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Abstract 

Tumor cells primarily employ the PD-1/PD-L1 pathway to thwart the anti-tumor capabilities of T lymphocytes, induc-
ing immunosuppression. This occurs through the direct interaction of PD-L1 with PD-1 on T lymphocyte surfaces. 
Recent research focusing on the tumor microenvironment has illuminated the pivotal role of immune cells, particu-
larly tumor-associated macrophages (TAMs), in facilitating PD-L1-mediated immunosuppression. Exosomes, char-
acterized by their ability to convey information and be engulfed by cells, significantly contribute to promoting TAM 
involvement in establishing PD-L1-mediated immunosuppression within the tumor microenvironment. Exosomes, 
characterized by their ability to convey information and be engulfed by cells, significantly contribute to promot-
ing TAM involvement in establishing PD-L1-mediated immunosuppression within the tumor microenvironment. In 
addition to receiving signals from tumor-derived exosomes that promote PD-L1 expression, TAMs also exert control 
over PD-L1 expression in tumor cells through the release of exosomes. This paper aims to summarize the mechanisms 
by which exosomes participate in this process, identify crucial factors that influence these mechanisms, and explore 
innovative strategies for inhibiting or reversing the tumor-promoting effects of TAMs by targeting exosomes.
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Introduction
Exosomes, which are nanoscale vesicles produced via 
exocytosis by both normal and tumor cells, play a criti-
cal role in mediating the interaction between tumor and 
immune cells within the tumor microenvironment [1]. 
They represent a distinct mode of signaling in addition to 
direct cell-to-cell communication and indirect communi-
cation through chemokines or cytokines [2, 3]. Exosomes 

contribute to the immunosuppressive characteristics 
observed in almost all lymphocyte and bone marrow 
cell populations, thereby assisting tumor cells in evading 
immune surveillance [4].

Tumor-associated macrophages (TAMs) are a type 
of immune cells present in the tumor microenviron-
ment, primarily located in the tumor stroma where they 
regulate inflammatory responses. Recent evidence has 
highlighted that TAMs not only contribute to tumor pro-
gression but also play a role in immunosuppression [5, 6].

PD-1/PD-L1 signaling pathway serves as a critical 
checkpoint for tumor immune evasion [7]. Tumor-infil-
trating T cells, influenced by the tumor microenviron-
ment, exhibit high levels of PD-1 expression. However, 
their ability to kill tumor cells is significantly hindered 
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upon interaction with PD-L1 expressed on the tumor 
surface [8].

Although immune checkpoint inhibitors have revolu-
tionized cancer treatment, the response rate in patients 
receiving these therapies has not met expectations. 
This necessitates further exploration of the underlying 
mechanisms leading to resistance against immune-based 
therapies.

TAMs play a crucial role in mediating PD-1/PD-L1 
immunosuppression, primarily through three mecha-
nisms: exosome secretion, PD-L1 expression, and 
cytokine secretion [9]. This perspective highlights that 
TAMs actively contribute to the immune evasion of 
malignancies. Exosomes act as passive agents, implicat-
ing TAMs in the continuous invasion of tumors, and 
they are among several factors in the tumor microenvi-
ronment that influence the polarization of tumor-asso-
ciated macrophages. Studying how exosomes promote 
the development of PD-1/PD-L1 immunosuppression 
between tumor and immune cells will help develop strat-
egies to improve immunotherapy efficacy and overcome 
immune resistance. This paper reviews the recent pro-
gress in this field and its potential mechanisms. Experi-
mental evidence supports exosomal targeting to enhance 
immune effectiveness, emphasizing the importance of 
exosomal targeting as a key strategy to combat immune 
resistance.

Exosomes regulate the pro‑tumor and anti‑tumor 
state of TAMs
In a broader context, TAMs do not represent a specific 
type of macrophage, but rather a heterogeneous popula-
tion of macrophages with diverse molecular expressions 
and functional states infiltrating the tumor microen-
vironment. They can be roughly categorized into anti-
tumor M1 type and pro-tumor M2 type, although TAMs 
predominantly exhibit an M2 phenotype [10]. M1 mac-
rophages are characterized by the expression of mol-
ecules such as CD86 and possess pro-inflammatory 
functions [11]. On the other hand, M2 macrophages, 
which have high IL-10 expression and low IL-12 expres-
sion, can be further subdivided into different subtypes 
(M2a, M2b, M2c, M2d) with unique combinations of 
molecular markers that support the malignant behavior 
of most tumors [12]. It is worth noting that the polari-
zation state of TAM and the ratio of different subtypes 
change dynamically with specific time, which is related to 
the complex stimulus signals in the tumor microenviron-
ment [13]. Additionally, intermediate cells between the 
two extreme M1 and M2 markers may simultaneously 
express markers associated with both M1 and M2 phe-
notypes [14].

