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Abstract 

Diabetic cardiomyopathy (DCM) represents a unique myocardial disease originating from diabetic metabolic 
disturbances that is characterized by myocardial fibrosis and diastolic dysfunction. While recent research regard-
ing the pathogenesis and treatment of DCM has focused primarily on myocardial cells, nonmyocardial cells—includ-
ing fibroblasts, vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and immune cells—also contribute 
significantly to the pathogenesis of DCM. Among various therapeutic targets, fibroblast growth factor 21 (FGF21) 
has been identified as a promising agent because of its cardioprotective effects that extend to nonmyocardial cells. 
In this review, we aim to elucidate the role of nonmyocardial cells in DCM and underscore the potential of FGF21 
as a therapeutic strategy for these cells.
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Introduction
Diabetes is a chronic condition characterized by hyper-
glycemia resulting from impaired insulin secretion and/
or action. It represents a heterogeneous metabolic dis-
order primarily characterized by elevated blood sugar 
levels [1]. According to the International Diabetes Fed-
eration (IDF), there are over 400 million people liv-
ing with diabetes worldwide, 91% of whom have type 2 
diabetes. IDF data indicate that diabetes affects 8.8% of 
the global population, and this number is projected to 
increase to 642 million by 2040 [2]. Over the past few 
decades, the incidence of diabetes has steadily increased 
globally across nearly all regions, making it a pressing 
global health concern [3]. Cardiovascular disease (CVD) 
is the leading cause of mortality among diabetic patients. 
Diabetic cardiomyopathy (DCM), a severe cardiovas-
cular complication associated with diabetes, represents 
a pathophysiological state induced by diabetes mellitus 
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(DM). Importantly, DCM can lead to heart failure (HF) 
independent of coronary artery disease, hypertension, 
and heart valve disorders [4]. Multiple factors contribute 
to the onset and progression of diabetic cardiomyopathy. 
These include insulin resistance, disorders in myocar-
dial cell glucose and lipid metabolism, oxidative stress, 
myocardial cell apoptosis, myocardial inflammation, and 
fibrosis. Both individually and in combination, these fac-
tors collectively promote the development of DCM [5–8].

Recently, most research on the pathogenesis and treat-
ment of DCM has focused primarily on myocardial cells. 
However, the pathophysiology of DCM cannot be attrib-
uted solely to pathological changes in myocardial cells. 
The heart is a composite structure comprising both myo-
cardial cells and nonmyocardial cells. Myocardial cells 
account for approximately 40% of cardiac cells; fibroblasts 
constitute the second largest proportion of approximately 
20%; vascular cells contribute to approximately 15% of 
cardiac cells; immune cells represent approximately 10% 
of cardiac cells; and adipocytes constitute approximately 
0.5% of cardiac cells [9]. The nonmyocardial cell popula-
tion plays a critical role in maintaining healthy cardiac 
function and, under diabetic conditions, contributes 
to myocardial disease through fibrosis, inflammation, 
and vascular dysfunction[10] (Fig.  1). Furthermore, car-
diomyocytes are impacted by fibroblast activation and 
transformation into myofibroblasts, leading to exces-
sive extracellular matrix (ECM) deposition and fibrosis. 
This process increases myocardial stiffness and disrupts 
normal cardiomyocyte contractility. VSMCs contrib-
ute to diabetic cardiomyopathy by promoting vascular 

remodeling and stiffness in response to hyperglycemia 
and other metabolic stressors. This vascular dysfunction 
leads to impaired blood flow and increased afterload on 
the heart, which negatively impacts cardiomyocyte func-
tion and promotes hypertrophy. Endothelial dysfunction 
and endothelial-to-mesenchymal transition (EndMT) in 
diabetes reduce angiogenesis and impair nutrient deliv-
ery, contributing to cardiomyocyte ischemia, apopto-
sis, and dysfunction. Activated macrophages and other 
immune cells release pro-inflammatory cytokines that 
exacerbate inflammation, leading to cardiomyocyte 
hypertrophy, apoptosis, and further deterioration of car-
diac function. These processes collectively lead to the 
deterioration of cardiac function and structure in DCM 
[10].

Fibroblast growth factor 21 (FGF21), a peptide 
hormone that regulates energy homeostasis, it is 
expressed in various mouse tissues, including the liver, 
brown adipose tissue, white adipose tissue (WAT), 
and pancreas. The liver is the primary source of cir-
culating FGF21 in the bloodstream [11]. FGF signal-
ing is regulated in a tissue-specific manner through 
the interaction of FGF, fibroblast growth factor recep-
tor (FGFR), heparan sulfate proteoglycan (HSPG), and 
Klotho-type co-receptors [12]. The FGFR family com-
prises FGFR1b, FGFR1c, FGFR2b, FGFR2c, FGFR3b, 
FGFR3c, and FGFR4 [13]. FGF21 was reported to 
requires βklotho (KLB) to assist in binding FGF21 to 
FGFR1c, FGFR2c, and FGFR3c, thereby initiating its 
biological effects [14–16]. βklotho expression is tis-
sue-specific, with high levels found predominantly in 

Fig. 1 Contribution of nonmyocardial cells to the development of DCM
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adipose tissue, liver, and pancreas [17]. Studies have 
also shown that βklotho is expressed in smooth mus-
cle cells [18–20], endothelial cells [21–23], and mac-
rophages [21, 24]. While βklotho expression is very 
low in fibroblasts, it may be activated under patho-
logical conditions [25]. Receptor activation can initi-
ate various intracellular signaling cascades, including 
direct interaction with the FRS2 docking protein, and 
downstream activation of the Ras/MAPK, PKC, Jak/
STAT, and PI3K/mTOR pathways, affecting metabo-
lism, proliferation, and survival [26] Studies have 
shown that FGF21 can promote the uptake of glucose 
by adipocytes independent of insulin and can upregu-
late the expression of Glucose transporter 1 (GLUT1). 
Additionally, FGF21 can lower blood glucose and tri-
glyceride levels in OB/OB, DB/DB, and ZDF rats and 
improve insulin sensitivity and glucose tolerance with-
out causing hypoglycemia or weight gain [27]. FGF21 
plays a protective role in the hearts of mice with DCM.

A previous study detailed the relationship between 
FGF21 and cardiomyocytes in DCM. The authors 
reported that FGF21 has various physiological func-
tions, such as antiapoptotic, anti-inflammatory, anti-
oxidative, and fatty acid oxidation effects, and that 
it protects cardiomyocytes during DCM pathogen-
esis [28]. However, there is a lack of comprehensive 
reviews on the role of FGF21 in nonmyocardial pathol-
ogy in DCM to date; this review aims to shed light on 
its impacts beyond myocardial cells.

Diabetic cardiomyopathy (DCM) involves complex 
interactions between various cell types in the heart, 
not just cardiomyocytes. Nonmyocardial cells, includ-
ing fibroblasts, vascular smooth muscle cells, endothe-
lial cells, and immune cells, play critical roles in the 
pathogenesis of DCM. Cardiac fibroblasts contribute 
to fibrosis, which is a hallmark of DCM. They prolif-
erate and produce ECM proteins, leading to stiffening 
of heart tissue and impaired cardiac function. Smooth 
muscle cells undergo phenotypic shifts, and DCM-
related metabolic adaptations correlate with the pro-
liferation, migration, calcification, and inflammation 
of these cells. Endothelial dysfunction is common in 
patients with DCM, resulting in impaired angiogen-
esis and reduced capillary density. This compromises 
myocardial perfusion and contributes to ischemia and 
cardiomyocyte death. Inflammatory cells, including 
macrophages and T-cells, infiltrate the myocardium in 
response to hyperglycemia and other metabolic stress-
ors. These cells release proinflammatory cytokines, 
exacerbating myocardial inflammation and fibrosis.

