Figure 4A,B).
sion. Lysates of different cell lines (as indicated) were subjected to
ng control, levels of vinculin and β-actin were also detected, and FLT3
sing wildtype FLT3, were compared with MV4-11 cells, endogenously
D) for the quantification of blots of 3 separate experiments (RS4-11 set
fected with wildtype FLT3 (WT) or FLT3 ITD (as indicated) were
SP6 signal normalized to actin or vinculin; mean± SD, parental set to

.



Figure 3 FLT3 ITD signaling drives DUSP6 expression. MV4-11 cells endogenously expressing FLT3 ITD were subjected to different
treatments. (A) Cells were transiently transfected with FLT3-specific siRNA using “Smart pool” siRNA and the nucleofection technology. After 48 h,
DUSP6 protein levels were assessed by immunoblotting. Left panel: example experiment. Right panel: quantification of 2 independent
experiments (*p< 0.05 by t-test). (B) MV4-11 cells were treated with the FLT3 inhibitor cpd.102 (1 μM) in complete medium for the indicated
time periods. DUSP6 levels were assessed by immunoblotting. The experiment is representative of 2 with consistent results. (C) Cells were treated
with the FLT3 inhibitors cpd.102 (1 μM), or AG1295 (20 μM), as indicated, in complete medium for different time periods. After treatment, cells
were harvested, RNA was prepared, and DUSP6 expression was assessed by RT-qPCR relative to ACTB mRNA. Values are means + SD of duplicate
determinations and are representative of 3 experiments with consistent results. (D) To assess reversibility of the inhibition of DUSP6 mRNA
expression, cells were treated for 4 hours with AG1295 or solvent as in (C). Aliquots of the cells were directly subjected to analysis of DUSP6
mRNA expression (as indicated). The AG1295-treated cells were washed, and either cultivated without inhibitor (washout) or with freshly added
inhibitor (as indicated) for another 4 h before analysis of DUSP6 mRNA expression. Values are means + SD of 4 independent determinations
performed in triplicate. Statistic significance was tested by Students’ test (**p< 0.01, ***p< 0.001). (E) Cell treatments were performed with the
MEK inhibitor UO126 (10 μM), and analysis carried out as in (C).
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Figure 4 ERK1/2 activation by FLT3 ITD in MV4-11 cells is negatively regulated by DUSP6. MV4-11 cells were transiently transfected with
DUSP6-targeting siRNA by nucleofection. After 48 h, cells were serum-starved for 4 h and then stimulated with 100 ng/ml FL for the indicated
times. Cells were extracted and subjected to immunoblotting for detection of ERK1/2 phosphorylation, and DUSP6 levels. ERK1 was assessed as
loading control. (A) Representative experiment. Unstimulated cells, which were cultivated in complete medium, were also analyzed (as indicated).
The data for the latter are from the same blot with identical exposure and image processing, but were rearranged for better clarity. (B)
Quantification of immunoblots for 4 independent experiments (except time-point 10 min, n = 2). Statistic siginificance was tested by Students’
test (*p< 0.05) for DUSP6 siRNA versus control. (C) Effect of FL stimulation on DUSP6 protein levels. Quantification of immunoblots for 4
independent experiments. DUSP6 signals were normalized to ERK1. Statistic significance was tested by Students’ test (*p< 0.05,**p< 0.01) for
difference from unstimulated control.
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Interestingly, FL stimulation was associated with a de-
crease in the DUSP6 protein levels, which occurred rela-
tively rapidly and was noticeable both in presence of
control siRNA as well as in cells with downregulated
DUSP6 levels (Figure 4A, C). To enable assessment of
biological readouts, we also performed stable transduc-
tion of FLT3 ITD expressing 32D cells with Dusp6-
specific shRNA. Five different target sequences of the
MISSIONW shRNA collection were tested: Two of them
(Dusp6 targets #1 and #4) reduced Dusp6 mRNA ex-
pression to 40-50% (Figure 5A). The relative moderate
success of Dusp6 knockdown under these condidions is
presumably related to feedback regulation: enhanced
ERK1/2 signaling upon Dusp6 knockdown is expected to



