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Adipo‑oncology: adipocyte‑derived factors 
govern engraftment, survival, and progression 
of metastatic cancers
Shinya Sato1,2,3*    

Abstract 

Conventional therapies for metastatic cancers have limited efficacy. Recently, cancer therapies targeting noncan-
cerous cells in tumor microenvironments have shown improved clinical outcomes in patients. However, further 
advances in our understanding of the metastatic tumor microenvironment are required to improve treatment 
outcomes. Adipocytes are distributed throughout the body, and as a part of the metastatic tumor microenviron-
ment, they interact with cancer cells in almost all organs. Adipocytes secrete various factors that are reported to exert 
clinical effects on cancer progression, including engraftment, survival, and expansion at the metastatic sites. How-
ever, only a few studies have comprehensively examined their impact on cancer cells. In this review, we examined 
the impact of adipocytes on cancer by describing the adipocyte-secreted factors that are involved in controlling 
metastatic cancer, focusing on adipokines, such as adiponectin, leptin, visfatin, chemerin, resistin, apelin, and omentin. 
Adipocyte-secreted factors promote cancer metastasis and contribute to various biological functions of cancer cells, 
including migration, invasion, proliferation, immune evasion, and drug resistance at the metastatic sites. We propose 
the establishment and expansion of “adipo-oncology” as a research field to enhance the comprehensive understand-
ing of the role of adipocytes in metastatic cancers and the development of more robust metastatic cancer treatments.
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Introduction
With the aging of society, the incidence of cancer is 
increasing worldwide, and cancer has become the lead-
ing cause of death, particularly in developed countries 
[1, 2]. To date, cancer therapies, including surgery, anti-
cancer drugs, and radiation, have targeted cancer cells 
and have been effective to a certain extent. However, the 

effectiveness of conventional therapies is limited, particu-
larly in cases of metastatic cancers.

In recent years, cancer therapies that target noncan-
cerous cells within tumor microenvironments have 
emerged. Of these, the best-known are therapies target-
ing immune cells, such as immune checkpoint inhibi-
tor-based therapies, which have markedly improved 
the outcomes of certain aggressive cancers, including 
melanoma [3–6]. Therapies targeting blood vessels are 
also becoming more common, and vascular-targeted 
therapies have been incorporated into the standard 
treatment regimens for some cancers [7–9]. Recently, 
cancer-associated fibroblasts (CAFs), another major 
host cell type, have been studied for targeted therapies 
[10]. However, even with the application of these non-
neoplastic cell-targeting therapies, a complete cure for 
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all cancers is yet to be achieved. This is partly because 
our understanding of the microenvironment surround-
ing cancer cells is incomplete. Despite the wide variety 
of cell types that comprise the metastatic tumor micro-
environment, the function of only few of the resident 
cells have been examined in terms of cancer progres-
sion. Therefore, a better understanding of the meta-
static tumor microenvironment is required.

Adipocytes are a significant component of the meta-
static tumor microenvironment. They are distributed 
throughout the body and become part of the meta-
static tumor microenvironment by interacting with 
cancer cells in almost all organs, except the brain. Adi-
pocytes secrete various factors, including cytokines 
(adipokines), proteases, chemokines, lipokines, vaso-
active factors, coagulation regulators, free fatty acids, 
amino acids, steroids, nucleotides, and extracellular 
vesicles [11–14]. Many of these secretory factors exert 
clinical effects on cancer progression according to pre-
vious studies [15–18]. Although adipocytes are a thus 
critical factors for understanding the metastatic tumor 
microenvironment, few studies have comprehensively 
examined their impact on cancer cells.

We have recently uncovered various roles of adi-
pocytes in cancer progression [18], based on analyses 
of histopathology, CAF induction, immune evasion, 

proliferation, and dormancy. In addition, we are actively 
conducting in vitro, in vivo, and translational studies.

In this review, we systematically examined the impact 
of adipocytes on metastatic cancer by describing the 
effect of the factors they secrete on cancer, with a par-
ticular focus on adipokines, which are mainly produced 
by adipocytes (Fig. 1, Table 1).