Cardiac fibroblasts
Role of cardiac fibroblasts in DCM
Cardiac fibroblasts (CFs) represent the predominant 
nonmuscle cell type within the heart. They play a piv-
otal role in maintaining normal cardiac morphology and 
function and actively participate in cardiac remodeling 
processes under pathological conditions. These fibro-
blasts engage in intricate interactions with other cardiac 
cells that are mediated by chemical, mechanical, and 
electrical signals, thereby influencing diverse cellular 
signaling pathways and gene expression [29, 30]. Notably, 
CFs receive profibrotic cues from immune and vascular 
cells, allowing them to dynamically regulate the ECM. 
Conversely, they contribute to vascular neogenesis and 
immune cell infiltration by secreting vascular growth fac-
tors and chemokines, thereby eliciting an inflammatory 
response. In diabetic contexts, these intercellular interac-
tions may intensify, contributing to the development of 
DCM. Furthermore, under high glucose (HG) conditions, 
CFs increase collagen synthesis while concurrently sup-
pressing the overall activity of matrix metalloproteinases 
(MMPs), ultimately promoting cardiac fibrosis and heart 
failure [31].

Transition of CFs into myofibroblasts
The differentiation of CFs into myofibroblasts is a key cel-
lular event in DCM-induced myocardial fibrosis. Under 
high-glucose conditions, CFs tend to differentiate into 
myofibroblasts while promoting CF proliferation. CFs 
isolated from adult rats showed a significant increase 
in alpha smooth muscle actin (α-SMA) expression after 
24  h of high glucose treatment compared with that in 
CFs cultured in low glucose medium, promoting spon-
taneous differentiation into myofibroblasts [32]. CFs iso-
lated from diabetic animals presented increased α-SMA 
expression, indicating a phenotypic transition of diabetic 
CFs into myofibroblasts [33]. The balance between ECM 
synthesis and degradation plays a crucial role in myocar-
dial fibrosis. The ECM is primarily composed of type I 
and type III collagen. CFs, as the primary effector cells in 
cardiac fibrosis, are responsible for producing the ECM 
and maintaining its dynamic balance. CFs isolated from 
Zucker diabetic rats synthesize angiotensin II (Ang II), 
activating the renin‒angiotensin‒aldosterone system and 
ACE signaling pathways and promoting collagen matrix 
contraction and deposition [33]. Moreover, culturing 
CFs isolated from db/db mice under 5 mM and 25 mM 
glucose conditions led to a significant increase in type I 
collagen expression. These findings suggest that under 
high-glucose conditions, myocardial fibroblasts exhibit 
elevated collagen expression, leading to ECM deposition, 
increased cardiac stiffness, and diastolic dysfunction. 
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Myofibroblasts secrete a large amount of ECM, as well 
as MMPs and their inhibitors, tissue inhibitors of metal-
loproteinases (TIMPs), which participate in the fibrotic 
remodeling process.

Mechanisms underlying CF transition and fibrosis in DCM
High glucose/hyperglycemia
To identify potential targets for treating DCM, numerous 
studies on the phenotype and function of CFs have been 
conducted. TGF-β1 (transforming growth factor-β1), an 
inducer, facilitates the differentiation of CFs into myofi-
broblasts [34]. In isolated rat CFs, HG stimulation pro-
moted TGF-β1 expression. HG conditions stimulate 
increases in ERK1/2 activity in CFs in  vitro, and the 
ERK1/2 inhibitors PD98059 and U0126 inhibit HG-
induced fibroblast proliferation and collagen expression 
while also suppressing the HG-induced upregulation 
of TGF-β1 expression [35]. The calcium-sensing recep-
tor (CaSR), a member of the G protein-coupled receptor 
superfamily, regulates the intracellular calcium concen-
tration. HG treatment of CFs promotes CaSR expres-
sion through changes in cellular activity. Activated CaSR 
subsequently upregulates the expression of Smad ubiq-
uitin regulatory factor 2 (Smurf2), resulting in increased 
ubiquitination levels of proto-oncogenes and Smad7. 
Additionally, autophagy is activated, leading to excessive 
CF proliferation and extensive collagen deposition via 
the TGF-β pathway [36, 36]. Furthermore, CFs have an 
intracellular renin‒angiotensin system (RAS). Upon HG 
stimulation, intracellularly synthesized Ang II, a potent 
vasoconstrictor and fibrotic factor, upregulates throm-
bospondin-1 (TSP1) expression [37]. This activation of 
TSP1 promotes TGF-β1 bioactivation, thereby enhancing 
the synthesis of TGF-β1 and collagen type I in CFs [38]. 
TSP-1, a multidomain protein synthesized and secreted 
by various cells, has been shown to have upregulated 
expression in CFs under HG conditions. TSP-1 activates 
the latent complex of TGF-β1 and participates in the 
upregulation of TGF-β1 and type III collagen expres-
sion [39]. HG increases the activity of the transcription 
coactivator p300, thereby increasing TGF-β1 activity 
through Smad2 acetylation [40]. The expression of the 
transcription factor FoxO1 is upregulated by HG, result-
ing in increased TGF-β1 expression and FoxO1 activity. 
FoxO1 promotes connective tissue growth factor (CTGF) 
expression, facilitating CF phenotypic transformation 
and augmenting the synthesis and secretion of ECM pro-
teins, leading to cardiac fibrosis and cardiac dysfunction 
[41].

Hyperglycemia induces an increase in DNA methyl-
transferase 1 (DNMT1) expression in CFs. DNMT1-
mediated hypermethylation of the suppressor of 
cytokine signaling 3 (SOCS3) promoter inhibits the 

downregulation of SOCS3 expression in diabetic car-
diac fibrosis, thereby promoting the activation of STAT3, 
leading to cardiac fibroblast activation and collagen 
deposition [42]. HG suppresses RASSF1A expression, 
accompanied by an increase in MeCP2 expression, which 
activates the RASSF1A/ERK1/2 signaling pathway to 
promote cardiomyocyte fibroblast proliferation. Abnor-
mal cardiomyocyte fibroblast proliferation can lead to 
heart failure and ECM deposition, thereby exacerbating 
the development of DCM [43].

Cytokines
Cytokines are also involved in cardiac fibrosis. In STZ-
induced diabetic mice with IL-6 gene expression knock-
out, cardiac interstitial fibrosis was significantly reduced 
compared with that in STZ-induced wild-type (WT) dia-
betic mice. IL-6 gene knockout mitigates the upregula-
tion of TGFβ1 expression in the hearts of diabetic mice 
treated with HG or cultured CFs treated with IL-6 [44]. 
IL-17 plays a similar role in diabetic mice. It binds to the 
receptors IL-17RA and IL-17RC on the surface of CFs to 
activate the PKCβ/Erk1/2/NF-κB signaling pathway. This 
activation leads to increased expression levels of collagen 
I and III in CFs, ultimately promoting collagen synthesis 
and deposition in cardiac tissue [45]. HG treatment sig-
nificantly promotes the production of proinflammatory 
cytokines (IL-1β) and activates NF-κB in CFs, increas-
ing the expression of fibrotic markers (CTGF, FN, and 
α-SMA) and extracellular matrix proteins (Col-I and 
Col-III) [46]. In one STZ-induced model of diabetic mice, 
IL-33 exhibited antifibrotic cytokine function. Diabetes-
related hyperglycemia causes stress in cardiomyocytes, 
leading to the release of DAMPs and HMGB1. Interstitial 
HMGB1 interacts with Toll-like receptor 4 (TLR4) recep-
tors on adjacent fibroblasts, leading to reduced expres-
sion of IL-33 and increased collagen production [47].

Energy metabolism
The heart adapts its energy metabolism by utilizing vari-
ous substrates. During development, the heart predomi-
nantly relies on aerobic glycolysis and lactate oxidation. 
In contrast, the adult heart primarily generates ATP 
through oxidative metabolism, with fatty acids serv-
ing as the principal energy source [48]. CFs mirror the 
substrate utilization characteristics of the heart. CFs 
isolated from db/db mice under normal blood glucose 
conditions exhibit a profibrotic phenotype character-
ized by increased collagen synthesis and reduced TGF-β 
sensitivity [49]. Additionally, under high-fat diet (HFD) 
conditions, CFs can differentiate into adipocytes [50]. 
Adipocytes synthesize and secrete circulating regula-
tors, including resistin and leptin, which promote cardiac 
fibrosis development. In hearts overexpressing resistin, 
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the mRNA expression levels of collagen subtypes I and 
III, as well as those of CTGF and fibronectin, are elevated 
[51]. Furthermore, resistin promotes CF proliferation in 
adult mice by activating Janus kinase 2 (JAK2) through 
TLR4 binding. This activation leads to STAT3 phospho-
rylation, translocation to the nucleus, and subsequent 
promotion of fibroblast-to-myofibroblast differentiation 
and fibrosis via the JNK/c-Jun signaling pathway, inde-
pendent of TGFβ1 signaling [52]. The profibrotic effects 
of leptin in the heart are realized mainly by enhancing 
collagen synthesis. Cardiomyocytes cultured in  vitro 
and treated with leptin for 24  h presented significantly 
increased procollagen Iα (1) expression and decreased 
expression of MMPs 8, 9, and 13 [53]. Additionally, lep-
tin expression increases MT1-MMP transport to the cell 
surface in primary adult rat CFs, resulting in increased 
extracellular MMP-2 precursor activation and increased 
fibroblast migration, ultimately leading to increased 
cardiac collagen deposition [54]. Elevated expression 
of cell death-inducing DFFA-like effector C (CIDEC), a 
lipid droplet-associated protein that can prevent lipid 
mobilization and promote intracellular lipid storage, 
is associated with DCM in rats [55]. Insulin resistance 
significantly increases CIDEC expression in CFs, pro-
moting CIDEC nuclear translocation. This inhibits AMP-
activated protein kinase α (AMPK) phosphorylation and 
amplifies collagen synthesis [56].