Figure 5 DUSP6 attenuates ERK1/2 activity but positively regulates proliferation of FLT3 ITD expressing 32D cells. 32D cells stably
expressing FLT3 ITD were subjected to transduction with lentiviral particles encoding shRNA targeting Dusp6. Transduced cell pools were
selected, and levels were assessed by RT-qPCR for Dusp6 mRNA (relative to Actb) (A). The effect of Dusp6 knockdown for the indicated shRNAs on
ERK1/2 phosphorylation was assessed in serum-starved cells by immunoblotting (B). Upper panel: Representative experiment, lower panel:
quantification of 2 experiments (means + SD). pERK1/2 signals were normalized to ERK1 signals. Cell pools transduced with Dusp6-targeting
shRNA were subjected to proliferation assays in 0.5% FCS in absence of cytokines with the MTT method. (C) Representative experiment, values
are means of 7 replicas ± SD. (D) Summary of 4 independent experiments. Values at 72 h obtained for the two different Dusp6 shRNAs were
normalized to the amounts measured in the individual experiments for the control shRNA cell pool (100%) (means + SD, n = 4, Statistic
significance was tested by Students’ test (*p< 0.05).
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stimulate Dusp6 expression. We characterized cell pools
transduced with these shRNAs further. As expected,
ERK1/2 activation in these cells was increased
(Figure 5B). Interestingly, the cell pools with attenuated
Dusp6 expression grew significantly slower (Figure 5C,
D), despite the moderately elevated ERK1/2 activity.
Notably, growth was assessed in absence of cytokines,
therefore depending completely on FLT3 ITD signaling.
Thus, high DUSP6 levels in FLT3 ITD expressing cells
attenuate ERK1/2 activation, however, do not inhibit but
rather appear to promote cell proliferation.

Discussion
By RT-qPCR analysis in primary AML cells, AML cell lines,
and evaluation of Affymetrix data we have established a
profile of PTP expression in AML. Highly expressed
genes include three transmembrane classical PTPs and
6 non-receptor classical PTPs. Interestingly, several
dual-specificity PTPs (DUSPs) were found abundantly
expressed, suggesting important functions. This applies
also to PTP4A1 and PTP4A2 (PRL-1 and −2), and ACP1
(LMW-PTP). The possible roles of some of these PTPs
for cell biology in leukemia have been previously
reviewed [25] but further functional investigation of
these highly expressed PTPs appears warranted. PTP
mRNA expression in different types of immune cells
has been recently evaluated [26]. This study has defined
a set of PTPs commonly expressed in immune cell
lineages. As one could expect, this set shows many over-
laps with the PTP profile in AML cells described here,
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for example PTPRC/CD45 and PTPN6/SHP-1 are
among the highly expressed genes in both analyses.
However, certain of these “commonly expressed” PTP
genes in immune cells were only weakly or not detected
in our analysis, including for example PTPRF, PTPRS,
PTPN3, PTPN9, or DUSP4. These PTPs may not be
expressed in the early differentiation stages represented
by the leukemic blasts, or may potentially be downregu-
lated, another interesting topic for further investigation.
Some obvious discrepancies in the expression levels of
PTP genes in the patient samples either detected by RT-
qPCR or by Affymetrix analysis were apparent. They
may mostly relate to the different detection of splice
versions by the two methods, and in part to the different
sample sets. Still, of the 23 PTP genes detected among
the upper 25% by expression level, 12 match for both
detection methods. For the case of DUSP6, RT-qPCR
analysis was clearly advantageous over the microarray
technique to detect relevant and further validated changes.
We have focused our interest on the possible role of