Adiponectin
Adiponectin is a common adipokine. It was discovered 
in 1996 as the gene with the most abundant expression 
in adipose tissue [96]. Adiponectin is now known to be 
secreted by the muscles, brain, and other tissues, in addi-
tion to adipose tissue [96, 97]. The protein is a polypep-
tide composed of 244 amino acids, and it plays a vital role 
in glucose and fatty acid metabolism [98, 99]. High adi-
ponectin levels decrease the risk of diabetes [100, 101]. 
Adiponectin secretion is stimulated by calorie restriction 
and exercise [102, 103].

Notably, white adipocytes secrete more adiponectins 
compared to beige or brown adipocytes [104, 105]. How-
ever, when white adipose tissues undergo browning due 
to drug administration, the amount of secreted adiponec-
tin increases [106]. In contrast, knockout (KO) of Zfp423, 
which negatively regulates Prdm16 expression, tends to 
decrease adiponectin secretion in browned white adipo-
cytes [107].

Fig. 1  Adipocyte-derived factors govern engraftment, survival, and progression of metastatic cancers
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The adiponectin receptors ADIPOR1 and ADIPOR2 
were first reported in 2003 [108], followed by the dis-
covery of T-cadherin as another adiponectin receptor in 
2004 [109]. These receptors are mainly distributed in the 
muscle tissue and vascular endothelium [110]. ADIPOR1 
and ADIPOR2 have been reported to activate AMPK 
signaling and suppress MAPK, PI3K/AKT, and WNT 
signaling [108, 110, 111]. In contrast, T-cadherin, consid-
ered a non-signaling protein, has been reported to bind 
adiponectin and induce AMPK phosphorylation in the 
myocardium [112].

Adiponectin is mainly involved in the inhibition of 
tumor growth in nasopharyngeal [19], ovarian [20], hepa-
tocellular [21], pancreatic [22], breast [23], colon [24], 
and prostate cancers [25] as well as in malignant meso-
theliomas [26] and glioblastomas [27]. Tumor growth 
suppression mechanisms include activation of ADIPOR1 
signaling, which induces AMPK phosphorylation, atten-
uation of the β-catenin signaling pathway [22], and acti-
vation of MAPK [23], ERK1/2, and AKT signaling [27]. 
In an in  vivo study, adiponectin treatment suppressed 
transplanted colon tumor growth, and regulated meta-
bolic, inflammatory and cell cycle signaling in colon can-
cer [28].

To date, adiponectin has not been directly adminis-
tered to patients with cancer in any trials. Most cancer-
related trials involving adiponectin use it as a marker of 
feasible output from weight loss or a healthy diet [29–32]. 
No direct correlation between adiponectin levels and 

clinical outcomes, such as cancer recurrence or metas-
tasis, has been reported in randomized controlled tri-
als to date. However, partial effects of serum adipocyte 
level on the density of tumor-infiltrating lymphocytes 
have been reported in patients with Stage III colon can-
cer [33]. Notably, abnormal levels of serum adiponectin 
are associated with shorter progression-free survival in 
metastatic colorectal cancer [34]. Furthermore, in a ran-
domized clinical trial, a dose–response effect of exercise 
was observed to increase adiponectin levels and poten-
tially reduce the risk of breast cancer [30].

Leptin
Leptin, a member of the adipokine family of proteins, 
is secreted by adipocytes. Leptin maintains calorie con-
sumption and is mainly involved in energy storage by 
storing of triglycerides in the adipose tissues [113, 114]. 
Leptin overexpression reduces triglyceride concentra-
tions [115, 116]. The leptin receptor was first identified 
as OB-R in 1995 [117]. Leptin receptors have various 
isoforms [118], which differ in the length of their intra-
cellular domains. OB-Rfl, which has the longest intracel-
lular domain, can activate the JAK-STAT pathway [118, 
119]. In contrast, short isoforms are reported to activate 
MAPK signaling pathways [120]. Soluble leptin recep-
tors are also present, and their levels correlate with the 
number of membrane leptin receptors and have been 
reported to be increased by obesity [121, 122]. Lep-
tin primarily regulates brain function and the levels of 

Table 1  Receptors, effects on cancer cells, and activation of signaling pathways by adipokines

Name Receptors Effects of adipokines on tumor progression Activating signaling pathways Ref

Adiponectin AdipoR1
AdipoR2

Adiponectin basically suppresses cell proliferation, migration, inva-
sion, and metastasis of cancers. Adiponectin promotes angiogenesis 
in breast cancer and other cancers. Adiponectin level correlates 
with cancer-related cachexia