Advanced glycation end products (AGEs)
Advanced glycation end products (AGEs) constitute a 
heterogeneous group of molecules formed through non-
enzymatic glycation and the oxidation of proteins, lipids, 
and nucleic acids. AGE formation and accumulation 
are increased in individuals with DM [57]. Research has 
indicated that AGEs stimulate type I collagen expression 
via ERK 1/2- and p38-MAPK-dependent pathways [58]. 
Furthermore, diabetes upregulates CTGF expression, 
promoting the binding of AGEs to their receptors (recep-
tors for advanced glycation end products, RAGEs). This 
interaction contributes to regulating extracellular matrix 
(ECM) synthesis, accumulation, and fibroblast differen-
tiation [59, 60]. These findings underscore the direct role 
of AGEs in promoting cardiac fibrosis.

Protective effect of FGF21 against CF transition and fibrosis
The heart serves as both a target and a source of FGF21. 
CF is known to express FGFR1c [61] and FGFR2 [62]. 
Recent research has underscored that CFs exhibit mini-
mal FGF21 synthesis but are direct targets of its effects. 
FGF21 expression is significantly increased in hyper-
tensive humans and mice, which coincides with pro-
nounced cardiac hypertrophy and fibrosis. Upon the 
onset of hypertension, both locally produced and 

systemically circulating FGF21 are induced to exert pro-
tective effects on the heart [63]. Compared with their 
wild-type counterparts, mice lacking FGF21 expression 
display increased susceptibility to cardiac hypertrophy 
and impaired pump function following isoproterenol 
treatment [64]. In the context of DCM, FGF21 expression 
deficiency contributes to myocardial lipid accumulation 
via Nrf2 (nuclear transcription factor E2-related factor 
2)-driven upregulation of CD36 expression, thereby pro-
moting DCM development [65].

Mechanistically, FGF21 inhibits the TGF-β1-Smad 
2/3-MMP 2/9 signaling pathway and collagen synthe-
sis, mitigating fibrosis [66]. Furthermore, it suppresses 
tachycardia-induced TGF-β1 expression, impedes colla-
gen expression upregulation in fibroblasts, and attenuates 
rapid pacing-induced oxidative stress in atrial myocytes 
through ROS, TGF-β, and ox-CaMKII signaling. These 
actions collectively improve rapid pacing-induced myofi-
brillar degradation, counteract L-type calcium channel 
expression downregulation, and increase p-RyR2 expres-
sion, effectively mitigating atrial remodeling [67]. Addi-
tionally, FGF21 activates cell surface FGFR, promoting 
the expression of the transcription factor early growth 
response protein 1 (EGR1) while inhibiting NLRP 3, IL-1, 
IL-6, IL-18, COL 1, COL 3, Acta 2, and TGF-β1 activity [68].

Furthermore, FGF21 has been unequivocally estab-
lished as an effective therapeutic agent for type II dia-
betes and obesity. The administration of recombinant 
FGF21 protein to ob/ob, db/db, or HFD-fed, in addi-
tion to obese Zucker diabetic fatty (ZDF) rats, robustly 
reduced obesity, lowered blood glucose and triglyceride 
levels, and improved insulin sensitivity [69]. In mice with 
streptozotocin (STZ)-induced type I diabetes, inhibiting 
FGF21 expression exacerbated cardiac hypertrophy and 
fibrosis [70]. This was accompanied by elevated expres-
sion levels of atrial natriuretic factor, α-SMA, type I and 
III collagen, and TGF-β. Additionally, lipid droplet num-
bers increased, cardiac triglyceride concentrations rose, 
plasma triglyceride and cholesterol levels increased, and 
peroxisome proliferator-activated receptor γ coactiva-
tor 1α (PGC-1α) expression was downregulated. CD36 
expression was upregulated, contributing to lipid accu-
mulation and further compromising cardiac function. 
Adiponectin, a hormone secreted by adipocytes, plays 
a pivotal role in regulating energy metabolism, body 
weight, and blood glucose balance. Treatment with 
FGF21 induced adiponectin expression, which, in turn, 
reduced resistin-induced inflammation and probably 
inhibited the profibrotic effects of resistin in the heart [71].

In summary, under high glucose/hyperglycemia con-
ditions, CFs undergo a transition into myofibroblasts. 
This process, along with the influence of AGEs and other 
pathological insults, leads to an increase in collagen 
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synthesis and extracellular matrix deposition, culminat-
ing in cardiac stiffness and fibrosis. FGF21 exerts a pro-
tective effect by inhibiting CF differentiation through 
multiple pathways while mitigating damage caused by 
HG, disruption of lipid metabolism, and other insults 
mediated by CFs during myocardial fibrosis development 
(Fig. 2).

In DCM, CFs play a crucial role in myocardial fibrosis. 
This condition involves the accumulation of ECM pro-
teins, particularly collagen types I and III, leading to ven-
tricular wall stiffness and impaired heart function.

As the most important signaling pathway in CF tran-
sition, TGF-β1 expression is induced by many factors 
during DCM, such as high glucose, HG, AGEs and adi-
pocyte-derived resistin and leptin. Cytokines are also 
involved in cardiac fibrosis, causing the deposition of 
collagens in CFs. FGF21 forms a complex with FGFR and 
βklotho, which inhibits the TGF-β1-Smad 2/3-MMP 2/9  
signaling pathway and collagen synthesis. This inhibition 
prevents CF differentiation into myofibroblasts, thereby 
reducing fibrosis and offering cardioprotection against the 
detrimental effects of HG and dysregulated lipid metabolism.

Endothelial cells
Role of endothelial dysfunction in DCM
An early hallmark of CVD is endothelial dysfunction, which 
is characterized by disruptions in the normal physiological 
functions of endothelial cells. Endothelial cells, a highly 
heterogeneous cell type, exhibit different phenotypes and 
functions across various tissues and microenvironments. 
Their primary role is to maintain and regulate normal vas-
cular function. By secreting various bioactive substances, 
such as nitric oxide (NO), endothelin-1 (ET-1), nerve 
growth factor-1 (NGF-1), and prostacyclin I2, endothelial 
cells modulate the contraction, metabolism, survival, and 
proliferation of myocardial cells in the heart [72]. Addi-
tionally, endothelial cells influence myocardial remodeling 
through signaling molecules, including those distributed 
via extracellular vesicles [73]. Elevated blood sugar levels, 
hyperinsulinemia, and insulin resistance can inflict damage 
upon endothelial cells, subsequently disrupting myocar-
dial metabolism. These cellular perturbations manifest as 
abnormal calcium ion balance [74], endoplasmic reticulum 
stress [75], mitochondrial impairments [76], the accumu-
lation of AGEs [77], and ECM deposition [78]. These pro-
cesses ultimately culminate in myocardial rigidity, fibrosis, 
and structural remodeling, leading to compromised cardiac 
diastolic and systolic function and resulting in HF. Addi-
tionally, diabetes exacerbates these effects by promoting 
endothelial-to-mesenchymal transition (EndMT), which 
may contribute to myocardial fibrosis and remodeling [79, 80].