FLT3 ITD, a common oncogenic lesion in AML, on PTP
expression. It appeared possible that changed PTP ex-
pression would contribute to FLT3 ITD mediated trans-
formation. Only relatively few alterations of PTP
expression were, however, observed. Notably, PTPN6
(SHP-1), a highly expressed PTP with a proven negative
regulatory role for cytokine signaling and possible role
in regulation of FLT3 was not altered in mRNA expres-
sion in our data sets, contrary to what has previously
been proposed [17]. Also, PTPRJ, a negative regulator of
FLT3 autophosphorylation [11], was not altered in ex-
pression by FLT3 ITD (data not shown). As we have
found recently, FLT3 ITD appears, however, to inactivate
PTPRJ by production of high levels of reactive oxygen
species [27]. DUSP2 mRNA was downregulated in pri-
mary AML cells with FLT3 ITD, but this phenomenon
could not be recapitulated in 32D or Ba/F3 cells. It is
possible that further lesions in the primary AML cells
contribute to DUSP2 regulation. Still, reduced DUSP2
levels may play a role in FLT3 ITD-transformed cells,
which we have not yet explored.
Interestingly, DUSP6 was elevated in expression down-

stream of FLT3 ITD signaling, as found in our RT-qPCR
analysis of primary AML cells, as well as in different
model cell systems. DUSP6 induction at mRNA and pro-
tein level could be causally linked to FLT3 ITD signaling
activity and ERK1/2 pathway activation. Upregulation of
DUSP6 mRNA was, however, not detectable in the Affy-
metrix data set. It is possible that this method is not suf-
ficiently sensitive to detect the FLT3 ITD-mediated
alteration in DUSP6 expression. In patients with activat-
ing N-RAS mutations, an increase in DUSP6 expression
could, however, be seen in the Affymetrix data set (not
shown), possibly indicating that N-RAS mutations are
more potent than FLT3 ITD in driving DUSP6 expres-
sion. Previous gene expression analyzes (also using Affy-
metrix expression arrays) in myeloma cells have
identified DUSP6 as one of only three genes which were
uniquely and strongly elevated in cells harboring acti-
vated N-RAS [28]. Interestingly, other stimuli which
only transiently activated ERK signaling such as
interleukin-6 stimulation did not induce a sufficiently
robust DUSP6 response to allow detection with this
technique. Consistent with our findings, DUSP6 has pre-
viously been identified as one of the genes which are
most effectively downregulated in FLT3 ITD expressing
AML cells treated with the FLT3/broad spectrum kinase
inhibitor CEP701 (Lestaurtinib) [29]. Based on its cap-
acity for dephosphorylating the pThr-X-pTyr motif in
ERK1/2 [19], DUSP6 can negatively regulate pERK1/2
levels in multiple cell types. Since the ERK1/2 pathway
mediates mitogenic signaling, among other responses,
DUSP6 has been proposed as a tumor suppressor [23].
Notably, in pancreatic cancer, DUSP6 levels are downre-
gulated by gene deletion or promoter hypermethylation,
consistent with such a function [30-32]. Recently,
DUSP6 was shown to inhibit growth, migration and
epithelial-to-mesenchymal transition (EMT) of esopha-
gal squamous cell carcinoma and nasopharyngeal carcin-
oma cells [33]. In non-small cell lung cancer, however,
high DUSP6 levels have been found to predict poor
prognosis, and evidence for a tumor-promoting role of
DUSP6 in human glioblastoma has recently been pro-
vided [34,35]. Moreover, DUSP6 has recently been found
as a predictor of invasiveness in papillary thyroid cancer.
Silencing of DUSP6 expression decreased the cell viabil-
ity and migration rate of a corresponding cell line [36].
As shown in the present study, elevated DUSP6 levels
correlate with the presence of FLT3 ITD, a negative pre-
dictor of prognosis [5] in AML cells. This observation,
taken together with the functional findings discussed
below, indicates that DUSP6 may play a pro-oncogenic
role in FLT3 ITD-positive AML. Obviouosly, depending
on the context, DUSP6 affects tumor biology in very dif-
ferent ways.
The function of high DUSP6 levels in FLT3 ITD

