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Abstract 

Wound healing is a tightly regulated process that ensures tissue repair and normal function following injury. It is mod-
ulated by activation of pathways such as the transforming growth factor-beta (TGF-β), Notch, and Wnt/β-catenin sign-
aling pathways. Dysregulation of this process causes poor wound healing, which leads to tissue fibrosis and ulcerative 
wounds. The Wnt/β-catenin pathway is involved in all phases of wound healing, primarily in the proliferative phase 
for formation of granulation tissue. This review focuses on the role of the Wnt/β-catenin signaling pathway in wound 
healing, and its transcriptional regulation of target genes. The crosstalk between Wnt/β-catenin, Notch, and the TGF-β 
signaling pathways, as well as the deregulation of Wnt/β-catenin signaling in chronic wounds are also considered, 
with a special focus on diabetic ulcers. Lastly, we discuss current and prospective therapies for chronic wounds, 
with a primary focus on strategies that target the Wnt/β-catenin signaling pathway such as photobiomodulation 
for healing diabetic ulcers.
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Introduction
Wound healing is a complex cellular process that leads to 
tissue repair following injury. There are four overlapping 
phases of wound healing, starting with hemostasis which 
recruits platelet cells to the injured site for vasocon-
striction, coagulation, and blood clot formation. This is 
followed by the inflammatory phase, which activates neu-
trophils and macrophages to clear microbes to prevent 
infection. The third phase is proliferation, which involves 
proliferation and migration of epithelial keratinocyte 
cells and fibroblasts to the injured site for re-epitheli-
alization as well as formation of granulation tissue. The 
fourth phase involves tissue remodeling, which activates 

synthesis and deposition of the new extracellular matrix 
(ECM) by fibroblasts for wound contraction and scar for-
mation [1]. This process requires tight regulation as dys-
regulation leads to the onset of chronic wounds. Chronic 
wounds do not progress through the healing process in 
a timely manner of 4–6 weeks, but prolong healing for 
up to 12 months and longer [2]. It has been reported that 
chronic wounds are a burden to the healthcare system as 
they are estimated to affect 10.5 million individuals in the 
United States of America [3]. Among the different types 
of chronic wounds, diabetic foot ulcers (DFUs) are esti-
mated to affect 15% of the population in Africa and South 
America [4]. Studies have shown that chronic wounds 
fail to complete the wound healing process due to a pro-
longed inflammatory phase as a result of the increased 
recruitment of pro-inflammatory macrophages, and 
increased secretion of pro-inflammatory cytokines such 
as interleukin-1β (IL-1β) and tumor necrosis factor-α 
(TNF-α) at the wound site [5, 6]. Furthermore, current 
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strategies such as wound dressing and wound debride-
ment are reported to be less effective for treating chronic 
wounds [3, 7], which indicates the need for new advanced 
treatment modalities.

Regulation of the wound healing process is medi-
ated by several signaling pathways, which include the 
transforming growth factor-beta (TGF-β), Notch, and 
Wnt/β-catenin signaling pathway [8]. These pathways 
are involved in activating the expression of target genes 
as well as the synthesis and secretion of soluble proteins 
that mediate cell activation and transition through the 
healing phases [8–10]. Moreover, these signaling path-
ways interact with one another, promoting the advance-
ment of the wound healing process [9, 11]. Dysregulation 
of these signaling pathways during wound healing delays 
tissue repair, leading to the onset of chronic wounds. 
This review will discuss the role of the TGF-β, Notch, 
and Wnt/β-catenin signaling pathways in wound heal-
ing, with a special focus on the Wnt/β-catenin signaling 
pathway in the different phases of wound healing. We 
will then define the target genes regulated by the Wnt/
β-catenin signaling pathway in the cell types involved 
in wound healing, namely macrophages, epithelial cells 
(keratinocytes), and fibroblasts. We will further discuss 
the crosstalk between Wnt/β-catenin signaling with the 
Notch and TGF-β signaling pathways during wound 
healing, and its modulation in chronic wounds, with the 
primary focus on diabetic wounds/ulcers. Lastly, we will 
also discuss prospective therapies for the treatment of 
chronic wounds which target the activation of Wnt/β-
catenin signaling, with emphasis on DFUs.

Cellular signaling in wound healing
Following injury, the hemostasis phase is activated by 
tissue factor (TF), a membrane glycoprotein that forms 
part of the clotting cascade that activates platelet cells, 
and monocytes upon exposure to blood [12]. TF together 
with damage-associated molecular pathogens (DAMPs) 
such as cell debris, RNA, and pathogen-associated molec-
ular patterns (PAMPs) (e.g. bacterial lipopolysaccharides) 
activates the inflammatory phase which overlaps with 
hemostasis and initiates clot formation [13]. The blood 
clot fills the wound bed and forms a provisional wound 
matrix for the migration of leukocytes and platelet cells 
[6]. Platelet cells further secrete platelet-derived growth 
factor (PDGF) and the TGF-β1 cytokine which activate 
the TGF-β signaling pathway during inflammation [14].

The proliferative phase, which focuses on re-epithe-
lialization of keratinocytes, angiogenesis, and forma-
tion of granulation tissue, is initiated by the release of 
cytokines (e.g. IL-4 and IL10) and growth factors such 
as basic fibroblast growth factor (bFGF) released by the 
reparative anti-inflammatory (M2) macrophages [6, 

15]. Macrophages further release nitric oxide (NO) and 
TGF-β cytokines, which activate the proliferation and 
migration of fibroblast cells [16]. NO released by mac-
rophages also activates existing endothelial cells to pro-
liferate and secrete vascular endothelial growth factor 
(VEGF) for angiogenesis [17]. Cells at the edge of the 
wound are also activated and release EGF, keratinocyte 
growth factor (KGF) and insulin growth factor-1 (IGF-1), 
which induce the proliferation and migration of keratino-
cytes, endothelial cells, and fibroblasts. Mast cells, which 
are found in connective tissue of the skin and mucosa 
also secrete IgE antibodies, histamine, and cytokines 
such as IL-6 and IL-8 during the overlap between the 
inflammatory and proliferative phases [18]. They also 
secrete proteases such as chymase and tryptase, which 
breakdown the basement membrane and old ECM for 
the formation of granulation tissue [18]. Mast cells are 
further suggested to activate the proliferation of fibro-
blasts and endothelial cells by secreting IL-4 and VEGF 
during the proliferative phase [18, 19]. Activated fibro-
blasts begin to express  alpha smooth muscle (α-SMA) 
and transdifferentiate into myofibroblasts for migration 
and deposition of ECM proteins at the wound site [20]. 
The provisional wound matrix is replaced by granula-
tion tissue, which is largely composed of fibroblasts and 
myofibroblasts, M2 macrophages and new blood vessels 
to provide a scaffold for cell adhesion, migration, and 
cell differentiation during wound repair [6]. Keratino-
cytes and fibroblasts secrete matrix metalloprotein-
ases (MMPs) such as MMP-2 and MMP-9, which are 
known to degrade the provisional matrix for deposition 
of new ECM rich in fibronectin, type I and type III col-
lagen required for cell migration and the formation of 
granulation tissue [21, 22]. TGF-β signaling is active at 
the remodeling phase, which involves the maturation of 
granulation tissue where there is an increased number of 
myofibroblasts for ECM deposition and wound contrac-
tion [23]. At this phase, myofibroblasts and macrophages 
release MMPs and tissue inhibitor metalloproteinases 
(TIMPs) to resolve the immature ECM found in granula-
tion tissue, and deposit increased levels of type I collagen, 
which has a high tensile strength [22, 24].