Some studies suggest that cardiac fibrosis could be asso-
ciated with the emergence of fibroblasts derived from ECs 
via a process known as EndMT that can be induced by 
TGF-β1 activity [81]. However, it’s worth noting that some 
research challenges this perspective because the specific 
markers used in these studies may not definitively con-
firm endothelial origin. Studies utilizing lineage tracing 
and potentially more specific genetic markers have shown 
that in disease models such as pressure overload, AngII/
PE infusion, TAC, and myocardial infarction (MI) injury, 
resident cardiac fibroblasts primarily contribute to the pool 
of myofibroblasts in fibrotic tissue [82, 83]. Nonetheless, in 
certain contexts of diabetes, endothelial cells may undergo 
a transition into mesenchymal-like cells that produce extra-
cellular matrix components. Consequently, EndMT offers 
valuable insights into the potential plasticity of endothe-
lial cells in pathological conditions like diabetic cardio-
myopathy. While more research is required to definitively 
establish this connection, EndMT could be a potential 
mechanism contributing to myocardial fibrosis, especially 
in these particular pathological contexts.

Under normal physiological conditions, ECs maintain 
vascular function by releasing vasodilators (such as NO, 
prostacyclin, and bradykinin) and vasoconstrictors (such 
as prostaglandins, endothelin, and angiotensin-II). In 
the context of DCM, an imbalance exists in the release of 
vasoconstrictors and vasodilators by ECs, contributing to 
endothelial dysfunction. As a vasodilator released by ECs, 
nitric oxide (NO) plays a crucial role in endothelial func-
tion. NO is synthesized by endothelial nitric oxide synthase 
(eNOS) and has a very short half-life. Its action is limited 
to the site of production, making eNOS predominantly 
expressed in ECs to supply the vasculature [84]. In diabetic 
patients, the NO-dependent vasodilatory response may be 
compromised, possibly due to eNOS uncoupling caused 
by vascular oxidative stress, resulting in reduced NO pro-
duction and diminished bioavailability [85]. Additionally, 
endothelial-myocyte uncoupling plays a significant role 
in DCM. Functionally, the ECM connects ECs with myo-
cardial cells, and under diabetic conditions, the activation 
of MMPs leads to oxidative matrix accumulation, induc-
ing endothelial-myocyte uncoupling and contributing to 
impaired diastolic function in diabetic patients [86].

Mechanisms underlying cardiac 
endothelial dysfunction in DCM‑related 
endothelial‑to‑mesenchymal transition (EndMT)
ECs serve as the primary targets of hyperglycemic dam-
age. Prolonged blood glucose levels exceeding 7 mmol/L 
can result in metabolic disruptions within ECs. The 
injury induced by HG in ECs plays a crucial role in the 
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Fig. 2 Role of CFs in DCM and the corresponding protective effects of FGF21
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pathogenesis of DCM. In wild-type diabetic mice, ECs 
within the heart undergo a process known as EndMT 
[87].

In primary human aortic endothelial cells (HAECs), 
exposure to high glucose (HG) results in reduced expres-
sion of the endothelial markers CD31 and VE-cadherin, 
whereas the expression of mesenchymal markers such as 
α-SMA, FSP-1, and FN increases. These findings indicate 
that HAECs acquire a mesenchymal phenotype through 
the EndMT process [88]. Additionally, HG stimulation 
induces the synthesis of Ang II in HAECs, leading to the 
loss of CD31 expression. However, these changes can 
be reversed via the administration of angiotensin recep-
tor antagonists [89]. Under HG conditions, the TGF-β 
signaling pathway is activated, promoting the phospho-
rylation and nuclear translocation of Smad proteins. 
Simultaneously, intracellular ROS levels increase, trigger-
ing oxidative stress reactions and disrupting the balance 
of intracellular redox reactions, thereby exacerbating the 
transformation of ECs into mesenchymal cells [90]. In 
heart microvascular endothelial cells (CMECs) treated 
with HG + PA (palmitic acid), the expression of Sirtuin 
6 (Sirt 6) is significantly downregulated. Endothelial-
specific Sirt 6 expression knockout exacerbates DCM in 
mice, whereas in  vitro knockdown of Sirt 6 expression 
promotes the proliferation and migration of HG + PA-
induced CMECs. The results of this study suggest 
that Sirt 6 inhibits EndMT in CMECs stimulated with 
HG + PA by downregulating Notch 1 expression [91]. In 
diabetic mouse hearts, excessive activation of FoxO1 pro-
motes  EndMT  in heart microvascular endothelial cells 
by regulating DDAH1 expression [80].

Advanced glycation end products (AGEs)
Recent studies  have indicated that  endothelial dysfunc-
tion  is closely related to  AGEs. AGEs activate RAGE, 
leading to  the expression upregulation of NF-κB and its 
target genes. This, in turn, reduces the bioavailability and 
activity of endothelial-derived NO and promotes the gen-
eration of  reactive oxygen species, ultimately contribut-
ing to endothelial dysfunction [92].

Autophagy, apoptosis, and pyroptosis
Autophagy, which is a step in programmed cell death, is 
dysregulated in DCM, leading to severe coronary micro-
vascular dysfunction (CMD) [93]. Long-term exposure 
of fetal mouse hearts to nonmetabolic sugars induces 
severe lysosomal disruption and autophagic dysregula-
tion [94]. Extracellular vesicles released from diabetic 
CMECs carry deleterious Mst1 proteins, initiating a cas-
cade that amplifies myocardial cell damage. The disease-
related signals received by myocardial cells  lead to a 
further reduction in autophagy and exacerbate apoptosis, 

ultimately impairing heart function. Additionally,  Mst1 
inhibits GLUT4 membrane translocation  in myocardial 
cells cultured under HG conditions, potentially contrib-
uting to  insulin resistance and DCM [95]. Furthermore, 
Mst1 contributed to CMD in DM by directly inhibit-
ing autophagy and inducing apoptosis in CMECs [96]. 
Research has indicated that HG stress reduces autophagy 
in CMECs, promoting cell apoptosis [97]. Additionally, 
exposing human microvascular ECs to HG and high-fat 
environments leads to mitochondrial dysfunction, trig-
gering caspase-3 and PARP cleavage and inducing EC 
apoptosis and senescence [98]. Under elevated blood 
glucose and hyperlipidemia conditions, miR-125a-5p 
expression is upregulated. It contributes to cellular apop-
tosis and simultaneously participates in oxLDL-induced 
pyroptosis of vascular endothelial cells (VECs) [99]. 
Extensive research has underscored the pivotal role of 
endothelial dysfunction in DCM, which impacts vascu-
lar function, inflammatory status, and cardiac fibrosis, 
among other pathological processes.

Protective effect of FGF21 against cardiac endothelial 
dysfunction
ECs express FGFR1c [100–102], FGFR2 [103, 104], and 
FGFR3[105]. The FGFR1-βklotho complex modulates 
EndMT, AMPKα activity and nuclear factor erythroid 
2-related factor 2 (NRF-2) signaling, thereby inhibiting 
endothelial dysfunction.

Anti‑EndMT response
FGF21 plays a protective role in DCM by modulating glu-
cose and lipid metabolism, endothelial cell function, and 
the metabolic state, thereby mitigating cardiac damage. 
Systemic administration of an adenovirus vector express-
ing FGF21 (Ad-FGF21) in wild-type mice enhances blood 
flow restoration, capillary density, and eNOS phospho-
rylation in ischemic limbs [106]. In human umbilical vein 
endothelial cells (HUVECs), FGF21 suppresses H2O2-
induced cell apoptosis by inhibiting the activation of 
the mitogen-activated protein kinase (MAPK) signaling 
pathway [107]. Notably, βklotho expression deficiency 
induces EndMT through the MEK and ERK pathways. 
Conversely, AcSDKP increases βklotho expression in an 
FGFR1-dependent manner, forming an FGFR1-βklotho 
complex that modulates EndMT by inhibiting MEK and 
ERK pathway induction. This highlights the synergis-
tic effect of FGF21 and AcSDKP in enhancing the anti-
EndMT response [108].