expressing cells was addressed by RNAi experiments.
Consistent with its function as ERK1/2-PTP, downregu-
lation of DUSP6 caused elevated constitutive ERK1/2 ac-
tivation in FLT3 ITD expressing cells. Moreover, ERK1/2
phosphorylation was also elevated in FL-stimulated cells,
albeit only moderately. We observed that FL-stimulation
caused downregulation of DUSP6 protein levels, similar
as it has been described earlier for the stimulation of
cells with other mitogens. In these studies the authors
linked the reduction of DUSP6 levels to proteasomal
degradation, which was prompted by phosphorylation at
serine residues [22,37]. Surprisingly, 32D cell pools with
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attenuated Dusp6 expression were, however, moderately
impaired in proliferation, indicating that high DUSP6
levels may not play a negative but rather some positive
role in FLT3 ITD dependent cell growth. Forced overex-
pression of exogenous DUSP6 in stable transfectants
reduced ERK1/2 phosphorylation, but did not inhibit cell
proliferation (data not shown), further supporting the
notion that ERK1/2 activity and cell growth in FLT3
ITD-expressing cells are not simply positively correlated.
It is well known that the biological outcome of ERK1/2
activation depends both on its magnitude and on its
kinetics, which are determined by several feedback
mechanisms [38]. For example, sustained high ERK1/2
activation by the phorbol ester TPA in MCF7 cells
causes growth arrest [24]. Similarly, nerve growth factor
(NGF) stimulation of PC-12 pheochromocytoma cells as
opposed to epidermal growth factor (EGF) stimulation
leads to sustained high-level ERK1/2 activation and not
a proliferative, but a differentiation response [39,40].
The alternate cellular responses to different kinetics and
magnitude of ERK1/2 activation seem based on differ-
ential transcriptional sensing [41], which is likely to de-
pend on the specific cell type and the simultaneous
activation of other signaling pathways. In the context of
FLT3 ITD, high constitutive expression of DUSP6
appears associated with a relatively low but constitutive
level of ERK1/2 activity, which is compatible with effi-
cient cell growth. ShRNA-mediated DUSP6 downregu-
lation causes a higher level of constitutive ERK1/2
activation (see Figure 4), which, similar as in the case of
MCF7 or PC12 cells, may ultimately result in dimin-
ished cell proliferation by yet unclear downstream
mechanisms. Alternatively or in addition, potential
other substrates of DUSP6 may play a role. These possi-
bilities need to be further explored.

Conclusions
Elevated expression of the dual-specificity phosphatase
DUSP6 is driven by the oncoprotein FLT3 ITD in AML.
Despite the known role of DUSP6 as negative regulator
of ERK1/2 activation, which was also observed in FLT3
ITD-expressing leukemia cells, DUSP6 was identified as
a positive component in the FLT3 ITD-driven prolifera-
tion. This finding prompts its further characterization as
a possible drug target.

Methods
Cell lines
The human AML cell lines MV4-11, THP1, EOL1, RS4-
11 were obtained from the German Collection of Micro-
organisms and Cell Cultures (DSMZ, Braunschweig,
Germany) and maintained in RPMI 1640 medium with
glutamine (PAA, Cölbe, Germany) supplemented with
10% heat inactivated fetal calf serum (FCS, BioWest,
Berlin, Germany). Murine 32D cells stably expressing ex-
ogenous wild type mFLT3 or mFLT3 ITD were kindly
provided by Drs. Justus Duyster and Rebekka Grundler
(Klinikum Rechts der Isar, Munich, Germany), and were
routinely cultured in RPMI 1640 medium with HEPES
(Biochrome Berlin, Germany) supplemented with 10%
heat inactivated FCS, 1 mM sodium pyruvate, and
2.5 ng/ml murine recombinant IL3. Murine Ba/F3 cells
stably expressing exogenous wildtype hFLT3 or hFLT3
ITD were kindly provided by Dr. Lars Rönnstrand (Ex-
perimental Clinical Chemistry, University Hospital
Lund/Malmö, Sweden) and were cultured under the
same conditions as 32D cells. To assess Dusp6 mRNA
or DUSP6 protein expression (experiments shown in
Figures 1C,D, and 2B, respectively) or FLT3 ITD-
dependent growth (e.g. experiments shown in Figure 5C,
D), cultivation was done in absence of cytokines.