The role of TGF‑β and Notch signaling pathways in wound 
healing
The activation and role of TGF-β signaling is well-
characterized in wound healing. Briefly, the binding of 
TGF-β ligands (TGF-β1, TGF-β2, and TGF-β3) to the 
TGF-β receptor I/II (TGFβRI/ TGFβRII) heterodimeric 
complex activates the signaling pathway. This leads to 
the phosphorylation of the TGF-β receptor complex, 
which subsequently phosphorylates receptor SMADs 
(R-SMADs) (SMAD2/3) proteins that bind to SMAD4 
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for nuclear translocation and transcriptional activation of 
target genes [25, 26]. Secretion of TGF-β1 also activates 
polarization of macrophages to the M2 phenotype, which 
mediates progression from the inflammatory phase to the 
proliferative and remodeling phases [27]. TGF-β1 also 
leads to epithelial-mesenchymal transition EMT in epi-
thelial cells for re-epithelialization, as well as the trans-
differentiation of fibroblasts into myofibroblasts [9]. The 
TGF-β/SMAD2/3 signaling pathway activates the expres-
sion of genes that encode collagens I, III and IV, as well as  
α-SMA, fibronectin, MMPs and tissue-inhibitors of met-
alloproteinases (TIMPs) in fibroblasts (Table  1) [43]. In 
macrophages, TGF-β/SMAD3 signaling also targets the 
expression of IL-10 and mediates progression from the 
inflammatory phase to the latter phases of wound heal-
ing [44].

Like the TGF-β pathway, the Notch signaling path-
way, is an evolutionarily conserved signaling pathway, 
which plays a role in embryonic development, tissue 
homeostasis, and tissue repair [45–47]. Notch signal-
ing controls cell fate, proliferation, differentiation, and 
cell survival [48]. Notch signaling is activated by the 
binding of its ligands such as Jagged (JAG) 1 and − 2, 
and delta-like (DLL)-1, − 3, and − 4 to the Notch recep-
tors (Notch 1–4). Upon ligand binding to the Notch 
receptor between adjacent cells, the Notch receptor is 
cleaved by γ-secretase (e.g. presenilin), leading to the 
translocation of the notch intracellular domain (NICD) 

to the nucleus where it functions as a transcription 
factor [49]. Transcriptional activation is mediated by 
binding of the NICD to recombinant binding protein-J 
(RBPJ) and mastermind-like (MAML) transcription co-
activators, which activate the expression of genes such 
as the Hairy/Enhancer of Split 1 (HES1) and Hairy/
E(spl)-related with YRPW (HEY), which are transcrip-
tional repressors of the basic helix-loop-helix (bHLH) 
family, which regulate proliferation and differentiation 
of epidermal stem cells. Notch ligands are known to be 
highly expressed in epidermal cells, endothelial cells, 
keratinocytes, fibroblasts, and macrophages to activate 
angiogenesis and keratinocyte differentiation, and reg-
ulate inflammation [48, 50]. In the wound healing con-
text, Notch1 signaling has been shown to activate the 
recruitment of M1 macrophages to the wound site and 
induce expression of   IL-6 for angiogenesis [29, 50]. An 
in  vivo mouse study showed that knockout of Notch1 
in myeloid cells decreased macrophage recruitment 
and expression of TNF-α [29]. Notch activity has also 
been shown at the proliferative phase to induce expres-
sion of the VEGF receptor (VEGFR) in endothelial cells 
for angiogenesis, to activate differentiation of keratino-
cytes and fibroblasts, and expression of target genes 
required for cell migration and wound closure (Table 1) 
[46, 49]. Furthermore, it has been shown that inhibition 
of Notch signaling with N-[N-(3,5-Difluorophenacetyl)-
L-alanyl]-S-phenylglycine t-butyl ester (DAPT), which 

Table 1 List of Notch and TGF-β target genes expressed during wound healing

Signaling 
Pathway

Wound healing phase Target genes Cell type Function in wound healing Ref.

Notch Inflammation IL1B Macrophages Activate switch from M1 to M2 macrophages [28]

IL6 Macrophages Induces pro-inflammatory response [29, 30]

TNF Macrophages Induces pro-inflammation [29]

Proliferation ACTA2 Endothelial cells Endothelial-to-mesenchymal transition [31, 32]

Fibroblasts Myofibroblast formation [31]

VEGFA Endothelial cells Angiogenesis [33]

IVL Keratinocytes Keratinocyte differentiation [34]

TGF-β Hemostasis TGFB1 Platelet cells Activate platelet aggregation, inflammatory 
response, and angiogenesis

[35]

Inflammation Macrophages Switch from M1 to M2 macrophages [36]

IL4 Macrophages Activates cell proliferation [37]

Proliferation COL3A1 Fibroblasts Collagen deposition [16]

SNAI2 Keratinocytes Epithelial-to-mesenchymal transition [38]

FN Fibroblasts Deposition of new ECM [39]

Remodeling COL1A1 Fibroblasts Deposition of new ECM [40]

ACTA2 Fibroblasts Myofibroblast formation [41]

TGFB1 Macrophages/Fibroblasts Wound closure and scar formation [42]

FN Fibroblasts Deposition of new ECM [40]

FGF2 Fibroblasts Wound closure [42]
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inhibits γ-secretase cleavage activity, prevents fibro-
blast migration [46].

