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of the disease due to poor histological response to ther-
apy, onset of multiple metastases, and relapses [3]. Sev-
eral targeted therapies and immunotherapies against 
advanced unresectable bone sarcomas have been inves-
tigated in preclinical and clinical studies. Still, among 
innovative agents, only mifamurtide has entered the clin-
ical management of OS until now [4, 5]. Identifying novel 
molecular targets will be instrumental in overcoming the 
current impasse in treating relapsing disease. Receptor 
tyrosine kinases (RTKs) have been extensively studied 
as therapeutic targets in bone sarcoma, being implicated 
in several steps of their onset and progression [6–13]. 
Among them, the erythropoietin-producing hepatocel-
lular (Eph) tyrosine kinases receptor family member 2 
(EphA2) is a driver oncofetal protein implicated in self-
renewal, chemoresistance, and metastasis [14–16] so that 
its targeting is now under preclinical and clinical investi-
gation [17–21]. We previously showed that bone sarcoma 
patient-derived models overexpressed EphA2 and are 

Introduction
Bone sarcomas belong to a rare and heterogeneous group 
of malignant mesenchymal primary tumors originat-
ing from the osseous tissue, representing less than 1% 
of all malignancies [1]. Osteosarcoma (OS) and Ewing 
sarcoma (ES) occur mainly in adolescents and young 
adults, while chondrosarcoma (CS) has a peak incidence 
in the seventh decade of age [2]. Surgical excision of the 
tumor combined with radiotherapy and chemotherapy 
can achieve good results as first-line treatment; how-
ever, 40% of patients affected by bone sarcomas still die 

Cell Communication 
and Signaling

*Correspondence:
Ymera Pignochino
ymera.pignochino@ircc.it
1Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, 
TO, Italy
2Department of Oncology, University of Turin, 10043 Orbassano, TO, Italy
3Department of Clinical and Biological Sciences, University of Turin,  
10043 Orbassano, TO, Italy

Abstract
Bone sarcomas are malignant tumors of mesenchymal origin. Complete surgical resection is the cornerstone 
of multidisciplinary treatment. However, advanced, unresectable forms remain incurable. A crucial step towards 
addressing this challenge involves comprehending the molecular mechanisms underpinning tumor progression 
and metastasis, laying the groundwork for innovative precision medicine-based interventions. We previously 
showed that tyrosine kinase receptor Ephrin Type-A Receptor 2 (EphA2) is overexpressed in bone sarcomas. 
EphA2 is a key oncofetal protein implicated in metastasis, self-renewal, and chemoresistance. Molecular, genetic, 
biochemical, and pharmacological approaches have been developed to target EphA2 and its signaling pathway 
aiming to interfere with its tumor-promoting effects or as a carrier for drug delivery. This review synthesizes the 
main functions of EphA2 and their relevance in bone sarcomas, providing strategies devised to leverage this 
receptor for diagnostic and therapeutic purposes, with a focus on its applicability in the three most common bone 
sarcoma histotypes: osteosarcoma, chondrosarcoma, and Ewing sarcoma.
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Fig. 1 (See legend on next page.)
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sensitive to its inhibition [7, 13]. In the present work, we 
combined a thorough overview of the literature to pursue 
the current knowledge of EphA2 functions in different 
tumors, focusing on bone sarcomas, and the main strate-
gies developed so far for its specific targeting, exploring 
its potential applicability in these settings.

Eph receptors signaling and ephrins
Eph receptors belong to a large subfamily of RTKs 
expressed in various cell types in developing and mature 
tissues [22, 23]. They have a highly conserved over-
all structure and are subdivided into two classes: EphA 
and EphB, based on their extracellular domain sequence 
homology and ligand binding specificity. In humans, nine 
EphA (A1-8, A10) and five EphB (B1-4, B6) receptors 
were identified with eight related ligands (Ephrin-A1-5 
and Ephrin-B1-3) [24, 25]. The EphA receptor members 
bind preferentially to Ephrin-A ligands, while the EphB 
receptors bind to Ephrin-Bs, with some exceptions of 
cross-class binding such as EphA4, which interacts with 
Ephrin-B2 and B3, while EphB2 with Ephrin-A5 [26].

Eph receptors are single transmembrane proteins con-
stituted by an extracellular side, which exerts ligand-
binding activity and an intracellular side with intrinsic 
enzymatic properties [26]. Starting from the N-termi-
nal, the extracellular side of Eph receptors is composed 
of a ligand-binding domain (LBD) followed by a Cys-
rich domain composed of the Sushi and the Epidermal 
Growth Factor (EGF)-like domains, and two fibronectin 
(FN) domains. The intracellular part of the Eph recep-
tor is composed of the transmembrane (TM) region, the 
tyrosine kinase (TK) domain, the Sterile Alpha Motif 
(SAM), and the common structural PDZ domain (Fig. 1). 
The Eph ligands, Ephrins, are anchored to the cell mem-
brane of interacting cells and share a conserved extracel-
lular N-terminal receptor-binding domain (RBD) [25]. 
Class A is linked to the membrane through a glyco-
sylphosphatidylinositol (GPI) linkage, whereas class B has 
a TM domain and an intracellular tail ending with a PDZ 
domain [24]. The interaction between Eph receptors and 
their ligands leads to the phosphorylation of various tyro-
sine (Tyr) residues between the TM and SAM domains. 
These post-translational modifications are crucial for the 
occurrence of the biological responses triggered by Eph 
signaling (Fig. 1).

Physiologically, the Eph-Ephrin signaling pathway 
intervenes in multiple biological events such as axon 

guidance, tissue patterning, and blood vessel develop-
ment in embryonic cells [27, 28]. It is strictly dependent 
on cell type and microenvironment and works bi-direc-
tionally. Namely, it can affect both the receptor-express-
ing and the ligand-expressing cells [4, 22, 24]. Indeed, 
when the Eph receptor interacts with its ligand Ephrin on 
the adjacent cell, it initiates bidirectional signaling, which 
can be categorized as “forward” or “reverse” depending 
on the direction of signal flow. The classical forward sig-
nal (Ephrin: Eph) is often cell repulsive, dependent on 
Eph kinase activity and it propagates in the Eph recep-
tor-expressing cell; conversely, the reverse signal (Eph: 
Ephrin) is dependent on Fyn, a kinase belonging to the 
Src family, and it propagates in the Ephrin-expressing 
cell [27, 28] (Fig.  2A). Furthermore, as both Eph recep-
tors and Ephrins can function concurrently as receptors 
and ligands when present on opposing cells, we can dis-
tinguish between simultaneous parallel or antiparallel 
signaling based on the direction of signal propagation. 
Signaling is deemed “parallel” if the Eph-Ephrin complex 
transmits the signal in the same direction and “antipar-
allel” if it transmits the signal in opposite directions [22, 
29] (Fig. 2B).

Proteolytic cleavage serves as a feedback mechanism 
of this signaling process. However, the extracellular por-
tions of shed Eph and Ephrin can interact with distant 
cells autonomously, independent of cell-cell contact, 
resulting in paracrine effects [30, 31]. For instance, they 
may act as monomeric inhibitors of bidirectional sig-
naling [32]. Alternatively, cleaved ligands activate Eph 
receptors in an endocrine way. Soluble A-type Ephrin 
oligomers produced by the cleavage of GPI-anchored 
Ephrin-A1 on the plasma membrane by matrix metallo-
proteases (MMPs) or proteases of the A disintegrin and 
metalloproteinase (ADAM) family have the potential to 
activate EphA receptors, disrupting cell-cell contacts 
and increasing endothelial permeability which facilitates 
tumor metastasis to lungs [33, 34]. Soluble B-type Eph-
rins are involved in pathological conditions such as fibro-
sis and cancers [35] (Fig. 1).

EphA2 is an oncofetal protein
Among Eph receptors, EphA2 is the most widely overex-
pressed in different tumor types [29]. EphA2 is a 130 kDa 
transmembrane glycoprotein of 976 amino acids encoded 
by the gene EPHA2 in the human genome on chromo-
some 1p36 [36]. EphA2 could be described as a fetal 

(See figure on previous page.)
Fig. 1 Schematic representation of the structural and functional domains of Eph receptor and its ligands. Eph receptors are single transmembrane 
proteins constituted by an extracellular and an intracellular side. The extracellular side is composed of a ligand-binding domain (LBD), a Cys-rich domain 
made of the Sushi and the Epidermal Growth Factor (EGF)-like domains, and two fibronectin (FN1 and FN2) domains. The intracellular side is composed 
of the transmembrane (TM) region, the tyrosine kinase (TK) domain, the Sterile Alpha Motif (SAM), and the PDZ domain. Ephrin ligands are constituted by 
a receptor-binding domain (RBD). Class A Ephrins are linked to the membrane through the GPI linkage, while class B Ephrins have a TM domain and an 
intracellular tail ending with a PDZ domain. Ephrins can be released from the cell surface by proteolytic cleavage done by proteases such as MMPs and 
ADAMs and can activate Eph receptors in a paracrine manner. (Created with BioRender.com)
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oncoprotein since it physiologically plays key roles in sev-
eral biological processes during development, including 
embryonic lens and inner ear formation, mammary epi-
thelial branching morphogenesis, kidney development, 
and bone homeostasis, and it is aberrantly reactivated in 
several solid tumors [37–40].

