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Abstract
Drug resistance remains a significant challenge in cancer treatment. Recently, the interactions among various cell 
types within the tumor microenvironment (TME) have deepened our understanding of the mechanisms behind 
treatment resistance. Therefore, this review aims to synthesize current research focusing on infiltrating cells and 
drug resistance suggesting that targeting the TME could be a viable strategy to combat this issue. Numerous 
factors, including inflammation, metabolism, senescence, hypoxia, and angiogenesis, contribute to drug resistance 
could be a viable strategy to combat this issue. Overexpression of STAT3 is commonly associated with drug-
resistant cancer cells or stromal cells. Current research often generalizes the impact of stromal cells on resistance, 
lacking specificity and statistical robustness. Thus, future research should take notice of this issue and aim to 
provide high-quality evidence. Despite the existing limitations, targeting the TME to overcome therapy resistance 
hold promising and valuable potential.
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Introduction
Drug resistance is a persistent and complex problem 
that diminishes the effectiveness of treatments and 
jeopardizes patient outcomes in cancer management 
[1]. Despite numerous studies dedicated to address-
ing drug resistance, the outcomes of these efforts have 
not yet reached a satisfactory level [2, 3]. In recent 
years, advancements in single-cell analysis, proteomics, 
genomics, and transcriptomics have facilitated a more 
detailed exploration of the specific mechanisms of drug 
resistance for many medicines [4, 5]. Simultaneously, 
there has been a growing focus on studying the tumor 
microenvironment (TME), which includes both infiltrat-
ing cells and noncellular components [6]. In addition to 
tumor cells, immune and stromal cells significantly influ-
ence the development of tumor [7]. Of these, infiltrated 
immune cells usually comprise T cells, B cells, tumor-
associated macrophages (TAMs), dendritic cells (DCs), 
and myeloid-derived suppressor cells (MDSCs), among 
others. Non-immune cells, including tumor-associated 
fibroblasts (TAFs), mesenchymal stem cells (MSCs), and 
bone marrow stromal cells (BMSCs), also constitute a 
significant portion of the stromal cells in the TME [8, 9]. 
Researchers have gained critical insights by recogniz-
ing that tumor development is contingent on the entire 
TME, not solely on tumor cells [10]. This realization has 
led to the identification of numerous therapeutic targets 
and the subsequent development of novel drugs [11]. 
Moreover, the interactions between different cell types 
in the TME provide researchers with a more profound 
insight into the mechanisms of treatment resistance. For 
instance, TAMs could induce chemoresistance in cancer 
through regulating glucose metabolism [12]. In pros-
tate cancer, inhibiting PI3K has been shown to enhance 
the anti-tumor function of CD8 + T cells, thereby trans-
forming “cold” tumors into immunotherapy-responsive 
cancers [13]. Therefore, we aim to synthesize current 
research focusing on infiltrating cells and drug resistance. 
By highlighting both the exciting findings and gaps, we 
envision to pave the way for overcoming drug resistance 
through strategies targeting tumor-infiltrating cells in the 
TME.

Tumor-infiltrating cells regulate immunotherapy 
resistance
Immune cells in immunotherapy resistance
Immunotherapy has demonstrated a significant capac-
ity to manage cancer and provide survival advantages 
to patients with carcinoma [11, 14]. However, the devel-
opment of drug resistance hampers the effectiveness of 
treatment in clinical settings. Various factors influence 
the response of immunotherapy, such as inflamma-
tion [15], senescence [16], hypoxia [17], and so on in the 
TME. CD8 + T cells occupy a pivotal role in cancer cell 

management during immunotherapy, and their activ-
ity is subject to regulation by many factors [18]. For 
instance, AXL inhibited the antitumor activity of cyto-
toxic CD8 + T cells by regulating CD103 + dendritic cells 
(DCs) migration, T cell priming, and exhaustion in the 
TME [19]. In pancreatic ductal adenocarcinoma (PDAC), 
CCL2 enhanced monocyte infiltration and reduced 
CD8 + T cell infiltration, whereas inhibiting CCL2 expres-
sion and neutralizing monocytes could improve immune 
checkpoint blockade (ICB) therapy efficacy [20]. PTEN is 
a well-known tumor suppressor gene and is involved in 
the regulation of drug response [22]. In PTEN loss pros-
tate carcinoma, the PI3Kα/β/δ inhibitor BAY1082439 can 
enhance CD8 + T cell-mediated immunity, making ICB 
more effective by promoting activation of the IFNα/IFNγ 
pathway, increasing β2-microglobulin expression, and 
boosting secretion of CXCL10/CCL5 [13]. For non-small 
cell lung cancer (NSCLC), TME with PTEN loss or low 
expression also exhibited resistance to anti-PD-L1 treat-
ment. Mechanistically, PTEN loss in the TME promoted 
the differentiation of CD4 + lymphocytes into Tregs 
through regulating TGFβ and CXCL10 expression [23]. 
Tregs can create an immune-suppressed TME, reducing 
the effectiveness of ICB therapy [24]. In cancer patients 
with liver metastasis, Tregs play a role in systemic 
immune suppression, leading to resistance against anti-
PD-1 therapy. Strategies aimed at depleting or destabiliz-
ing Tregs could potentially overcome this resistance and 
enhance the efficacy of anti-PD-1 therapy [25]. In a cervi-
cal cancer study, the NAT10/ac4C/FOXP1 axis in cancer 
cells modulated reprogramming glycolytic metabolism 
(increased glycolysis and lactic acid secretion) in the 
TME. This altered metabolism led to a higher infiltration 
of Tregs, causing immune suppression and resistance to 
ICB therapy [26]. Knockdown NAT10 expression signifi-
cantly improved the efficiency of anti-PD-L1 therapy. In 
EGFR mutant NSCLC, upregulation of IL-6 was shown 
to inhibit the anti-tumor function of T and natural killer 
(NK) cells, while blocking IL-6 could enhance the efficacy 
of anti-PD-1 therapy [27]. As a new treatment in clinical 
practice, CAR T cell therapy has acquired wide attention 
[28, 29]. A few studies reported the role of immune cells 
in CAR T cell therapy resistance. Venet et al. [30] iden-
tified that inhibiting HLA-DR expression in monocyte 
would result in anti-CD19 CAR T cells failure. Further-
more, the interaction between bone marrow stromal cells 
(BMSCs) and CAR T cells could reduce resistance against 
CAR T cells by suppressing apoptosis [31]. The evidence 
presented underscores the importance of interactions 
between CD8 + T cells and other T cell subtypes in influ-
encing the efficacy of ICB therapy, emphasizing the need 
for further research to classify specific T cell subtypes in 
studies focused on immunotherapy resistance.
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In terms of DCs, Vilgelm et al. [32] identified that loss 
of DCs was the main reason for the resistance of ICB 
therapy through suppressing the anti-tumor function 
of CD8 + T cell and CD4 + T cell response. Similarly, a 
combination of CD40 agonist and ICB therapy effectively 
induced complete tumor regressions by modulating T 
cells dependent on CD40 + DCs [33]. Additionally, tumor-
secreted miR424 inhibits DC-mediated T cell activation, 
leading to ICB resistance, which can be overcome by 
blocking miR424 [34]. DCs have a primary role in antigen 
presentation, influencing the adaptive immune response 
and protecting against immunotherapy resistance. NK 
cells typically exhibit anti-tumor function, but can be 
modulated by factors like SNORD46 and IGSF8, affect-
ing their cytotoxicity and interaction with cancer cells. In 
malignant B cells, NK cell cytotoxicity can be suppressed 
by disrupted ligand binding [35, 36]. In malignant B cells, 
NK cell cytotoxicity was significantly suppressed by 
N-glycan-disrupted ligand binding to NK receptors [37]. 
Of this process, SPPL3 depressed N-glycosylation, which 
could be recovered by suppressing B3GNT2 expression. 
Regulation of SPPL3 or B3GNT2 expression maybe a 
promising way to improve CAR NK cell therapy. Lym-
phoid cells generally exhibit anti-tumor functions, with 
exceptions like Tregs. Among these, CD8 + T cells are key 
effectors in ICB therapy targeting tumor cells, while NK 
cells play a similar role in CAR therapy. The emergence 
of resistance to immunotherapy is often due to impaired 
quantity and function of these cells. Therefore, therapies 
directly targeting these cells can significantly improve 
resistance to immunotherapy.

