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proliferator‑activated receptor γ agonists 
to induce Heme Oxygenase‑1: a promising 
approach for pulmonary inflammatory disorders
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Abstract 

The activation of peroxisome proliferator-activated receptor (PPAR)-γ has been extensively shown to attenuate 
inflammatory responses in conditions such as asthma, acute lung injury, and acute respiratory distress syndrome, 
as demonstrated in animal studies. However, the precise molecular mechanisms underlying these inhibitory effects 
remain largely unknown. The upregulation of heme oxygenase-1 (HO-1) has been shown to confer protective effects, 
including antioxidant, antiapoptotic, and immunomodulatory effects in vitro and in vivo. PPARγ is highly expressed 
not only in adipose tissues but also in various other tissues, including the pulmonary system. Thiazolidinediones 
(TZDs) are highly selective agonists for PPARγ and are used as antihyperglycemic medications. These observa‑
tions suggest that PPARγ agonists could modulate metabolism and inflammation. Several studies have indicated 
that PPARγ agonists may serve as potential therapeutic candidates in inflammation-related diseases by upregulating 
HO-1, which in turn modulates inflammatory responses. In the respiratory system, exposure to external insults triggers 
the expression of inflammatory molecules, such as cytokines, chemokines, adhesion molecules, matrix metallopro‑
teinases, and reactive oxygen species, leading to the development of pulmonary inflammatory diseases. Previous 
studies have demonstrated that the upregulation of HO-1 protects tissues and cells from external insults, indicating 
that the induction of HO-1 by PPARγ agonists could exert protective effects by inhibiting inflammatory signaling 
pathways and attenuating the development of pulmonary inflammatory diseases. However, the mechanisms underly‑
ing TZD-induced HO-1 expression are not well understood. This review aimed to elucidate the molecular mechanisms 
through which PPARγ agonists induce the expression of HO-1 and explore how they protect against inflammatory 
and oxidative responses.

Introduction
Chronic inflammation is at the core of airway and pulmo-
nary inflammatory diseases, including asthma, chronic 
obstructive pulmonary disease (COPD), acute lung 
injury, and acute respiratory distress syndrome (ARDS) 
[1]. Various proinflammatory mediators, such as ciga-
rette smoke extract (CSE), adenosine-5′-triphosphate 
(ATP), tumor necrosis factor-α (TNF-α), interleukin-1β 
(IL-1β), lipopolysaccharide (LPS), and lipoteichoic acid 
(LTA), play pivotal roles in initiating and sustaining 
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inflammation in the pulmonary system [2–10]. These 
inflammatory responses are primarily triggered in two 
key types of lung cells. Airway smooth muscle cells, 
which are typically involved in ventilation regulation, 
become responsive to various external substances and 
proinflammatory mediators under pathological condi-
tions such as asthma. Furthermore, alveolar epithelial 
type II cells, which are vital for gas exchange, are highly 
susceptible to oxidants. In response to exposure to pro-
inflammatory mediators and oxidative stress, these 
lung cells release a cascade of cytokines, chemokines, 
and inflammatory mediators, including IL-1β, TNF-α, 
cyclooxygenase-2 (COX-2), cytosolic phospholipase A2 
(cPLA2), and matrix metalloproteinase-9 (MMP-9) [11]. 
Previous studies have revealed the induction of proteins 
such as COX-2/prostaglandin E2 (PGE2) [2, 6, 12, 13], 
cPLA2 [8, 14, 15], MMP-9 [3, 16, 17], intercellular adhe-
sion molecule-1 (ICAM-1) [7, 18, 19], and vascular cell 
adhesion molecule-1 (VCAM-1) [5, 19–21] and reactive 
oxygen species (ROS) [7, 21, 22] in response to various 
stimuli and pathogens associated with pulmonary inflam-
mation (Fig.  1). The induction of these factors is likely 
mediated by NADPH oxidase (NOX)/ROS, intracellular 
signaling pathways, and transcription factors, illustrating 
the complex interplay between ROS and the expression 
of inflammatory proteins induced by proinflammatory 
mediators (Fig.  1). Consequently, understanding these 
mechanisms is crucial for developing therapeutic strat-
egies for pulmonary inflammatory diseases. Oxidative 

stress plays a pivotal role in pulmonary inflammation. 
Early interventions targeting oxidative stress could delay 
the onset and progression of inflammation. Despite 
extensive research, an effective therapeutic strategy to 
prevent pulmonary inflammation progression remains 
elusive. Therefore, the development of antioxidative and 
anti-inflammatory drugs has emerged as a promising 
avenue to inhibit the pathological progression of these 
diseases.

Peroxisome proliferator-activated receptor (PPAR) 
agonists, which are widely used in clinical settings, exert 
multiple effects, including anti-inflammatory and anti-
oxidative effects, on various tissues and organs. PPARγ 
is abundantly expressed in human adipose tissue, and its 
expression levels are comparatively lower in bone mar-
row, skeletal muscle, liver, heart, and stromal cells [23, 
24]. PPARγ plays a crucial role in glucose metabolism, 
adipocyte differentiation, and the inflammatory response 
and is important in various physiological processes. Its 
therapeutic applications extend to the treatment of con-
ditions such as diabetes, fatty liver disease, cardiovascular 
disease, and neuroinflammation [25–30]. PPAR agonists, 
while exhibiting increased therapeutic efficacy and 
improved glycemic control, are part of a complex clinical 
landscape due to a spectrum of associated adverse reac-
tions. Notably, these adverse events include an increased 
risk of cardiovascular events, including congestive heart 
failure, cardiovascular death, and myocardial infarction 
[31–33]. Additionally, users may face increased risk of 

Fig. 1  Pathways in pulmonary inflammation and potential therapeutic interventions. During pulmonary inflammation, proinflammatory 
factors like CSE, ATP, peptides (e.g., bradykinin, BK and endothelin-1, ET-1), cytokines (TNF-α and IL-1β), and endotoxins (e.g., LTA and LPS) 
increase. These factors induce inflammatory mediators (e.g., MMPs, adhesion molecules, COX-2, or cPLA2) through various signaling molecules, 
including mitochondrial or NOX-derived ROS generation, MAPKs activation, transactivation of growth factor receptors, and transcription factors 
in pulmonary resident cells (alveolar epithelial cells and tracheal smooth muscle cells). These changes lead to pathological alterations in these 
cells. Furthermore, potential therapeutic drugs such as PPAR agonists might protect against pulmonary inflammation by inducing antioxidant 
proteins like HO-1. It is hypothesized that these drugs induce HO-1 expression through ROS-dependent signals, directly preventing lung injury 
and inflammation
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fractures, bladder cancer, and macular edema and weight 
gain [31–33]. It is imperative to approach the clinical use 
of PPAR agonists with a nuanced understanding of the 
potential hepatotoxicity associated with their use [31–
33]. This consideration of therapeutic benefits and asso-
ciated risks underscores the importance of careful patient 
selection and monitoring when using PPAR agonists in 
various medical contexts. By leveraging these pleiotropic 
effects, the use of PPAR agonists is a potential strategy 
for managing pulmonary inflammatory diseases (Fig. 1). 
Further research and clinical exploration in this direction 
may lead to innovative treatments for these challenging 
conditions.