EphA2 interacts with all the Ephrin-A family ligands 
with preferential binding to Ephrin-A1 (EFNA1), a 
Tumor Necrosis Factor (TNF)-α–inducible gene prod-
uct [41]. During embryogenesis, its physiological func-
tions following cell-cell contact rely on the binding with 
EFNA1 on the neighboring cells generating both reverse 
and forward signaling [27, 42]. During oncogenesis, 
EphA2 is overexpressed and signal transduction leads to 
modifications in cytoskeleton dynamics, cell adhesion, 
migration, metastasis, proliferation, and angiogenesis 
[43].

During normal development, the ligand-dependent 
EphA2 activation suppresses the Extracellular signal-
regulated Kinases (ERKs), the Akt, and Focal Adhesion 
Kinase (FAK) signaling pathways inhibiting cell prolifera-
tion, resistance to apoptosis, and migration [44] (Fig. 3A). 
However, in cancers, EphA2 is involved in a non-canon-
ical activation through different mechanisms: (i) the 
dimerization with other RTKs such as the Epidermal 
Growth Factor Receptor (EGFR); the Human Epidermal 
Growth Factor Receptor-2 (HER2) [45, 46]; some mem-
bers of the Fibroblast Growth Factor Receptors (FGFRs); 

and Vascular Endothelial Growth Factor Receptors, 
(VEGFRs), or with cell adhesion molecules (e.g. E-cad-
herin and integrins) [47, 48]; (ii) the direct binding with 
growth factors (e.g. the Platelet-Derived Growth Factor 
subunit A, PDGFA [49]; iii.) the direct phosphorylation 
of Serine-897 (P-Ser897 EphA2) located between the TK 
and SAM intracellular domains by intracellular onco-
genic activated kinases, such as ERK Akt, and the Ribo-
somal S6 Kinase (RSK) [50–52]. P-Ser897 EphA2 recruits 
Ephexin4, a guanine nucleotide exchange factor, promot-
ing resistance to the extracellular matrix detachment 
induced-cell death (anoikis), engaging the small GTPase 
Ras Homolog Gene Family Member G (Rho G)-Akt path-
way activation (Fig. 3B) [53, 54]. EphA2 also plays a key 
role in integrin-mediated cell adhesion and migration 
through its association with FAK. In prostate cancer cells, 
the constitutive active EphA2/FAK complex is disassem-
bled by the treatment with soluble EFNA1 that stimulates 
EphA2 Tyrosine phosphorylation and FAK dephosphory-
lation leading to the complex disassemble and the inhi-
bition of cell migration [55, 56]. However, the inhibitory 
effect of EFNA1-induced tyrosine phosphorylation of 
EphA2 is reversed by the action of the Low Molecular 
Weight Phospho-Tyrosine Phosphatase (LMW-PTP), a 
protein frequently overexpressed in cancer [57]. More-
over, LMW-PTP inhibits the p190 RhoGAP, (a Rho-
GTP inhibitor), destabilizing adherent junctions via a 

Fig. 2 Schematic representation of the directional signaling evoked by Eph-Ephrin binding between adjacent interacting cells. (A) Eph receptor interacts 
with its ligand Ephrin on the adjacent cell, initiating a bidirectional signal, “forward” or “reverse”, based on the direction of signal flow. (B) The signal could 
also be “parallel” or “antiparallel”, if the Eph-Ephrin complex transmits the signal in the same or opposite directions, respectively. (Created with BioRender.
com)
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RhoA-dependent mechanism inducing cell detachment 
and migration [58] (Fig. 3B).

The involvement of EphA2 in several solid tumors 
including melanoma, bone sarcomas, glioblastoma, lung, 
colorectal, prostate, pancreatic, endometrial, breast, 
and gastric cancers is widely demonstrated [16, 59–72]. 
In these tumors, EphA2 was shown to correlate with 
tumor stages, cancer aggressiveness, metastatic poten-
tial, and poor patient survival, so that could be consid-
ered a biomarker of poor prognosis [73–77]. Moreover, 
some evidence has recently shown that EphA2 is impli-
cated in tumor-microenvironment crosstalk, promotion 
of metastasis, and chemoresistance [17, 78–81]. EphA2 
has been correlated with cancer-associated fibroblasts 
(CAFs) in many tumors. In gastric cancer, CAFs pro-
mote tumorigenesis through the EphA2 signaling path-
way, and the treatment with the selective EphA2 inhibitor 
(ALW-II-41-27) or EphA2 silencing decreased the CAF-
induced tumorigenesis [82]. Moreover, the EphA2-PI3K 
signaling pathway is involved in the CAF-induced vas-
cular mimicry inducing gastric cancer cells to generate 

an endothelial-free blood delivery channel [83]. In addi-
tion, EphA2 may promote tumor-induced endothelial cell 
migration and angiogenesis, through its direct interac-
tion with Caveolin-1 (CAV-1) and the consequent Akt 
activation and basic FGF (bFGF) production [84].

EphA2 as a potential therapeutic target in bone 
sarcoma
In the realm of rare tumors, bone sarcomas remain a 
particularly challenging category, often labeled as “drug-
orphan tumors”, because of the lack of effective treat-
ments for advanced disease. This is mainly due to their 
heterogeneity and rarity, which pose significant obsta-
cles to drug discovery and the development of innova-
tive therapy. In this context, exploring EphaA2 targeting 
emerges as a promising avenue [85].

Our group has provided evidence suggesting that 
EphA2 might be an effective molecular target in the 
three main bone sarcomas (OS, ES, and CS). Through 
a combination of in silico analyses, and in vitro experi-
ments using bone sarcoma cell lines and patient-derived 

Fig. 3 Ligand-dependent and ligand-independent EphA2 signal transduction, in normal and cancer cells, respectively. (A) In normal cells, the ligand-de-
pendent EphA2 activation induced Tyrosine (Y) and Serine (S) phosphorylation, the Epha2 clustering, suppresses the proliferation, survival, and migration 
signaling pathways (ERK, Akt, FAK) inhibiting cell proliferation, resistance to apoptosis, and migration, and activates c-Cbl -mediated endosomal degrada-
tion and EphA2 recycling (B) In cancers, the non-canonical ligand-independent activation of EphA2 occurs through the dimerization with other RTKs 
(EGFR, HER2, FGFRs, VEGFRs) or cell adhesion molecules (E-cadherin, integrins); the direct binding with other ligands such as growth factors (e.g. platelet-
derived growth factor A, PDGFA); or is mediated by intracellular oncogenic kinases (Akt, PKA, PKC, ERK). This induces the phosphorylation of Ser897, 
promoting cell proliferation, adhesion, and migration, other than drug resistance, protection to apoptosis and anoikis. (Created with BioRender.com)
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xenografts, we observed significant overexpression of 
EphA2 compared to healthy controls [13]. Furthermore, 
our studies revealed that inhibiting EphA2 directly with 
ALW-II-41-27 or decreasing its expression impaired 
bone sarcoma growth [7, 13].