Various myeloid cells play a significant role in influenc-
ing the effectiveness of immunotherapy [38]. Of these, 
TAMs are the main myeloid cells in TME, which have 
several subtypes [39]. It is usually deemed as a promoter 
of immunotherapy resistance [40]. M1-TAMs exhibit 
proinflammatory and phagocytic properties, contributing 
to anti-tumor responses [41]. Conversely, M2-TAMs dis-
play anti-inflammatory characteristics and are involved 
in wound healing, tumor development, and immune sup-
pression [42]. Platten et al. [43] found that it was innate 
rather than adaptive immune factors that could predict 
the response to immunotherapy. Mechanistically, TAMs 
induced ICB resistance by modulating various pathways, 
such as the PD-L1/PD-1/CD80 axis, leading to T cell 
suppression and activation of Tregs in the TME. TAMs 
also inhibited the anti-tumor function of CD4 + T cells 
and pro-inflammatory responses via BMP7/P-SMAD1/
MAPK14 axis, causing anti-PD1 therapy resistance [44]. 
Another TAM study found that TREM2 + TAMs were 
associated with the exhaustion of CD8 + infiltrating lym-
phocytes and poor recurrence-free survival, while anti-
TREM2 mAb therapy could enhance the activation of T 
cells and sensitize the ICB therapy [45]. Thus, the authors 

believed that anti-TREM2 mAb therapy may be an alter-
native treatment for patients with ICB failure. Similarly, 
JMJD6 in TAMs suppressed TAMs M2 polarization by 
STAT3/IL-10 axis, inducing anti-PD-1 therapy resistance. 
In further results, blocking JMJD6 would enhance the 
efficacy of anti-PD-1 therapy, which identified the impor-
tance that exploring the function of different subtypes of 
TAMs in ICB resistance [46]. Consisted with the above 
study, M2 TAMs defined by authors created an immune 
suppressive TME by regulating SPP1/CD44/PI3K/AKT/
HIF-1α/CA9 pathway in glioma, promoting the progres-
sion of cancer cell and ICB resistance [40]. These find-
ings warrant further investigation into the distinct roles 
of various TAMs subtypes. Certain TAM subtypes have 
been recognized for their protective functions in carcino-
genesis43. Furthermore, multiple studies have indicated 
that TAMs can influence the response to ICB through 
interactions with T cells [43]. Therefore, future research 
efforts should prioritize unraveling the regulatory mech-
anisms governing the interplay between TAMs subtypes 
and T cells, particularly in the context of immunotherapy 
resistance.

In a study on melanoma, it was found that STAT3 
inhibitors could reduce the infiltration of TAMs and 
MDSCs, thereby enhancing CD8 + T cells in the TME. 
Further experiments showed that combining a STAT3 
inhibitor with anti-PD-1 therapy could overcome resis-
tance to anti-PD-1 monotherapy [47]. Similarly, MDSCs 
could be recruited through the IKKβ/ARID1A/NF-κB 
axis, leading to an immune-suppressed TME in prostate 
cancer. ICB therapy could be re-sensitized when block-
ing the axis using anti-NF-κB antibody or targeting 
CXCR2 [48]. MDSCs enhanced pro-angiogenic activ-
ity in the TME by secreting BV8, a protein that supports 
VEGF-independent tumor angiogenesis [49]. Inhibiting 
BV8 coul reduce MDSC recruitment to the TME, boost 
cytotoxic T cell efficacy, and overcome ICB resistance33 
[50]. These studies suggest that MDSCs may contrib-
ute to the promotion of ICB resistance by modulating T 
cells. In terms of neutrophils, IL17 expression in another 
PDAC study promoted tumor-related neutrophil (TAN) 
infiltration and extracellular traps but inhibited CD8 + T 
cell infiltration. Inhibiting IL17 or neutrophils signifi-
cantly boosted ICB therapy effectiveness [21]. Disrupt-
ing PADI4-dependent NETosis, which phenocopied IL17 
neutralization, also impacted ICB therapy sensitivity. 
Various studies on TANs have indicated that their pres-
ence in the TME can lead to resistance to immunother-
apy, but inhibiting TAN infiltration or NET formation 
can restore immunotherapy efficiency [51–54]. While 
most myeloid cells may contribute to immunotherapy 
resistance, exceptions like M1 TAMs exist. These stud-
ies emphasize the importance of exploring the specific 
functions of each immune cell subtype and identifying 
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reliable predictors to determine the need for additional 
treatments in immunotherapy. Understanding the inter-
actions between CD8 + T cells and other immune cells is 
crucial for enhancing the efficacy of immunotherapy.

Non-immune cells in immunotherapy resistance
As a stromal cell, TAFs significantly affect the efficiency 
of immunotherapy [55, 56]. In a PDAC study, authors 
found that MEK and STAT3 expressed in TAFs induced 
an immunosuppressive TME by inhibiting recruitment of 
activated/memory T cells, which caused immunotherapy 
resistance [57]. Specifically, MEKi + STAT3i treatment 
in PKT mice reduced proinflammatory and myofibro-
blastic TAF phenotypes, while increasing mesenchymal-
like TAFs. This shift in TAF plasticity drived M2-to-M1 
reprogramming of TAMs and enhanced CD8 + T cell 
trafficking with specific transcriptional activities. These 
effects were dependent on TAFs, as TAF-targeted MEK1/
STAT3 silencing reduced inflammation and myeloid 
infiltration in vivo. Then, the authors added MEK and 
STAT3 inhibitors to immunotherapy (Nivolumab) in 
vivo, which exhibited significantly better clinical benefit 
compared with using monotherapy alone. Additionally, 
MFAP5, which encoded microfibril-associated protein 
5, influenced extracellular matrix components and func-
tions by modulating TAFs [58]. Bai et al. [59] reported 
that MFAP5 knockout in TAFs enhanced cytotoxic T 
cell infiltration through the RCN2/ERK/STAT1 axis by 
downregulating HAS2 and CXCL10 expression, and 
remodeled the matrix, synergistically enhancing immu-
nochemotherapy effects in PDAC. In a separate PDAC 
investigation, TAFs expressing LRRC15 were exclusively 
located around the tumor tissue and absent from normal 
pancreatic tissue. The presence of LRRC15 + TAFs was 
found to be statistically associated with a poor response 
to immunotherapy [60]. In lung and colorectal cancers, 
cancer cells increase PD-L1 expression by activating the 
WNT/b-catenin pathway in bone marrow-derived TAFs, 
resulting in resistance to immunotherapy [61]. This resis-
tance can potentially be reduced by using WNT inhibi-
tors. In breast cancer, the TAFS/TAF-S1 cluster showed 
a positive correlation with Tregs, indicating a poor 
response to immunotherapy [62]. Adenosine is generated 
by ATP that undergoes rapid stepwise dephosphoryla-
tion by ectonucleotidases and can stimulus A2A receptor 
and A2B receptor to modulate immune activity [63]. In 
colorectal cancers, CD73 expression in TAFs was medi-
ated by the A2A and A2B pathways. Targeted inhibition 
of these two pathways has been demonstrated to attenu-
ate immune suppression and augment antitumor immu-
nity in tumors with a high TAFs densit [64].