The anti‑inflammatory and antioxidative effects 
of PPAR agonists in diverse inflammatory disorders
Recently, research has identified three distinct PPAR iso-
forms (PPARα, PPARβ, and PPARγ), which are encoded 
by unique genes. Notably, two PPARγ isoforms are gen-
erated through alternative splicing of exons A1, A2, and 
B1, giving rise to γ1, γ2, and γ3 variants, respectively 
[34]. These PPARs are widely expressed in various animal 
and human tissues. In adult rodents, PPARα is promi-
nently found in tissues with high peroxisome-dependent 
activities or rapid fatty acid catabolism, such as hepato-
cytes, cardiomyocytes, proximal tubules of the kidney 
cortex, the intestinal mucosa, and brown adipose tis-
sue [35, 36]. In humans, PPARα is notably expressed in 
skeletal muscle, heart, liver, kidney, intestine, and pan-
creas. Additionally, it is present, albeit at lower levels, 
in adipose tissue, lung, and placenta [23]. PPARα’s pri-
mary functions include the regulation of fatty acid oxi-
dation and lipoprotein metabolism and involvement in 
anti-inflammatory/antioxidant pathways. PPARβ, on the 
other hand, is ubiquitously expressed in most rodent tis-
sues and in higher quantities than PPARα and PPARγ 
[37]. This widespread presence extends to human tis-
sues, making PPARβ a key player in fatty acid metabolism 
regulation and the suppression of macrophage-mediated 
inflammation. PPARγ, which is prominently expressed in 
adipose tissue and moderately in the large intestine and 
select immune system components such as the spleen 
in rodents, is abundantly found in human adipose tis-
sue. However, in humans, it is expressed at lower levels 
in bone marrow, skeletal muscle, liver, heart, and stro-
mal cells [23, 24]. PPARγ plays a pivotal role in glucose 
metabolism, adipocyte differentiation, and inflammatory 
responses.

Natural ligands of PPARs include fatty acids and eicosa-
noids. Leukotriene B4 activates PPARα, while prostaglan-
din J2 (PGJ2) serves as a ligand for PPARγ. Additionally, 
synthetic ligands such as antidiabetic glitazones and 
hypolipidemic fibrates activate PPARγ and PPARα, 

respectively. Research has shown that PPARα regu-
lates the oxidation of fatty acids in the liver by control-
ling genes containing peroxisome proliferator response 
elements (PPREs) in their promoter regions [38]. Mice 
lacking PPARα show prolonged responses to inflamma-
tory mediators. Furthermore, PPAR agonists inhibit the 
activation of genes associated with the inflammatory 
response, such as IL-2, IL-6, IL-8, TNF-α, and metallo-
proteases, by modulating signaling pathways involving 
nuclear factor κ-light-chain-enhancer of activated B cells 
(NF-κB), activator protein 1 (AP-1), and signal transducer 
and activator of transcription proteins (STATs) [39]. The 
activation of PPARγ also mediates adipogenesis; studies 
have demonstrated that synthetic PPARγ ligands such as 
rosiglitazone [40] and natural ligands such as 15d-PGJ2 
[41] reduce serum levels and transcription of TNF-α.

In summary, PPARs play multiple roles in the 
β-oxidation of fatty acids and the metabolism of arachi-
donic acid metabolites. Beyond these functions, they 
exhibit significant anti-inflammatory potential. These 
findings strongly suggest that PPARs are key regulators 
that control inflammation, paving the way for potential 
therapeutic interventions in inflammatory diseases.

Elucidating the mechanisms by which PPARγ 
agonists induce heme oxygenase‑1 (HO‑1) 
expression
PPARs hold significant promise as therapeutic agents 
for treating lung inflammation [42, 43]. In particular, 
PPARγ ligands can inhibit the release of proinflammatory 
cytokines from airway epithelial cells and reduce airway 
hyperresponsiveness in murine models of asthma [44]. 
A noteworthy example is rosiglitazone, a PPARγ agonist 
that is known not only for its role in maintaining glucose 
and lipid homeostasis but also for its capacity to attenu-
ate airway inflammation through the upregulation of 
HO-1 [45]. HO-1, which is a direct transcriptional target 
of PPARγ, exhibits potent anti-inflammatory, antioxidant, 
and apoptosis-regulating properties [46, 47]. Further-
more, the upregulation of HO-1 by PPARγ agonists has 
been linked to the inhibition of pulmonary cell prolifera-
tion and remodeling [48]. However, the precise mecha-
nisms governing rosiglitazone-induced PPARγ/HO-1 
expression in human pulmonary alveolar epithelial cells 
(HPAEpiCs) remain unclear. In the following sections, we 
will delve into the molecular mechanisms through which 
PPARγ agonists induce HO-1 expression. We will exam-
ine the activation of various signaling components and 
transcription factors that contribute to this regulatory 
process. This understanding will not only shed light on 
the potential therapeutic applications of PPARγ agonists 
in managing pulmonary inflammation but also unveil 
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the underlying molecular mechanisms that govern these 
therapeutic effects.

NOX and HO‑1 expression
ROS are pivotal messengers during normal physiological 
functions, and their effects oscillate between beneficial 
and inflammatory, depending on their concentrations 
[49]. HO-1, which is a sentinel enzyme, is activated in 
response to intracellular oxidative stress or disruptions 
in intracellular reduction–oxidation (redox) equilibrium, 
serving as a protector against inflammatory responses 
[50]. Notably, activated NOX is a prominent source of 
ROS, which act as secondary messengers that induce the 
expression of HO-1, a potent defense mechanism against 
inflammation [51–53]. Many stimuli can induce NOX/
ROS-dependent HO-1 expression, underscoring the 
complexity of this regulatory pathway [54, 55]. Intrigu-
ingly, PPAR agonists activate protein kinases through 
ROS-dependent pathways, thereby regulating a multitude 
of genes, including HO-1 [56, 57]. Furthermore, endog-
enous PPARγ ligands such as 15d-PGJ2 have been shown 
to induce ROS generation, stimulating the expression of 
HO-1 via the nuclear factor E2-related factor 2 (Nrf2) 
pathway [58]. PPARγ ligands, with their multifaceted 
effects, have been shown to inhibit airway inflammation 
and hyperresponsiveness through PPARγ-independent 
mechanisms in mouse models challenged with allergens 
[59]. The NOX/ROS system, which is a complex web of 
signaling components, induces HO-1 expression through 
a choreographed activation process. In response to stim-
ulation, cytosolic regulatory subunits such as p40phox, 
p47phox, p67phox, Ras-related C3 botulinum toxin sub-
strate (Rac)1, and Rac2 translocate to the membrane. 
There, they assemble with membrane-bound compo-
nents, including gp91phox/p22phox, leading to the genera-
tion of ROS (O2

•−/H2O2) [60]. Specifically, NOX2, which 
is a prominent NOX enzyme in pulmonary alveolar epi-
thelial cells, recruits p22phox and p47phox, thereby pro-
ducing O2

•− [60]. Phosphorylation of p47phox is a pivotal 
event that is essential for NOX activation and ROS gen-
eration [61]. In our studies of HPAEpiCs, we discovered 
a significant connection. Rosiglitazone, which is a PPARγ 
agonist, upregulates HO-1 through NOX-dependent 
ROS generation [62]. This relationship was underscored 
by the attenuation of rosiglitazone-induced HO-1 expres-
sion when p47phox or NOX was inhibited, as well as in the 
presence of ROS scavengers. Moreover, NOX inhibitors 
exerted their effects by preventing p47phox phosphoryla-
tion or membrane translocation, effectively inhibiting 
NOX activation and ROS generation [63]. These findings 
emphasize the vital role of NOX/ROS signaling in the 
responses induced by rosiglitazone, further illuminating 
the underlying mechanisms by which PPARγ agonists 

protect against pulmonary inflammation. However, the 
precise mechanisms by which rosiglitazone triggers the 
phosphorylation of p47phox and the recruitment of NOX 
subunits to the plasma membrane, ultimately leading to 
ROS generation, remain unknown. Further investigations 
will unveil critical insights, paving the way for a deeper 
understanding of these complex molecular interactions.