Antibodies and reagents
The polyclonal DUSP6 antibody used in this study has
been described earlier [22]. Mouse monoclonal anti-β-
actin antibody (clone AC15) was from Sigma Aldrich
(A1978, Deisenhofen, Germany), mouse monoclonal
anti-ERK1 antibody was from Transduction Laboratories
(M12320/L1), mouse monoclonal anti-phospho-ERK1/2
antibody from Cell Signaling (Frankfurt, Germany),
FLT3 Polyclonal anti-FLT3 antibody (C-20, sc-479) was
from Santa Cruz Biotechnology (Heidelberg, Germany)
and mouse monoclonal anti-Vinculin (BZL03106) anti-
body was from Biozol Diagnostic (Eching, Germany).
Horseradish peroxidase-conjugated secondary antibodies
were from KPL (Wedel, Germany). AG1295 was pur-
chased from Alexis Biochemicals (Grünberg, Germany).
FLT3 ligand (FL, human), and murine IL-3 were from
Peprotech (London, UK). The MEK inhibitor UO126
was from Tocris Bioscience (Bristol, UK). The bisindolyl-
methanone FLT3 inhibitor cpd. 102 has been described
earlier [42].

Cell treatments and preparation of RNA and protein
samples
To evaluate basal PTP expression in human AML cell
lines, 1–2 x 106 cells were harvested from well-growing
cultures by centrifugation at 300 x g for 5 minutes. The
supernatant was discarded and the cell pellets were used
for total RNA preparation using the RNeasy kit (Qiagen,
Hilden, Germany). Biological replicas were prepared
with independently cultured cell batches. 32D cells and
Ba/F3 cells were starved from cytokines by washing
them twice and subsequently incubating them with
RPMI medium containing 0.5% FCS for 4 h before iso-
lating RNA. RS4-11 and MV4-11 cells were starved with
serum-free RPMI medium for 4 h before FL stimulation.
For protein extraction, cells were centrifuged (300 x g,
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5 min). The pellets were washed once with ice cold PBS,
and then extracted with 60–80 μl lysis buffer. containing
50 mM HEPES (pH 7.4), 150 mM NaCl, 1 mM EDTA,
25 mM NaF, 1% (v/v) NP-40 and (freshly added) aproti-
nin, 65 KIU/ml, 1 μg/ml leupeptin, 1 μg/ml pepstatin,
1 mM PMSF, 0.2 mg/ml Pefabloc, and 1 mM sodium
orthovanadate.

Human AML samples
AML patients included in this study were diagnosed and
treated either at the Jena University Hospital (Jena,
Germany) or at the Otto-von-Guericke University
Magdeburg (Magdeburg, Germany). The retrospective
molecular analyses of leukemic blasts were approved
by the institutional review boards of each university hos-
pital. AML cells were isolated from peripheral blood or
bone marrow from AML patients at diagnosis after
informed consent. In part, bone marrow was frozen in
FCS supplemented with 10% IMDM and 10% DMSO
until workup. Erythrocytes were lysed using erythrocyte
lysis buffer (QIAGEN, Hilden, Germany) according to
the manufacturer´s instructions, and blasts were purified
by Ficoll (Biochrom, Berlin, Germany) density gradient
separation. RNA isolation was carried out with the
RNeasy Mini Kit (QIAGEN, Hilden, Germany). FLT3
mutation status was determined by RT-PCR using stand-
ard diagnostic primers ITD1 (5´- GCAATTTAGGTATG
AAAGCCAGC-3´) and ITD2 (5´- CTTTCAGCATTTT
GACGGCAACC-3´) or FLT3-ITD-fw 5-GCAATTTAG
GTATGAAAGCCAGC-3 and FLT3-ITD-rev 5-CTTTC
AGCATT TTGACGGCAACC-3.