Activation of the Wnt/β‑catenin signaling pathway 
in wound healing
The Wnt pathway is among the evolutionarily conserved 
pathways which plays a critical role in embryonic devel-
opment, stem cell maintenance, differentiation, cell 
polarity, and lineage specification [51]. Nineteen Wnt 
genes in the human genome have been identified and 
indicated to activate either the Wnt/β-catenin, Wnt/
planar cell polarity (Wnt/PCP), or Wnt/Ca2+ signaling 
pathway [52, 53]. Activation of these pathways requires 
the binding of Wnt ligands to the Frizzled (FZD) trans-
membrane receptor, which requires the low-density 
lipoproteins 5/6 (LRP5/6) receptor. The Wnt/β-catenin 
pathway, also known as the canonical pathway, is acti-
vated by the stabilization of β-catenin in the cytoplasm. 
In the Wnt inactive state (WNT OFF) (Fig. 1), β-catenin 
is bound to the “destruction complex” which phospho-
rylates β-catenin for proteasomal degradation [54]. The 
“destruction complex” is comprised of glycogen syn-
thase kinase-3β (GSK-3β), adenomatous polyposis coli 
(APC), Axin and casein kinase 1 (CK1). The binding of 
Wnt ligands to FZD/LRP5/6 (WNT ON) recruits the 
“destruction complex” to the membrane which leads to 

the accumulation and stabilization of β-catenin in the 
cytoplasm, followed by its nuclear translocation for gene 
expression [51, 52]. Activation of the canonical signaling 
pathway by Wnt3A, for example, recruits the “destruc-
tion complex” to the cell membrane for phosphorylation 
by LRP5/6, leading to the dephosphorylation, accumu-
lation and stabilization of β-catenin in the cytoplasm. 
Stabilized β-catenin is translocated to the nucleus for 
transcription of target genes (Table 2) [53, 74]. β-catenin, 
which is a transcriptional co-activator, binds to the T cell 
factor/lymphoid enhancer factor (TCF/LEF) transcrip-
tion factors for the expression of target genes in specific 
cell types [75].

The non-canonical Wnt/PCP signaling pathway 
(Fig. 2) is involved in cell polarity and migration of epi-
thelial and mesenchymal cells during development and 
organogenesis [76]. It is activated by Wnt4, Wnt5A, 
Wnt6 and Wnt11 ligands, which activate FZD inde-
pendent of LRP5/6 [77]. Activation of FZD induces a 
signaling cascade through activation of the carboxy-
terminal domain of disheveled, which activates small 
guanosine triphosphate (GTP) enzymes (GTPases) 
RHOA or RAC. Activation of RAC stimulates c-Jun 
N-terminal kinase (JNK) activity for cell polarity [77]. 
While the Wnt/PCP signaling pathway is commonly 
known to activate cell polarity during development and 

Fig. 1 Canonical Wnt/β-catenin signaling pathway. In the absence of a Wnt ligand (WNT OFF) the “destruction complex” composed of glycogen 
synthase kinase-3β (GSK-3β), casein kinase 1 alpha (CK1α), Axin and adenomatous polyposis coli (APC), remains bound to β-catenin, where GSK-3β 
phosphorylates β-catenin which results in its degradation, thus preventing its nuclear translocation for transcription of target genes. In the presence 
of a Wnt ligand (WNT ON) the disheveled protein inhibits the phosphorylation of β-catenin which leads to its accumulation, stabilization, 
and nuclear translocation, where it binds to the T cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors for transcription of target 
genes
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Table 2 List of target genes activated by Wnt/β-catenin signaling during wound healing

Wound healing phase Wnt/β‑catenin 
target genes

Cell type Function in wound healing Ref.

Inflammation IL4 Macrophages Activate switch from M1 to M2 macrophages [55, 56]

IL10 Macrophages Activate switch from M1 to M2 macrophages [57]

ARG1 Macrophages Activates tissue repair [55, 56]

EDN1 Monocytes/macrophages Activates cytokine production in monocytes/macrophages [58, 59]

MMP9 T cells T cell migration to wound site [60]

Proliferation CCND1 Epithelial cells Activates cell proliferation [61]

AXIN2 Epithelial cells Cell proliferation [59]

FN1 Epithelial cells Epithelial-to-mesenchymal transition [23, 62]

MYC Epithelial cells Promotes proliferation of epidermal stem cells and keratinocytes [63]

EGFR Epidermal cells Proliferation and migration of keratinocytes [8]

VEGFA Endothelial cells Activates angiogenesis [8, 64]

FGF2 Epithelial cells Epithelial-to-mesenchymal transition [65]

SNAI1 Epithelial cells Epithelial-to-mesenchymal transition [66]

MMP7 Endo/epithelial/macrophages Formation of granulation tissue [8, 67]

Remodeling COL1A1 Epithelial cells/fibroblasts Deposition of new ECM [8]

ACTA2 Epithelial cells/fibroblasts Epithelial-to-mesenchymal transition [68]

TIMP1 Epithelial cells/fibroblasts ECM deposition and scar formation [69]

TGFB1 Macrophages/Fibroblasts Wound closure and scar formation [70, 71]

CCN4 Fibroblasts Proliferation and migration [72]

VIM Fibroblasts Fibroblast to myofibroblast transition [73]

Fig. 2 Non-canonical Wnt signaling pathways. The non-canonical Wnt/PCP pathway is involved in cell polarity and microtubule reorganization. 
Binding of the Wnt ligand to the FZD receptor activates the Wnt/PCP pathway either by recruiting the LRP5/6 or tyrosine kinase Ror2 receptor. This 
activates the GTPase RAC1 which activates the c-Jun N-terminal kinase (JNK) which leads to activation of the JUN transcription factor for expression 
of genes involved in cell fate and polarity. The Wnt/Ca2+ activates phospholipase C (PLC) following binding of the Wnt ligand on the FZD/LRP5/6 
receptor complex. Activation of PLC leads to the activation of inositol triphosphate (PIP3), which increases calcium  (Ca2+) in the endoplasmic 
reticulum. Increased  Ca2+ leads to binding interaction with calcium-calmodulin kinase II (CaMKII) and activation of the nuclear factor of activated T 
cells (NFAT) transcription factor for its nuclear translocation and transcriptional activation of target genes that are involved in the pro-inflammatory 
response
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stem cell differentiation, this pathway has also been 
implicated in wound closure. In an in  vitro wound/
scratch model, treatment of embryonic mouse fibro-
blasts with Wnt5a, which also binds to the tyrosine 
Ror2 receptor, activated JNK and stimulated reorgani-
zation of the microtubules and actin cytoskeletons for 
“wound” closure [78]. The non-canonical Wnt/Ca2+ 
pathway is mediated by intracellular calcium  (Ca2+). 
Binding of Wnt5a to the FZD/LRP5/6 receptor acti-
vates phospholipase C (PLC) and leads to increased 
inositol triphosphate (PIP3), 1,2 diacylglycerol (DAG), 
and  Ca2+ levels [79]. Cytosolic PIP3 interacts with  Ca2+ 
from the endoplasmic reticulum (ER) resulting in its 
release. The released  Ca2+ interacts with calmodulin to 
activate calcium-calmodulin-dependent protein kinase 
II (CaMKII). Activated DAG can also interact with ER 
 Ca2+ to activate protein kinase C (PKC). Both CaMKII 
and PKC can activate nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-кB) and nuclear fac-
tor of activated T cells (NFAT) for activation of the 

pro-inflammatory response and expression of several 
genes in different tissues (e. g. cardiac, neurons, and 
skeletal muscle) [79].