The evidence presented highlights the importance of 
TAFs in immunotherapy. Regulating the infiltration of 
different TAFs is a significant strategy to improve the 

effectiveness of immunotherapy [65]. Additionally, IFN-γ 
activated endothelial cells have been shown to suppress 
CD8 + T cell-mediated immune responses by increasing 
the expression of PD-L1 and PD-L2 [66]. Lin et al. [67] 
reported that the number of PD-L1-positive circulating 
tumor endothelial cells exhibited an incremental trend 
with prolonged exposure to anti-PD-1 immunotherapy, 
correlating with a diminished efficacy in progression-
free survival in NSCLC. Furthermore, research has dem-
onstrated that BMSCs can induce senescence in CAR 
T cells through the modulation of IDO-1 activity, IFNγ, 
and IL-2 release, ultimately weakening the anti-tumor 
response [68]. These findings emphasize the involvement 
of non-immune cells in immunotherapy and suggest the 
need for further exploration. Understanding how stromal 
cells influence immune cells is crucial, as they can either 
transform into pro-tumor subtypes that recruit suppres-
sive factors like regulatory T cells or inhibit the recruit-
ment and functions of cytotoxic T cells by secreting 
pro-tumor factors. The first involves their transformation 
into pro-tumor subtypes, which leads to the recruitment 
of suppressive immune regulatory factors like regulatory 
T cells [57, 62]. The second approach is inhibiting the 
recruitment and anti-tumor functions of cytotoxic T cells 
through the secretion of pro-tumor factors or other influ-
ences [68]. Given the essential role of cytotoxic T cells in 
immunotherapy, it is important to focus on researching 
stromal cells to directly impact cytotoxic T cell function, 
rather than using indirect methods. Figure  1 illustrates 
the results of immunotherapy resistance. Figure 1 shows 
the results of the immunotherapy resistance. Table 1 pro-
vides the key references of this part.

Tumor-infiltrating cells induce the resistance of 
targeted therapy
Immune cells in the resistance of targeted therapy
Targeted therapy, long employed in clinical practice, 
has extended the survival of cancer patients [69, 70]. 
However, the emergence of drug resistance has signifi-
cantly undermined patient outcomes [71, 72]. Recently, 
researchers have focused on the role of infiltration cells 
in targeted resistance. TAMs have been found to play a 
key role in influencing the effectiveness of targeted ther-
apy [73]. For example, in breast cancer, TAMs secreting 
IL-8 can induce resistance to lapatinib, which can be 
overcome by using IL-8 inhibitors [74]. In myeloma, the 
interaction between TAMs and cancer cells, facilitated 
by iron, can lead to TAMs acquiring a pro-tumor phe-
notype and inducing resistance to bortezomib [75]. The 
STAT3 pathway was a core pathway to regulate targeted 
therapy in TAMs [76]. Mechanistically, TAM-derived 
exosomes in NSCLC attenuated the anti-tumor func-
tion of gefitinib by upregulating the AKT, ERK1/2 and 
STAT3 pathways, decreasing tumor cell apoptosis. In 
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ovarian cancer, upregulation of STAT3 by PARP inhibi-
tors can polarize TAMs, leading to resistance to PARP 
blockade [77]. Similarly, overexpression of STAT3 can 
promote adaptive resistance to gefitinib by inducing M2 
TAM polarization in lung cancer [78]. In addition to 
TAMs, other immune cells are correlated with targeted 
therapy resistance. NSCLC cell generated IL4/34, activat-
ing MDSCs to secrete IL10 and ARG1. These secreting 
factors suppressed CD8 + T cell function and enhanced 
the pro-tumor function of Treg cells, ultimately lead-
ing to osimertinib resistance [79]. Anti-VEGFR2 therapy 
facilitated N2-like neutrophil polarization, resulting in 
CD8 + T cell exhaustion. This exhaustion caused the anti-
VEGFR2 therapy resistance in breast cancer [80]. Addi-
tionally, in certain cases of breast cancer, the interaction 
between HLA-G and KIR2DL4 can result in resistance 
to trastuzumab. Inhibiting this signaling pathway can 
restore NK cell cytotoxicity and enhance sensitivity to 
trastuzumab [81]. Based on these results, immune cells 
within TME markedly affect the efficacy of targeted ther-
apies. However, the absence of identified key regulatory 
cell types for specific targeted treatments impedes the 
translation of these results into clinical practice.

Non-immune cells in the resistance of targeted therapy
Senescence can lead to targeted therapy resistance [82, 
83]. In melanoma, aged dermal fibroblasts released neu-
tral lipids, particularly ceramides, that enhanced lipid 
uptake in melanoma cells via upregulated FATP2 expres-
sion, leading to resistance to BRAF/MEK inhibitors [84]. 
Inhibiting FATP2 expression restored melanoma cell 
sensitivity to these inhibitors, indicating that FATP2 may 
be a promising therapeutic target. Additionally, PARP 

inhibitors can induce senescent-TAFs that produce a 
senescence-associated secretory phenotype (SASP) and 
become resistant to PARP inhibitor therapy in ovarian 
cancer. Bepotastine, which blocks the SASP, can reverse 
drug resistance by inhibiting the histamine H1 receptor-
induced NF-κB pathway [85]. Furthermore, STAT3 has 
been implicated in the resistance of non-immune cells 
to targeted treatments. In neuroendocrine tumors, TAFs 
can stimulate cancer cells to upregulate STAT3 expres-
sion, leading to resistance to everolimus [86].

In NSCLC, TAFs, extracted from epidermal growth fac-
tor receptor (EGFR) tyrosine kinase inhibitors-resistance 
tumor tissues, could produce tryptophan metabolite 
kynurenine which enhanced the transcription of AHR, 
inducing the activation of the PI3K/AKT and MEK/ERK 
pathways. These two pathways created an EGFR tyro-
sine kinase inhibitors-resistance TME, which could be 
countered by AHR inhibitor [87]. In gastric cancer, TAFs 
activate the NF-κB pathway in response to lactic acid 
secreted by cancer cells. This activation leads to suppres-
sion of reactive oxygen species generated by anlotinib in 
cancer cells through the NF-κB/BDNF/TRKB/KEAP1/
NRF2 pathway, promoting anlotinib resistance [88]. In 
colorectal cancer, TAFs activate the IL6/IL8-JAK2 signal-
ing pathway to promote BRD4 phosphorylation, resulting 
in resistance to BET inhibitors [89]. TAFs modulated by 
the TGF-beta pathway also impact the response to cetux-
imab in head and neck cancer [90]. Additionally, in breast 
cancer, TAFs contribute to resistance to lapatinib by acti-
vating the PI3K/AKT/MTOR and antiapoptotic pathways 
[91]. Overall, TAFs play a role in inducing resistance to 
various types of targeted therapies through mechanisms 
such as senescence and the STAT3 pathway.