EphA2 in osteosarcoma
OS is the most common primary bone tumor [3]. It 
mainly affects children and young adults under 25 years 
old. Still, a second peak of incidence usually arises at the 
age of 60 years with a frequency of 0.2–0.3 and 0.8/1.1 
cases per 100,000 people per year in the general popula-
tion and at the age of 15–19, respectively, and with a 1.4 
male/female ratio [86–88]. There are 3 main types of pri-
mary osteosarcoma: intramedullary, juxtacortical, and 
extraskeletal osteosarcoma. The intramedullary osteo-
sarcoma develops in the medullary cavity of a long bone 
is the most common (80%) and can be further divided 
into osteoblastic, condroblastic, fibroblastic, small-cell, 
and epithelioid based on main cell types. The juxtacor-
tical osteosarcoma (10–15%) develops on the outer sur-
face of the bones or the periosteum. The extraskeletal 
osteosarcoma is the rarest (< 5%) originates in soft tis-
sues and can be induced by radiotherapy. Differences in 
clinical behavior and treatment choice for each subtype 
were exhaustively reviewed elsewhere [89]. OS is charac-
terized by complex genetic changes and instability which 
result in recurrent amplifications and DNA copy number 
variations at different chromosomal regions [90]. Two 
recurrent somatic mutations implicated in the genesis of 
this tumor result from the progressive accumulation of 
genetic defects: a mutation in the Retinoblastoma Protein 
1 (RB1) gene associated with retinoblastoma at 13q14 
and mutations in the Tumor Protein 53 (TP53) gene 
associated with Li-Fraumeni syndrome at 17p13 [91]. 
These known tumor suppressor genes are key players 
in bone oncogenesis [92]. However, efficient targetingof 
RB1 and TP53 alterations remains elusive, and druggable 
gene alterations are still lacking. The standard therapeu-
tic approach in localized OS combines surgery and poly-
chemotherapy; in advanced disease with lung metastases, 
repeated lung metastasectomy can achieve a permanent 
cure in a subset of selected patients [93] but the over-
all prognosis remains dismal [94]. Fritsche-Guenther 
et al. showed a high overexpression of the EphA2 and 
its ligand in human OS samples analyzed by microar-
ray [62]. Though EFNA1 was strongly upregulated in 
tumor tissues, it was also detected in fetal and normal 
adult human bone tissue. On the contrary, an EphA2 
de novo expression has been observed in OS tumor tis-
sue only. Furthermore, preclinical data demonstrated 
that this pathway activation is involved in OS progres-
sion. Therefore, the upregulation of EphA2 and its ligand 
in OS contributes to oncogenic signaling and might 

stimulate the OS metastasis process [62]. This target is 
also strongly expressed at the proteomic level as shown 
by PosthumaDeBoer et al. which observed that EphA2 
was one of the most abundant and highly expressed 
proteins in OS cell lines and human OS samples. Fur-
thermore, they underscored the significance of EphA2 
expression in patients by establishing correlations with 
clinical parameters and demonstrating its association 
with poor overall survival [95]. Our group confirmed the 
pro-tumorigenic role of EphA2 in OS cells demonstrating 
that EphA2 silencing significantly reduced cell prolifera-
tion and migration [7]. We showed for the first time that 
the inhibition of EphA2 occurred after treatments with 
two receptor tyrosine kinase inhibitors, pazopanib and 
trametinib [7]. Using bioinformatic analysis, we explored 
the EphA2 gene expression level in 10 OS cell lines of 
the whole Cancer Cell Line Encyclopedia (CCLE) and its 
relation to patient characteristics and clinical outcomes 
in 88 OS samples deposited in Gene Expression Omni-
bus (GEO). We observed a higher expression of EphA2 
in tumors with a higher Huvos grade than in the lower 
[13]. These findings allow us to speculate that, despite the 
good outcome of chemotherapy (high Huvos grade), per-
sister cells surviving after/tolerant to chemotherapy and 
typically responsible for disease relapse, express higher 
levels of EphA2, suggesting that EphA2 could be a good 
target for second-line therapy, or its targeting could be 
combined with first-line chemotherapy to overcome drug 
resistance. In addition, significant upregulation of EphA2 
in males compared to females was observed [13]. Consid-
ering that a worse prognosis was registered in male OS 
patients [96], this could be attributed to higher EphA2 
expression. Overall, these data rationally support the 
exploration of the EphA2 targeting in OS.

EphA2 in ewing sarcoma
ES is the second most frequent malignant bone tumor 
among children and adolescents with a median age at 
diagnosis of 15 years, slightly more common in males, 
and an incidence of 0.3 cases per 100,000 people per year, 
burdened by dismal prognosis in advanced stages [97]. 
The survival rate is 66% at 5 years and 20% at 5 years for 
poor responders [88]. Genetically, they are characterized 
by chromosomal translocation t(11;22)(q24;q29) in which 
the gene encoding for the RNA-binding protein EWS 
(EWSR1) is fused with the ETS transcription factor FLI1 
resulting in EWSR1–FLI1 fusion gene. However, although 
rarely, few recurrent somatic mutations were found in ES, 
involving Cohesin Complex Component (STAG2), TP53, 
and Cyclin-Dependent Kinase inhibitor 2  A (CDKN2A) 
or else Kinase Insert Domain Receptor (KDR), Serine/
Threonine Kinase 11 (STK11), DNA mismatch repair 
protein Mlh1 (MLH1), Kirsten rat sarcoma virus (KRAS), 
and Tyrosine-Protein Phosphatase Non-Receptor Type 
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11 (PTPN11) [98–100]. ESs are aggressive tumors, fre-
quently displaying micrometastases at presentation [101]. 
These tumors exhibit a high sensitivity to chemother-
apy and nearly 2/3 of the patients can be cured through 
multimodal treatment strategies, based on surgery and 
poli-chemotherapy with vincristine, doxorubicin, cyclo-
phosphamide, and ifosfamide. Nevertheless, advanced/
metastatic forms displayed poor outcomes [102]. ES fam-
ily tumors do not benefit from established targeted thera-
pies, emphasizing the imperative to uncover alternative 
therapeutic strategies. Recently, a phase I/II trial, con-
ducted in a total of 85 patients not preselected for the ES 
molecular subtype, has shown good tolerability and lim-
ited activity of TK216, a small molecule inhibitor of EWS: 
FLI1 fusion protein inhibiting its function by preventing 
binding to RNA Helicase A [103].

Sáinz-Jaspeado et al. demonstrated the high expres-
sion of EphA2 protein in ES cell lines and patient samples 
investigating its association with the key membrane traf-
ficking controlling protein CAV-1. CAV-1 contributes to 
angiogenesis in different tumors [104, 105]. In ES angio-
genesis, CAV-1 increases EphA2 activation and signal-
ing influencing its membrane localization [84, 106]. The 
formation of the EphA2/CAV1 complex also promoted 
the expression and secretion of bFGF, increasing tumor-
induced migration of endothelial cells. These results 
suggest that in ES, EphA2-induced angiogenesis is depen-
dent on CAV-1 [84]. In another study of the same group, 
EphA2 was reaffirmed as a significant contributor to the 
metastatic progression of ES owing to its involvement 
in cell signaling, mobility, and survival; moreover, the 
EphA2 phosphorylation at Ser897 was associated with 
ES aggressiveness [16]. Consistently, silencing EphA2 led 
to reductions in tumorigenicity, migration, invasiveness, 
and pulmonary metastatic progression in ES preclinical 
models. Finally, the knockdown of the metalloproteinase 
ADAM19, a downstream effector of EphA2 receptor sig-
naling, negatively affects cell migration [16, 107].

Furthermore, our previous study investigated the 
mRNA expression levels of EphA2 in 12 ES cell lines from 
the CCLE and its correlation with tissue type, patient 
characteristics, and clinical outcomes within a cohort of 
246 ES patients archived in GEO database. Specifically, 
we observed a significantly higher expression of EphA2 in 
tumor samples compared to normal tissues, with higher 
levels observed in male patients than females [13]. As 
for OS also for ES, male patients display a worse prog-
nosis than females [108, 109]. These findings suggest that 
EphA2 might be related to more aggressive tumor behav-
ior. Additionally, targeted inhibition of EphA2 resulted 
in a notable reduction of ES cell viability [13]. These 
experimental and computational findings collectively 
provide compelling evidence to support the hypothesis 
that targeting EphA2 overexpression may represent a 

viable therapeutic strategy for evaluation in advanced ES 
patients.

EphA2 in chondrosarcoma
CS represents a malignant mesenchymal tumor and is the 
third most common among bone sarcomas across all age 
groups, yet it predominates in adults. Unlike OS and ES, 
it mainly occurs during adulthood in patients over the age 
of 40, with an average incidence of 0.2 cases per 100,000 
people per year, both male and female [2, 3]. Most CSs 
arise as primary, low-grade, locally aggressive, non-
metastasizing tumors (grade I) rather than high-grade 
(grades II-III). The histologic subtypes of CS include 
conventional, clear cell, mesenchymal, and dedifferenti-
ated CS [3]. Patients with dedifferentiated CS are more 
likely to develop metastases and have a dismal prognosis 
with a 5-year overall survival of 7–24%. It is character-
ized by varied differentiated cells producing chondroid 
matrices, reflecting its high heterogeneity and associa-
tion with intricate cytogenetic alterations [88]. Notably, 
mutations in Isocitrate Dehydrogenase (IDH) genes, spe-
cifically IDH1 and IDH2, are frequently observed, along 
with mutations in genes associated with cancer progres-
sion, such as TP53 [110]. CSs generally exhibit resistance 
to conventional chemotherapy regimens. Standard che-
motherapy protocols yield poor results, and in cases in 
which surgical intervention becomes unviable, the prog-
nosis is extremely poor. Recently, inhibition of IDH1 has 
shown some degree of activity [99]. Nevertheless, the 
clinical challenges posed by advanced CSs remain truly 
unmet in this context. The cornerstone of treatment for 
CS remains surgery and the result depends on the grade 
and location. Apart from low-grade CS of the extremi-
ties which are treated with extensive intralesional resec-
tion associated with local adjuvant treatment (high-speed 
burr, phenolization or cryotherapy, lavage with a high-
pressure pulsatile system, and packing the defect with 
cement or bone graft). Generally, no adjuvant treatment 
is recommended in conventional CS due to its low sen-
sitivity to radio and chemotherapy. Some retrospective 
reports suggest that mesenchymal CS is more chemo-
sensitive, and may be considered for adjuvant or neoadju-
vant therapy, mainly with Ewing-like regimens [111].