Anti‑eNOS dysfunction
Nitric oxide (NO), which is released by ECs, serves as a 
vasodilator and plays a critical role in endothelial func-
tion. eNOS is responsible for NO synthesis and supports 
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the vasculature. In DCM, the vasodilatory response may 
be compromised due to eNOS dysfunction, resulting 
in reduced NO production and cardiac damage. FGF21 
binding to FGFRs, specifically FGFR1, enhances AMPKα 
activity and increases the expression of catalase (CAT), 
nuclear factor erythroid 2-related factor 2 (NRF-2), 
and heme oxygenase-1 (HO-1), thereby inhibiting oxi-
dative stress. Furthermore, FGF21 directly enhances 
eNOS activity, promoting NO production and restoring 
endothelium-dependent vascular dilation function [109]. 
Moreover, FGF21 attenuates HG-induced oxidative stress 
in HUVECs and increases eNOS phosphorylation in an 
AMPK-dependent manner, thereby alleviating eNOS 
dysfunction [22]. FGF21 inhibitors impede HUVEC 
growth, migration, and invasion, significantly reduc-
ing eNOS, phosphoinositide 3-kinase (PI3K), and AKT 
mRNA and protein expression in HUVECs. These find-
ings suggest that FGF21 regulates eNOS expression by 
activating the PI3K/AKT pathway [110]. In brain micro-
vascular endothelial cells (BMECs), rhFGF21 promotes 
the vascular generation and migration of HBMECs by 
activating PPARγ and upregulating eNOS to form the 
FGF21/FGFR1/βklotho complex [23].

Antioxidative stress and apoptosis
In studies related to the blood‒brain barrier following 
cerebral hemorrhage, FGF21 upregulated the expression 
of SIRT6 by promoting the AMPK‒Foxo3a pathway. This 
regulatory mechanism mitigates mitochondrial mor-
phological damage in ECs, reduces ROS accumulation, 
restores ATP synthesis, and inhibits apoptosis [111]. 
Similarly, in HG-treated HUVECs, FGF21 administra-
tion increases the phosphorylation of Akt and Foxo3a, 
which is reduced by HG, thereby protecting HUVECs 
from HG-induced oxidative stress and apoptosis [112]. 
In  vitro experiments involving HUVECs treated with 
hydrogen peroxide (H2O2), recombinant human FGF21 
(rhFGF21), an FGFR1 inhibitor (PD166866), and a PI3K 
inhibitor (LY294002) revealed that FGF21 significantly 
promotes angiogenesis by activating the FGFR1/PI3K/
AKT/VEGF pathway [113]. Additionally, FGF21 coun-
teracts the decrease in cell viability, increase in apoptosis, 
and increase in ROS levels induced by HG in HUVECs 
through activation of the PI3K/AKT/mTOR pathway 
[114]. FGF21 delays EC aging by upregulating SIRT1 
expression while also protecting HUVECs from H2O2-
induced accumulation of intracellular ROS and DNA 
damage [115]

In ox-LDL-treated HUVECs, FGF21 mRNA and pro-
tein expression increase. The application of PPARα 
ligands can significantly induce the expression of 
FGF21, indicating that ECs can secrete FGF21 in 
response to stress. Elevated expression of FGF21 can 

inhibit ox-LDL-induced cell apoptosis and endothe-
lial dysfunction [116]. Additionally, FGF21 reverses 
the downregulation of UQCRC1 expression induced 
by ox-LDL, inhibits ox-LDL-induced apoptosis and 
related molecular expression in HUVECs, and reverses 
mitochondrial dysfunction and ROS production [117]. 
FGF21 also acts independently of the ERK1/2 path-
way and exerts antiapoptotic effects by inhibiting Fas 
expression in ox-LDL-induced apoptosis in HUVECs 
and  apoE−/− mice [118].

In addition, FGF21 inhibits miR-27b expression, target-
ing the PPARγ-inhibitory NF-κB signaling pathway and 
the expression of inflammatory factors, thereby alleviat-
ing hypoxia-induced HPAEC dysfunction and inflam-
mation [119]. In cerebral microvascular endothelial 
cells (CMECs), FGF21 promotes the mRNA and protein 
expression of HSP72 while simultaneously inhibiting the 
activity of the proinflammatory factors cyclooxygenase-2 
and NF-κB (p65), providing protective effects against 
CMEC damage caused by hypoxic stress [120]. In vascu-
lar ECs of atherosclerotic rats, FGF21 activates the NF-κB 
signaling pathway while inhibiting the nuclear transloca-
tion of activated NF-κB (p65) and the expression levels 
of inflammatory factors in vascular ECs, thereby inhibit-
ing oxidative stress and improving and maintaining the 
morphology of the vascular endothelium in atheroscle-
rotic rats [121]. Under diabetic conditions, Nrf2 is nega-
tively regulated by Keap1 binding, leading to proteasomal 
ubiquitination and Nrf2 degradation. rFGF21 activates 
FGFR1 to increase its binding with Keap1 (an inhibitor 
of Nrf2), reducing the interaction between Keap1 and 
Nrf2, releasing Nrf2, and promoting its translocation to 
the cell nucleus, ultimately promoting the expression of 
cell junction proteins [122]. Reconstruction of gap junc-
tion proteins helps prevent significant changes in car-
diac structure and electrophysiological characteristics 
under diabetic conditions, thereby preserving ventricular 
function [123]. In HPAECs subjected to hypoxia, FGF21 
can alleviate hypoxia-induced EC apoptosis by inhibit-
ing the PERK/CHOP signaling pathway, downregulat-
ing caspase-4 expression, upregulating Bcl2 expression, 
and improving endothelial dysfunction by inhibiting ERS 
[124].

In summary, HG targets ECs, triggering EndMT and 
leading EC dysfunction, which may contribute to diabetic 
fibrosis. EC dysfunction may also result from oxidative 
stress, apoptosis, and pyroptosis. These factors compro-
mise myocardial perfusion and contribute to ischemia 
and cardiomyocyte death. FGF21 prevents EndMT in 
ECs via the FGFR1-βklotho complex, thereby mitigating 
fibrosis. FGF21 also modulates glucose and lipid metabo-
lism and EC function, thereby mitigating cardiac dam-
age. It enhances blood flow, capillary density, and eNOS 
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phosphorylation and suppresses apoptosis, oxidative 
stress, and ER stress in ECs (Fig. 3).

In DCM, endothelial dysfunction is common, resulting 
in impaired angiogenesis and reduced capillary density. 

HG affects ECs, causing endothelial-to-mesenchymal 
transition (EndMT), which contributes to diabetic fibro-
sis. HG also induces oxidative stress, apoptosis, and 
pyroptosis in ECs. These factors compromise myocardial 

Fig. 3 Role of endothelial dysfunction in DCM and the corresponding protective effects of FGF21
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perfusion and contribute to ischemia and cardiomyocyte 
death. FGF21 modulates glucose and lipid metabolism 
and EC function, thereby mitigating cardiac damage. It 
enhances blood flow, capillary density, and eNOS phos-
phorylation and suppresses apoptosis, oxidative stress, 
and ER stress in ECs. FGF21 prevents EndMT in ECs via 
the FGFR1-βklotho complex, thereby mitigating fibrosis.

Vascular smooth muscle cells (VSMCs)
Role of VSMC dysfunction in DCM
VSMCs constitute a critical component of arterial 
physiology and pathology. They actively participate in 
regulating vascular constriction and dilation, thereby 
modulating cardiac perfusion and function [125]. Abnor-
mal VSMC function significantly contributes to car-
diovascular complications in individuals with diabetes. 
VSMCs experience phenotypic shifts and metabolic 
adaptations in the context of vascular diseases. These 
alterations primarily manifest as increased glycolysis, 
compromised mitochondrial respiration, perturbed fatty 
acid oxidation, and modified amino acid metabolism. 
Importantly, these metabolic changes are correlated with 
critical processes, including vascular remodeling, prolif-
eration, migration, apoptosis, calcification, and inflam-
mation [126].

Mechanisms underlying cardiac VSMC dysfunction in DCM
Phenotypic transitions of VSMCs
VSMCs are the fundamental components of the medial 
layer of blood vessels and primarily regulate vascular 
tension to control blood pressure and flow, which are 
essential for preserving vascular physiological integrity. 
VSMCs predominantly display a “contractile” phenotype 
characterized by relative quiescence and a “synthetic” 
phenotype marked by robust proliferation and migration, 
with metabolic alterations principally driving phenotypic 
transitions [127]. Upon vascular injury, differentiated 
“contractile” VSMCs transition to a “synthetic” pheno-
type, facilitating cell proliferation and migration to the 
site of damage [128].