The Wnt/β-catenin signaling pathway has been 
shown to be involved in hematopoiesis, which is 
activated concurrently with the hemostasis phase 
upon injury (Fig.  3). During hemostasis, activation of 
Wnt/β-catenin signaling mediates the proliferation of 
megakaryocytes and proplatelet formation. A study by 
Macaulay et al. [80] showed that stimulation of mouse 
megakaryocytes by Wnt3A increased their prolifera-
tion, while treatment with Dockkopf-1 (DKK-1), a Wnt 
inhibitor which binds the LRP/5/6 receptor, inhibited 
their proliferation. Wnt signaling also induces the 
binding of β-catenin to the TCF4 transcription fac-
tor in macrophages, Which increases the expression 
of Arginase-1 (Arg-1) and mannose receptor (MR) 
required for metabolic changes that are involved in 
macrophage polarization from the M1 (pro-inflamma-
tory) to the M2 (anti-inflammatory) phenotype during 

Fig. 3 The involvement of Wnt/β-catenin signaling in wound healing. During hemostasis and inflammation, Wnt3a is known to induce 
the formation of proplatelet cells that mature into platelet cells and lead to the increased production and secretion of platelet-derived growth 
factor (PDGF), transforming growth factor-beta 1 (TGF-β1) and vascular endothelial growth factor (VEGF). The secreted growth factors from platelet 
cells also activate circulating and bone-marrow derived monocytes to proliferate and migrate to the wound site and differentiate into M1 
macrophages which express and secrete interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), nitric oxide (NO), as well as Wnt5a, which 
further activates transdifferentiation of M1 macrophages into anti-inflammatory M2 macrophages. M2 macrophages produce and secrete 
anti-inflammatory cytokines (TGF-β1; IL-4; IL-10) that leading to the progression to the proliferative phase, where the TGF-β1 and Wnt3a secreted 
by M2 macrophages activate the proliferation and migration of keratinocytes and fibroblasts for formation of granulation tissue. M2 macrophages 
also secrete metalloproteinase-2 (MMP-2) and MMP-9 for degradation of old ECM and deposition of new ECM. At the proliferative phase fibroblasts 
also transdifferentiate into contractile myofibroblasts expressing alpha-smooth muscle actin (α-SMA), fibronectin as well as collagen type 3A1 
(COL3A1) and (COL1A1). At the remodeling phase, the activated M2 macrophages and myofibroblasts further secrete TGF-β1 and Wnt3a for further 
proliferation and differentiation of fibroblasts into myofibroblasts for wound contraction and deposition of COL1A which is involved in scar 
formation
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wound healing [81, 82]. It has also been shown that the 
expression and secretion of Wnt5A by macrophages at 
the inflammatory phase stimulates the synthesis and 
secretion of pro-inflammatory cytokines such as inter-
feron-gamma (IFN-γ), IL-1, IL6 and TNF-α for clear-
ing of infectious microorganisms [83]. Also, a separate 
study showed that monocyte-derived dendritic cells 
express high levels of Wnt5A during inflammation, 
leading to the secretion of the anti-inflammatory IL-10 
cytokine [84]. These findings suggest that Wnt5A 
induces both pro-inflammatory and anti-inflammatory 
responses in different immune cells at the inflamma-
tory phase.

Activation of the Wnt/β-catenin pathway at the 
proliferative phase leads to β-catenin binding to the 
TCF7L2 transcription factor for expression of target 
genes such as cyclin D1, matrix metalloproteinase-7 
(MMP-7) which are required for cell division, and 
EMT in keratinocytes [26, 85]. The β-catenin/TCF 
transcriptional activity in macrophages is also crucial 
during the proliferative phase to promote granula-
tion tissue formation and activation of macrophages 
for the recruitment of fibroblast cells [86]. β-catenin 
also induces transcription of ECM genes, which have, 
interestingly been shown to induce a feedback loop 
to regulate β-catenin [23]. β-catenin has also been 
shown to further activate myofibroblast formation at 
the remodeling phase for wound contraction and scar 
formation [86]. The Wnt/β-catenin signaling pathway 
at the remodeling phase is also reported to have dispa-
rate roles where it inhibits the migration of keratino-
cytes and promotes the proliferation and migration of 
fibroblasts [62, 87]. The regulation of Wnt/β-catenin 
signaling at this stage is reported to be critical as the 
prolonged stability of β-catenin delays wound con-
traction and wound size, thus increasing the risk 
of chronic wound healing. It is known that Wnt/β-
catenin signaling activates epithelial stem cells as well 
as melanocyte stem cells in the hair follicle bulge for 
hair growth and pigmentation [88, 89]. A study by Itoh 
et  al. [90] showed in a murine model that at Wnt/β-
catenin signaling at the remodeling phase, stimulates 
wound-induced hair follicle formation that is similar to 
embryonic follicle formation as indicated by increased 
expression of alkaline phosphatase (Alp), Keratin 17 
(Krt17), Lef1 and Wnt10b. Another study by Lee et al. 
[91] showed in  vitro that treatment of human dermal 
papilla cells with valproic acid (GSK3β inhibitor) acti-
vates Wnt/β-catenin signaling resulting in high expres-
sion of ALP, which indicates activation of the anagen 
(growth) phase of hair follicle formation. These stud-
ies thus indicate that Wnt/β-catenin is also involved in 
tissue remodeling.