Fig. 1  The evolution of infiltration cells contributes to immunotherapy resistance. Exhibiting the interaction between various infiltration cells in tumor 
microenvironment. Various factors promoted the formation of immunotherapy resistance microenvironment, such as EMT activation, angiogenesis, and 
metabolism reprogramming. EMT. Tregs: regulatory T cells; MDSC: myeloid-derived suppressor cell; EMT: Epithelial–mesenchymal transition
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Table 1  The core references of immunotherapy resistance
Cells Cancer Drug Article track
CD8 + T and dendritic cells Lung cancer Anti-PD-1 https://doi.org/10.1016/j.bbrc.2023.09.021
CD8 + T cells and monocytes Pancreatic ductal 

adenocarcinoma
Immune checkpoint blockade https://doi.org/10.1016/j.intimp.2022.108598

CD8 + T cells Pancreatic ductal 
adenocarcinoma

Immune checkpoint blockade https://doi.org/10.1084/jem.20190354

Regulatory T Cells Lung cancer Anti-PD-1 https://doi.org/10.1158/0008-5472.CAN-22-3023
Regulatory T Cells and monocytes Cancer with liver 

metastasis
Anti-PD-1 https://doi.org/10.1126/sciimmunol.aba0759

Regulatory T cells Cervical cancer Anti-PD-1 https://doi.org/10.1002/advs.202302705
T cells and monocytes Large B-cell lymphoma CAR T-cell therapy https://doi.org/10.1182/

bloodadvances.2021006563
Bone marrow mesenchymal stromal 
cells

Multiple myeloma CAR T-cell therapy https://doi.org/10.1158/1078 − 0432.
CCR-20-2188

Tumor-associated macrophages Glioma Immune checkpoint blockade https://doi.org/10.1111/cns.14269
CD4 + T and regulatory T Cells Glioma Immune checkpoint blockade https://doi.org/10.1038/s41467-020-14642-0
CD4 + T cells and Tumor-associated 
macrophages

Lung cancer Anti-PD-1 https://doi.org/10.1038/s41467-020-18617-z

CD8 + T cells and Tumor-associated 
macrophages

Various cancers Anti-PD-1 https://doi.org/10.1016/j.celrep.2021.109844

Tumor-associated macrophages Lung cancer Immune checkpoint blockade https://doi.org/10.1038/s41388-023-02781-9
CD8 + T cells and myeloid-derived 
suppressor cells

Melanoma Vemurafenib https://doi.org/10.1016/j.omto.2022.06.001

Myeloid-derived suppressor cells Prostate cancer Immune checkpoint blockade https://doi.org/10.1038/s41467-022-34871-9
CD8 + T cells and myeloid-derived 
suppressor cells

Breast cancer and lung 
cancer

BV8 + Anti-PD-1 https://doi.org/10.3389/fimmu.2022.903591

CD4/8 + T and dendritic cells Breast cancer Dendritic cell therapy https://doi.org/10.1136/jitc-2022-006019
Dendritic cells Pancreas cancer Immune checkpoint blockade https://doi.org/10.1073/pnas.1918971117
T and dendritic cells Colorectal Cancer Immune checkpoint blockade https://doi.org/10.1053/j.gastro.2021.04.036
Tumor-associated fibroblasts and 
CD8 + T cells

Various cancers Immune checkpoint blockade https://doi.org/10.1158/0008-5472.CAN-19-3158

Tumor-associated fibroblasts Pancreatic ductal 
adenocarcinoma

Anti-PD1 https://doi.org/10.1053/j.gastro.2022.07.076

Tumor-associated fibroblasts Pancreatic ductal 
adenocarcinoma

Anti-PD1 https://doi.org/10.1038/s41388-023-02711-9

Myofibroblasts Pancreatic ductal 
adenocarcinoma

Immune checkpoint blockade https://doi.org/10.1158/2159-8290.CD-19-0644

Bone Marrow-Derived 
Myofibroblasts

Lung cancer and 
colorectal cancer

Immune checkpoint blockade https://doi.org/10.3389/fimmu.2021.619209

Tumor-associated fibroblasts and 
regulatory T cells

Breast cancer Immune checkpoint blockade https://doi.org/10.1158/2159-8290.CD-19-1384

Tumor-associated fibroblasts Colorectal cancer Immune checkpoint blockade https://doi.org/10.1038/s41467-019-14060-x
CD8 + T and endothelial cells / Anti-PD1 https://doi.org/10.1002/eji.200324270
Endothelial cells Lung cancer Anti-PD1 https://doi.org/10.1016/j.canlet.2019.10.041
Bone marrow-derived mesenchymal 
stromal cells

Acute myeloid leukemia CAR T therapy https://doi.org/10.1007/s00262-023-03594-1

NK cells Various cancers CAR-NK cell therapy https://doi.org/10.1016/j.cmet.2023.05.009
NK cells Various cancers Anti-PD1 https://doi.org/10.1016/j.cell.2024.03.039
NK cells B cell cancers Immune checkpoint blockade https://doi.org/10.1016/j.celrep.2024.114105
Neutrophil Hepatocellular 

carcinoma
Anti-PD1 https://doi.org/10.1016/j.jhep.2024.02.009
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In a recent study on lapatinib, researchers found that 
the interaction between MSCs and TAFs promoted 
resistance to lapatinib in HER2-positive breast cancer 
by modulating the PEAK1/INHBA/PI3K/AKT pathway 
[92]. Similarly, in the bone marrow microenvironment of 
chronic myeloid leukemia, overexpression of IGFBP-6 or 
SHH induced an inflammatory microenvironment, facili-
tating the transition from MSCs to TAFs and conferring 
resistance to dasatinib [93]. These findings highlight the 
complex interplay between MSCs and TAFs, suggesting 
that regulating MSCs to control the resistance-promot-
ing activities of TAFs could be a promising therapeutic 
strategy. Additionally, in studies on multiple myeloma, 
MSCs were found to contribute to bortezomib resistance 
through the CXCL13 pathway [94]. Similarly, in gastroin-
testinal stromal tumors, MSCs facilitated drug resistance 
by secreting TGF-β2, which activated the PI3K/AKT 
pathway and led to poorer patient survival outcomes 
[95]. Researchers have also discovered that BMSCs play 
a role in drug resistance. For example, BMSCs induced 
imatinib resistance in chronic myeloid leukemia by cre-
ating a hypoxic tumor microenvironment [96]. Fur-
thermore, BMSCs were found to secrete MMP2, which 
modified HAPLN1 and activated the NF-κB pathway, 
resulting in bortezomib resistance in multiple myeloma 
[97]. In lung adenocarcinoma, BMSCs secreted leptin 
and IGFBP2 in a hypoxic tumor microenvironment, acti-
vating the IGF-1R pathway and leading to erlotinib resis-
tance [98]. BMSCs-induced hypoxia was also observed 
in the multiple myeloma. Specifically, BMSCs secreted 
small extracellular vesicles that carried miR-140-5p 
and miR-28-3p to create a hypoxia TME, resulting in 
bortezomib resistance [99]. This association between 
hypoxia, angiogenesis, and the generation of stem cells 
underscores the multifaceted role of BMSCs in drug 
resistance mechanisms [100]. Endothelial cells play a cen-
tral role in angiogenesis and have been shown to impact 
the effectiveness of targeted therapy [101]. ECs interacted 
with TAMs to promote angiogenesis in glioblastomas by 
upregulating the CYP4A/20-HETE/PI3K/AKT pathway 
[102]. FLA-16, a flavonoid, enhanced vascular normal-
ization by inhibiting CYP4A-mediated VEGF and TGF-β 
expression through the PI3K/AKT pathway in TAMs and 
ECs, thus overcoming resistance to anti-VEGF treatment. 
The mechanism of drug resistance was also reported in 
another study [103]. Shi et al. [103] demonstrated that 
tumor cells secreted IGF1, activating IGF1R on ECs and 
leading to vascular remodeling. This remodeled vascula-
ture supported the proliferation of BRAFV600E kinase 
inhibitor-resistant tumor cells. Pericytes, in addition to 
endothelial cells, are also important in angiogenesis, as 
they secrete TSP-1 and TGFb1 to counteract the effects 
of BRAFV600E kinase inhibitors [104, 105]. These find-
ings highlight the complex interactions between different 