HG conditions promote this phenotypic shift and aug-
ment VSMC proliferation and migration. Compared with 
those cultured under normal glucose (NG) conditions, 
porcine VSMCs (PVSMCs) cultured under HG condi-
tions exhibit markedly elevated basal NF-κB activity, with 
the protein kinase C inhibitor Calphostin C attenuating 
HG-induced NF-κB activation [129]. HG further stimu-
lates NF-κB-dependent VSMC proliferation and rein-
forces the “synthetic” phenotype via the lactate/GPR81 
pathway, significantly increasing collagen I production 
and cellular proliferation and migration [130, 131]. Addi-
tionally, HG transiently enhances ERK1/2 phosphoryla-
tion and upregulates Ang II synthesis in rats via vascular 

proteases; a concurrent decrease in angiotensin-convert-
ing enzyme 2 expression under HG conditions leads to 
increased Ang II accumulation in VSMCs [132]. HG also 
promotes adiponectin synthesis and leptin expression in 
VSMCs, resulting in notable increases in ROS produc-
tion and oxidative stress [133].

Calcification
The calcification of heart valves (e.g., aortic or mitral 
valves) can impair valve function, leading to valvular ste-
nosis or regurgitation. Exosomes secreted by HUVECs 
treated with HG (HG-HUVEC-Exos) are abundant in 
expression of the multifunctional proteoglycan versican 
(VCAN), which predominantly localizes to the mitochon-
dria of VSMCs, precipitating mitochondrial dysfunc-
tion and promoting VSMC calcification and senescence 
[134]. Moreover, recent research revealed enrichment of 
Notch3 protein expression in HG-HUVEC-Exos, which 
facilitates VSMC calcification and aging via the Notch3-
mTOR signaling pathway [135]. In Wistar rats, type II 
diabetes induced by a HFD supplemented with a low 
dose of STZ revealed that telomerase activity and VSMC 
proliferation in diabetic and high glucose-insulin (HGI) 
treatment groups were significantly elevated compared 
with those in the control group, and inhibition of telom-
erase activity was found to mitigate VSMC proliferation 
[136]. Elevated insulin levels may also contribute to vas-
cular stiffness by increasing the expression of receptor 
activator of NF-κB ligand (RANKL), increasing alkaline 
phosphatase activity, osteocalcin expression, and the for-
mation of calcification nodules in VSMCs [137, 138].

Advanced glycation end products (AGEs)
Chronic hyperglycemia promotes the synthesis and 
accrual of AGEs [139]. In primary rat VSMCs, AGEs 
promote autophagy via the ERK and Akt signaling path-
ways, thereby increasing VSMC proliferation and migra-
tion in response to AGEs [140, 141]. Furthermore, AGEs 
increase ROS production by increasing Bcl-2-associated 
athanogene 3 (BAG3) expression, which in turn promotes 
VSMC proliferation and migration [142]. In vitro studies 
have demonstrated that AGEs significantly increase cell 
proliferation and migration in a concentration-depend-
ent manner, which is mediated in part by the RAGE/
PI3K/AKT pathway [143]. Additionally, AGEs can tem-
porally induce the expression of the fibrogenic mediator 
CTGF through the ERK1/2, JNK, and Egr-1 pathways, 
contributing to VSMC proliferation, migration, and ECM 
deposition [144]. AGE incubation activates the apopto-
sis signal-regulating kinase 1 (ASK1)/mitogen-activated 
protein kinase kinase (MKK)/p38MAPK pathway, lead-
ing to an enhanced fibrotic response in human coronary 
smooth muscle cells (HCSMCs) [145].
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Protective effects of FGF21 against VSMC dysfunction 
in DCM
Anti‑VSMC calcification
In diabetic mice, FGF21 significantly inhibits neointi-
mal proliferation in the ligated carotid artery. In  vitro, 
VSMCs cultured in 30  mM glucose for 48  h presented 
upregulated expression of PCNA, a hallmark of prolif-
eration; concurrently, cell migration was increased, and 
FGF21 treatment reversed these aberrations. Moreover, 
FGF21 markedly suppresses the release of active cas-
pase-1 (p20) and IL-1β in VSMCs exposed to HG. Studies 
have demonstrated that FGF21 inhibits Syk phosphoryla-
tion via FGFR1, which modulates the NLRP3 inflammas-
ome through ASC phosphorylation and oligomerization, 
thereby exerting anti-inflammatory effects [146].

DCM does not directly lead to vascular calcifica-
tion; however, diabetes-associated arteriosclerosis may 
increase the risk of cardiovascular complications, includ-
ing vascular calcification. When vessels incur damage 
or inflammatory stimulation, VSMCs may contribute to 
the repair process by differentiating into osteoblast-like 
cells, a transformation that can result in calcification and 
fibrosis of the vessel wall, increasing stiffness and the 
risk of CVD. Additionaly, VSMC express FGFR1c [61] 
and FGFR2 [147]. Research has indicated that FGF21/
FGFR1/3/βklotho signaling plays a pivotal role in vascu-
lar calcification [18–20]. In a CKD model established by 
5/6 nephrectomy and a high-phosphate diet, which led to 
vascular calcification, increased expression of the FGF21, 
FGFR1, and βklotho receptors was observed in the aorta; 
these receptors are predominantly located in the arterial 
media, with FGFR1 and βklotho being expressed primar-
ily in VSMCs. The transcription levels of genes associated 
with vascular calcification in FGF21-KO mice were sig-
nificantly greater than those in control mice. Mechanistic 
studies have suggested that FGF21 inhibits vascular calci-
fication by restoring antioxidant SOD levels and reducing 
vascular oxidative stress [20].

In vitro, FGF21 administration inhibits BGP-induced 
BMP2/Smad signaling pathway expression and the 
expression of osteoblast differentiation markers in 
VSMCs, preventing vascular calcification [148]. In 
human cerebral VSMCs, Ang II induces cellular senes-
cence and promotes ROS/superoxide anion production, 
whereas FGF21 inhibits Ang II-induced p53 activation, 
partially preventing Ang II-induced senescence-related 
changes [18]. Additionally, FGF21 suppresses the osteo-
genic transformation of VSMCs by downregulating the 
expression of bone-related proteins such as osteopon-
tin (OPN) [149]. In cultured rat VSMCs, FGF21 signifi-
cantly attenuates mineral deposition and cell apoptosis, 
inhibits VSMC calcification through the OPG/RANKL 

system, and modulates the calcification process via the 
P38 and PI3K/AKT pathways [150]. FGF21 enhances 
βklotho expression and increases FGFR1 and FGFR3 
mRNA expression. The FGFR-1 inhibitor SU5402 par-
tially blocks the inhibitory effect of FGF21 on BMP-2 
and RUNX-2 expression, whereas the P38 inhibitor 
SB203580 weakens the downregulation of RUNX-2 
expression. These findings suggest that FGF21 inhib-
its VSMC calcification through the FGF21/FGFR1/3/
βklotho/P38MAPK/RUNX-2 signaling pathway [19]. 
FGF21 regulates VSMC function and gene expres-
sion through various pathways, thereby inhibiting the 
occurrence of vascular calcification.

In summary, VSMCs undergo phenotypic changes 
under HG conditions, thereby shifting from a “contrac-
tile” to a “synthetic” phenotype. HG conditions stimu-
late various molecular pathways in VSMCs, including 
NF-κB activation, ERK1/2 phosphorylation, mitochon-
drial dysfunction, and increased synthesis of Ang II, 
contributing to the dysfunctional state of these cells. 
AGEs can induce the expression of CTGF in VSMCs. 
AGES can also induce autophagy and oxidative stress. 
These factors contribute to VSMC proliferation, migra-
tion, and ECM deposition in VSMCs. These phenotypic 
shifts lead to VSMC calcification and inflammation, 
contributing to the dysfunctional state of the cells and 
ultimately DCM. FGF21 inhibits VSMC calcification 
by inhibiting calcification-related gene expression, 
restoring antioxidant SOD levels and reducing vascu-
lar oxidative stress. In addition, FGF21 inhibits Ang 
II-induced p53 activation, partially preventing Ang II-
induced senescence-related changes and thereby inhib-
iting the occurrence of vasculopathy (Fig. 4).