Crosstalk of Wnt/β‑catenin with Notch and TGF‑β signaling 
pathways during wound healing
While the TCF/LEF transcription factors are well-studied 
binding partners of β-catenin, several other transcription 
factors have been shown to bind β-catenin. These include 
Twist, a basic helix-loop-helix transcription factor that is 
involved in the EMT process by downregulating E-cad-
herin and N-cadherin expression levels in epithelial cells 
[92]; Forkhead box (FOX) transcription factor that com-
petes with TCF/LEF for promoter occupancy on tar-
get genes for stem cell renewal and differentiation [93]; 
myoblast determination protein 1 (MyoD) for skeletal 
muscle formation and regeneration [94, 95]; and the Yes-
associated protein (YAP) for tissue repair in enterocytes 
[96]. The binding of β-catenin with other transcription 
factors is associated with activation of other signaling 
pathways that have been suggested to crosstalk with the 
Wnt/β-catenin pathway. Other signaling pathways that 
have been shown to crosstalk with Wnt/β-catenin dur-
ing wound healing include the TGF-β, Notch, and Sonic/
Hedgehog (SSH) signaling pathways [8]. Furthermore, a 
few studies have shown some interplay between the TGF-
β, Wnt/β-catenin and Notch signaling pathways during 
tissue repair however, this interplay has not been fully 
explored. This review will focus on the crosstalk between 
Wnt/β-catenin signaling pathways with TGF-β and 
Notch signaling pathways for wound healing.

Wnt/β‑catenin interacts with TGF‑β signaling pathway 
during wound healing
The crosstalk between TGF-β and Wnt/β-catenin has 
been widely reported, however, the exact molecular 
cascade that leads to this interaction has not been fully 
described. Studies have suggested that the crosstalk 
between the TGF-β and Wnt/β-catenin signaling path-
ways occurs via the SMAD proteins (SMAD2/3) [73]. A 
study by Charbonney et  al. [97] showed that treatment 
with TGF-β induced epithelial-myofibroblast transition 
by increasing α-SMA levels in the presence of β-catenin, 
however, knockdown of β-catenin prevented the epithe-
lial-to myofibroblast-transition (EMyT) switch in tubu-
lar epithelial cells. Furthermore, this study showed that 
β-catenin-dependent expression of α-SMA was activated 
in a TCF/LEF-independent manner [62]. Another in vitro 
study showed that treatment of mouse fibroblasts with 
Wnt3a increased α-SMA expression to induce fibro-
blast-myofibroblast differentiation via increased TGF-β 
expression and SMAD2 phosphorylation [98]. It has also 
been shown that β-catenin activity mediates the expres-
sion of collagen I and IV as well as fibronectin during the 
proliferative phase in a wound healing mouse model [23].

There are conflicting theories regarding the cross-
talk between TGF-β and Wnt/β-catenin signaling 



Page 8 of 17Gumede et al. Cell Communication and Signaling          (2024) 22:244 

during wound healing. One of these theories suggests 
that activation of Wnt/β-catenin signaling leads to the 
expression of TGF-β, which induces SMAD2 phospho-
rylation, leading to the expression of target genes (e. g. 
ACTA2, and COL1A1) involved in wound healing [98]. 
Another study suggests that the presence of TGF-β 
leads to the activation of β-catenin [99]. The third the-
ory suggests that the activation of SMAD3 or β-catenin 
activates the cyclic AMP-responsive-element-binding 
protein (CREB)-binding protein (CBP), which mediates 
SMAD3/β-catenin complex formation for expression 
of target genes such as α-SMA (Fig.  4) [25, 100]. It is 
unclear, however, if CBP mediates SMAD3/β-catenin 
complex formation for nuclear localization as well as 
transcriptional activation. CBP, which is closely related 
to p300, is an acetyltransferase protein and can bind 
to the C-terminus of β-catenin and acetylates SMAD3 
as a transcriptional co-activator [100, 101]. Studies 

have shown that inhibition of β-catenin using IGC-
001 inhibitor also inhibits CBP, but not p300, result-
ing in the downregulation of α-SMA expression in 
cellular wound healing models [68, 73, 100]. It would 
be of interest to determine if there is a feedback loop 
between these signaling pathways that mediates their 
crosstalk, or if CBP is the mediating factor that initi-
ates the SMAD3/β-catenin complex for nuclear trans-
location and gene expression. A study by Liu et al. [102] 
showed that β-catenin negatively regulates the effect of 
TGF-β1 on fibroblasts by reversing their myofibroblast 
phenotype back to the fibroblast state. This in  vitro 
study further showed that overexpression of β-catenin 
prevented the upregulation of type I and III collagen, 
and α-SMA in TGF-β1-treated human dermal fibro-
blasts [92]. This study thus suggests that these pathways 
regulate each other.

Fig. 4 Crosstalk between Wnt/β-catenin, Notch, and TGF-β signaling pathways during wound healing. During the inflammatory response, 
the Notch signaling pathway is activated and interacts with necrosis factor kappa B (NFκB) to induce production of interleukin-6 (IL-6) and tumor 
necrosis factor-α (TNF-α). The crosstalk between β-catenin and Notch has been reported from the onset of injury. However, it is unknown if this 
crosstalk is activated at the start of the inflammatory phase or start of the proliferative phase. Nevertheless, this crosstalk has been shown to activate 
expression of C-MYC and HES1, which are both expressed at the overlap of the inflammatory phase and proliferative phase. At the proliferative 
phase all three of these pathways are activated, possibly in a temporal manner. It has not been indicated if NICD directly binds to β-catenin 
for the crosstalk between these pathways. We hypothesize that there is temporal crosstalk between Notch (NICD) and β-catenin as transcriptional 
co-activators at the proliferative phase. Β-catenin is known to interact with SMAD3 however it is uncertain if this interaction occurs via CBP/
p300 at both the proliferative and remodeling phases. Notch signaling has also been indicated to negatively regulate Wnt/β-catenin signaling 
during osteogenic proliferation, while Wnt/β-catenin inhibits Notch signaling during osteogenic differentiation. This interplay has however, 
not been shown in cutaneous wound repair. We hypothesize that this interplay is also involved in cutaneous wound repair in a temporal manner, 
where β-catenin inhibits Notch activity during tissue remodeling for the trans differentiation of fibroblasts to myofibroblasts as well as for formation 
of the new ECM for scar formation and wound closure



Page 9 of 17Gumede et al. Cell Communication and Signaling          (2024) 22:244  

Interplay between Wnt/β‑catenin and Notch signaling 
pathways during wound healing
It is suggested that the Wnt and Notch signaling path-
ways are activated concomitantly during development, 
tissue regeneration, and wound healing, but with dis-
tinct roles [103]. Studies have shown that Notch signaling 
inhibits Wnt/β-catenin activity in stem cells to prevent 
self-renewal and promote differentiation [103, 104]. A 
wound healing study in mouse and human dermal fibro-
blasts showed that Notch signaling enhanced collagen 
lattice contraction while β-catenin promoted cell motil-
ity [87]. A study by Acar et al. [103] showed that NICD 
directly binds to β-catenin and inhibits its transcriptional 
activity to promote cell differentiation.