stromal cells that warrant further investigation. The 
infiltration of various cell types can lead to resistance to 
targeted therapies, emphasizing the importance of iden-
tifying specific cellular targets for each therapy to over-
come drug resistance. Figure  2 illustrates the specific 
mechanisms of targeted therapy resistance, while Table 2 
provides key references for this section.

Tumor-infiltrating cells influence chemoresistance
Immune cells in chemoresistance
Chemotherapy, as a primary treatment for many cancers, 
has greatly improved the outlook for cancer patients. 
However, the development of chemoresistance hinders 
the intended survival benefits for patients [106, 107]. In 
recent years, there have been significant advancements 
in our understanding of the mechanisms underlying che-
moresistance in the TME [108, 109]. Similar to immu-
notherapy, the activation of STAT3 has been found to 
influence chemoresistance. For example, STAT3 activa-
tion triggered by CCL5 secreted by TAMs can increase 
the expression of the transcription factor NANOG, lead-
ing to chemoresistance [110]. TAM-generated TGF-β1 
activated hepatic leukemia factor (HLF) in cancer cells, 
inducing ferroptosis resistance in triple-negative breast 
cancer cells by stimulating gamma-glutamyltransferase 
1 (GGT1). In response, these cancer cells release IL-6, 
which promoted further secretion of TGF-β1 by TAMs 
through the JAK2/STAT3 pathway and finally facilitated 
cancer progression [111]. Moreover, MDSCs recruited 
by anaerobic pseudomonas can release IL-23, activating 
the STAT3-EMT pathway and promoting EMT in tumor 
cells [112]. In addition to STAT3 regulation, TAMs also 
influence chemoresistance through various other mecha-
nisms. For instance, oxaliplatin inhibits the differentia-
tion of MDSCs into anti-tumorigenic M1-TAMs, leading 
to increased migration and invasion of tumor cells [113]. 
Triptolide inhibits M2-TAM polarization through the 
PI3K/AKT/NF-kB signaling pathway, thereby suppress-
ing invasion and migration of drug-resistant ovarian 
cancer cells [114]. The enhanced iron transport in TAMs 
contributes to tumor progression and chemoresistance 
[75]. Furthermore, M2-TAMs inhibit TRAF5-mediated 
necrotic apoptosis in colorectal cancer cells by increas-
ing METTL3-mediated RNA N6-methyladinosine (m6A) 
modification levels, thereby preventing necrosis [115]. 
In the context of T cells, colorectal cancer cells were 
found to secrete CCL20, which subsequently recruited 
Tregs via the FOXO1/CEBPB/NF-κB signaling pathway, 
thereby enhancing chemoresistance [116]. As for TANs, 
IL-1β released by cancer cells treated with chemotherapy 
was observed to attract TANs and form NETs, ultimately 
contributing to chemoresistance [117]. Notably, integrin-
αvβ1 and metalloproteinase 9, both proteins associated 
with NETs, were capable of activating TGF-β to induce 
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epithelial-to-mesenchymal transition in breast cancer 
cells, leading to chemoresistance and metastasis. Fur-
thermore, various studies have shown a positive corre-
lation between TANs or NETs and chemoresistance [54, 
118, 119]. NK cells also play a role in chemoresistance, 
with examples such as IL15-activated NK cells effectively 
targeting cisplatin-resistant neuroblastoma, thereby 
overcoming chemoresistance [120]. Moreover, therapy 
involving helminth-derived Taenia crassiceps combined 
with 5-fluorouracil was found to enhance NK cell recruit-
ment and cytotoxic activity, ultimately improving che-
motherapy efficacy [121]. These findings underscore the 
significance of NK cells in combating chemoresistance. In 
contrast to the impact of immunotherapy, T cells do not 
seem to play a significant role in chemotherapy, as evi-
denced by studies highlighting distinct treatment mecha-
nisms. When compared to resistance to immunotherapy, 
TAMs, NK cells, MDSCs, and TANs exhibit similar func-
tions in mediating chemoresistance. Notably, two studies 
have specifically addressed the role of M2-TAMs in che-
moresistance, serving as valuable references for future 
investigations.

Non-immune stromal cells in chemoresistance
Non-immune stromal cells within the TME play a role 
in chemoresistance [122]. For example, TAFs secrete the 
lncRNA CCAL, which interacts with the mRNA-stabi-
lizing protein human antigen R to activate the Wnt/β-
catenin pathway in colorectal cancer cells, leading to 
chemoresistance [123]. Similar to regulating the CXCR4/
Wnt/β-catenin pathway, CXCL12, derived from TAFs, 
could trigger EMT in epithelial ovarian cancer cells to 
resist cisplatin [124]. Exosomes facilitate communica-
tion between different cell types, with TAFs secreting 
exosomes that contribute to the TME. These exosomes 
may contain miR-522, which inhibits ferroptosis in can-
cer cells by targeting ALOX15, thereby promoting che-
moresistance in gastric cancer [106]. In prostate cancer, 
TAFs secrete exosomal miR-423-5p, which promotes 
chemoresistance by targeting GREM2 through the 
TGF-β signaling pathway [125]. Moreover, in pancreatic 
ductal adenocarcinoma (PDAC), the knockout of IL-6 
in α-smooth muscle actin (αSMA) + TAFs can enhance 
the effectiveness of gemcitabine treatment and improve 
survival rates [126]. Metastatic lymph TAFs have been 
shown to regulate the p38 and JNK signaling pathways 

Fig. 2  The evolution of infiltration cells contributes to resistance against targeted therapy. The picture specifically describes how different cells (includ-
ing immune and non-immune cells) generate a therapy-resistant microenvironment via CD4 + and CD8 + T cells inhibition, activating and recruiting 
regulatory T Cells, and angiogenesis upregulation. MDSC: myeloid-derived suppressor cell; Treg: regulatory T cell; ROS: reactive oxygen species; TAM: 
Tumor-associated macrophage
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by secreting PI16, ultimately reducing cisplatin-induced 
apoptosis in esophageal squamous cell cancer cells [127].