In DCM, VSMCs undergo phenotypic changes under 
HG conditions, thereby shifting from a “contractile” to 
a “synthetic” phenotype. HG conditions stimulate vari-
ous molecular pathways in VSMCs, including NF-κB 
activation, ERK1/2 phosphorylation, mitochondrial 
dysfunction, and increased synthesis of Ang II, con-
tributing to the dysfunctional state of these cells. AGEs 
can temporally induce the expression of CTGF through 
the ERK1/2, JNK, and Egr-1 pathways. AGES can also 
induce autophagy and oxidative stress. These factors 
contribute to VSMC proliferation, migration, and ECM 
deposition. These phenotypic shifts lead to VSMC cal-
cification and inflammation, contributing to the dys-
functional state of the cells and ultimately DCM. FGF21 
inhibits VSMC calcification by inhibiting calcification-
related gene expression, restoring antioxidant SOD lev-
els and reducing vascular oxidative stress. In addition, 
FGF21 inhibits Ang II-induced p53 activation, partially 
preventing Ang II-induced senescence-related changes 
and thereby inhibiting the occurrence of vasculopathy.
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Immune cells
Role of immune cell activation in DCM
The heart harbors a variety of immune cells, includ-
ing macrophages, mast cells (MCs), and dendritic cells 
[151, 152]. Immune cells play a key role in DCM, and 

their hyperactivation leads to a sustained inflammatory 
response that promotes myocardial injury and increased 
cardiovascular risk. Abnormal activity of the immune 
system may become an important driver of DCM devel-
opment. The infiltration and activation of immune cells 

Fig. 4 Role of cardiac VSMC dysfunction in DCM and the corresponding protective effects of FGF21
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are key pathogenic mechanisms in DCM, ultimately lead-
ing to myocardial fibrosis and cardiac insufficiency.

Mechanisms underlying immune cell activation in DCM
Many macrophages are present in the heart. In diabetic 
patients, M1-type macrophages dominate and promote 
persistent low levels of inflammation and insulin resist-
ance, and M2-type macrophages help reduce cardiac 
inflammation. The number of macrophages was signifi-
cantly greater in the hearts of STZ-induced diabetic mice 
than in those of nondiabetic mice, and M1-type mac-
rophage infiltration was observed [153, 154]. An imbal-
ance in the M1/M2 macrophage ratio promotes DCM. 
The onset of oxidative stress and alterations in fatty acid 
metabolism during DCM can cause macrophage polari-
zation, in which the M1 type predominates [155, 156]. 
In  vitro, macrophages cultured under HG conditions 
exhibit an M1 proinflammatory phenotype [157, 158], 
and miR-32/Mef2d/cAMP signaling promotes M1 mac-
rophage polarization by inhibiting autophagy [159]. Fur-
thermore, AGE treatment of RAW264.7 cells exerted 
proinflammatory effects by promoting the production of 
NO, TNF-α, PGE2, iNOS, and COX-2 [160]. Moreover, 
miR-471-3p expression was significantly upregulated in 
AGE-treated RAW264.7 cells, which increased the pro-
portion of M1-type macrophages by negatively regulating 
SIRT1 expression [154]. Cardiac immune cells also affect 
cardiac fibrosis and remodeling through interactions with 
other cardiac nonmyocytes. TNFα promotes CF prolif-
eration and collagen production through WISP1 signal-
ing [161]. M1-type macrophages secrete IL-1β, which 
interacts with receptors on the surface of CFs to promote 
myocardial fibrosis [162]. Macrophages can also transdif-
ferentiate into myofibroblasts and deposit collagen and 
ECM after cardiac damage, promoting the development 
of fibrosis [163]. MCs promote cardiomyocyte death, CF 
proliferation, TGF-β signaling, and collagen synthesis 
and deposition by releasing IL-6 and TNF-α in mice with 
DCM [161, 164].

Protective effects of FGF21 against immune cell activation 
in DCM
Macrophages are reported to express FGFR like FGFR1c 
[61] and FGFR3 [165]. Macrophages are the target cells 
through which FGF21 exerts its anti-inflammatory 
effects, mainly by enhancing Nrf2-mediated antioxidant 
capacity and inhibiting the NF-κB signaling pathway 
through FGFR1-βklotho complex. FGF21 also promotes 
M2 macrophage polarization by regulating adiponectin 
[166] and modulates the immune response by affecting 
glucose uptake in monocytes [167].

In vitro, FGF21 administration decreased the 
expression of TNF-α, IL-1β, IL-6, and IFN-γ while 

increasing the level of IL-10 in LPS-treated RAW264.7 
macrophages [24]. In addition, FGF21 inhibited ROS 
production, increased oxidative stress, and modulated 
the inflammatory response by inhibiting the activation 
of the NF-κB signaling pathway. FGF21 induced HO-1 
expression in LPS-treated RAW264.7 macrophages 
and exerted an anti-inflammatory effect by increasing 
Nrf2 expression [24]. In mice with T2DM, the com-
bined action of FGF21 and insulin promotes the shift of 
macrophages from the M1 type to the M2 type to fur-
ther reduce the expression of IL-1β, IL-6, and TNF-α 
[168]. Upregulation of circulating FGF21 expression in 
obesity promotes healthy expansion of subcutaneous 
adipose tissue (SAT) to improve systemic insulin sen-
sitivity, which is achieved by upregulation of lipocalin 
expression in SAT, a process that is accompanied by an 
increase in M2-type macrophage polarization [166]. In 
addition to its role in DCM, FGF21 plays a role in other 
CVDs through its actions on immune cells. During the 
development of atherosclerosis, FGF21 inhibits choles-
terol accumulation in macrophages, thereby inhibit-
ing foam cell formation, and significantly reducing the 
expression of the inflammatory factors IL-1α, IL-6, and 
tumor necrosis factor-α, effects that can be blocked by 
FGFR inhibitors [169]. It has been hypothesized that 
FGF21 may prevent atherosclerosis by increasing the 
proportion of M2-type macrophages through inhibi-
tion of miR-33 expression [170]. Furthermore, FGF21 
regulates the coupling of metabolism and the immune 
system, modulating the dynamic balance of periph-
eral T-cells by regulating thymic development and 
age-related degeneration [171, 172] Monocytes exhibit 
metabolic changes during inflammation, during which 
increased glucose utilization is critical for immune and 
inflammatory responses, whereas FGF21 expression is 
regulated by the PI3K/Akt signaling pathway, which 
indirectly regulates the immune response by affecting 
glucose uptake in monocytes [167].

In summary, in DCM including HG conditions and 
exposure to AGEs, macrophages adopt a proinflamma-
tory M1 phenotype, resulting in increased production of 
inflammatory markers. This inflammatory environment 
contributes to fibrosis and cardiac remodeling. Specifi-
cally, TNFα stimulates CFs to proliferate and produce 
collagen, whereas M1 macrophages secrete IL-1β, further 
promoting myocardial fibrosis. FGF21 reduces inflam-
matory responses and protects the myocardium from 
oxidative stress and injury by inhibiting the expression of 
inflammatory cytokines, enhancing antioxidant capacity 
and promoting macrophage polarization. These effects 
contribute to a reduction in diabetes-induced myocardial 
inflammation and cardiac injury, providing a potential 
new strategy for the treatment of DCM (Fig. 5).
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Immune cell infiltration and activation play pivotal 
roles in DCM, ultimately leading to myocardial fibro-
sis and cardiac dysfunction. Under HG conditions and 
exposure to AGEs, macrophages adopt a proinflamma-
tory M1 phenotype, resulting in increased production of 
inflammatory markers. This inflammatory environment 

contributes to fibrosis and cardiac remodeling. Specifi-
cally, TNFα stimulates CFs to proliferate and produce 
collagen, whereas M1 macrophages secrete IL-1β, fur-
ther promoting myocardial fibrosis. FGF21 inhibits the 
expression of inflammatory cytokines, enhances anti-
oxidant capacity, and orchestrates a shift in macrophage 

Fig. 5 Role of immune cell activation in DCM and the corresponding protective effects of FGF21

Table 1 Preclinical research on FGF21 targeting nonmyocardial cells in CVDs

i.p. intraperitoneal injection, i.m., intramuscular injection, i.v., intravenous injection, s.c., subcutaneous injection, p.o. orally administered, MI Myocardial infarction

Conditions Animal models Recombinant human FGF21 Observed effects Cell types References

MI Exercise Training-MI 100 ng/ml, 15 h Cell apoptosis and collagen 
production ↓