Protein tyrosine kinases and HO‑1 expression
Protein tyrosine kinases are pivotal players in intracel-
lular signaling and are categorized as receptor tyrosine 
kinases (e.g., EGFR and PDGFR) and nonreceptor tyros-
ine kinases (e.g., c-Src and Pyk2). These kinases modulate 
diverse cellular functions. Notably, NOX/ROS produc-
tion activates downstream components such as c-Src 
and Pyk2, influencing cellular activities [64, 65]. Specifi-
cally, c-Src acts as an upstream regulator, phosphoryl-
ating Pyk2, which is stimulated by thiazolidinediones 
(TZDs) and regulated by ROS. This phosphorylation 
event triggers HO-1 expression, protecting various cell 
types from oxidative damage [65–69]. Our investiga-
tions of HPAEpiCs showed that rosiglitazone-induced 
HO-1 expression involved the phosphorylation of c-Src 
and Pyk2. The nonreceptor tyrosine kinases c-Src, 
and Pyk2 are pivotal players in the protective effects of 
rosiglitazone against pulmonary inflammation [70]. ROS-
dependent phosphorylation of c-Src and Pyk2 is critical 
for HO-1 induction by rosiglitazone, offering a promising 
avenue for therapeutic interventions against pulmonary 
inflammation. Notably, c-Src and Pyk2 are distinct from 
receptor tyrosine kinases such as EGFR and PDGFR. 
Hyperoxia-induced phosphorylation of EGFR has been 
shown to induce HO-1 expression in pulmonary epithe-
lial cells [71]. This intriguing interplay between PPARγ 
agonists and receptor tyrosine kinases such as EGFR and 
PDGFR presents a compelling area for future explora-
tion. Understanding whether rosiglitazone stimulates the 
phosphorylation of EGFR or PDGFR, thereby triggering 
HO-1 expression in pulmonary resident cells, holds the 
key to unraveling another layer of the complex molecular 
landscape underpinning the protective effects of PPARγ 
agonists against pulmonary inflammation. In essence, the 
interplay between nonreceptor tyrosine kinases, receptor 
tyrosine kinases, and PPARγ agonists in the regulation of 
HO-1 expression opens up exciting avenues for further 
research. These findings not only deepen our understand-
ing of the molecular mechanisms but also offer potential 
targets for therapeutic strategies to mitigate pulmonary 
inflammation.

Protein kinase Cs (PKCs) and HO‑1 expression
The PKC family is a diverse group of at least eleven iso-
forms that are categorized into three groups and are 
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finely tuned to cellular signals for precise regulation [72]. 
Notably, classical PKCs such as PKCα, β/δ, and γ are 
activated by diacylglycerol (DAG) in a calcium-depend-
ent manner, serving as pivotal players in various patho-
physiological responses in different cellular contexts [73]. 
These serine- and threonine-specific protein kinases are 
fundamental to multiple physiological processes and 
gene expression in various cellular contexts [74]. Their 
activation results in the phosphorylation of specific tar-
get proteins, which is involved in various pathological 
conditions, including pulmonary inflammatory diseases 
[75]. Furthermore, PKC isoforms modulate both pro- and 
anti-inflammatory systems, underscoring their vital roles 
in cellular functions and gene regulation [76]. Numerous 
studies have demonstrated the regulatory role of PKCs, 
especially PKCα, in orchestrating the expression of HO-1 
in response to diverse stimuli in many cell types [77, 78]. 
Specifically, PKCα actively participates in immune sign-
aling pathways, influencing the expression of inflamma-
tory genes [79, 80]. By enhancing the phosphorylation of 
several protein kinases, PKCα facilitates the expression 
of specific proteins, which has been extensively observed 
in various tissues and cells [79]. Furthermore, the PKCα/
Erk1/2 pathway has been identified as a key regulator of 
HO-1 expression induced by compounds such as cur-
cumin [81]. Our research substantiates these findings. 
Using small interfering RNA (siRNA) to silence PKCα 
significantly decreases rosiglitazone-induced HO-1 
expression in HPAEpiCs through PKCα phosphorylation 
[70]. Moreover, PKCα plays a crucial role in the Nrf2/
HO-1 pathway by protecting against oxidative stress 
[82]. Collectively, our results underscore the pivotal role 
of phosphorylated PKCs, particularly PKCα, in medi-
ating rosiglitazone-induced HO-1 expression, offering 
promising avenues for therapeutic interventions against 
pulmonary inflammatory diseases. However, unraveling 
the effects of other PKC isoforms on HO-1 expression 
induced by TZDs is a critical area that requires further 
investigation.

AMPKα and HO‑1 expression
5′-Adenosine monophosphate-activated protein kinase α 
(AMPKα) is a crucial cellular sensor that is activated in 
response to reduced ATP levels and plays a pivotal role 
in cellular homeostasis. This enzyme not only enhances 
cyclic adenosine monophosphate (cAMP) production, 
protecting endothelial cells against proliferation and 
angiogenesis [83], but also orchestrates a myriad of cel-
lular processes through the phosphorylation of target 
proteins and the regulation of gene expression. Notably, 
AMPKα is a potent inducer of Nrf2/HO-1 gene expres-
sion, effectively inhibiting inflammatory responses in 
animal models [84]. The multifaceted role of AMPKα in 

immune regulation is underscored by its ability to induce 
the production of IL-10, negatively regulate IκBα degra-
dation, inhibit glycogen synthase kinase (GSK) 3β, and 
activate Akt and cAMP response element-binding pro-
tein (CREB). These actions culminate in the promotion of 
an anti-inflammatory phenotype, indicating that AMPKα 
is a key player in immune modulation [85]. Moreover, 
AMPKα’s influence extends to airway inflammation, 
where it uses multiple pathways to suppress the release of 
proinflammatory cytokines and inhibit the NF-κB path-
way, thereby mitigating pulmonary inflammation and 
emphysema in lung disease models [86, 87]. The protec-
tive and anti-inflammatory effects of AMPKα are often 
mediated by the induction of HO-1 expression in lung 
epithelial cells, which serves as a linchpin in the cellular 
defense against inflammatory insult [88, 89]. In the spe-
cific context of our study, we discovered that rosiglita-
zone activated AMPKα, leading to the induction of HO-1 
expression and subsequent anti-inflammatory effects on 
HPAEpiCs [70]. This finding highlights the pivotal role 
of AMPKα phosphorylation in mediating the protective 
effects of rosiglitazone against pulmonary inflamma-
tory diseases. Furthermore, the intriguing prospect that 
AMPKα influences downstream components, particu-
larly mitogen-activated protein kinases (MAPKs), in the 
context of HO-1 expression opens a promising avenue 
for future research. Understanding the interplay between 
AMPKα and MAPKs could lead to the discovery of novel 
therapeutic strategies, potentially revolutionizing our 
approach to combating pulmonary inflammatory disor-
ders [90, 91]. This network of signaling pathways presents 
an exciting frontier for exploration, promising not only 
deeper insights into cellular responses but also innova-
tive therapeutic interventions for inflammatory diseases.