Similar to TAFs, MSCs also play a role in modulating 
cisplatin resistance. When treated with leptin, MSCs 
can upregulate TGF-β, leading to increased expres-
sion of autophagy-related genes such as ATG7, ATG5, 
and beclin1, ultimately inducing cisplatin resistance 
in osteosarcoma cells [128]. Additionally, MSCs in the 
tumor microenvironment of glioma can migrate to gli-
oma cells through guidance from angiogenic cytokines. 
These migrated MSCs can enhance FOXS1 expression in 
glioma cells by secreting IL-6, triggering EMT and pro-
moting resistance to temozolomide [129]. Downregula-
tion of METTL3 in MSCs would lead to an increase in 
AKT protein levels which promoted MSCs adipogenesis, 
resulting in chemoresistance in acute myeloid leukemia 
cells [130]. MSCs can also interact with leukemia blasts, 
activating ABC transporters and facilitating the transi-
tion of acute myeloid leukemia cells into a more chemo-
resistant subset [131]. By secreting CXCL13, MSCs can 

upregulate the expression of BTK, NF-κB, BCL-2, and 
MDR-1 mRNA and protein, thereby enhancing the resis-
tance of multiple myeloma cells to bortezomib [94]. The 
findings suggest that mesenchymal stem cells (MSCs) 
can play a role in promoting chemoresistance, including 
in endothelial cells. In glioblastoma, CCBE1, an extra-
cellular matrix protein, stimulated hyper-angiogenesis 
and partial endothelial-to-mesenchymal transition in 
human microvascular ECs via the VEGFC/RHO path-
way, conferring temozolomide resistance to cancer cells. 
Mechanistically, SP1 upregulated CCBE1 expression in 
temozolomide-resistant cells. CCBE1, aided by CAVIN1, 
was then secreted into the TME, promoting VEGFC mat-
uration through the VEGFR2/VEGFR3/RHO pathway in 
vascular ECs, thus enhancing abnormal angiogenesis in 
temozolomide-resistant tumors [132]. The transforma-
tion of endothelial cells into mesenchymal stem cell-like 
cells was also observed in another study on glioblastoma, 
where the C-MET/WNT/β-catenin/MRP1 pathway was 
implicated in inducing temozolomide resistance [133]. 

Table 2  The core references of targeted therapy resistance
Cells Cancer Drug Article track
Tumor associated macrophages Breast cancer Lapatinib https://doi.org/10.1016/j.bbamcr.2021.118995
Tumor-associated macrophages Multiple myeloma Ferric ammonium 

citrate
https://doi.org/10.1016/j.redox.2020.101611

Tumor-associated macrophages Lung cancer Gefitinib https://doi.org/10.3892/ol.2022.13476
Tumor-associated macrophages Ovarian cancer PARP inhibition https://doi.org/10.1136/jitc-2022-005627
Tumor-associated macrophages Lung cancer Gefitinib https://doi.org/10.1016/j.canlet.2023.216205
Myeloid-derived suppressor cells Lung cancer Osimertinib https://doi.org/10.1111/1759-7714.14929
Neutrophils Breast cancer Anti-VEGFR2 therapy https://doi.org/10.3389/fimmu.2021.699478
NK cells Breast cancer Trastuzumab https://doi.org/10.1038/s41392-021-00629-w
Aged fibroblasts Melanoma Targeted therapy https://doi.org/10.1158/2159-8290.CD-20-0329
Tumor-associated fibroblasts Ovarian cancer Bepotastine https://doi.org/10.1158/1535-7163.MCT-22-0396
Tumor-associated fibroblasts Neuroendocrine cancer Everolimus https://doi.org/10.1159/000528539
Tumor-associated fibroblasts Lung cancer EGFR TKIs https://doi.org/10.1186/s12885-022-09877-7
Tumor-associated fibroblasts Gastric cancer Anlotinib https://doi.org/10.1016/j.redox.2021.102076
Tumor-associated fibroblasts Colorectal cancer BET inhibitor https://doi.org/10.1038/s41467-021-24687-4
Tumor-associated fibroblasts Head and neck cancer Cetuximab https://doi.org/10.3390/cancers12020339
Tumor-associated fibroblasts Breast cancer HER2 kinase therapy https://doi.org/10.1073/pnas.2000648117
Tumor-associated fibroblasts and mesenchymal 
stem cells

Breast cancer Lapatinib https://doi.org/10.1038/s41388-021-01906-2

Tumor-associated fibroblasts Chronic myeloid 
leukemia

Dasatinib https://doi.org/10.3390/life13020259

Mesenchymal stem cells Multiple myeloma Bortezomib https://doi.org/10.17305/bjbms.2019.4344
Mesenchymal stem cells Gastric cancer Tyrosine kinase 

inhibitors
https://doi.org/10.1186/s12967-023-04063-0

Bone marrow stromal cells Chronic myeloid 
leukemia

Imatinib mesylate https://doi.org/10.1097/CM9.0000000000002554

Bone marrow stromal cells Multiple myeloma Bortezomib https://doi.org/10.1158/1541-7786.MCR-21-0941
Bone marrow-derived mesenchymal stem cells Lung cancer Erlotinib https://doi.org/10.1080/15384047.2019.1665952
Bone marrow stromal cells Multiple myeloma Bortezomib https://doi.org/10.1158/0008-5472.CAN-23-0189
Endothelial cells Hepatocellular cancer Sorafenib https://doi.org/10.1155/2022/2543220
Endothelial cells Glioma Anti-VEGF treatment https://doi.org/10.1016/j.canlet.2017.05.030
Pericytes Glioblastoma BRAFV600E kinase 

inhibitor
https://doi.org/10.1002/advs.202201888
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Two separate studies reported an increase in angio-
genesis in chemoresistant tumor tissue. Bone marrow-
derived mesenchymal stem cells (BMSCs) were found 
to induce bortezomib resistance through the genera-
tion of HAPLN1 and MMP2, which activated NF-κB 
signaling [97]. Disrupting gap junctions between acute 
myeloid leukemia cells and BMSCs using carbenoxolone 
was shown to impair energy metabolism in tumor cells 
and reduce chemotherapy resistance [134]. The complex 
regulatory pathways through which non-immune stromal 
cells impact chemotherapy resistance present challenges 
for clinical experimentation. Moreover, the lack of clas-
sification of these cell subtypes in the studies mentioned 
detracts from their overall value. Specific mechanisms 
are detailed in Fig.  3, while Table  3 provides key refer-
ences on chemoresistance.

Tumor-infiltrating cells in radiotherapy resistance
Radiation therapy (RT) is an essential treatment for 
almost all types of cancer [135]. However, the challenge 
of radio-resistance remains, leading to issues such as 
treatment failure, tumor spread, cancer recurrence, and 
ultimately, a poor prognosis [136, 137]. In oral squa-
mous cell carcinoma, cancer cells thriving in an acidic 

microenvironment acquire characteristics of EMT 
and develop resistance to radiotherapy [138]. Radio-
therapy works by directly damaging and killing tumor 
cells through DNA damage and releasing neoantigens 
into the immune system. In colorectal cancer, the com-
bination of PD-L1 + immune cells and budding nucleus 
β-catenin + tumor cells can create a niche lesion for 
cancer stem cells, resulting in resistance to neoadjuvant 
chemoradiotherapy [139]. The inhibition of the DNA 
damage repair pathway with AZD6738 has been shown 
to enhance the effectiveness of radioimmunotherapy 
for hepatocellular carcinoma by recruiting CD8 + T cell 
infiltration [140]. In liver cancer, inhibiting MELK pro-
motes TAMs M1 polarization and CD8 + T cell infiltra-
tion, while blocking TAMs M2 polarization through 
the secretion of STAT3-derived CCL2 enhances RT 
efficiency [141]. Similarly, the expression of TMEM160 
in colorectal cancer cells can reduce RT sensitivity and 
CD8 + T cell activity by downregulating PD-L1 degra-
dation, with downregulation of TMEM160 expression 
leading to the restoration of RT sensitivity [142]. Vari-
ous studies have also highlighted that the suppression 
in number and function of CD8 + T cells is a significant 
factor in RT resistance, with the activation of CD8 + T 