CFs [66]

Cardiac hypertrophy SIRT1-iKO mice 2.5 mg/kg/d, i.p., 4wk; Ang II-induced cardiac hyper-
trophy ↓

CFs [175]

Neointima hyperplasia Wire-mediated vascular injured 
diabetic mice

5 mg/kg/d, i.v., 4wk; neointima hyperplasia ↓ VSMCs [146]

Vascular calcification Vascular calcification rat 
models

70 µg/kg/d, osmotic 
pump,4wk;

osteogenic transition↓ VSMCs [149]

Atherosclerosis Atherosclerotic rats 6 mg/kg/d, i.v., 40d; Inflammation and oxidative 
stress↓

ECs [121]

Diabetes HFD-STZ-induced T2D mice, 
db/db mice and T1D mice

0.5 mg/kg/d, i.v., 33d; Blood glucose in T2DM 
and oxidative stress↓

ECs [109]

Atherosclerosis High-fat diet-fed ApoE-/- mice 1.0 mg/kg/d, i.p., 8wk; Atherosclerotic plaques↓ ECs [118]

Diabetes Db/db mice 5 μg/kg/d, s.c.,10d; inflammation↓; Angiogenesis↑ ECs [176]

Atherosclerosis High-fat diet-fed ApoE-/- mice 10 mg/kg/d, p.o., 12wk; atherogenesis↓ Macrophage [177]
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polarization from proinflammatory (M1-type) to anti-
inflammatory (M2-type) phenotypes. Additionally, 
FGF21 modulates the inflammatory response of immune 
cells, including T-cells. These combined effects contrib-
ute to mitigating diabetes-induced myocardial inflamma-
tion and protecting against cardiac injury in DCM.

Therapeutic potential of FGF21 administration for DCM
Several preclinical studies have demonstrated the car-
dioprotective effects of FGF21 administration in animal 
models of CVD (Table 1). These findings have led to the 
development of FGF21 analogs and mimetics that are 
currently being evaluated in clinical trials. In fact, several 

FGF21 analogs and mimetics have advanced to the early 
stages of clinical trials, specifically for patients diagnosed 
with obesity, T2DM, and nonalcoholic steatohepatitis 
(NASH) [173, 174] (Table 2).

One clinical trial performed in patients with obesity 
and T2DM highlighted the potential of LY2405319 to 
improve lipid profiles and insulin sensitivity, despite 
the lack of a significant impact on glycemic control. 
Early improvements in lipid parameters were observed 
as soon as two days after the first injection. This study 
underscores the complexity of treating metabolic dis-
eases and the need for comprehensive approaches 
beyond glycemic control [181]. Another clinical study 

Table 2 Clinical trials involving FGF21 analogues

MASH Metabolic Dysfunction-Associated Steatotic Liver Disease, N/A Not Available, Not NASH Nonalcoholic steatohepatitis, NAFLD Nonalcoholic Fatty Liver Disease, 
T2DM Diabetes Melliuts, Type 2

FGF21 analogues Clinical trial ID Phase Status Condition/disease Heart 
effects 
observed

References

Pegozafermin NCT04048135 Phase 2 Completed NASH N/A [178, 179]

NCT06318169 Phase 3 Recruiting MASH / NASH With Fibrosis / /

NCT05852431 Phase 3 Recruiting Severe Hypertriglyceridemia / /

NCT06419374 Phase 3 Recruiting MASH / NASH With Compensated Cirrhosis / /

NCT04541186 Phase 2 Completed Severe Hypertriglyceridemia N/A [180]

LY2405319 NCT01869959 Phase 1 Completed T2DM N/A [181]

BMS-986036 NCT02097277 Phase 2 Completed T2DM N/A [182]

NCT02413372 Phase 2 Completed NASH N/A [183, 184]

NCT03198182 Phase 1 Completed Overweight/ Obesity N/A [183]

NCT03674476 Phase 1 Completed NAFLD、NAFLD、NASH N/A N/A

NCT03400163 Phase 2 Completed Non-Alcoholic Steatohepatitis N/A N/A

NCT04493567 Phase 1 Completed Healthy Participants N/A N/A

NCT03445208 Phase 1 Completed Hepatic Cirrhosis、Liver Fibrosis、NAFLD N/A N/A

NCT04634149 Phase 1 Completed Moderate Liver Impairment、Severe Liver Impair-
ment

N/A N/A

NCT03611101 / Completed NASH N/A N/A

NCT03486912 Phase 2 Completed Hepatic Cirrhosis、Liver Fibrosis、 NAFLD N/A [185, 186]

NCT03486899 Phase 2 Completed Liver Fibrosis、NAFLD、NASH N/A [185, 187, 188]

NCT04649710 Phase 1 Withdrawn Healthy Participants N/A N/A

BIO89-100 NCT05022693 Phase 1 Completed NASH NA N/A

NCT04929483 Phase 2 Active, not recruiting NASH N/A [189, 190]

BMS-986171 NCT02538874 Phase 1 Completed Liver Fibrosis/NASH N/A N/A

Efruxifermin NCT06528314 Phase 3 Recruiting NASH、MASH / /

NCT06215716 Phase 3 Recruiting NASH With Fibrosis / /

NCT06161571 Phase 3 Recruiting NASH/MASH、NAFLD/MASLD / /

NCT05039450 Phase 2 Active, not recruiting NASH / [191]

NCT03976401 Phase 2 Completed NASH N/A [192, 193]

NCT04767529 Phase 2 Active, not recruiting NASH N/A [194]

PF-05231023 NCT01285518 Phase 1 Completed T2DM N/A N/A

NCT01396187 Phase 1 Completed T2DM N/A N/A

NCT01673178 Phase 1 Completed T2DM Heart rate↑ [195]

NCT01923389 Phase 1 Terminated T2DM N/A N/A

LLF580 NCT03466203 Phase 1 Completed Obesity [196]
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involving PF-05231023 showed promise in improv-
ing lipid profiles and adiponectin levels. However, its 
impact on glycemic control remains unclear, emphasiz-
ing the need for further investigation [197]. Regrettably, 
cardiac outcomes were not thoroughly investigated in 
these clinical studies (Table 2). Considering the poten-
tial cardioprotective role of FGF21 in DCM, future clin-
ical data are necessary to refine the therapeutic efficacy 
of FGF21, including the development of treatments that 
specifically target cardiac tissue.

Conclusions and outlook
This review highlights the critical role of nonmyocardial 
cells, specifically CFs, ECs, VSMCs, and immune cells, 
in the progression of DCM. These cells significantly con-
tribute to myocardial injury and fibrosis, which are char-
acteristic features of DCM. They interact with myocardial 
cells and the ECM, influencing cardiac function through 
their roles in inflammation, fibrosis, and angiogenesis. 
Further investigation into the specific mechanisms of 
these interactions could lead to the identification of novel 
therapeutic targets for DCM.

Fibroblast growth factor 21 (FGF21), a metabolic regu-
lator, has demonstrated antiapoptotic and antifibrotic 
effects in cardiac cells. The protective role of FGF21 
against DCM underscores its potential as a therapeu-
tic target for DCM. However, the clinical application 
of FGF21 in CVD patients has not been fully validated 
and warrants further research. Current limitations, such 
as poor drug bioavailability and biophysical properties, 
restrict the therapeutic potential of FGF21, necessitating 
the development of new FGF21-based drugs to overcome 
these challenges. Moreover, clinical trials have shown 
inconsistent pathological manifestations in different tis-
sues and cells in obesity and T2DM, with obesity even 
inducing FGF21 resistance [173].

In addition, cardiac outcomes have not been thor-
oughly investigated in current clinical studies. Therefore, 
considering the complexity of the physiological and phar-
macological effects of FGF21, future efforts should focus 
on confirming the specific target organs and cellular 
pathways involved in DCM. These findings will facilitate 
the development of FGF21 receptor agonists, sensitizers, 
or analogs with greater selectivity and safety. Thus, inves-
tigating the role of noncardiomyocytes in DCM and the 
corresponding protective effect of FGF21 on these cells is 
highly important. This is crucial to determine the thera-
peutic specificity of FGF21.

In conclusion, our study highlights the importance of 
nonmyocardial cells in the development of DCM and 
the corresponding protective effect of FGF21. Future 
research in this area is expected to contribute to the 
development of more effective treatments for DCM.
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