Expression analysis by RT-qPCR
The platform for PTP mRNA expression analysis by RT-
qPCR has been described recently [18]. RNA was quan-
tified by UV measurement, and integrity was verified
using an Agilent 2100 Bioanalyzer. Samples with
concentrations< 100 ng/μl, A260:A280 ratios <2.0, or
partially degraded RNA were excluded from further pro-
cessing. 1 μg RNA was used directly for preparation of
cDNA using a BioRad iScript cDNA synthesis kit
(BioRad, Munich, Germany) (for human AML samples
and cell lines) or a Fermentas cDNA synthesis kit (Fer-
mentas, St. Leon-Rot, Germany) (for all other samples)
according to the manufacturer’s instructions. cDNA cor-
responding to 40 ng RNA input was used for the qPCR.
The primers for amplification of most of the transcripts
were purchased from Qiagen (QuantiTectW Primer
Assay, Qiagen, Hilden, Germany), except primer sets for
huDUSP2, huDUSP4, huSBF1, huPTPN2, huPTPN22,
and huPTPRR, which were bought from SABiosciences
(Hilden, Germany). The real-time PCR reactions were
carried out using the FastStart Universal SYBR Green
Master (ROX) from Roche (Mannheim, Germany) and
an Applied Biosystems 7900HT Fast Real-Time PCR sys-
tem (Merck Serono facility, Geneva, Switzerland), or the
RTPCR, Maxima™ SYBR green from Fermentas (St.
Leon-Rot, Germany, Cat. No. K0221) and an Eppendorf
RealplexW Mastercycler. The conditions for PCR
included 95°C for 15 min (to activate the hotstart Taq
polymerase), followed by 40 cycles of 94°C for 15 sec,
55°C for 30 sec, 72°C for 30 sec. Threshold Cycles (Ct)
were determined after the completion of PCR and calcu-
lations of the relative expression of PTP genes were
done based on ΔCt values and the mean Ct of the three
housekeeping genes proteasome subunit beta type-3
(PSMB3/Psmb3), calnexin (CANX/Canx), and β-actin
(ACTB/Actb). For analyses of drug effects of DUSP6/
Dusp6 expression in cell lines, ΔCt were calculated rela-
tive to β-actin (ACTB/Actb) expression.

Analysis of array data
A published microarray dataset (GSE1159) was analyzed
for PTP expression levels in FLT3 WT and FLT3 ITD
samples [43]. Data were analyzed as described previously
[44].

siRNA and shRNA transfections
For siRNA-mediated knockdown of human FLT3 the
ON-TARGETplus SMARTpool from Dharmacon
(ThermoFisher Scientific, Schwerte, Germany, Cat. No.
L-003137-00-0005) was used. As control, the ON-
TARGETplus non-targeting pool (Cat. No. D-001810-
10-20) was used. MV4-11 cells were transfected using
the Lonza (Cologne, Germany) Cell Line Nucleofector
Kit V according to the instructions of the manufac-
turer. In brief, 2 x 106 cells were taken up in 100 μl
of transfection solution, 2 μg siRNA were added, and
the suspension was transferred to an electroporation
cuvette and pulsed once using the program A30 of the
AMAXA Nucleofector. Thereafter, cells were diluted in
culture medium and maintained for 48 hours before
further analysis. For shRNA-mediated knockdown of
DUSP6 in 32D cells, pLKO.1-based constructs were
obtained from the Sigma-Aldrich (Deisenhofen, Ger-
many) MISSIONW shRNA collection: Dusp6 #1 TRC
ID number TRCN0000055038 (5’CCGGCGATGCTTAC
GACATTGTTAACTCGAGTTAACAATGTCGTAAGC
ATCGTTTTTG 3’); Dusp6 #4 TRCN0000055041 5’C
CGGCCTGAGGCCATTTCTTTCATACTCGAGTATG
AAAGAAATGGCCTCAGGTTTTTG3’. Production of
lentiviral particles and transduction and selection of
32D cell pools was done as described before [11].

DUSP6 overexpression
A construct encoding ratDUSP6 has been described earl-
ier [45]. It was subcloned into the vector LeGO-iC ([46],
kindly provided by Dr. C. Stocking, Heinrich Pette
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Institute, Hamburg, Germany) by standard techniques.
Stable transfection of 32D cell pools was performed as
described previously [47].

Other assays
Immunoblotting and assessment of cell proliferation using
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium brom-
ide (MTT) were performed as described earlier [47].
Immunoblots were developed using enhanced chemilumi-
niscence and detection with a LAS4000 Imager (Fujifilm
Europe GmbH, Düsseldorf, Germany). Signals were quan-
tified using Multi Gauge V3.0 Software (Fujifilm Europe
GmbH, Düsseldorf, Germany).
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