Zhang et al. evaluated the phosphorylation status of 42 
RTKs in five CS cell lines showing that EphA2 was highly 
phosphorylated and constitutively activated in two of 
them [112]. Nevertheless, the EphA2 expression in CS 
tumor samples has not yet been extensively studied. In 
our previous work, we explored the EphA2 gene expres-
sion level in 4 CS cell lines belonging to the CCLE and its 
relationship with clinical and molecular features in a total 
of 102 CS patients from publicly available datasets. We 
observed a significantly higher expression of EphA2 in 
dedifferentiated CS samples with a worse prognosis than 
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in better ones, and EphA2-specific inhibition impinged 
CS cell viability [13].

Considering these findings, there is a compelling ratio-
nale to pursue targeted therapy directed at EphA2 in 
advanced CS patients. Current therapeutic options for 
advanced CS remain notably inadequate, emphasizing 
the need for novel treatment strategies and EphA2 may 
represent a promising tool.

Therapeutic strategies for targeting EphA2 in solid 
tumors
A plethora of molecular, genetic, epigenetic, biochemical, 
pharmacological, and immunotherapeutic strategies tar-
geting EphA2 and its signaling pathways have been devel-
oped. This review explored a wide range of interventions, 
including small molecule inhibitors, monoclonal anti-
bodies, drug or toxin-conjugated antibodies or peptides, 
chimeric antigen receptor T lymphocytes (CAR-T), and 
dendritic cell (DC) vaccines investigated in cancer pre-
clinical models and clinical trials, providing valuable 
insights into their potential efficacy and translation appli-
cations also for bone tumors (Fig. 4).

EphA2 as a molecular target
Among the different strategies that have been evaluated 
to disrupt EphA2 signaling, direct molecular targeting is 
by far the most investigated one. Indeed, several agents 
were shown to be able to bind the receptor and interfere 
with its tumor-promoting effects by different mecha-
nisms such as inhibiting EphA2 expression, promoting its 
degradation, or blocking its activation [17](Fig. 4).

Inhibiting EphA2 expression
Short interfering RNAs (siRNAs) for gene knockdown 
have been used for EphA2 silencing and suppressing its 
expression in human cancer cells. Several studies showed 
that decreasing the levels of EphA2, through silenc-
ing by specific siRNAs, significantly induces antitumor 
activity, reducing tumor growth and promoting apop-
tosis, both in in vitro [7] and in vivo models including 
lung cancer, breast cancer, and glioma [113–116]. We 
showed that the silencing of EphA2 reduced OS cell pro-
liferation and migration [7] (Fig.  5). Moreover, Zhou et 
al. demonstrated that combining an EphA2 siRNA with 
either cisplatin, etoposide, or minustine hydrochloride 
significantly enhanced the antitumor effect against gli-
oma cells [116]. However, although siRNAs have shown 
good results in vitro, their activity in vivo was limited 
by the difficulties of obtaining efficient delivery, cellu-
lar uptake, and good stability in body fluids [117]. Aim-
ing to overcome this limitation and improve siRNA 
delivery, EphA2-specific siRNA was incorporated into 
neutral 1,2-dioleoyl-sn-glycerol-3-phosphatidylcholine 
(DOPC) liposomes resulting in an efficient tumor growth 

reduction in ovarian cancer mouse xenograft models 
when administered both as a single agent or in combi-
nation with paclitaxel [118]. Later, siRNA-DOPC was 
tested in murine and primate models, showing good 
safety and feasibility [119], and prompting a phase 1 clini-
cal trial (NCT01591356). A different strategy to improve 
the EphA2 transcription silencing was proposed by 
Choi et al. who synthesized the p19-YSA fusion protein, 
composed of p19 RNA-binding protein and the EFNA1 
mimetic YSA peptide as a siRNA delivery strategy. Spe-
cifically, YSA is a short amino acid sequence (YSAYP-
DSVPMMS) that binds with high affinity and selectivity 
to EphA2, while p19 can bind with high stability to siR-
NAs, protecting them from external RNAses [120, 121]. 
More recently, Oner et al. successfully developed a novel, 
safe, and efficient delivery system based on cationic solid 
lipid nanoparticles (cSLN) to enhance the bioavailability 
of EphA2-siRNAs in tumors. They used the dimethyl-
dioctadecylammonium bromide (DDAB) to induce the 
reduction of the nanoparticle (NP) size and showed that 
siEphA2-loaded DDAB-cSLN displayed improved cellu-
lar uptake and EphA2 silencing [122].

Other than siRNA, miRNAs seem to be a good strategy 
to inhibit the EphA2 expression in many tumors. Differ-
ent miRNAs are involved in the regulation of the EphA2 
oncogene, varying according to the tumor type. At first, 
Tsouko et al. identified miR-200a as a direct repressor 
of EphA2 in triple-negative breast cancer, while Li et al. 
showed the antitumor effect of miR-26b on hepatocel-
lular carcinoma cells [123, 124]. Subsequent research 
revealed that the overexpression of miR-200c downregu-
lates EphA2 in malignant glioma, breast cancer, and lung 
carcinoma cells displaying efficient tumor-suppressive 
properties [125]. Similar tumor suppressive effects were 
observed with miR-141 in glioma cells, miRNA520d-
3p and miR-302b in gastric cancers, and miR-519a on 
non-small cell lung cancer (NSCLC) cells [126–129]. 
Conversely, some miRNAs, such as miR-451a and miR-
125a‐5p, naturally upregulate the expression of EphA2, 
making their inhibition a potential strategy to downregu-
late the oncogene expression. The reduction of miR-451a 
and miR125a-5p inhibits cell growth and metastasis in 
bladder carcinoma, and gastric cancer preclinical mod-
els, respectively [130, 131].

The overexpression of EphA2 stems from transcrip-
tional activation through regulatory regions controlled 
by epigenetic regulators. EphA2 is associated with super-
enhancers (SEs) activation in tumors [132, 133]. SEs are 
large clusters of enhancers that recruit multiple tran-
scription factors and are implicated in the transcription 
of oncogenes [134]. Bioinformatic screening of Cancer 
Databases identified cancer-associated SEs by analyz-
ing genomic regions with enriched histone 3 lysine 
27 acetylation (H3K27Ac) marks. CRISPR technology 
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targeting SE-associated EphA2 genes inhibits cell growth 
and metastasis. TCF7L2 and FOSL2 transcription fac-
tors were found to be recruited at SE-associated EphA2 
loci during breast cancer progression [132]. Transcrip-
tion factors exhibit cell-type-specific functions across 

different cancer types. Testicular nuclear Receptor 4 
regulates EphA2 transcription in hepatocellular carci-
noma and controls metastasis [135]. Changes in histone 
3 lysine27 acetylation levels correspond to gene tran-
scription regulation, with histone deacetylases (HDACs) 

Fig. 4 Schematic diagram summarizing the therapeutic targeting of EphA2 in solid tumors. EphA2 could be exploited as a molecular target ( pink ring): 
the disruption of its signaling through the inhibition of its expression by siRNAs, miRNAs, YSA-peptides, siRNA-loaded liposomes, and HDAC inhibitors; 
the promotion of its degradation by monoclonal antibodies, soluble EFNA1, mimetic peptides, EFNA1-Fc, disrupting SAM-SAM interaction peptides; or 
blocking its activation by EFNA1 antagonists, monoclonal antibodies, tyrosine kinase inhibitors; as a theranostic target (green ring) by using antibodies 
or peptides conjugates to exotoxins (MEDI547, BT5528, PE38KDEL-1F12, EFNA1-PE38QQR), chemotherapeutic agents (peptides-drug conjugated), nano-
therapeutic agents (immunoliposomes or PEGylated nanoliposomes), or radiolabeled probes (radiolabeled antibodies or peptides); or as immunothera-
peutic target (blue ring) by DC-vaccines, adoptive cell therapy approaches (CAR-T), or peptides conjugated with immunomodulators (bicyclic peptides). 
(Created with BioRender.com)
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playing a pivotal role in this process. HDACs are enzymes 
that modulate gene expression, making treatment with 
HDAC inhibitors a viable strategy to impede cancer 
progression. Notably, EphA2 expression was downregu-
lated in advanced breast cancer following HDAC inhibi-
tor treatment [115]. Furthermore, combining EphA2 
and HDAC inhibitors enhanced the anti-tumor effects, 
underscoring the importance of identifying specific path-
ways in individual tumors to select optimal therapeutic 
approaches and develop personalized medicine [136].