It has also been observed that some proteins are tar-
gets for the interplay between these signaling pathways 
(Fig. 4). A study by Blokzijl et al. [105] showed in a mouse 
muscle cell line that NICD interacts with SMAD3 to acti-
vate the Suppressor of Hairless, Lag-1 (CSL) transcrip-
tion factor, which binds to promoter regions of Notch 
targets genes. SMAD3 also interacts with β-catenin 
to increase expression of wound healing target genes 
such as α-SMA and fibronectin [100]. This suggests that 
SMAD3 may be a downstream link for β-catenin and 
NICD activity during wound healing. It is unclear at what 
stages of wound healing these interactions occur. Fur-
thermore, these interactions may be a potential target 
for the progression of wound healing from the prolonged 
inflammatory phase to the proliferative and remodeling 
phases in chronic wounds. Also, CBP/p300 has been 
shown to bind the MAML-1 transcription co-activator 
for chromatin remodeling and expression of Notch target 
genes [106, 107]. These studies indicate that CBP/p300 is 
also a downstream target for β-catenin and Notch signal-
ing activity. Further studies thus need to be explored to 
understand the interaction of CBP/p300 with β-catenin 
and Notch signaling during wound healing.

Modulation of Wnt/β‑catenin signaling in chronic wounds
Tight regulation is critical for wound healing as dys-
regulation leads to delayed wound repair and the onset 
of chronic wounds. Chronic wounds such as pressure 
ulcers, venous ulcers, and DFUs are a primary result of 
prolonged inflammation [108]. Pressure ulcers are caused 
by increased pressure (> 200 mmHg) for long periods 
of time, and affects bedridden or immobile patients, 
leading to the compression of soft tissue which causes 
ischemia and tissue necrosis [109]. Patients with pressure 
ulcers present with high levels of inflammation, disrup-
tion of the ECM, and reduced growth factor secretion 
[109]. Venous ulcers are as a result of vascular insuffi-
ciency due to venous hypertension which leads to vari-
cose vein formation and chronic inflammation [108, 110]. 

Hyperproliferation and poor differentiation of keratino-
cytes also contribute to venous ulcers [111]. DFUs, which 
are a complication of diabetes mellitus (DM), are caused 
by neuropathy and chronic low-grade inflammation 
that persists due to the hyperglycemic state in diabetic 
patients [112].

The common features of these chronic wounds include 
prolonged inflammation, recurring infection, and poor 
epidermal cell response to repair stimuli [2]. Upon injury, 
hemostasis and inflammation are activated, however, 
there is an increased number of neutrophils and mac-
rophages, which secrete increased levels of pro-inflam-
matory cytokines such IL-1β and TNF-α, as well as 
reactive oxygen species (ROS) [5, 113, 114]. The elevated 
pro-inflammatory cytokines prevent the secretion of 
TGF-β1 and other growth factors that mediate transdif-
ferentiation of M1 macrophages to reparative M2 mac-
rophages. Moreover, M1 macrophages secrete high levels 
of proteases, and reduced levels of their inhibitors, which 
increases the degradation of the ECM and prevents pro-
gression to the proliferative and remodeling phases of 
wound healing [2].

Dysregulation of the canonical Wnt/β-catenin signal-
ing pathway is implicated as one of the drivers of chronic 
wounds [115, 116]. A study by Stojadinovic et  al. [116] 
showed that keloid tissue sections and keratinocytes 
derived from affected patients expressed high levels 
of β-catenin, which altered the expression of C-MYC, 
resulting in poor migration of keratinocytes and delayed 
wound healing. Keloids and hypertrophic scars, which 
are caused by excessive ECM deposition, particularly 
collagen, have been shown to be driven by continuous 
activation of the TGF-β signaling pathway [117]. Further-
more, studies have shown increased expression of TGF-β 
and β-catenin in keloid tissues compared to normal skin, 
suggesting a crosstalk of these signaling pathways in 
keloid disease [117, 118]. Moreover, the Notch signaling 
pathway has also been implicated in the pathogenesis 
of keloid disease. For example, a study by Syed & Bayat 
[119] showed that keloid tissue samples expressed high 
levels of the Notch-1 receptor compared to normal skin. 
Furthermore, this study showed an overexpression of the 
JAG-1 ligand in human keloid fibroblasts compared to 
normal cells, which indicated increased cell proliferation 
and migration in in vitro experimentations. The interplay 
of these signaling pathways in the pathogenesis and pro-
gression of hypertrophic scars and keloid disease thus 
requires further investigation.

In ulcerative conditions such as ulcerative colitis (UC) 
Wnt/β-catenin signal activation has also been reported 
to be increased [120]. A study by Cosin-Roger et al. [120] 
showed that UC patients presented with high levels of 
M1 macrophages in newly damage ed. intestinal mucosa, 
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while the mucosa of chronic patients presented with high 
levels of M2 macrophages. Moreover, this study showed 
increased expression of Wnt ligands (Wnt1 and Wnt3A) 
in macrophages, which impairs the differentiation of 
enteric epithelial cells. In DFUs, Wnt/β-catenin signaling 
is modulated due to high expression of Wnt antagonists 
such as the secreted frizzled-related protein 4 (sFRP4) 
[121]. It is also reported that the Wnt/β-catenin signaling 
pathway is downregulated in diabetes due to decreased 
levels of R-spondin 3 (Rspo-3) [122]. The R-spondin 
(1–4) family of proteins are secreted ligands that have 
been shown to potentiate Wnt/β-catenin signaling via the 
LRG4 and LRG5 G-coupled receptor protein [123]. Their 
downregulation has been suggested to lead to the down-
regulation of Wnt/β-catenin in diabetic ulcers.

Modulation of Wnt/β‑catenin signaling pathway in diabetic 
wounds
The glycemic state in DM triggers disturbances that lead 
to systemic complications that alter the wound heal-
ing process. The inflammatory phase, like in pressure 
and venous wounds, is prolonged and leads to increased 
accumulation of M1 macrophages which secrete ele-
vated levels IL-1β and TNF-α [124]. Diabetes also leads 
to increased myeolopoiesis in the bone marrow thereby 
increasing circulating monocytes that migrate to the 
wound site and differentiate into macrophages [125]. 
Furthermore, there is high expression of macrophage 
inflammatory protein-2 (MIP-2) and macrophage che-
moattractant protein-1 (MCP-1), which increase mac-
rophage recruitment to the wound site [124]. Increased 
recruitment of macrophages and neutrophils leads to 
increased cytokine levels, ROS, and protease produc-
tion that prevents formation of granulation tissue and 
re-epithelialization of keratinocytes [124, 126]. High glu-
cose levels also lead to non-enzymatic glycation of pro-
teins forming advanced glycated end-products (AGEs), 
that when they bind to the AGE receptor (RAGE) lead to 
further hyperinflammation and increased ROS produc-
tion due to high oxidative stress [124, 127, 128]. Hyper-
glycemia also prevents the proliferation of endothelial 
cells and fibroblasts in the wound area. Furthermore, 
fibroblasts poorly transdifferentiate into myofibroblasts, 
thus leading to poor angiogenesis and decreased ECM 
production [129]. Poor myofibroblast formation is also 
associated with reduced expression of TGF-β1 due to 
high levels of TNF-α [130]. Moreover, there is increased 
expression of SMAD7, which inhibits TGF-β signaling in 
macrophages and fibroblasts [131]. The Notch signaling 
pathway has also been shown to be activated in diabetic 
wounds, where studies have shown that Notch1 activa-
tion enhances the inflammatory response and inhibits 
myofibroblast formation [50, 132].