MAPKs and HO‑1 expression
MAPKs form a pivotal signaling network that regulates 
many cellular functions, including proliferation, apopto-
sis, motility, differentiation, immunity, and responses to 
oxidative stress. MAPKs include three distinct groups in 
mammalian cells: extracellular signal-regulated protein 
kinases (ERKs: ERK1/2), c-Jun NH2-terminal kinases 
(JNKs: JNK1, JNK2, and JNK3), and p38 MAP kinases 
(p38α, p38β, p38γ, and p38δ). In the context of HO-1 
regulation, MAPK pathways are conduits through which 
various stimuli induce HO-1 expression via downstream 
protein kinases and transcription factors [92–95]. Inter-
estingly, HO-1 induction is linked to the activation of 
MAPKs mediated by protein phosphorylation and redox 
reactions. Sodium arsenite triggers HO-1 expression by 
activating JNK1/2 in rat hepatocytes, while in chicken 
hepatoma cells, arsenite uses both the ERK1/2 and p38 
MAPK pathways to induce HO-1 expression [96, 97]. 
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The ischemia–reperfusion lung model implicates JNK1/2 
and p38 MAPK in HO-1 expression [98], and in vari-
ous cell types, p38 MAPK activation upregulates HO-1, 
as observed in porcine renal epithelial cells and human 
hepatoma cells stimulated by curcumin [93, 99]. Further-
more, 15d-PGJ2, which is an endogenous PPARγ ago-
nist, induces HO-1 expression through p38 MAPKα in 
rat vascular smooth muscle cells [100]. Consistent with 
these findings, our research uncovered the involvement 
of p38 MAPKα phosphorylation in rosiglitazone-induced 
HO-1 expression in HPAEpiCs [70]. These observations 
underscore the significant role of MAPKs, including p38 
MAPKα, in TZD-induced HO-1 expression. However, 
the distinct roles of ERK1/2 and JNK1/2 in rosiglitazone-
induced HO-1 expression in HPAEpiCs need further 
exploration. This interplay between different MAPK 
pathways and HO-1 induction is critical for future inves-
tigations, offering potential insights into cell-specific 
responses and paving the way for novel therapeutic inter-
ventions in inflammatory diseases.

Phosphoinositide 3‑kinase/Akt (PI3K/Akt) and HO‑1 
expression
The PI3K/Akt pathway, which is a pivotal antiapop-
totic survival pathway, is regulated by various receptor-
dependent mechanisms that are activated by growth 
factors and cytokines [101]. Notably, in models featuring 
PI3K genetic deficiency, this kinase has been implicated 
in the regulation of inflammatory reactions, emphasiz-
ing its importance in cellular responses [102]. A grow-
ing body of evidence underscores the multifaceted role 
of PI3K/Akt in HO-1 regulation. Activation of PI3K/
Akt not only upregulates HO-1 gene expression but also 
connects the protective effects of this signaling cascade 
to the beneficial effects of HO-1 [103]. Immune cells 
exhibit upregulated HO-1 gene expression mediated 
by PI3K/Akt activation in response to diverse stimuli 
[103–105]. Intriguingly, HO-1 induction has been linked 
to the activation of PI3K/Akt through a mitochon-
drial redox-dependent pathway in vascular endothelial 
cells, highlighting the nuanced regulatory mechanisms 
involved in HO-1 expression [106]. Furthermore, NOX/
ROS-dependent HO-1 expression has been shown to be 
mediated by PI3K/Akt activation, resulting in protec-
tion against oxidative stresses [107, 108]. Activated Akt, 
in turn, triggers the expression of Nrf2 and subsequently 
HO-1, increasing cellular defense mechanisms and pro-
moting cell survival in response to stresses [107, 108]. 
Consistent with these findings, our research showed the 
critical role of Akt phosphorylation induced by rosiglita-
zone in facilitating HO-1 expression, and this effect was 
significantly attenuated by LY294002 treatment or trans-
fection with Akt siRNA in HPAEpiCs [62]. This discovery 

underscores the pivotal role of PI3K/Akt in TZD-induced 
HO-1 expression in many cell types. However, the regula-
tory mechanisms of PI3K/Akt-mediated HO-1 induction 
in response to PPARγ agonists remain unclear. Delving 
deeper into these mechanisms will not only enhance our 
understanding of the complexities of cellular signaling 
pathways but may also lead to novel therapeutic strate-
gies to protect against inflammatory diseases.

Janus kinase (JAK)/signal transducer and activator 
of transcription 3 (STAT3) and HO‑1 expression
The intricacies of the JAK/STAT3 signaling cascade, 
which links HO-1 gene expression to cytokines and 
oxidative stress, remain unclear. However, the involve-
ment of STAT3 activation in this regulatory pathway has 
been suggested based on existing evidence [109]. The 
JAK/STAT signaling pathway plays a pivotal role in the 
immune system, serving as a major mediator of cytokine-
activated pathways. In endothelial cells, STAT3 has been 
shown to mediate HO-1-dependent protection against 
hyperoxic lung injury, underscoring its importance in 
cellular defense mechanisms [110]. Functional STAT3 
elements have been identified in the promoter regions of 
both rat [111] and human [112] HO-1 genes, indicating 
a direct regulatory role of STAT3 in HO-1 expression. In 
rat hepatocytes, IL-6-induced HO-1 gene expression has 
been shown to be mediated by the JAK/STAT3 pathway, 
highlighting the interplay between this signaling cascade 
and HO-1 induction [111]. Notably, the specific interac-
tions between JAK/STAT signaling and HO-1 expression 
in HPAEpiCs remain unexplored, representing a signifi-
cant gap in our understanding. Therefore, the potential 
regulatory role of JAK/STAT in HO-1 gene expression 
induced by PPARγ agonists, particularly in pulmonary 
resident cells such as HPAEpiCs, holds substantial prom-
ise for further investigation. Exploring this aspect will not 
only broaden our understanding of the molecular mecha-
nisms of HO-1 regulation but also open avenues for tar-
geted therapeutic interventions against inflammatory 
diseases.

Transcriptional regulation of HO‑1 gene expression: key 
transcription factors and their functions
Understanding the machinery of HO-1 expression is cru-
cial for targeted anti-inflammatory treatments. HO-1, 
which is a versatile enzyme, is triggered by various stim-
uli, such as oxidative stress, cytokines, bacterial com-
pounds, and growth factors. Its expression is primarily 
governed at the transcriptional level, and multiple cis-
acting regulatory elements within the HO-1 promoter 
control its basal and inducible expression in different 
species [104, 113, 114]. Within the promoter regions 
of HO-1, two upstream enhancer regions, namely, E1 
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and E2, play pivotal roles in redox-dependent induction 
[113]. These enhancer regions house several antioxidant 
response elements (AREs) [115], which are also found in 
other stress-inducible antioxidant and phase 2 detoxify-
ing gene promoters [116, 117]. Notably, a GT-microsat-
ellite polymorphism in the proximal human HO-1 gene 
promoter distinguishes it from its rodent counterpart. 
This polymorphism, which is characterized by vary-
ing numbers of GT repeats, significantly impacts HO-1 
inducibility; fewer GT repeats correlate with increased 
HO-1 expression in response to stressors. Individuals 
harboring this allele are protected against cardiovascu-
lar disorders [118, 119]. In this comprehensive review, 
we focus on the pivotal roles of major transcription fac-
tors such as Nrf2, silent information regulator type-1 
(SIRT1)/peroxisome proliferator-activated receptor 
gamma coactivator 1-α (PGC1α), PPARγ, Sp1, and AP-1 
in the regulation of HO-1 gene expression, specifically in 
response to PPARγ agonists. Delving into these regula-
tory pathways will not only enhance our understanding 
of HO-1 modulation but also pave the way for refining 
anti-inflammatory therapeutic strategies.