Promoting EphA2 degradation
Soluble ligands or monoclonal antibodies (mAbs) that 
bind to EphA2 may disrupt oncogenic signaling by pro-
moting receptor internalization and degradation [14]. 
Two independent studies showed that soluble EphA2 
ligands in comparison with Fc-mAbs conjugated with 
EFNA1 induced EphA2 Tyr phosphorylation and pro-
teasomal degradation, displaying tumor-suppressing 
properties in several tumor types including glioblastoma 
multiforme (GBM), gastric and breast adenocarcinoma 
[72, 137]. Additionally, Xu et al. demonstrated that 
mEA1-EYFP-H10, a fusion protein consisting of mono-
meric EFNA1 (mEA1) conjugate with an enhanced 

yellow fluorescent protein and linked to a supported lipid 
bilayer via a 10-histidine (H10) anchor, induced the Tyr 
phosphorylation of EphA2, and subsequent degradation 
[138]. Similarly, two short EFNA1 mimetic peptides, YSA 
and SWL, have been utilized to specifically target EphA2 
LBD, inducing Tyr phosphorylation and signaling activa-
tion, albeit with less potency compared to soluble ligands 
and Fc conjugates [139]. Subsequent structural modifica-
tions of these peptides have led to improved derivatives 
capable of acting as both EphA2 agonist and antagonist 
and serving as pharmacological carriers [140].

Otherwise, Alves et al., take advantage of the acidic 
extracellular medium of solid tumors and created 
a highly soluble conditional peptide, called TYPE7, 
designed based on the sequence of the TM domain of 
EphA2, which binds the EphA2 endogenous domain act-
ing as a molecular clamp that envelopes dimers of EphA2. 
TYPE7 reduced Akt phosphorylation and inhibited cell 
migration, mimicking the EFNA1 effect [141, 142]. Fur-
thermore, the EphA2 SAM domain at the C-terminus 
facilitates interactions with regulators of receptor stabil-
ity such as the lipid phosphatases Ship2 and the adaptor 
Odin. Ship2 decreased EphA2 endocytosis and conse-
quent degradation, producing pro-oncogenic outcomes. 

Fig. 5 List of the therapies targeting EphA2 tested preclinically in osteosarcoma, chondrosarcomas, and Ewing sarcomas. (Created with BioRender.com)
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In this setting, Mercurio et al. first discovered that the 
Ship2-SAM domain interaction promotes pro-oncogenic 
effects, identifying the peptide region involved in this 
interaction [143]. By computational and experimental 
approaches, they developed and tested several cyclic pep-
tides that interfered with this complex and showed high 
serum stability and enhanced efficacy [144, 145]. Another 
strategy to modulate EphA2 activation regards the devel-
opment of mAbs and other agonists acting as EFNA1 
mimetics and eventually inducing receptor internaliza-
tion and degradation [14]. For example, Carles-Kinch 
et al. identified EA1.2 mAb which recognizes specific 
epitopes of the EphA2 extracellular domain, inhibiting 
metastatic features on breast cancer cells, while sparing 
normal breast epithelial cells [146]. Different mAbs dis-
played similar results in several solid tumors. Coffman 
et al. showed that EA2 and B233 EphA2-specific mAbs 
promote EphA2 phosphorylation and degradation in 
breast and lung cancer cells, reducing cell growth in mice 
models, while Ansuini et al. developed and tested IgG25, 
another specific EphA2 mAb that promotes receptor 
endocytosis and subsequent degradation in pancreatic 
cancer in vitro and in vivo models, particularly reducing 
EphA2 protein levels and the phosphorylation of FAK 
on Tyr576 [147, 148]. Similarly, Jackson et al. generated 
an EphA2-specific fully humanized IgG1 mAb 1C1 able 
to induce receptor phosphorylation, internalization, and 
degradation [149]. DS-8895a is another new afucosylated 
humanized specific mAb which recognizes the extracel-
lular juxtamembrane region of EphA2, interacting with 
both the full-length and truncated forms of the receptor. 
DS-8895a induces antibody-dependent cellular cytotox-
icity, inhibiting tumor growth in both in vitro and in vivo 
models of breast and gastric cancers. Moreover, it poten-
tiates the antitumor effect of cisplatin when administered 
in combination [150]. More recently, Sakamoto et al. 
produced three mAbs recognizing EphA2, showing that 
SHM16 inhibited migration and invasion of melanoma 
cells efficiently [151].

Blocking EphA2 activation
Agents binding to EphA2 or its ligand EFNA1 act as 
antagonists and suppress signaling, inhibiting Eph-
Ephrin interaction or directly the receptor activity [17]. 
Dobrzanski et al. showed that the administration of 
EphA2/Fc soluble receptors, composed of EphA2 fused 
with the Fc region of human IgG1 antibody, functions 
as a decoy for activating ligands preventing their bind-
ing, and blocking the EphA2 signaling, thereby reducing 
tumor cell growth and invasiveness in preclinical models 
of pancreatic carcinoma [152]. Meanwhile, Ansuini et al. 
developed and tested a specific EphA2 mAb called IgG28 
that impedes the binding to EFNA1, thereby impairing 

tumor vascularization in preclinical models of pancreatic 
cancer [148].

Another strategy was based on lithocholic acid (LCA), 
a secondary bile acid produced from chenodeoxycho-
lic acid by colon bacterial activity. LCA is a competitive 
and reversible EphA2 antagonist that inhibits EphA2-
EFNA1 interaction, blocking the receptor phosphoryla-
tion and activation; however, it does not discriminate 
between different combinations of Eph-Ephrin binding 
[153]. Several attempts were made to obtain and even 
increase the selectivity for EphA2 [154–157]. First, Gior-
gio et al. showed that LCA inhibited EphA2 phosphory-
lation in prostate and colon adenocarcinoma cell lines, 
without affecting other tested receptor tyrosine kinases 
[153]. They also discovered that the carboxylate group 
of LCA is critical for disrupting the EFNA1 ligand bind-
ing to EphA2 and identified the cholanic acid as a more 
competitive inhibitor than LCA [154]. Later, they synthe-
sized a set of LCA derivatives that efficiently antagonized 
EphA2 in prostate cancer cells at low µM concentrations 
[155–157]. Finally, they designed and tested UniPR129, 
the L-homo-tryptophan conjugate of LCA that disrupted 
EphA2-EFNA1 interaction, inhibiting EphA2 activation 
and angiogenesis in prostate cancer cells [158]. Another 
derivative of 3β-hydroxy-D5-cholenic acid and L-tryp-
tophan called UniPR1331 was active at low molecular 
concentration, showed good tolerability in GBM pre-
clinical models, and potentiated the antitumor effect of 
bevacizumab when administered in combination [159]. 
Tognolini’s group efficiently demonstrated that the struc-
tural requirements for a small molecule to bind different 
receptors, among which Epha2, Farnesoid X receptor, 
and the G-protein-coupled receptor 5, are similar [160]. 
They selected and tested different Farnesoid X receptor 
agonists, among which Cilofexor, showing that they bind 
specifically and reversibly to EphA2 and interfere with 
EphA2 oncogenic phosphorylation in prostate adenocar-
cinoma cells [160].