DM impairs the Wnt/β-catenin pathway [133]. It has 
been shown that low levels of Wnt1 and β-catenin in 
human diabetic wounds is negatively correlated with 
increased levels of pro-inflammatory cytokines such as 
TNF-α and IL-6, as well as high expression of caspase-3 
and Bax proteins that are involved in apoptosis [134]. 
Also, polymorphisms in the TCF7L2 gene increases 
the risk of developing diabetes as TCF7L2 regulates the 
expression of ISL1, which is required for proinsulin syn-
thesis. Mutations on the TCF7L2 genes lead to the dys-
function of pancreatic beta cells [133, 135]. Studies have 
also reported that DM causes reduced production of 
Wnt3A and Wnt4 ligands, which impair the function of 
pancreatic beta cells. Other ligands such as Wnt5A are 
reported to be low at the onset of type 2 diabetes mel-
litus (T2DM), but increase overtime and contribute to 
chronic low-grade inflammation [136]. Furthermore, the 
secretion of Wnt5A by macrophages also causes vascu-
lar endothelial dysfunction, which impairs angiogenesis 
[137]. DM further contributes to the downregulation of 
Wnt/β-catenin signaling by preventing the stabilization 
and nuclear translocation of β-catenin for the expres-
sion of genes (e.g. MYC, CCND1, and MMPs) that are 
required for the proliferation and remodeling stages of 
healing [1, 138]. High ROS levels in DM are suggested to 
also induce competitive binding of the limited β-catenin 
to other transcription factors, such as FOXO, instead of 
binding to TCF/LEF transcription factors, which alters 
the proliferation of pancreatic beta cells and insulin syn-
thesis [139]. A study in a diabetic wounded mouse model 
also indicated that CXXC-type zinc finger protein 5 
(CXXC5), a Wnt/β-catenin suppressor, is overexpressed 
in diabetic wounds, thereby downregulating Wnt/β-
catenin activation and preventing angiogenesis during 
wound repair. Treatment with the KY19334 small mol-
ecule inhibited CXXC5 binding to Dvl, leading to Wnt/β-
catenin activation and improved wound healing [140]. 
There is also increased levels of GSK-3β in DFUs, how-
ever, current molecules such as Thiazolidinediones that 
have inhibitory effects on GSK-3β are associated with a 
high risk of heart failure [141]. These studies indicate the 
need to identify improved therapies that will modulate 
chronic inflammation and activate Wnt/β-catenin signal-
ing to improve the healing of diabetic wounds.

Current treatments and future strategies targeting 
signaling pathways for healing of chronic wounds
Standard and emerging wound care therapies
Conventional wound care strategies involve debride-
ment, wound dressing, infection control, and pain man-
agement [142]. It was also recommended by the Wound 
Healing Foundation that wound care must be simpli-
fied for patients to do it themselves or easily assisted 
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by a family member [142]. The importance of wound 
debridement is to remove non-viable and dead tissue 
[142, 143]. Infection control is also critical to prevent 
occurrence of drug-resistant microbial biofilm by treat-
ment with topical antibiotics [2, 142]. Varying wound 
dressings which aim to manage wound moisture and 
pain have also been discussed. These include dressings 
that can deliver antimicrobial agents and debridement 
[142, 143]. The challenge of wound dressing is that it 
requires repeated application [142]. Other treatment 
options such as skin grafts and flaps are used for wound 
cover and blood supply. Negative pressure wound ther-
apy and hyperbaric oxygen therapy, which are used to 
remove wound exudate and improve the formation of 
granulation tissue, wound perfusion, and contraction 
have been applied for the treatment of chronic wounds, 
however, the treatment cost, particularly for hyper-
baric oxygen therapy is high [142, 143]. While standard 
wound care has shown to improve healing of chronic 
wounds, their effectiveness is moderate as they do not 
prevent the reoccurrence of chronic wounds. Other 
strategies such as treatment with growth factors and 
the use of ECM scaffolds have also been developed [1], 
but are moderately effective.

Emerging therapies such as stem cell therapy have 
entered early clinical trial stages. These include a phase I/
II clinical trial investigating the safety and efficacy of allo-
geneic mesenchymal stem cells (MSCs) for the treatment 
of chronic venous ulcers [144]. In this clinical trial, der-
mal mesenchymal cells that express the ATP binding cas-
sette subfamily B member 5 (ABCB5) were administered 
to patients with venous ulcers. There was a decrease in 
IL-1β-mediated inflammation, as well as a shift from 
M1 to M2 macrophages, and a reduction in wound size 
in the treatment group [144, 145]. MSCs can differenti-
ate into other cell types such as skeletal muscle, bone, 
and adipose tissue, but their benefit in cell therapy for 
wound healing is suggested to be attributed to their abil-
ity to produce biomolecules such as KGF, VEGF, and IGF 
that are involved in re-epithelialization and neovascu-
larization [146]. The current limitation of MSCs for cell 
therapy is overcoming the microenvironment in chronic 
wounds, which may require repeated cell therapy to 
overcome the hypoxic, high ROS and high inflammatory 
microenvironment that may affect their survival and pro-
liferation upon treatment. Another advancing therapeu-
tic strategy involves the use smart bandages. A preclinical 
study in a mouse model showed that using a wireless, 
closed-loop smart bandage with multimodal sensors 
stimulates the proliferation of monocyte/macrophage cell 
populations and improves healing of cutaneous wounds 
[147]. The main limitation of smart bandages is the high 
cost for large-scale production.