Decoding HO‑1 expression: unraveling coordinated 
activation via the Nrf2 signaling pathway
The regulation of HO-1, a critical player in oxidative 
stress management, is governed by a complex network 
involving multiple factors and pathways. At the heart of 
this system is Nrf2, which is essential for the transcrip-
tional regulation of the hmox1 gene that encodes HO-1 
[50, 51]. Normally, Nrf2 is restrained in the cytoplasm by 
its interaction with Kelch-like ECH-associated protein 
(Keap1). However, when cells encounter oxidative stress, 
marked by an increase in ROS, this interaction is dis-
rupted [51]. As a result, Nrf2 is released and accumulates 
in the nucleus, where it forms dimers with small Maf pro-
teins and binds to AREs in the promoters of genes like 
hmox1, driving the transcription of genes involved in 
antioxidant defense [120–122]. This response to oxida-
tive stress serves to bolster the cell’s antioxidant capac-
ity, with HO-1 being a key component. Alongside Nrf2, 
the heme-binding protein BTB and CNC homologue 1 
(Bach1), which negatively regulates hmox1 transcrip-
tion, is also involved [123]. Bach1 competes with Nrf2 
for binding sites on DNA. Interestingly, heme influences 
this interaction; it not only promotes the release of Nrf2 
from Keap1 but also aids in the export of Bach1 from the 
nucleus, thereby facilitating Nrf2’s activity [124].

The role of the PPARγ pathway in regulating HO-1 is 
another crucial aspect. PPARγ agonists, such as rosigli-
tazone, have been shown to upregulate HO-1 expres-
sion. This not only aids in maintaining redox balance 
but also exhibits anti-inflammatory effects, suggesting a 

therapeutic potential in conditions characterized by oxi-
dative stress. Our research has highlighted that rosiglita-
zone can induce HO-1 expression in HPAEpiCs through 
mechanisms that are both dependent on and independ-
ent of PPARγ. This includes the activation of PPARγ lead-
ing to increased HO-1 expression, which in turn helps 
reduce inflammation and tissue remodeling in the air-
ways [45]. Interestingly, this process seems to be unaf-
fected by factors such as NOX/ROS, c-Src/Pyk2, Akt, 
and even Nrf2 itself [70]. Further, we found that rosiglita-
zone’s stimulation of HO-1 expression involves the acti-
vation of Nrf2 via a pathway that does not rely on PPARγ. 
This was evident from the increased binding of Nrf2 to 
the ARE in the HO-1 promoter, a process that was sen-
sitive to Nrf2 siRNA and pharmacological inhibitors 
but not to PPARγ antagonists. Additionally, a decrease 
in Keap1 levels corresponded with an increase in HO-1 
protein in HPAEpiCs, highlighting the significant role of 
Nrf2 in mediating the response to rosiglitazone.

This intricate interplay between various factors empha-
sizes the delicate balance between prooxidant forces 
and antioxidant defenses in the cell. The upregulation of 
HO-1 is a key protective mechanism against oxidative 
stress, but the effectiveness of this response is dependent 
on the specific conditions of stress, including its inten-
sity and duration. This underscores the need for further 
research to explore the dual PPARγ-dependent and inde-
pendent mechanisms involved in rosiglitazone-induced 
HO-1 expression and to understand their wider implica-
tions in the management of oxidative stress.

Regulation of HO‑1 expression by SIRT1/PGC1α
SIRT1, which is a member of the NAD-dependent 
deacetylases known as sirtuins, plays a pivotal role in 
anti-inflammatory responses by suppressing the pro-
duction of various proinflammatory cytokines [125, 
126]. Recent research highlights the protective effects 
of SIRT1-mediated HO-1 induction, which not only 
suppresses inflammatory responses but also acti-
vates antiapoptotic pathways [127]. The activation of 
SIRT1, which is often facilitated by compounds such 
as resveratrol, effectively inhibits bronchial inflam-
mation induced by cigarette smoke in the lungs [128, 
129]. Additionally, SIRT1 prevents multiple inflamma-
tory responses by enhancing PGC1α activation and 
downregulating NF-κB [130]. Overexpression of SIRT1 
reduces the acetylation levels of PGC1α, thereby pro-
tecting against neuroinflammation [131]. Nuclear 
receptors interact with coactivators such as PGC1α and 
corepressors such as NCoR. PGC1α overexpression has 
been shown to protect endothelial cells against oxida-
tive stress [132]. In contrast, NCoR not only prevents 
inflammatory target gene expression in the absence of 
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stimuli but is also essential for PPAR ligand-dependent 
transcription [133]. SIRT1’s interaction with NCoR 
could negatively regulate PPARγ when PGC1α levels 
are low [134]. Our observations align with these find-
ings. Rosiglitazone induces the phosphorylation of 
SIRT1 specifically in the cytosol, facilitating the deacet-
ylation of Ac-PGC1α. This process promotes the trans-
location of PGC1α from the cytosol to the nucleus, 
where it interacts with PPARγ [70]. Furthermore, there 
is a reduction in NCoR levels in the nucleus, enhanc-
ing the phosphorylation of PPARγ. This interplay 
between the transcriptional corepressor NCoR and 
the coactivator PGC1α underscores their involvement 
in rosiglitazone-induced HO-1 expression through a 
PPARγ-dependent pathway in HPAEpiCs [70].

Regulation of HO‑1 expression by PPARγ: insights 
and mechanisms
PPARγ belongs to the nuclear hormone receptor family 
and functions as a transcriptional activator, relying on 
ligand binding to activate its domain. All PPAR mem-
bers share similar structural domains: a ligand-depend-
ent activation domain, a DNA-binding domain, and an 
amino-terminal region enabling ligand-independent 
activation [34]. PPAR-mediated transactivation occurs 
when PPAR and 9-cis retinoic acid receptor (RXR) bind 
to PPAR-response elements (PPREs) in response to 
ligand activation. Ligand binding induces conforma-
tional changes, facilitating coactivator recruitment and 
releasing corepressors such as NCoR. Ligand binding 
or other activation processes, including phosphoryla-
tion, induce conformational shifts in PPAR, particularly 
in the ligand-binding domain (LBD) and the C-termi-
nal helix activation function-2 (AF-2). This alteration 
generates new protein–protein interaction surfaces, 
allowing the recruitment of specific coactivators such 
as steroid receptor coactivator 1 (SRC-1), CREB-bind-
ing protein (CBP)/p300, and PGC-1. Subsequently, 
the regulatory effects of this complex are transduced 
to the basal transcriptional machinery [34]. Phospho-
rylation at the Ser112 residue of PPARγ has been shown 
to influence its binding affinity with PPARγ ligands 
and its interactions with coactivators and posttransla-
tional events [135, 136]. Notably, rosiglitazone protects 
against acute lung injury and inflammation through 
HO-1 expression [137, 138]. Consistent with these find-
ings, our study reveals that rosiglitazone-induced HO-1 
expression occurs through a PPARγ-dependent mech-
anism in HPAEpiCs [62]. However, the interactions 
among various nuclear components that initiate HO-1 
gene expression are highly complex and require further 
clarification.

Regulation of HO‑1 expression by the transcription factor Sp1
Sp1, which is a versatile transcription factor, responds 
to many signals, including oxidative stress [139, 140]. 
This factor affects vital physiological processes, control-
ling cell cycle dynamics, growth modulation, hormonal 
responses, apoptosis, and angiogenesis [141]. Beyond 
self-regulation, Sp1 governs genes that are essential for 
cellular homeostasis, forging direct connections with 
critical elements such as TATA-binding protein-associ-
ated factors [142], cAMP response domains [143], NF-κB 
[144], and vascular endothelial growth factor receptor-2 
[145]. This regulatory role is modulated by dynamic 
modifications, such as phosphorylation, acetylation, and 
methylation, which fine-tune Sp1 protein levels, transac-
tivation potential, and DNA binding affinity [139, 146]. In 
the context of PPARγ agonist-induced responses, Sp1 is 
a linchpin, orchestrating the complex events that culmi-
nate in HO-1 induction in pulmonary resident cells. The 
involvement of Sp1 indicates a sophisticated regulatory 
network in which Sp1 acts as a pivotal mediator, coordi-
nating PPARγ signaling. Unraveling Sp1’s role in this con-
text would not only shed light on fundamental molecular 
mechanisms but also holds promise for the development 
of therapeutic strategies for treating diverse pulmonary 
disorders.