Other researchers focused on tyrosine kinase inhibi-
tors (TKI) and their potential to bind the EphA2 inner 
part, preventing its downstream signaling. Dasatinib, 
an oral multi-TKI, was the first studied in this context 
[161–163]. Chang et al. observed that, after EFNA1 
stimulation, dasatinib inhibited EphA2 phosphorylation 
[163]. In addition, Buettner et al. showed that dasatinib 
inhibited the EphA2 tyrosine kinases activity, blocking 
migration and invasion, but not proliferation and sur-
vival, in human melanoma cell lines [161], while Ishigaki 
et al. observed that dasatinib exclusively inhibited the 
proliferation of EphA2-positive small-cell lung cancer 
(SCLC) cells, suggesting feasibility for clinical settings 
[114]. Dasatinib, either alone or in combination with che-
motherapy, has been assessed in several clinical trials for 
advanced solid tumors (NCT00162214, NCT00792545), 
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including SCLC (NCT00470054), squamous cell 
carcinoma (NCT00563290), endometrial cancer 
(NCT01440998) and in combination with radiotherapy in 
GBM (NCT00895960). Notably, this inhibitor has shown 
a broad range of targets making it challenging to inter-
pret biological and clinical data [164–166]. However, 
these findings guided a chemical proteomics approach to 
designing and synthesizing new EphA2 inhibitors based 
on dasatinib structure. This approach seeks to exploit the 
ATP and the ribose pockets as binding epitopes in EphA2 
kinase, improving its targeting profile. Compounds with 
an improved selectivity profile and potent anti-prolifer-
ative effect against GBM were obtained [167]. Similarly, 
Ho et al., using an orthogonal biological phenotypic 
screening approach, identified a group of newly synthe-
sized benzylidene-indolinones able to inhibit multiple 
tyrosine kinases such as IGF-1R, Tyro3, and EphA2 phos-
phorylation. Among different candidates, they selected 
the most effective TKI which displayed a good safety 
profile and potent anti-proliferative, anti-migratory, and 
pro-apoptotic activities in hepatocellular carcinoma 
preclinical models [168]. Sitravatinib (MGCD516) is 
another multi-TKI inhibiting EphA2 [169]. Patwardhan 
et al. showed that this molecule promotes the blockade 
of RTK phosphorylation and induced tumor growth sup-
pression in different sarcoma models, among which OS 
and ES, acting also in TKI-resistant models (Fig. 5) [170]. 
Based on these preclinical findings, a phase 1 clinical trial 
(NCT02219711) was conducted by Bauer et al. in patients 
with advanced solid tumors to evaluate its safety, phar-
macokinetic, metabolism, pharmacodynamic, and clini-
cal activity profiles, showing feasibility with only limited 
manageable side effects in these patients [171]. Several 
other clinical trials are currently ongoing to test the effi-
cacy of sitravatinib in different types of cancers such as 
NSCLC (NCT03906071), liposarcoma (NCT02978859), 
squamous cell carcinoma (NCT03575598) and urothelial 
carcinoma (NCT03606174), as monotherapy or combi-
nation therapy.

Speaking of selective TKI targeting EphA2, ALW-
II-41-27 showed promising antitumor effects in pre-
clinical models of lung cancers, inducing time and 
dose-dependent apoptosis and tumor regression in 
NSCLC models, among which the EGFR-inhibitor-resis-
tant ones, and inhibiting exclusively the proliferation of 
EphA2-positive SCLC models [113, 114, 172]. Further-
more, ALW-II-41-27 has been administered in combina-
tion with cetuximab reverting both primary and acquired 
drug resistance and resulting in proliferation inhibition, 
apoptosis induction, and tumor growth blockade in pre-
clinical models of colorectal cancer [114]. This inhibitor 
is also effective in nasopharyngeal carcinoma cells, and 
in cervical cancer cells, reducing tumor growth, cell pro-
liferation, migration, and invasion [173–175]. We also 

explored the effect of ALW-II-41-27 in OS, CS, and ES 
preclinical models, showing that it inhibited cell growth 
in a dose-dependent manner (Fig. 5) [13].

EphA2 as a target for theranostic applications
The overexpression of EphA2 in tumor cells and its rela-
tively low expression level in normal tissue makes EphA2 
an ideal target for tumor-specific delivery of chemother-
apy or toxins while sparing healthy cells [14, 38]. Various 
types of antibodies-drug or peptides-drug conjugates 
have been developed and tested to hit EphA2-expressing 
tumor cells (Fig. 4).

Peptide/antibody exotoxin-conjugates
Derivatives of the highly cytotoxic exotoxin A of Pseudo-
monas aeruginosa were developed and conjugated with 
EFNA1 or with fragments of mAb recognizing EphA2 
showing antitumor effects in preclinical models with 
limited side effects [176, 177]. In addition, Sakamoto et 
al. used the SHM16 mAb to deliver the saporin toxin in 
melanoma cells [151].

Another approach involves the conjugation of anti-
EphA2 1C1 mAb with the toxin monomethyl auristatin 
phenylalanine (MMAF) via a stable maleimidocaproyl 
linker, known as MEDI-547 [149]. Upon EphA2 binding, 
this conjugate undergoes internalization and enzymatic 
cleavage, releasing MMAF that binds to tubulin, inhib-
iting its polymerization and inducing cell cycle arrest 
and apoptosis. MEDI-547 triggers activation of cas-
pase-3/7 and cell death, EphA2 degradation, and tumor 
growth inhibition with minimal side effects in tumor 
preclinical models [178, 179]. Despite these encouraging 
results, in a phase I clinical trial (NCT00796055) testing 
MEDI-547, severe dose-limiting toxicity was observed 
arresting any further development of this strategy [180]. 
Then, novel EphA2-selective bicycle toxin-conjugates 
(BTC) were developed by Bicycle Therapeutics to avoid 
side effects. Mudd et al. used a phage display selection 
to generate a BTC with another potent microtubule 
inhibitor, the cytotoxin mertansine (DM1) via a cleav-
able linker, able to bind the EphA2-LBD at a low nano-
molar range. After chemical optimization, they showed 
that it displayed potent antitumor activity and was well 
tolerated in xenograft models [181]. The most promis-
ing is BT5528 composed of the antimitotic agent MMAE 
linked via a chemical scaffold, capable of binding to 
EphA2 with high affinity and stability, avoiding off-target 
effect. Compared to MEDI-547, Bicycle toxins are much 
smaller and display a “fast-in and fast-out” mechanism 
of action exposing much less drug to the normal tissues 
[182]. MEDI-547 and BT5528 both carrying MMAE were 
compared: the BTC displayed potent antitumor activ-
ity avoiding hematologic adverse effects in animal mod-
els first, and in humans later, showing manageable side 
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effects [182]. Moreover, the administration of BT5528, 
alone or in combination with nivolumab, in patients 
with solid tumors is ongoing in a phase I/II clinical trial 
(NCT04180371).

Peptide/antibody chemotherapy conjugates
The conjugation of peptides or antibodies that selec-
tively bind EphA2 and induce its internalization provides 
a vehicle for targeting chemotherapeutic agents spe-
cifically to cancer cells sparing healthy tissues. Recently, 
Wang et al. conjugated the EphA2 agonist short peptide 
YSA with the cytotoxic agent paclitaxel (PTX) showing 
that it is significantly more effective than chemotherapy 
alone in a prostate cancer xenograft model [183]. Later, 
they optimized the drug-like properties of this delivery 
system by introducing non-natural amino acids, syn-
thesizing, and testing two new PTX-conjugates EphA2 
targeting peptides. In particular, dYNH-PTX displayed 
higher stability in mouse serum and significantly reduced 
tumor volume in prostate and renal cancer preclinical 
models [184]. Next, they investigated the chemical deter-
minants responsible for the stability and degradation of 
these agents in plasma and introduced modifications to 
obtain more long-lived and more effective agents [185]. 
Despite their efficacy, these short peptides are often 
degraded and eliminated too rapidly in vivo. Therefore, 
Wu et al. developed 123B9-PTX, a novel tumor-homing 
agent that targets the EphA2-LBD, conjugated with PTX 
via a stable linker which displayed good efficacy in a pan-
creatic cancer xenograft and melanoma lung colonization 
and metastases models [186]. To overcome the limit due 
to the high concentrations required, they also developed 
a dimeric version of this compound (123B92–L2–PTX) 
which acted at nanomolar concentrations, targeting 
circulating tumor cells and inhibiting lung metastasis 
in breast cancer models [187]. The same strategy was 
adopted to conjugate gemcitabine with EphA2 targeting 
agents, developing YNH-L2-Gem and 123B9-L2-Gem, 
which showed good results in pancreatic cancer mod-
els [188]. Finally, more recently, Baggio et al. developed 
Targefrin-PTX, a novel agent targeting the EphA2-LBD 
that efficiently delivered to pancreatic cancers xenograft 
models reducing tumor volume and circulating tumor 
cells [189].

Peptide/antibody nanotherapeutic agent conjugates
The abovementioned peptides and antibodies can also 
be conjugated with PEGylated nanoliposomes and 
loaded with different drugs, such as the MEK inhibi-
tor trametinib and the chemotherapeutic agent doxo-
rubicin [190, 191]. This delivery approach allows drug 
release after internalization in tumor cells expressing 
EphA2, reducing circulating free-drug, and minimiz-
ing the off-target toxicity [190]. Fu et al. showed that 

the YSA-trametinib-loaded PEGylated nanoliposomes 
(YTPL) complex displayed the desired cytotoxicity 
against melanoma cells with higher uptake in vemu-
rafenib-sensitive cells compared to its resistant counter-
part [190]. Similarly, Haghilralsadat et al. showed that 
the YSA-doxorubicin-loaded PEGylated nanoliposomes 
(YSA-L-DOX) efficiently targeted the EphA2 receptor 
on human SAOS-2 OS cell line, promoting dose reduc-
tion and a higher cytotoxic activity (Fig.  5) [191]. Later, 
they developed a dual-targeted approach which consisted 
of targeting OS cell lines both extracellularly, against 
EphA2, and intracellularly against JNK-interacting pro-
tein 1 (JIP1) using YSA-PEGylated cationic liposomes 
loaded with doxorubicin and siRNA against JIP1 pro-
tein (YSA-L-JIP1siRNA-DOX). This strategy efficiently 
induced a reduction of JIP1 expression and the induction 
of apoptosis at the cellular level [192]. More recently, in 
collaboration with Carofiglio et al., we proposed to con-
jugate and with YSA peptide the iron-droplet zinc oxide 
(ZnO) nanoparticles coated with a 3  C lipidic shell and 
conjugated (FZ-3 C-YSA-NPs), to potentiate the specific 
targeting of OS. This construct triggers a specific cyto-
toxic effect that suppresses OS cell growth by increasing 
reactive oxygen species only when remotely activated by 
a mechanical pressure stimulation through ultrasound 
irradiation (Fig. 5) [193].