Fig. 3  Chemotherapy-induced hypoxia, vascular damage, and chronic inflammation are associated with the development of chemoresistance. Various 
infiltration cells in the TME play crucial roles in contributing to chemoresistance. Various factors promoted the formation of chemoresistance microenvi-
ronment, such as STAT3 pathway activation, EMT activation, and TAFs secreted pro-tumor exosomes. MDSCs: myeloid-derived suppressor cell; Tregs: regu-
latory T cells; MSCs: mesenchymal stem cells; BMSCs: bone marrow stromal cells; TAFs: Tumor-associated fibroblasts.; TAM: Tumor-associated macrophage
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cells being able to overcome this resistance [143–145]. 
In terms of Tregs, glioblastoma models treated with RT 
tend to recruit CD103 + Tregs, resulting in RT resistance 
and a decrease in CD8 + T cell activity [146]. Depletion of 
CD103 + Tregs has been shown to restore the efficacy of 
RT. The role of T cells is crucial in immunotherapy, che-
moresistance, and RT. In breast cancer, researchers have 
found that mebendazole can enhance NK cell-mediated 
cytotoxicity against cancer cells, thereby improving the 
efficacy of RT [147]. Another study indicated that combi-
nation of RT and injection exogenous NK cells could sig-
nificantly improve RT efficiency in vitro and in vivo [148]. 
In terms of TAMs, it was observed that miR-143-3p 
released by esophageal squamous cancer cells promoted 
TAM M2 polarization, resulting in RT resistance [149]. 
Furthermore, Ma et al. [150]. reported that engineered 
M1 macrophage-derived exosomes could enhance can-
cer cell DNA damage, polarize M2 macrophages into 
M1 phenotypes, and recover T cell anti-tumor func-
tion, consequently improving RT efficiency. Similarly, 
TANs and NETs would lead to RT resistance [151, 152]. 

For example, GLUT1 expression in TANs could facili-
tate glucose uptake, reducing RT efficiency in lung can-
cer, while inhibiting GLUT1 could restore RT sensitivity 
by decreasing glucose uptake in TANs [153]. Overall, 
RT resistance is influenced by various factors, and 
understanding the molecular mechanisms of radiation 
tolerance and its interaction with the tumor microenvi-
ronment has the potential to enhance the effectiveness 
of radiation therapy [148]. It is important to recognize 
that RT resistance is often associated with RT-induced 
alterations in the immune microenvironment. Anti-
tumor lymphoid cells such as T cells and NK cells have 
the potential to overcome this RT resistance, presenting a 
promising approach to improving RT efficacy. Therapeu-
tically, modulating the quantity and function of immune 
cells within the tumor microenvironment through phar-
macological interventions or supplementing therapy with 
exogenous immune cells could enhance RT outcomes.

Furthermore, stromal cells in the TME can also affect 
RT resistance. TAFs have been identified as key media-
tors of RT resistance through various mechanisms [154]. 

Table 3  The core references of chemoresistance
Cells Cancer Drug Article track
Tumor-associated macrophages Prostatic cancer Chemotherapy https://doi.org/10.1002/cbin.11630
Tumor-associated macrophages Breast cancer Cisplatin https://doi.org/10.1186/s13045-021-01223-x
Myeloid-derived suppressor cells Colorectal cancer Chemotherapy https://doi.org/10.3389/fimmu.2023.1230681
Tumor-associated macrophages Colorectal cancer Oxaliplatin https://doi.org/10.1016/j.canlet.2019.10.020
Tumor-associated macrophages Ovarian cancer Cisplatin https://doi.org/10.3389/fonc.2021.704001
Tumor-associated macrophages Colorectal cancer Oxaliplatin https://doi.org/10.1021/acs.molpharmaceut.0c00961
Regulatory T cells Colorectal cancer 5-FU https://doi.org/10.1186/s40425-019-0701-2
Mesenchymal stromal cells and ancer-
associated fibroblasts

Bladder cancer Chemotherapy https://doi.org/10.3389/fonc.2023.1228185

Mesenchymal stromal cells Acute myeloid leukemia Chemotherapy https://doi.org/10.3324/haematol.2018.214379
Bone marrow mesenchymal stromal cells Acute myeloid leukemia Chemotherapy https://doi.org/10.1038/s41388-019-1069-y
Tumor-associated fibroblasts Colorectal cancer Oxaliplatin https://doi.org/10.1002/ijc.32608
Tumor-associated fibroblasts Ovarian cancer Cisplatin https://doi.org/10.2217/fon-2020-0095
Tumor-associated fibroblasts Prostate cancer Chemotherapy https://doi.org/10.1038/s12276-020-0431-z
Tumor-associated fibroblasts Pancreatic cancer Gemcitabine https://doi.org/10.1158/2159-8290.CD-20-1484
Tumor-associated fibroblasts Esophageal squamous cell 

carcinoma
Cisplatin https://doi.org/10.1038/s41389-023-00495-x

Mesenchymal stem cells Osteosarcoma Cisplatin https://doi.org/10.18632/aging.103027
Mesenchymal stromal/stem cells Glioma Chemotherapy https://doi.org/10.1186/s13287-021-02458-8
Bone marrow mesenchymal stem cell Acute myeloid leukaemia Chemotherapy https://doi.org/10.1002/2211-5463.13165
Endothelial cells Glioblastoma Chemotherapy https://doi.org/10.1126/scitranslmed.aay7522
Mesenchymal stem cells Acute myeloid leukaemia Chemotherapy https://doi.org/10.1002/2211-5463.13165
Mesenchymal stem cells Acute myeloid leukaemia Chemotherapy https://doi.org/10.3324/haematol.2018.214379
Mesenchymal stem cells Multiple myeloma Bortezomib https://doi.org/10.17305/bjbms.2019.4344
Bone marrow stromal cells Multiple myeloma Bortezomib https://doi.org/10.1158/1541-7786.MCR-21-0941
Endothelial cells Glioblastoma Temozolomide https://doi.org/10.1016/j.canlet.2023.216593
Neutrophil Breast cancer Chemotherapy https://doi.org/10.1016/j.ccell.2023.03.008
Neutrophil Ewing sarcoma Chemotherapy https://doi.org/10.1111/cas.15992
Neutrophil Pancreatic cancer Chemotherapy https://doi.org/10.1080/2162402X.2024.2326694
NK cells Colon cancer 5-fluorouracil https://doi.org/10.1016/j.biopha.2024.116628
NK cells Neuroblastoma Cisplatin https://doi.org/10.1038/s41416-023-02430-8
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For example, TAF-conditioned media has been shown 
to enhance RT resistance in NSCLC cells by activating 
the SMAD3/ITGA6/PI3K/AKT pathway [154, 155]. In 
esophageal squamous-cell carcinoma, TAF-derived col-
lagen type 1 promotes DNA damage repair and induces 
RT resistance, while cancer cell-secreted CXCL1 further 
exacerbates this resistance [156]. Interestingly, the recip-
rocal interaction between cancer cell-secreted CXCL1 
and TAFs leads to increased RT resistance through the 
CXCL1-CXCR2 pathway. In nasopharyngeal carcinoma, 
TAFs have been found to reduce irradiation-induced 
DNA damage and promote RT resistance via the IL-8/
NF-κB pathway [157]. To solve TAF-induced RT resis-
tance, Jian et al. [158]. created a nanoplatform to clear 
TAFs and senescent TAFs (which also could induce 
RT resistance), obviously improving RT resistance. In 
terms of MDSCs, RT promoted MDSCs infiltration 
and YTHDF2 expression, resulting to RT resistance 
[159]. Mechanistically, knockout YTHDF2 in myeloid 
cell would change MDSC differentiation and attenuate 
MDSC infiltration and function by activating the NF-κB 
pathway, recovering RT sensitivity of cancer cells. In pan-
creatic cancer, tumor cells secrete lactate, promoting the 
infiltration of an immunosuppressive MDSC phenotype, 
leading to resistance to RT [160]. Of these, HIF-1α was 