The involvement of AP‑1 in HO‑1 expression
The AP-1 transcription factor complex, which is com-
posed of members of the Jun (c-Jun, JunB, JunD), Fos 
(c-Fos, FosB, Fra1, Fra2), and activating TF (ATF) fami-
lies, has emerged as a central player in cellular signaling, 
orchestrating various responses to oxidative and inflam-
matory stimuli [147, 148]. Activation of AP-1, which is 
induced by prooxidant and proinflammatory triggers, 
influences cellular outcomes. Notably, AP-1’s involve-
ment in the induction of the mouse HO-1 gene under-
scores its role in stress-responsive gene expression, 
indicating its importance in cellular stress adaptation 
[113, 149]. This process involves cooperative interactions 
between AP-1 and other essential transcription factors, 
such as USF2 and Sp1, which are bound to the regulatory 
regions of the HO-1 promoter [150, 151]. This interplay 
emphasizes the multifaceted nature of inducer-depend-
ent HO-1 expression. In the context of pulmonary biol-
ogy, where oxidative stress and inflammation converge, 
deciphering the nuanced connections between AP-1 
and PPARγ agonists is of paramount importance. These 
interactions, which affect HO-1 regulation, offer promis-
ing avenues for novel therapeutic interventions. Explor-
ing the intricacies of AP-1-mediated HO-1 expression 
would not only advance our understanding of cellular 
stress responses but also identify potential strategies for 
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mitigating oxidative stress-related disorders within the 
pulmonary milieu.

The positive impact of PPARγ agonists 
on inflammatory lung disorders
In the past decade, evidence has emerged regarding 
the potential advantages of PPARγ agonists in treating 
various pulmonary inflammatory diseases. A cohort 
study conducted by Rinne et  al. examined the impact 
of TZDs on COPD exacerbation in US veterans with 
COPD and diabetes [132]. Their research revealed a 
decrease in the risk of COPD exacerbation in patients 
treated with TZDs, and the incidence rate ratio was 
0.86 (95% CI: 0.81–0.92) compared to those using non-
TZDs [152]. Another study by the same team focused 
on diabetic veterans with asthma comorbidity and 
showed a significant reduction in the risk of asthma 
exacerbation in patients exposed to TZDs (OR = 0.79, 
95% CI: 0.62–0.99) compared to those not exposed to 
TZDs. Moreover, patients in good compliance with 
diabetes medications experienced an even more sub-
stantial reduction in the risk of asthma exacerbation 
(OR = 0.64, 95% CI: 0.47–0.85) [153]. These findings 
underscore the substantial reduction in the risk of 
COPD and asthma exacerbation in diabetic patients 
with COPD and asthma due to TZD administration. 
The consistent observation of the beneficial effects of 
TZDs in reducing severe COPD exacerbation is evi-
dent in the two most recent observational studies [154, 
155]. Furthermore, there was a notable decrease in 
PPAR-gamma gene expression and a median decrease 
of 45% (P = 0.008) observed from baseline to postch-
allenge in the bronchoalveolar lavage (BAL) fluid of 
allergic asthma patients. It is important to highlight 
that this decrease was not evident in the healthy con-
trol group [156]. Another study involving smokers with 
asthma demonstrated that rosiglitazone improved lung 
function, particularly in forced expiratory volume in 
1 s (FEV(1)), compared to the effects of inhaled beclo-
metasone dipropionate [157]. In contrast to these posi-
tive results, it is imperative to shed light on findings 
that deviate from the expected outcomes. For instance, 
Richards et al. conducted a single-center, double-blind, 
randomized, placebo-controlled, two-period crosso-
ver study exploring the effects of rosiglitazone, which 
is a PPARγ agonist, on the late asthmatic reaction in 
an allergen challenge model of asthma [158]. Surpris-
ingly, their results showed only a modest (15%) reduc-
tion, which did not reach statistical significance. We 
acknowledge that several factors, including the dura-
tion of the washout period, the dose of rosiglitazone 
(4 mg), and the severity of the patient conditions, 
may have contributed to this nonsignificant outcome. 

This divergence from the expected positive outcome 
prompts a more critical examination of the nuances 
surrounding the experimental design and patient char-
acteristics. However, despite these positive outcomes, 
the mechanisms by which PPARγ agonists affect lung 
inflammation remain unclear. Numerous studies have 
shown the anti-inflammatory effects of PPARγ ago-
nists on lung tissues. For example, in a mouse model 
of asthma induced by ovalbumin (OVA) inhalation, 
PPARγ agonists such as rosiglitazone and pioglitazone 
reduced the increases in IL-17 mRNA and protein 
expression, airway inflammation, and bronchial hyper-
responsiveness. Additionally, these agents abrogated 
increase in NF-κB activity in this asthma model [159]. 
Another study demonstrated that PPARγ ligands such 
as rosiglitazone and pioglitazone reduced TNF-α and 
CC chemokine ligand-5 in the alveolar macrophages of 
COPD patients. Rosiglitazone also increased the gene 
expression of M2 macrophages and facilitated the clear-
ance of apoptotic airway neutrophils in an in vivo model 
of pulmonary inflammation [160]. Moreover, rosigli-
tazone and SB219994 could inhibit airway neutro-
philia induced by LPS and associated chemoattractants 
(keratinocyte-derived chemokine and granulocyte-
colony-stimulating factor) in an animal model [161]. 
A previous study suggested that a reduction in the 
expression of PPAR-γ protein in the lungs could lead 
to pulmonary inflammation and lung injury. This study 
revealed that a decrease in PPAR-γ protein expression 
and an increase in NF-κB activation occurred in LPS-
induced acute lung injury in  vivo [162]. In an asthma 
model induced by OVA, rosiglitazone alleviated airway 
inflammation by reducing peribronchiolar inflamma-
tory cell infiltration, goblet cell hyperplasia, and mucus 
secretion. These effects were attributed to the inhibi-
tion of both NF-κB expression and the activation of 
the toll-like receptor 2 (TLR2)/nod-like receptor with 
pyrin domain-containing 3 (NLRP3) inflammatory 
corpuscle pathway by the PPARγ agonist [163]. Fur-
thermore, accumulating evidence suggests that rosigli-
tazone exerts anti-inflammatory effects by upregulating 
HO-1 in the pulmonary system [47, 108, 164, 165], 
indicating a potential therapeutic strategy for inflam-
matory diseases [43]. Our previous study demonstrated 
that rosiglitazone suppressed LPS-induced nuclear 
translocation of phosphorylated NF-κB (p65) and the 
expression of adhesion molecules through PPARγ-
dependent HO-1 upregulation. Additionally, we found 
that rosiglitazone inhibited LPS-induced lung inflam-
mation through alternative PPARγ-independent HO-1 
induction [62]. Consequently, our results indicate that 
rosiglitazone-induced HO-1 expression was medi-
ated by activation of the Nrf2 or PPARγ cascade and 
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suppressed inflammatory responses triggered by LPS 
(Fig.  2). The positive effects of TZDs on attenuating 
inflammatory responses by upregulating HO-1 suggest 
that rosiglitazone could be a potent treatment for pul-
monary inflammatory diseases [45, 160, 166].