AMPK
p38 MAPK
PI3K/AKT
WNT

[19–34]

Apelin Apelin receptor/
APJ/APLNR

Apelin promotes proliferation, migration, and invasion of cancer cells. 
Apelin promotes angiogenesis

PI3K/AKT [35–40]

Chemerin CMKLR1
GPR1

Chemerin regulate proliferation, invasion and metastasis differently 
among cancers derived from different organs
Chemerin strengthens immune system in breast cancer

PI3K/AKT [41–49]

Leptin Leptin receptors/
Ob-Rs

Leptin promotes proliferation, migration, invasion, metastasis, epithelial-
mesenchymal transition, and drug resistance of cancer cells. Leptin 
induces cancer-associated fibroblasts and lymphangiogenesis

JAK/STAT​
SAPK/JNK
MEK/ERK1/2
Notch
PI3K/AKT

[50–71]

Omentin Unknown Effects of omentin on tumor progression is different depending 
on the primary sites of cancer or the patient’s health status

JNK [72–77]

Resistin CAP1
Decorin
ROR1
TLR4

Resistin promotes proliferation, migration and invasion and epithelial-
mesenchymal transition, and drug resistance of cancer cells. Resistin 
promotes angiogenesis

JAK/STAT​
PI3K/AKT
WNT

[78–88]

Visfatin Unknown Visfatin promotes proliferation, invasion, and inhibition of apoptosis 
of cancer cells

p38 MAPK
MEK/ERK1/2 PI3K/AKT

[89–95]
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brain-derived hormones [123, 124]. Leptin receptors 
are typically distributed in the central nervous system 
[125, 126]. However, it is now known that leptin recep-
tors are also distributed in liver cells (hepatocytes), adi-
pocytes, fibroblasts, and endothelial cells [50, 127, 128]. 
Leptin has been reported to serve as a proliferative fac-
tor in tumors derived from multiple organs, such as the 
lungs [51, 52], liver [53], breast [54, 55], prostate [56, 57], 
pancreas [58], ovaries [59, 60], brain [61], and colorectum 
[62], exerting its effects via the JAK/STAT, MEK/ERK1/2, 
NOTCH, JNK, and/or PI3K/AKT signaling pathways. In 
an in  vivo study, a leptin receptor antagonist prolonged 
the average survival time of a mouse xenograft model of 
triple-negative breast cancer cell lines [63]. In addition, 
overexpression of the leptin receptor has been observed 
in cancer tissues compared to normal tissues, particularly 
in cancers with an aggressive phenotype or drug resist-
ance [64–66]. Moreover, leptin stimulates cancer cell 
migration, invasion, CAF induction, and CAF-mediated 
tumor progression [67], and changes in the polarity of 
tumor cells [68]. The presence of leptin also stimulates 
leptin receptor expression in cancer cells [69].

Leptin secretion is higher in beige than in white adipo-
cytes [105]. In white adipocytes, the mRNA production 
of the leptin gene is approximately twofold higher in sub-
cutaneous adipocytes than in the visceral adipocytes of 
the major omentum [70].

A Phase 3 clinical trial has reported a correlation 
between the efficacy of VEGFR inhibitors and blood 
leptin levels in patients with colorectal cancer [71]. In 
a preclinical study, PDX prostate cancer growth inhibi-
tion has been reported in response to leptin receptor 
antagonist administration [129]. Leptin may also play 
a role in hormone therapy resistance, as leptin levels in 
the blood increase due to hormone therapy for breast 
cancer [130]. Moreover, a randomized controlled trial 
reported that aerobic exercise reduced leptin levels 
and the risk of breast cancer in a dose-dependent man-
ner [30].