the essential of lactate-induced resistance by mediating 
the GPR81/mTOR/HIF-1α/STAT3 pathway, while inhib-
iting lactate generation or HIF-1α depletion in MDSCs 
would recover T cell anti-tumor function and thus over-
come RT resistance. Similarly, several studies also found 
that the pro-tumor MDSC subtype facilitated RT resis-
tance by interacting with cancer cells or immune cells 
[161–163]. Regarding ECs, depression of DAB2IP in 
breast cells would induce RT resistance by promoting 
angiogenesis [164]. Moreover, reducing STAT3 in breast 
cancer cells with decreased DAB2IP expression has been 
found to enhance RT sensitivity by suppressing angio-
genesis. This research suggests that stromal cells have 
the ability to influence cell differentiation and modify 
the TME by promoting processes like angiogenesis or 
metabolic changes through interactions with cancer cells, 
such as repairing RT-induced DNA damage, ultimately 
leading to RT resistance [159, 160]. While some studies 
have indicated that certain stromal cells can differentiate 
into anti-cancer subtypes, there is a lack of research on 
the specific classification and functions of these subtypes, 
indicating a need for further investigation.

Antiandrogen therapy resistance is widely observed 
in clinical practice. Sawyers et al. [165] discovered that 
NRG1 in TAF supernatant activated HER3 on prostate 

Table 4  The core references of radiotherapy resistance
Cells Cancer Treatment Article track
CD8 + T cells Hepatocellular 

carcinoma
Radiotherapy https://doi.org/10.1186/s12943-024-02049-0

CD8 + T cells Colorectal cancer Radiotherapy https://doi.org/10.1186/s12964-024-01541-w
CD8 + T cells and regulatory T cells Pancreatic cancer Hypofractionated 

Radiotherapy
0.20892/j.issn.2095-3941.2020.0273

CD8 + T cells and tumor-associated 
macrophages

Various cancer Radiotherapy https://doi.org/10.1016/j.ccell.2024.02.013

CD8 + T cells Colorectal cancer Ionizing radiation https://doi.org/10.1186/s12916-024-03375-2
Regulatory T cells, CD4 + and CD8 + T cells Glioblastoma Radio-immunotherapy https://doi.org/10.1038/s43018-023-00547-6
NK cells Breast cancer Radiotherapy https://doi.org/10.3390/ijms232415493
NK cells Various cancer Radio-immunotherapy https://doi.org/10.1080/2162402X.2015.1036212
Tumor-associated macrophages Esophageal squamous 

cell carcinoma
Radiotherapy https://doi.org/10.3390/ijms25116082

Tumor-associated macrophages Various cancer Radiotherapy https://doi.org/10.1002/advs.202106031
Tumor-associated macrophages Colorectal cancer Radiotherapy https://doi.org/10.1002/jgm.3530
Neutrophil Esophageal cancer Radiotherapy https://doi.org/10.1093/jrr/rrae041
Neutrophil Lung cancer Radiotherapy https://doi.org/10.1158/0008-5472.CAN-20-2870
Tumor-associated fibroblasts Various cancer Ionizing radiation https://doi.org/10.1186/s12964-021-00711-4
Tumor-associated fibroblasts Lung cancer Radiotherapy https://doi.org/10.1186/s12967-024-05057-2
Tumor-associated fibroblasts Esophageal cancer Radiotherapy https://doi.org/10.1016/j.celrep.2023.113270
Tumor-associated fibroblasts Nasopharyngeal 

carcinoma
Radiotherapy https://doi.org/10.1186/s13046-021-01878-x

Tumor-associated fibroblasts Breast Cancer Radiotherapy https://doi.org/10.1002/smll.202309279
Myeloid-derived suppressor cells Various cancer Radiotherapy https://doi.org/10.1016/j.ccell.2023.04.019
Myeloid-derived suppressor cells Pancreatic cancer Radiotherapy https://doi.org/10.1158/2326-6066.CIR-20-0111
Myeloid-derived suppressor cells Head and neck cancer Radiotherapy https://doi.org/10.1158/0008-5472.CAN-22-1903
Myeloid-derived suppressor cells Urothelial carcinoma Radiotherapy https://doi.org/10.1038/s41416-023-02244-8
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https://doi.org/10.1186/s12964-024-01541-w
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cancer cells, leading to antiandrogen resistance. Inhib-
iting the NRG1/HER3 axis could resensitize tumors to 
androgen deprivation therapy both in vitro and in vivo. 
Further investigation is needed to fully understand the 
intricate mechanisms at play. Table 4 in this study serves 
as a comprehensive reference guide of this section.

Conclusion and perspective
The significant challenge of anti-tumor drug resistance 
poses a considerable obstacle to effective cancer man-
agement and the successful implementation of preci-
sion medicine. Therapies targeting the TME may offer a 
valuable strategy to mitigate drug resistance, with factors 
such as inflammation, metabolism, senescence, hypoxia, 
and angiogenesis playing key roles in modulating drug 
resistance through interactions among various cell types. 
STAT3 and its pathways are crucial in different therapies 
and cell types within the TME, with evidence showing 
that STAT3 enhances ICB resistance and cell polariza-
tion, while its inhibition can reverse drug resistance. In 
chemotherapy, inhibiting STAT3 expression can alleviate 
chemoresistance, and in targeted therapy, overexpression 
of STAT3 is linked to drug-resistant cancer or stromal 
cells. Given the potential of targeting STAT3 to combat 
cancer therapy resistance, future research should focus 
on this pathway in the context of TME drug resistance. 
Clinically, STAT3 expression could be used as an indica-
tor to predict response to adjuvant therapy, and STAT3 
inhibitors show promise as effective anti-resistance treat-
ments in cancer management.

Distinct subtypes such as CD8 + T cells, Tregs, and 
CD4 + T cells are defined within T cells, enabling focused 
research on their individual roles in therapy resistance. 
However, clear definitions of subtypes for many immune 
and non-immune cell types remain uncertain. While 
some studies have attempted to classify these subtypes, 
widespread acceptance and application have not been 
achieved. Furthermore, current research often empha-
sizes the overall impact of stromal cells on therapy resis-
tance, rather than specific subtypes, leading to reduced 
statistical robustness and specificity in these studies. 
Current evidence highlights the anti-tumor functions of 
specific subsets of stromal cells, such as TAFs and TAMs 
[166]. Accordingly, future research should address this 
issue by aiming to provide high-quality evidence. Despite 
existing limitations, we assert that approaches targeting 
the TME to overcome therapy resistance hold promising 
and valuable potential.
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