Beyond their well-established anti-inflammatory 
actions, PPAR agonists, particularly PPARγ agonists like 
rosiglitazone, play a significant role in the resolution 
phase of inflammation, a process crucial for restoring tis-
sue homeostasis [167]. This phase involves not just the 

suppression of proinflammatory signals but also actively 
promotes reparative and restorative processes in inflamed 
tissues. PPARγ agonists contribute to the resolution of 
inflammation through multiple mechanisms. They pro-
mote the polarization of macrophages towards the M2 
phenotype, which are anti-inflammatory and essential 
for tissue repair and resolving inflammation [168]. These 
M2 macrophages play a crucial role in efferocytosis, the 
phagocytic clearance of apoptotic cells, preventing sec-
ondary necrosis and further inflammation. Additionally, 

Fig. 2  Schematic pathways for rosiglitazone-induced HO-1 expression in HPAEpiCs. Rosiglitazone triggers HO-1 expression in HPAEpiCs 
through two distinct pathways: PPARγ-dependent and PPARγ-independent mechanisms. PPARγ-dependent pathway: rosiglitazone enhances HO-1 
expression by activating a series of events, including PKCα, AMPKα, p38 MAPKα, SIRT1, Ac-PGC1α deacetylation, NCoR fragmentation, and direct 
binding of activated PPARγ to the HO-1 promoter’s responsive element. PPARγ-independent pathway: in this pathway, rosiglitazone-induced 
HO-1 expression occurs via NOX/ROS-dependent phosphorylation of c-Src/Pyk2/Akt, leading to Nrf2 activation. Nrf2 then binds to the ARE 
region of the HO-1 promoter, stimulating HO-1 expression. Upregulation of HO-1 exerts anti-inflammatory effects, particularly on the expression 
of adhesion molecules like ICAM-1 and VCAM-1, associated with monocyte/leukocyte accumulation in pulmonary resident cells challenged 
with LPS. These pathways are adapted from prior studies [62, 70] and represent crucial mechanisms in mitigating inflammation in the lungs
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PPARγ agonists suppress the expression of proinflam-
matory mediators like cytokines and chemokines and 
activate anti-inflammatory signaling pathways, including 
the inhibition of NF-κB and AP-1 [169]. These actions 
help in controlling the balance between pro- and anti-
inflammatory signals. Furthermore, PPARγ agonists 
modulate the recruitment of immune cells to inflamma-
tion sites by regulating the expression of adhesion mol-
ecules and chemokines, thus influencing the immune cell 
population towards an anti-inflammatory environment 
[170]. The study by Lea et  al. in the European Respira-
tory Journal in 2014 underscores these findings, dem-
onstrating that rosiglitazone, a PPARγ agonist, increases 
M2 macrophage polarization and enhances efferocytosis 
in COPD alveolar macrophages. The study showed that 
COPD alveolar macrophages exhibit a skewed M2 phe-
notype and that treatment with rosiglitazone inhibited 
LPS-induced TNF-α and CCL-5 production [160]. It also 
increased the expression of CD36, HO-1, and PPARγ, key 
elements in the phagocytosis of apoptotic neutrophils 
and the resolution of inflammation [171]. In a subchronic 
tobacco smoke mouse model, rosiglitazone significantly 
reduced inflammatory cells in bronchoalveolar lav-
age, further illustrating its role in resolving pulmonary 
inflammation [172]. These findings collectively indicate 
that PPARγ agonists like rosiglitazone play a critical role 
in resolving inflammation by modulating macrophage 
function and enhancing efferocytosis, contributing to 
the restoration of pulmonary homeostasis and offering 
potential therapeutic avenues for chronic pulmonary 
diseases.

Discussion
Understanding the mechanisms governing pulmonary 
inflammation is paramount in determining effective ther-
apeutic strategies for diseases such as asthma, COPD, 
acute lung injury, and ARDS. This review examined 
the role of PPAR agonists, specifically PPARα, PPARβ, 
and PPARγ, in combating inflammatory and oxidative 
stress cascades in various pulmonary disorders. PPARα, 
PPARβ, and PPARγ exhibit differential tissue expres-
sion, indicating their involvement in different physi-
ological functions. PPAR activation by endogenous and 
synthetic ligands can modulate inflammatory responses 
in the lungs. PPAR agonists inhibit crucial inflamma-
tory mediators by disrupting pathways such as NF-κB, 
AP-1, and STATs. By interrupting these pathways, PPAR 
agonists exert potent anti-inflammatory effects, thereby 
halting chronic inflammation in the lungs. Pulmonary 
inflammation is characterized by oxidative stress. PPARs, 
especially PPARγ, regulate oxidative stress by modulat-
ing the NOX/ROS pathway. Additionally, PPAR agonists 
enhance antioxidant defenses, such as HO-1, thereby 

protecting against oxidative damage. PPAR agonists, with 
their dual actions against inflammation and oxidative 
stress, offer a promising therapeutic approach for pulmo-
nary diseases. Synthetic PPAR agonists, which allow for 
precise dose control, have potential as future treatments. 
Clinical translation of PPAR agonists requires addressing 
safety concerns, patient variability, and long-term effects. 
Rigorous trials are essential for establishing optimal 
doses and safety profiles. Exploring novel delivery meth-
ods and combination therapies, as well as identifying pre-
dictive biomarkers, is crucial for future advancements. 
The balance between inflammation and oxidative stress 
in pulmonary diseases necessitates comprehensive thera-
peutic strategies. PPAR agonists, with their multifaceted 
effects, represent a promising avenue for managing these 
conditions. Ongoing research and clinical exploration 
play pivotal roles in unlocking the potential of PPAR ago-
nists and present novel possibilities for patients grappling 
with these complex disorders.

In this comprehensive review, we showed a complex 
web of signaling pathways and transcription factors 
that orchestrate the protective effects of PPARγ ago-
nists against pulmonary inflammation. The multifaceted 
nature of this regulation underscores the potential of 
targeting HO-1 expression as a therapeutic strategy for 
managing inflammatory lung diseases. PPARγ, which is 
a nuclear receptor with diverse physiological functions, 
stands at the nexus of this regulatory network [34, 35]. 
Its activation by rosiglitazone not only induces HO-1 
expression but also mitigates LPS-mediated inflamma-
tory responses [62], demonstrating the dual protective 
effects of PPARγ agonists against pulmonary inflamma-
tion. Our study shows that rosiglitazone-induced HO-1 
expression occurs through both PPARγ-dependent 
and PPARγ-independent pathways, underscoring the 
complexity of PPARγ-mediated responses. While the 
PPARγ-dependent pathway involves Nrf2 activation and 
subsequent binding to ARE sites in the HO-1 promoter, 
the PPARγ-independent pathway, intriguingly, does not 
rely on canonical mediators such as NOX/ROS, c-Src/
Pyk2, Akt, or Nrf2. These findings challenge existing par-
adigms and emphasize the need for further investigations 
to unravel the precise molecular mechanisms driving 
PPARγ-independent responses in pulmonary epithelial 
cells. On the other hand, the overexpression of HO-1 in 
cells can have several negative consequences, necessitat-
ing strict regulatory mechanisms to maintain a balanced 
cellular environment [173]. Firstly, excessive HO-1 activ-
ity can disrupt cellular homeostasis. This enzyme plays a 
key role in the degradation of heme into biliverdin, car-
bon monoxide, and free iron. While these byproducts 
have protective roles at moderate levels, their overpro-
duction can lead to toxicity and disrupt various cellular 
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processes, including oxidative stress responses and iron 
homeostasis [174]. Secondly, the accumulation of HO-1 
byproducts such as carbon monoxide and biliverdin can 
be harmful. Carbon monoxide, although beneficial in 
small quantities as a signaling molecule, can be toxic at 
high concentrations, potentially impairing mitochondrial 
function and cellular respiration [175]. Biliverdin and its 
subsequent conversion to bilirubin are known for their 
antioxidant properties, but in excess, they can contrib-
ute to cellular stress and damage [174]. Finally, excessive 
HO-1 expression may trigger cytotoxic effects. While 
HO-1 is generally considered cytoprotective, primarily 
due to its role in reducing oxidative stress, its overexpres-
sion could paradoxically lead to cellular damage [176]. 
This could be due to an imbalance in prooxidant and 
antioxidant activities, leading to oxidative stress, or the 
dysregulation of other cellular pathways such as apopto-
sis or inflammation. In summary, while HO-1 is crucial 
for cellular protection against oxidative stress, its over-
expression must be carefully regulated to prevent distur-
bances in cellular homeostasis, toxic accumulation of its 
byproducts, and potential cytotoxic effects. This under-
scores the importance of a balanced expression of HO-1 
for maintaining cellular health and function.