Targeting signaling pathways for treatment of chronic 
wounds
Current diabetic treatments include insulin injection and 
exercise for managing T1DM and T2DM respectively, 
however, the complication of non-healing wounds is still 
a matter to be addressed. Natural compounds such as the 
Chinese traditional herb Centella asiatica (C. asiatica) 
has been shown to promote fibroblast proliferation and 
ECM synthesis in wound healing. This extract of C. asi-
atica include triterpenoids, asiaticoside (AC) and made-
cassoside, which have been reported to promote collagen 
synthesis in human fibroblasts [148]. A study by Nie 
et  al. [148] prepared a gel compound using C. asiatica 
and NO for application on diabetic cutaneous ulcers in 
a mouse model, and showed improved wound healing by 
activating the Wnt/β-catenin signaling pathway, which 
increased the expression of Wnt1 and β-catenin. A phase 
3, randomized clinical study showed that asiaticoside 
extract (ON1O1) improved healing of DFUs by activating 
the switch from M1 to M2 macrophage phenotype [149].

Photobiomodulation therapy activates signaling pathways 
for wound healing
Photobiomodulation (PBM), previously known as low-
level light therapy (LLLT), which utilizes light devices 
such as lasers and light emitting diodes (LEDs), has been 
identified as a potential therapeutic modality for treat-
ing cutaneous wounds, alopecia, atopic dermatitis, and 
other inflammatory conditions [150–152]. This discov-
ery was made by Mester [150], who showed that laser 
treatment stimulates cellular proliferation as well as hair 
regeneration in a wound healing mouse model. The light 
from PBM devices interacts with photosensitive recep-
tors and chromophores in the mitochondria and human 
skin, thus inducing a photochemical action and activat-
ing cellular signals that lead to the transcription of target 
genes associated with wound healing [153]. Excitation 
of cytochrome C oxidase in the mitochondria modu-
lates the electron transport chain, which increases the 
production of adenosine triphosphate (ATP) and ROS, 
leading to downstream activation of signaling pathways 
[154]. Wavelengths ranging from 420 nm to 830 nm have 
been shown to modulate oxidative stress and acceler-
ate wound healing [155]. Furthermore, PBM has been 
shown to improve” wound” closure in an in  vitro dia-
betic wounded model [156]. PBM has also been shown 
to mediate macrophage polarization from M1 to the 
reparative M2 macrophage at the red and near infrared 
spectrum (660-1000 nm), and modulate the production 
of cytokines such as IL-6 and TNF-α [157, 158]. Another 
study showed, in injured skeletal muscle of Wistar rats, 
that PBM decreased the number of M1 macrophages 
 (CD68+) 2 days post-PBM at the wavelength of 660 nm, 
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and increased M2 macrophages  (CD163+ and  CD206+) 
7 days post-PBM at the wavelength of 780 nm [159]. PBM 
has also been shown to induce proliferation and migra-
tion of keratinocytes and fibroblasts in normal and dia-
betic cellular models [160, 161]. Few clinical studies have 
shown great promise in the effect of PBM in DFUs. For 
instance, a study by Mathur et al. [162] showed that the 
application of PBM in combination with standard DFU 
treatment reduced wound size after 2 weeks of treatment. 
Another study showed that PBM accelerated wound 
healing in DM patients with grade 3 burn ulcers 8 weeks 
after treatment [163]. Preclinical studies have shown that 
PBM therapy in combination with mesenchymal stem 
cell engraftment can accelerate wound healing in a dia-
betic murine model [164]. The mechanisms of action in 
PBM-induced wound healing include activation of signal-
ing pathways associated with wound healing such as the 
TGF-β, PI3K/AKT, MAPK, and the Wnt/β-catenin path-
ways, to mention a few [156, 160, 165, 166].

Some studies have shown that PBM activates the Wnt/
β-catenin signaling pathway in outer root sheath cells and 
in hair follicle stem cells. For instance, a study by Kim 
et al. [167] showed that PBM of human outer root sheath 
cells at the wavelengths of 660 nm and 830 nm increased 
their cell proliferation and migration. Furthermore, they 
showed that PBM activated both the Wnt/β-catenin and 
ERK/MAPK signaling pathways for proliferation and 
migration, which suggests that PBM can activate multi-
ple pathways at a single wavelength and dose. Another 
study by Jin et  al. [165] showed that PBM at the wave-
length of 635 nm activates a new hair cycle in hair follicle 
stem cells by upregulating β-catenin gene expression in 
β-catenin transgenic mice. Interestingly, another study 
showed in a mouse model that PBM at the wavelength 
of 535 nm and power density ranging from 0.1 W/cm2 
to 0.5 W/cm2 induced transcriptional activation of genes 
associated with Wnt/β-catenin, Notch, TGF-β, and the 
JAK/STAT signaling pathways [168]. These studies thus 
indicate that PBM can induce activation of multiple sign-
aling pathways in cutaneous tissue. It is unclear however, 
if PBM activates multiple signaling pathways simultane-
ously, or whether there is co-activation of these signaling 
pathways.

While this therapeutic approach has demonstrated 
positive preclinical findings, some variations in the 
experimental and clinical parameters have also been 
reported. These include variations in the wavelength, 
radiation exposure (fluence), and irradiance. Some stud-
ies have reported variations in the effect of PBM in cell 
proliferation and wound healing when using the same 
parameters as previous studies [152, 169]. Also, stud-
ies have indicated that tissues with high mitochondrial 
content (e.g. muscle, brain, and heart) require low light 

dosage compared to tissues with low mitochondria (e.g. 
skin, tendon, and cartilage), which require a higher light 
dosage [152, 153]. Furthermore, it is suggested that dif-
ferent fibroblast subtypes in the skin respond differently 
to PBM due to the heterogeneity of these cellular sub-
types [169].

Conclusion
The role of Wnt/β-catenin signaling in embryonic devel-
opment is well known. But its effect in disease progres-
sion is still under investigation. We have shown in this 
review the importance of this pathway in wound healing. 
Furthermore, we have highlighted the effects of its dys-
regulation in chronic wounds, including diabetic ulcers. 
Moreover, we also discussed its crosstalk with the TGF-β 
and Notch signaling pathways, which is critical for wound 
healing. We thus recommend that future therapies inves-
tigate strategies that induce the (re)activation of the Wnt/
β-catenin signaling pathway, especially for treatment of 
chronic ulcers that remain persistently in the inflamma-
tory phase of healing. PBM remains one of the promising 
non-invasive therapeutic strategies that has the potential 
to improve the healing of chronic wounds via activation 
of the Wnt/β-catenin signaling pathway, as well as other 
signaling pathways critical for wound healing. Moreo-
ver, PBM can activate skin stem cells, as well as epithelial 
cells to augment the healing of chronic wounds. Future 
studies will need to further investigate optimal param-
eters for the clinical application of PBM therapy in dif-
ferent chronic wounds, and to determine if PBM is most 
effective alone or in combination with standard or other 
emerging therapies.
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