Another type of antibody-directed nanotherapeutics 
is MM-310. This is constituted by immunoliposomes 
loaded with the precursor form of docetaxel and con-
jugate with the anti-EphA2 scFv-3 peptide. Kamoun et 
al. tested the preclinical efficacy of MM-310 in bladder 
cancer xenograft models, both as a monotherapy and in 
combination with gemcitabine, showing that the combi-
nation improved tumor growth control [194]. Moreover, 
they studied the combination activity of MM-310 with 
the immune checkpoint inhibitors anti-PD1 and anti-PD-
L1 in breast, colon, lung carcinoma, and in fibrosarcoma 
syngeneic mouse models, demonstrating the synergis-
tic and immunomodulatory effects of the combination, 
mainly in breast cancer tumor models [195]. Based on 
these findings, a phase I clinical trial is ongoing to study 
the maximum tolerated dose and the safety profile of 
MM-310 in patients with advanced solid tumors, includ-
ing soft tissue sarcoma (NCT03076372) [196].

Peptide/antibody imaging or therapeutic radiolabeled probe 
conjugates
Thanks to its high expression in both cancer cells and 
tumor vasculature compared to normal tissue, EphA2 
can also be used as a target to deliver imaging agents for 
diagnostic and therapeutic purposes [197]. In this con-
text, several specific probes consisting of radiolabeled 
peptides or antibodies binding EphA2 were developed for 
molecular imaging [198].
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The first quantitative radioimmuno-positron emis-
sion tomography (PET) imaging of EphA2 was per-
formed by Cai et al. in tumor-bearing mice, using the 
64Cu-DOTA-1C1 compound, which consists of the 1C1 
EphA2 antibody labeled with copper-64 (64Cu) through 
the chelating agent DOTA (1,4,7,10-tetraazacyclododec-
ane N, N′,N″,N″′-tetra-acetic acid). This tracer showed 
promising results for clinical purpose investigation [199]. 
Similarly, Puttick et al. conjugated the 4B3 EphA2 anti-
body, labeled with 64Cu, with the chelating agent NOTA 
(1,4,7-triazacyclononane-1,4,7-triacetic acid) to perform 
PET imaging. They observed that 64Cu-NOTA-4B3 
effectively delineates tumor burden, displaying both qual-
itatively and quantitatively better high-contrast images 
compared to other clinical standards imaging tools, in 
GBM mice models [200]. Later, Pyo et al. conjugated the 
same compound with another EphA2 antibody, E1, and 
observed that 64Cu-NOTA-E1 tracer displayed high 
tumor uptake and retention in human cancer prostate 
cells, rapid clearance in xenograft mice models and low 
background values in other tissues [201]. In addition, 
Burvenich et al. labeled another EphA2-specific anti-
body, DS-8895  A, with three different radio-isotypes: 
iodine-125 (125I), indium-111 (111In) and zirconium-89 
(89Zr). They showed that 111In and 89Zr radio-conju-
gates displayed the highest uptake in EphA2-expressing 
tumors because of their entrapment inside the cell; on 
the contrary, 125I resulted in the lowest tumor uptake 
due to its internalization, translocation to lysosomes and 
subsequent degradation which release 125I-catabolites 
from the cells. Moreover, they observed that molecular 
imaging of DS-8895a tumor uptake, in particular using 
the [89]Zr-Df-Bz-NCS-DS-8895a compound, allows 
noninvasive measurement of EphA2 expression and 
determination of its saturation in xenograft models [202]. 
These considerations lead this compound in phase-I bio-
imaging clinical trials, evaluating its dose assessment and 
patient response, showing that it is safe and well tolerated 
in patients with advanced solid tumors (NCT02004717; 
NCT02252211) [203, 204]. In the phase Ib study of 
DS-8895 A in patients with advanced/metastatic EphA2-
positive cancers, no dose-limiting toxicities or treatment-
related adverse events were reported. Observed non-drug 
related, treatment-emergent adverse events (grade ≤ 2) 
included fatigue (n = 3, 43%), diarrhea (n = 2, 29%), throm-
bocytopenia (n = 2, 29%), and decreased appetite (n = 2, 
29%) [204].

Furthermore, Furukawa et al. recently developed and 
tested a novel imaging tracer to perform single-photon 
emission computed tomography (SPECT) of the EphA2 
receptor. They conjugated the EphA2-230-1 mAb with 
the bifunctional chelator p-SCN-BnDTPA and labeled 
it with [111In], evaluating its affinity and pharmaco-
kinetics. This [111In]In-BnDTPA-EphA2-230-1 tracer 

exhibited high tumor accumulation and successfully 
showed the tumor during the SPECT imaging on GBM 
mice models [205].

In analogy, radiolabeled peptides could be used for 
diagnostic imaging and eventually targeted radiotherapy. 
For instance, Pretze et al. synthesized [18 F]AFP-SWL, a 
new radiolabeled peptide consisting of the EphA2 specific 
SWL peptide conjugated with the bioorthogonal radiola-
beling building block [18 F]AFP (1-(3-azidopropyl)-4-(3-
fluoropropyl)piperazine). They were the first to perform 
a radio-pharmacological characterization of this radio-
tracer, evaluating its metabolic stability [206]. However, 
a more promising tracer was developed by Liu et al. con-
jugating technetium-99  m (99mTc) with the same pep-
tide, resulting in the 99mTc-HYNIC-SWL tracer which 
displayed rapid blood clearance by renal excretion in 
lung cancer and melanoma in vivo preclinical models 
[207]. Moreover, Furukawa et al. developed [123I]ETB, 
a SPECT imaging tracer for the EphA2 receptor which 
consists of an ALW-II-4127 EphA2 inhibitor derivative 
(ETB), labeled with gamma-emitting iodine-123 (I-123), 
showing that it selectively bound and inhibited EphA2 
and also revealed an efficient tumor uptake in GBM mice 
models [208].

EphA2 as a target for immunotherapy
The extraordinary developments in immunotherapy 
make the preferential expression of EphA2 in solid 
tumors an attractive possible target for anticancer immu-
notherapy. Indeed, thanks to its membrane expression, 
EphA2 can be a good target for vaccines and adoptive cell 
therapy approaches, such as the CAR-T strategy [209] 
(Fig. 4).

EphA2 redirected CAR-T
Nowadays, a very promising immunotherapy strategy 
is based on autologous T lymphocytes extracted from 
patient blood samples, genetically engineered ex vivo to 
express artificial chimeric antigen receptors (CAR) rec-
ognizing a specific tumor antigen and then re-infused 
into the patient to obtain a T-cell dependent tumor cell 
killing. The definition of a selective and tumor-specific 
target is crucial to avoid side effects [210]. CAR-T cells 
specifically directed against EphA2 have been developed 
and studied against different tumors, such as NSCLC, 
esophageal squamous cell carcinoma (ESCC), GBM, and 
pediatric bone sarcomas [211–214]. At first, Chow et al. 
developed EphA2-specific T cells constituted by EphA2-
CAR with a CD28-ζ endodomain which induced a potent 
anti-cancer activity on GBM cells and the regression of 
GBM xenograft in SCID mice, prolonging their survival 
[213]. Then, Yi et al. generated and compared different 
EphA2-specific CAR-T against GBM models, showing 
that T cells expressing both the endo-domains CD28.ζ 
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and 41BB.ζ CARs with short spacers efficiently improve 
the CAR-T cell function, compared to incorporating the 
41BB domain into CD28.ζ CARs [215]. Similarly, a sec-
ond generation of efficient specific EphA2.CAR-T with 
the co-stimulatory receptor 4-1BB was developed and 
tested in NSCLC and ESCC in vitro and in vivo mod-
els [211, 212]. Hsu et al. tested EphA2 CAR-T therapy 
against OS and ES, demonstrating its anti-tumor activ-
ity in metastatic murine models both in vitro and in vivo 
(Fig. 5) [214]. Moreover, Lange et al. recently developed 
GM18, a novel CAR consisting of the GM-CSF recep-
tor extracellular domains and the IL18 transmembrane 
domains, that links CAR-T cell activation to MYD88 sig-
naling. It was developed to sustain the CAR-T cell func-
tion after repeated exposure to tumor cells, by activating 
an antigen-dependent autocrine loop. They showed that 
CAR.GM18-T cells significantly increase the expansion 
and production of cytokines in vitro and induce tumor 
regression in ES and OS in vivo models, compared to 
standard CAR-T (Fig. 5) [216]. Finally, a recent advance-
ment in CAR-T therapy involves the development of 
TanCAR-T cells to enhance the treatment of GBM both 
in vitro and in vivo. TanCAR-T cells are engineered with 
a tandem arrangement of IL13 (4MS) and EphA2 scFv, as 
well as both targets when present on cancer cells. Impor-
tantly, TanCAR-T cells are programmed to spare nor-
mal cells that express only the IL13Ra1/IL4Ra receptor, 
thereby minimizing off-target effects and enhancing the 
specificity of the therapy [217].