Our study highlights Nrf2 as a pivotal mediator of 
rosiglitazone-induced HO-1 expression, particularly in 
the context of PPARγ-independent pathways [62]. Nrf2, 
which is activated in response to oxidative stress, controls 
the expression of antioxidant genes, including HO-1, by 
binding to ARE sites [50, 51]. Rosiglitazone enhances 
Nrf2 binding to the ARE site in the HO-1 promoter, veri-
fying its role in mediating HO-1 induction. This Nrf2-
mediated response is an attractive target for therapeutic 
interventions, and Nrf2 activation not only induces HO-1 
but also regulates many antioxidant and cytoprotective 
genes, offering comprehensive cellular defense against 
oxidative insults. The interplay between SIRT1, PGC1α, 
and HO-1 is a crucial mechanism in PPARγ agonist-
induced responses [127, 130]. Rosiglitazone-induced 
SIRT1 phosphorylation leads to the deacetylation of 
PGC1α, facilitating its translocation to the nucleus [70]. 
Inside the nucleus, PGC1α interacts with PPARγ, result-
ing in the phosphorylation of PPARγ. Additionally, a 
reduction in NCoR levels in the nucleus further enhances 
PPARγ phosphorylation. This interplay underscores the 
nuanced regulation of HO-1 expression, highlighting the 
cross-talk between various transcriptional regulators in 
the cellular response to PPARγ agonists. Sp1 and AP-1, 
which are transcription factors that are sensitive to oxi-
dative stress and inflammatory signals, modulate HO-1 
expression [147, 148, 150, 151]. Sp1, which is a central 
mediator of cellular responses, responds to a plethora of 
signals, orchestrating a finely tuned regulatory network 

[141, 142]. Our study showed the pivotal role of Sp1 in 
PPARγ agonist-induced HO-1 expression, offering a 
potential target for therapeutic interventions. Similarly, 
AP-1, which is composed of diverse family members, 
serves as a central player in cellular signaling, respond-
ing to oxidative and inflammatory stimuli [147, 148, 150]. 
Deciphering the interactions between AP-1 and PPARγ 
agonists provides insights into stress-responsive gene 
expression, paving the way for innovative strategies to 
mitigate oxidative stress-related disorders.

This comprehensive understanding of the molecu-
lar intricacies of PPARγ agonist-induced HO-1 expres-
sion opens exciting avenues for future research and 
therapeutic interventions. Further investigations into 
PPARγ-independent pathways to delineate the roles of 
unexplored mediators hold the key to identifying novel 
therapeutic targets. Additionally, exploring the interplay 
between different transcription factors and coregula-
tors in the context of HO-1 regulation opens promising 
avenues for targeted therapies against pulmonary inflam-
matory diseases. Our previous studies provide a detailed 
roadmap of the signaling pathways and transcriptional 
regulators involved in PPARγ agonist-induced HO-1 
expression in pulmonary alveolar epithelial cells. These 
findings not only deepen our understanding of the molec-
ular mechanisms governing pulmonary inflammation 
but also offer potential targets for innovative therapeutic 
strategies. As we continue to dissect the complexities of 
these regulatory networks, we move closer to revolution-
izing our approach to combating pulmonary inflamma-
tory disorders, ultimately improving the quality of life of 
patients worldwide.

In this review, we underscored the potential of TZDs, 
which are PPARγ agonists, in shedding light on the 
molecular mechanisms governing HO-1 expression for 
the prevention and treatment of lung and airway inflam-
matory diseases (Fig.  2). The upregulation of HO-1 by 
rosiglitazone is mediated by both PPARγ-dependent 
and PPARγ-independent pathways in HPAEpiCs. In 
the PPARγ-dependent pathway, rosiglitazone enhances 
HO-1 expression by activating a cascade involving PKCα, 
AMPKα, p38 MAPKα, SIRT1, Ac-PGC1α deacetylation, 
NCoR fragmentation, and the direct binding of activated 
PPARγ to the HO-1 promoter’s responsive element. 
Conversely, in the PPARγ-independent pathway, rosigli-
tazone-induced HO-1 expression occurs via NOX/ROS-
dependent phosphorylation of c-Src/Pyk2/Akt, leading to 
Nrf2 activation and its binding to the ARE region of the 
HO-1 promoter. Upregulating HO-1 exerts anti-inflam-
matory effects, particularly affecting the expression of 
adhesion molecules such as ICAM-1 and VCAM-1, 
which are associated with monocyte/leukocyte accumu-
lation in pulmonary resident cells challenged with LPS. 
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These findings highlight a novel approach for managing 
inflammatory pulmonary disorders and offers potential 
solutions to the increasing burden of chronic lung dis-
eases worldwide.

Note: The pathways depicted in the figure are 
adapted from previous studies [62,70 ] and suggest 
that enhancing HO-1 by using TZDs is a promis-
ing strategy for addressing the challenges posed by 
chronic lung diseases globally.
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ERKs	� extracellular signal-regulated protein kinases
GSK	� glycogen synthase kinase
HO-1	� heme oxygenase-1
HPAEpiCs	� human pulmonary alveolar epithelial cells
ICAM-1	� intercellular adhesion molecule-1
IL-1β	� interleukin-1β
JNKs	� c-Jun NH2-terminal kinases
LBD	� ligand-binding domain
LPS	� lipopolysaccharide
LTA	� lipoteichoic acid
MAPKs	� mitogen-activated protein kinases
MMP-9	� matrix metalloproteinase-9
NCoR	� nuclear receptor co-repressor
NF-κB	� nuclear factor κ-light-chain-enhancer of activated B cells
NLRP3	� nod-like receptor with pyrin domain containing 3
NOX	� NADPH oxidase
Nrf2	� nuclear factor E2-related factor 2
OVA	� ovalbumin
PDGFR	� platelet-derived growth factor receptor
PGC-1α	� peroxisome proliferator-activated receptor gamma coactivator 

1-α
PGE2	� prostaglandin E2
PGJ2	� prostaglandin J2
PKC	� protein kinase C
PPAR	� peroxisome proliferator-activated receptor
PPRE	� peroxisome proliferator-activated receptor-response elements
Rac	� Ras-related C3 botulinum toxin substrate
Redox	� reduction-oxidation
REs	� regulatory elements
ROS	� reactive oxygen species
RXR	� 9-cis retinoic acid receptor
siRNA	� small interfering RNA
SIRT1	� silent information regulator type-1
SRC-1	� steroid receptor coactivator 1
STAT​	� signal transducer and activator of transcription protein
TF	� transcription factor
TLR2	� toll-like receptor 2
TNF-α	� tumor necrosis factor-α
TZDs	� thiazolidinediones
VCAM-1	� vascular cell adhesion molecule-1
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