Resistin
Resistin  is a member of the adipokine family, is an adi-
pocyte-secreted factor whose levels increase with obesity 
[131]. Resistin induces insulin resistance by inhibiting 
AMPK phosphorylation [132]. In humans, resistin is pri-
marily secreted by peripheral blood mononuclear cells 
and other organs, such as pancreatic islet cells [132, 
133], whereas in rodents, its main source is adipocytes 
and other tissues [134]. The structure and function of 
human resistin also differ from those of murine resistin 
[132]. A strong correlation between serum resistin lev-
els and insulin resistance has been observed in rodent 
studies; however, the correlation between serum resistin 

levels and insulin resistance in human studies is contro-
versial [132, 135, 136]. Human resistin levels correlate 
strongly with visceral obesity [137]. Single nucleotide 
polymorphisms in human RETN are associated with 
altered plasma resistin levels, dyslipidemia, and insulin 
resistance, particularly in East Asian populations [138]. 
Animal studies using transgenic mice have reported that 
obesity strongly suppresses resistin secretion [139]. How-
ever, resistin secretion can be controlled by some antidia-
betic drugs [139]. Resistin is also reported to be secreted 
from brown fat, and some antidiabetic drugs increase 
its secretion [78]. Animal studies in rats have reported 
that resistin is secreted at higher levels by females than 
by males and that it is secreted in the stomach, intestinal 
tract, skeletal muscle, and adipose tissue [79].

CAP1, decorin, ROR1, and TLR4 have been identified 
as resistin receptors that activate different signaling cas-
cades [80–83]. Resistin promotes cancer proliferation 
via AKT and STAT signaling [84, 85], angiogenesis via 
VEGFR, SAPK/JNK, and NFKB signaling [86, 87], epi-
thelial-mesenchymal transition via the WNT/β-catenin 
pathway [88], and invasion and metastasis via the WNT/
β-catenin, TGFβR, MAPK, pathways [140]. In an animal 
study, the administration of resistin promoted ovarian 
tumor growth by regulating micro RNA (miRNA) expres-
sion [88].

In a clinical study on postoperative weight loss in 
patients with breast cancer, weight loss significantly 
decreased blood resistin levels, but did not significantly 
affect blood inflammatory cytokines or lipid composi-
tion [141]. In in  vitro experiments, resistin has been 
implicated in cancer resistance and an increase in cancer 
stem cells [85], and has been suggested to be a potential 
important target for cancer therapy.

Visfatin
Visfatin/nicotinamide phosphoribosyltransferase (NAMPT) 
is another member of the adipokine family of proteins 
[142]. Visfatin is a pre-B-cell colony-enhancing factor 
that promotes the maturation of early B-lineage precur-
sor cells [143]. It is secreted by the visceral and subcuta-
neous adipocytes [144, 145]. A study using animal tissues 
reported that visfatin is more abundant in brown adipose 
tissues than in other types of adipose tissue, whereas in 
humans, brown and white adipose tissues showed no 
significant differences in visfatin expression [146]. Vis-
fatin is also secreted by the liver, skeletal muscles, neu-
trophils, and fetal membranes [147]. Serum visfatin levels 
are associated with obesity, inflammation, cardiovascular 
diseases, and endothelial cell dysfunction [89, 90].

Hypersecretion of visfatin is correlated with worse 
prognosis in breast, endometrial, and renal cell can-
cers [91–93]. Visfatin promotes cell proliferation in 
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endometrial cancer [94], invasiveness of liver cancer [95], 
and inhibition of apoptosis in breast cancer by activat-
ing the PI3K/AKT, MAPK, and ERK1/2 signaling path-
ways [94]. In an in vivo study in mice, visfatin promoted 
endometrial tumor growth by stimulating PI3K/AKT and 
other signaling pathways [94].

Clinical studies have reported significantly lower blood 
visfatin levels in pediatric patients with leukemia in com-
plete remission [148]. In in vitro experiments, non-small 
cell lung cancer cell lines that became resistant to cispl-
atin treatment were reported to have elevated visfatin 
levels, whereas visfatin KO restored sensitivity to cispl-
atin [149]. Thus, visfatin inhibitors may contribute to 
increased drug resistance in patients with lung cancer.

Chemerin
Chemerin is an adipokine that was identified in 1997 
[150]. Chemerin is found in the serum, plasma, adipo-
cytes, and the liver [151]. Chemerin, produced mainly by 
adipocytes and the liver, is a ligand for chemokine-like 
receptor 1 (CMKLR1), G-protein-coupled receptor 1, and 
C–C motif chemokine receptor-like 2 [152]. Chemerin 
has been reported to be expressed during differentiation 
into brown adipocytes [153] and is abundant in mouse 
white adipose tissue [151]. Moreover, it promotes the 
differentiation of bone marrow adipocytes [41]. Inhibi-
tion of chemerin secretion by antidiabetic drugs has been 
reported [42].