In the first clinical trial with EphA2-redirected CAR-T 
cells, the reported toxicities in the first 3 treated patients 
were pulmonary edema with cytokine release syndrome 
in 2 out of 3 patients. This might be due to the physio-
logical expression of EphA2 by lung epithelial cells [218]. 
Unfortunately, our relatively little knowledge on EphA2 
expression by adult healthy tissues further complicates 
our ability to predict which other organ sites could be 
affected by on-tumor, off-target side effects.

DC-vaccines
Despite its physiological expression in normal tissues, 
the relatively low distribution of the EphA2 receptor in 
adult cells, compared to cancer cells, renders it an almost 
ideal target for vaccine-based strategies. In this scenario, 
DC-based vaccines emerge as a promising therapeutic 
approach in cancer immunotherapy since they promote 
antitumor response taking advantage of each patient’s 
immune system [219]. Indeed, DCs are proficient anti-
gen-presenting cells specialized to capture, process, and 
present antigens on major histocompatibility complex 
molecules [220]. Moreover, DCs play key roles in the 
communication between innate and adaptive immu-
nity and are responsible for the antigen-specific adap-
tive immune response initiation stimulating both helper 

T cells and cytotoxic T lymphocytes (CTLs) that recog-
nize specifically tumor cells [221]. The first evidence to 
support the potential of EphA2-based vaccine therapies 
was realized by Hatano et al., they demonstrated that 
EphA2-derived peptide vaccination promoted immu-
nity and induced therapeutic anti-tumor effects in mice 
models. Furthermore, they observed that this vacci-
nation effectively prevented tumor establishment or 
growth in EphA2-positive syngeneic glioma, sarcoma, 
and melanoma models and that EphA2 vaccines could 
also be directed to EphA2-negative target cells, target-
ing tumor-associated vascular endothelial cells express-
ing EphA2, as different tumor-associated antigens [222, 
223]. In addition, to improve the CTL-mediated immune 
response against glioma cells, Chen et al. developed and 
tested a novel vaccine containing EphA2883–891 peptide 
and LIGHT plasmid in HLA-A2 transgenic mice. They 
observed that this vaccine induced a robust cellular anti-
tumor immunity against U251 glioma cells and inhibited 
tumor growth [224]. As well, Yeung et al. demonstrated 
that an increased expression of tumor-associated anti-
gens such as EphA2, IL-13Rα2, and Survivin, allowed the 
basis for the utilization of an established multiple pep-
tide vaccine in pediatric and adult ependymomas [225]. 
Therefore, Pollack et al. worked on a pilot study of subcu-
taneous vaccinations using these glioma-associated anti-
gens epitope peptides emulsified in Montanide-ISA-51. 
They showed good tolerability and immunogenic activ-
ity with preliminary evidence of efficacy ascribing this 
as a promising strategy [226]. The results obtained with 
vaccines in glioma tumors were later confirmed in other 
models. Yamaguchi et al. evaluated the immunotherapy 
efficacy of DCs pulsed with EphA2-derived peptide on 
murine MC38 colon cancer models. They demonstrated 
that this strategy inhibited tumor growth in EphA2-pos-
itive colon cancer xenografts but not in EphA2-negative 
melanoma ones. Moreover, they observed that natural 
killer cells, but not CD4 + and CD8 + T lymphocytes, were 
necessary for immunizations and the vaccine had long-
term anti-tumor immunity [227, 228]. Additionally, the 
researchers observed heightened tumor-specific CTL 
activity in both colon cancer and melanoma mice models 
[229]. Therefore, EphA2-DCs and EphA2-NPs vaccines 
warrant further studies in selected EphA2-expressing 
tumors. Furthermore, in a recent phase II trial, Storkus 
et al. demonstrated that dasatinib is a potent adjuvant 
in specific vaccination against overexpressed and non-
mutated tumor blood vessel antigens, including EphA2. 
The active recruitment of T cells in tumor sites low-
ered myeloid-derived suppressor cells and regulatory T 
cell abundance extending the patient’s overall survival. 
This vaccination combined with dasatinib was safe and 
resulted in immunologic and clinical responses in mela-
noma patients [230].
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Peptide/antibody immunomodulator conjugates
Another strategy to take advantage of EphA2 specificity 
is the stimulation of the immune cells exclusively at the 
tumor site, exploiting a specific binding to EphA2 tumor 
cells and immune cells infiltrating the nearby microen-
vironment. BCY12491, a tumor-targeted immune cell 
agonist (TICA) exemplifies a new class of fully synthetic 
immunomodulators consisting of two bicyclic peptides, 
constricted each other, targeting respectively EphA2 as 
tumor antigen, and a co-stimulatory molecule CD137 
or 4-1BB, a member of the tumor necrosis factor recep-
tor superfamily. Upadhyaya et al. showed that BCY12491 
is a highly specific and potent immune cell stimula-
tor through CD137 agonism, in EphA2-overexpressing 
tumors that avoid systemic activation. Preclinical data 
confirmed that BCY12491 showed potent EphA2-depen-
dent immunomodulatory activity in vitro and induced 
local tumor regression, complete responses, immuno-
genic memory, and significant modulation of the tumor 
immune microenvironment in preclinical syngeneic 
mouse models [231]. These findings provide a strong 
rationale to further develop the first-in-class Bicycle 
TICAs to potentially treat EphA2-expressing cancers.

Conclusions
In conclusion, targeting EphA2 in bone sarcomas is a 
promising therapeutic strategy due to its highly tumor-
specific expression and pivotal role in tumor progres-
sion and metastasis. The development of advanced drug 
delivery systems, such as NP-based carriers, antibody-
drug conjugates, small molecule inhibitors, and gene 
therapy approaches, enhances the precision and efficacy 
of EphA2-targeted therapies. These methods not only 
improve drug delivery to the tumor site but could also 
help minimize systemic toxicity. However, given the lack 
of data on EphA2 protein expression in adult normal 
tissues [38], considerations on potential on-target, off-
tumor effects should be considered cautiously. Despite its 
benefits, targeting EphA2 and its delivery system might 
lead to off-target effects, immune reactions, and toxic-
ity. Disrupting normal cellular functions of EphA2 and 
the potential development of resistance are additional 
concerns. Hematologic toxicity, affecting blood cell 
counts and bone marrow function, is also a risk. Ongoing 
research and clinical trials are crucial to optimize these 
therapies, addressing the challenges and ensuring safe 
and effective treatment options for patients with bone 
sarcomas. EphA2 overexpression in bone tumors com-
pared to normal tissues and its involvement in key tumor 
processes (e.g., proliferation, migration, and angiogen-
esis) supports its validity as a therapeutic target. EphA2 
targeting can work synergistically with other treatments, 
potentially lowering the risk of resistance development, 
which typically ensues with all single-agent targeted 

treatments. Continued investigation into the mechanisms 
of EphA2 in cancer biology and the refinement of deliv-
ery methods will be key to realizing the full therapeutic 
potential of EphA2 targeting bone sarcomas. Dedicated 
clinical trials of EphA2 targeting in the diverse histotypes 
of each bone sarcoma are still missing, and the study of 
EphA2 protein expression in the different bone sarcoma 
subtypes can be useful for predicting the efficacy of 
EphA2 targeting strategies. These strong preclinical and 
early clinical studies of multifaceted targeting of EphA2 
give rise to encouraging results of efficient novel thera-
peutic strategies against EphA2-expressing tumors. The 
distinct expression patterns of EphA2 and its pivotal role 
in promoting tumor progression render this protein an 
attractive target for therapy across various cancers. This 
includes advanced bone sarcomas which remain chal-
lenging to treat and lacks effective therapeutic options so 
far. These findings open the way toward novel therapeutic 
avenues for addressing these aggressive, rare, and cur-
rently “drug-orphan” diseases.
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