In a cohort study of over 7,000 people, chemerin con-
centration was significantly associated with cancer 
mortality [43]. In patients with breast cancer, serum 
chemerin levels were significantly associated with his-
tological grade and Ki67 expression [44]. However, the 
role of chemerin in tumor growth remains controver-
sial. In an in vitro study, chemerin suppressed the prolif-
eration of ovarian cancer cell lines and could potentially 
regulate INFα secretion by cancer cells [45]. In addition, 
chemerin suppressed the viability and invasion of breast 
cancer cell lines [46]. In an in  vivo study, the chemerin 
analog CG34  significantly stimulated the growth and 
bioluminescence signals of colorectal cancer xenografts 
[47]. Monoclonal antibodies targeting chemerin led to 
reduced lipid storage and diminished renal cancer growth 
by alleviating the suppression of fatty acid oxidation and 
ferroptosis induced by chemerin [48]. Furthermore, 
chemerin overexpression in breast cancer reduced tumor 
growth by recruiting natural killer cells and T cells in vivo 
[49]. In addition, chemerin overexpression suppressed 
hepatocellular carcinoma cell proliferation and tumor 
metastasis by reducing AKT phosphorylation [154]. In an 
in vivo study in mice, intraperitoneal chemerin adminis-
tration suppressed breast tumor growth [46]. In contrast, 
chemerin has been reported to promote chemotaxis and 

migration of cutaneous squamous cell carcinoma [155], 
and its attenuation inhibited renal tumor growth in vivo 
[48]. These results suggested that chemerin may regu-
late different functions in cancers derived from different 
organs.

Currently, no randomized clinical trials of chemerin or 
its inhibitors in cancer have been reported in PubMed. 
However, an in  vivo study has reported that chemerin 
inhibitors promoted cancer cell senescence and enhanced 
the therapeutic effect of cisplatin [156]. Small molecules 
that selectively inhibit the chemerin receptor CMKLR1 
have also been reported to inhibit endometriosis growth 
[157], and chemerin signaling inhibitors are expected to 
serve as orthologous cancer therapeutics.

Apelin
In 1998, apelin was identified as a ligand of the human 
APJ receptor [158]. In addition to adipocytes, apelin is 
broadly expressed in many organs and tissues, including 
the brain, kidneys, and heart [159]. Activation of ape-
lin signaling promotes brown adipocyte differentiation 
[160]. Apelin further promotes the browning of white 
fat [161]. Apelin also promotes angiogenesis [162]. In 
addition, apelin signaling stimulates nitric oxide release, 
which promotes vasodilation by relaxing the smooth 
muscle cells of the arterial walls [35]. In cancer, activa-
tion of the apelin-AJP pathway promotes the peritoneal 
dissemination of ovarian cancer cells [36]. Moreover, the 
loss of apelin blocks angiogenesis in lung cancer and mel-
anoma cells in vivo [37]. Apelin activates the PI3K/AKT 
pathway and promotes the proliferation, migration, and 
glucose uptake of pancreatic cancer cell lines [38]. Ape-
lin promotes tumor growth by facilitating endothelial cell 
migration, resulting in rapid angiogenesis [39]. Apelin 
KO mice bearing breast cancer tumors show prolonged 
survival, with or without anti-angiogenic treatment [40]. 
In melanoma, APJ-KO suppressed angiogenesis in  vivo 
[163]. These results suggest that apelin strongly affects 
the vascular environment surrounding tumors and that it 
is a novel cancer treatment target.

Clinical trials using apelin and apelin inhibitors have 
not been reported on PubMed to date, but apelin recep-
tor expression has been reported to correlate with prog-
nosis in patients with gastric cancer who were treated 
with chemoradiotherapy [164]. Moreover, in  vitro and 
in vivo experiments using colon and prostate cancer cell 
lines have reported that high apelin expression alters the 
vascular structure and immune environment, resulting 
in a reduction in tumor size [165]. In contrast, tumor 
growth, angiogenesis, and metastasis have been reported 
to be suppressed in  vivo in tumors in mouse models in 
which apelin expression was suppressed [40]. Further, 
ML221, an antagonist of the apelin receptor, significantly 
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suppressed liver metastasis in breast cancer when com-
bined with dendritic cell vaccine therapy in  vivo [166]. 
In summary, although the function of apelin in cancer is 
complex, it may serve as a potential therapeutic target.

Omentin
In 2001, omentin (also known as intelectin-1) was iden-
tified as a human lectin that binds to galactofuranosyl 
residues [72]. Omentin is composed of 295 amino acids 
and is expressed in the heart, intestine, thymus, and adi-
pocytes [72, 73]. Omentin is expressed in large amounts 
in visceral white adipocytes and to some extent in sub-
cutaneous white adipocytes [73]. Omentin is also widely 
expressed in organs other than adipose tissue, including 
the heart, intestinal tract, and kidneys [74]. Omentin lev-
els are inversely associated with obesity and type 2 dia-
betes mellitus [75]. However, omentin receptors have not 
yet been identified.

The effect of omentin on cancer progression is con-
troversial because the relationship between the omentin 
serum levels and cancer progression differs depending 
on the primary cancer sites and the patient’s health sta-
tus [76, 77]. For example, serum omentin levels were 
positively correlated with colon cancer risk in study par-
ticipants with a body mass index (BMI) < 30  kg/m2, but 
the correlation was not observed in participants with 
BMI ≥ 30 kg/m2 [167]. While omentin has been reported 
to promote apoptosis in hepatocellular carcinoma cells 
[168], it has also been reported to induce cell prolifera-
tion [169].

In patients with endometrial cancer, the blood levels 
of omentin correlate with lymph node metastasis [170], 
suggesting that it may be involved in the control of can-
cer malignancy. At present, no clinical trials targeting 
omentin have been conducted.

Taken together, these data suggest that omentin may 
have the potential to suppress tumors, but this effect is 
limited to certain conditions.

miRNAs, chemokines, extracellular vesicles, and other 
factors
Various types of miRNAs are secreted from adipose 
tissues [171–173]. Studies using the 3T3-L1 cell line 
reported that adipocytes secrete a large number of extra-
cellular vesicles [174] and that a large number of miRNAs 
are contained within these extracellular vesicles [175]. In 
addition, specific miRNAs appear to be expressed in dif-
ferent adipocyte types [174].

Adipose tissue secretes various chemokines, such as 
CCL2, CCL20, and CXCL5, at regular intervals or dur-
ing cancer therapy [176, 177]. Consequently, they induce 
inflammation and the reorganization of adipose tissue, 
which affects the progression of cancer.

Moreover, adipocytes also secrete various other fac-
tors, including free fatty acids [178, 179], lipokines 
[180, 181], vasoactive proteins [182, 183], and matrix 
metalloproteinases [184, 185], which are directly or 
indirectly involved in cancer nutrition, growth, and 
metastasis.

Conclusions
Aging and metabolic syndrome are both recognized in 
developed countries, and as a result, the total number of 
cancer patients with organs with adipocyte accumula-
tion and adipocytes replacement is expected to increase 
[186–189]. Cancer therapy targeting adipocytes has the 
potential to be an innovative treatment not only for meta-
static cancer, but also for a wide range of cancer patients 
across organs. In this review, we described the effects of 
various adipokines and other adipocyte-secreted factors 
on cancer. The molecular mechanisms by which the fac-
tors secreted by adipocytes affect cancer and the result-
ing effects on cancer survival, proliferation, invasion, 
metastasis, and resistance to therapy are diverse. Notably, 
while adipokines mainly promote tumor growth, certain 
adipokines, such as adiponectin and chemerin, have the 
potential to suppress tumor growth. Therefore, it is essen-
tial to consider the overall balance of adipocyte-derived 
factors to understand the role of adipocytes on tumors. 
We propose the establishment and expansion of “adipo-
oncology” as a research field to enhance the comprehen-
sive understanding of the role of adipocytes in metastatic 
cancers and the development of more robust metastatic 
cancer treatments. Integrating information of mecha-
nisms regulating cancer by adipocyte-secreted factors, 
understanding the secretion status of each secreted factor, 
the type and distribution of adipocytes in patients with 
cancer, and carefully controlling fat secretion factors in 
each patient may lead to useful cancer treatments. There-
fore, it is necessary to accumulate basic and clinical data 
for the future development of novel cancer therapies.
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