Tumor-derived exosomes facilitate macrophage 
recruitment and have been shown to influence the polari-
zation of M1/M2 type macrophages in various tumor 
types [15–17]. Exosomes play a significant regulatory 
role in promoting the pro-tumor phenotype of mac-
rophages by carrying nucleic acids, proteins, lipids, and 
other important regulatory substances [18]. For instance, 
the incorporation of MiR-3591-3p into glioma exosomes 
promotes M2-type polarization of macrophages through 
the JAK2/PI3K/Akt/mTOR and STAT3 pathways, 
thereby enhancing tumor invasion and migration [19]. 
Gallbladder cancer cells effectively utilize exosomes to 
transport leptin to macrophages, thereby influencing M2 
macrophage polarization. Inhibiting leptin reverses this 
process’s pro-tumor growth effect [20]. By controlling 
macrophage polarization via exosomes, tumors facilitate 
the development of a pre-metastatic niche. Research-
ers discovered that the polarization of pulmonary mac-
rophages by Caveolin-1 transported by exosomes could 
be inextricably linked to pre-metastatic microenviron-
ment creation before breast cancer (BC) cells metasta-
size to the lung [21]. Tumor cell-produced microRNA 
(miR)-21 and miR29a exosomes stimulate the production 
of Toll-like receptor (TLR)-mediated pro-inflammatory 
proteins in macrophages, which are linked to NF-κB 
activation and collectively implicated in the pre-tumor 
inflammatory phase [22]. In addition to promoting malig-
nant tumor growth and distant spread, M2 macrophages 
polarized by tumor-derived exosomes also contribute 
to reducing tumor treatment sensitivity. For instance, 
non-small cell lung cancer induces macrophage M2 
polarization by releasing phosphoribosyl pyrophosphate 
synthetases 2 exosomes, thereby increasing the cisplatin 
toxicity threshold for tumor cells [23]. The direction of 
TAMs polarization is also influenced by exosomes pro-
duced by different cell types in the tumor microenviron-
ment. Cancer-associated fibroblasts educate monocytes 
to differentiate into the M2 macrophage phenotype, 
which supports BC growth. Exosomes produced by this 
phenotype also exhibit high expression of the highly inva-
sive miR-181a. Furthermore, it has been demonstrated 
that miR-320a, released by fibroblasts, controls the direc-
tion of M2-type polarization of macrophages [24]. The 
progression of prostate cancer has also been shown to 
be related to the regulation of the M2-type polarization 
direction of macrophages by miR-320a secreted by fibro-
blasts [25].

TAM‑derived exosomes promote tumor growth
Exosomes serve as a critical medium for communication 
between TAMs and tumor cells within the tumor micro-
environment. TAM-derived exosomes play a significant 
role in influencing tumor formation through various 
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mechanisms, highlighting the importance of their com-
ponents [26, 27]. These exosomes derived from TAMs 
contribute to the continued malignant growth of tumors 
by regulating tumor cell stemness, promoting tumor 
angiogenesis, facilitating tumor metastasis, and inducing 
treatment resistance [28–31]. Importantly, TAM-derived 
exosomes also contribute to the resistance of tumor cells 
towards targeted drugs, in addition to chemotherapy 
drugs [32, 33]. Furthermore, TAM-derived exosomes 
play a crucial role in metabolic reprogramming. For 
instance, exosomes containing long non-coding RNA 
derived from TAMs activate glycolysis in hepatocellular 
carcinoma (HCC) via the miR-548 s/ALDH1A3 path-
way, demonstrating that metabolic reprogramming is an 
essential mechanism through which exosomes promote 
malignant proliferation [34].

Several factors, including hypoxia [35], epithelial-mes-
enchymal transition [36], gene mutations [37], and vari-
ous signaling pathways [38], influence TAMs mediated 
by exosomes that promote tumor growth. Hypoxia has 
long been recognized as a critical physiological compo-
nent in the tumor microenvironment. Tumor-derived 
exosomes, which are released at higher levels and exhibit 
changes in heterogeneity under hypoxic conditions, play 
a role in transferring hypoxic information within the 
tumor microenvironment. These exosomes possess dis-
tinct characteristics in terms of cargo content, cellular 
recognition, and internalization by target cells [39, 40]. 
Exosomes facilitate the interaction between TAMs and 
tumor cells or other immune cells in the tumor micro-
environment, thereby promoting tumor growth and 
invasion.

Exosomes mediate the regulation of PD‑L1 
expression by TAMs
Yang et al.’s research has provided long-standing evidence 
that PD-L1 is present simultaneously in tumor cells and 
the exosomes they produce [41]. PD-L1 exosomes pro-
duced by tumor cells enhance the immunosuppressive 
ability of the tumor microenvironment by directly bind-
ing with T cells and indirectly binding with TLRs on mye-
loid cells [42]. Exosomes carrying PD-L1 compromise 
the body’s ability to fight tumors by transmitting PD-L1 
to other cells in the tumor microenvironment, such as 
macrophages, actively suppressing T cells’ immunologi-
cal functions [41]. Phagocytes, including macrophages, 
have a more professional approach to phagocytosis than 
non-phagocytic cells and absorb PD-L1 exosomes in the 
tumor microenvironment to escape immune surveil-
lance [41, 43]. Gastric cancer (GC)-derived exosomes 
cause macrophages to polarize towards the M2 type 
and express PD-1, leading to increased production of 
IL-10 and accelerated tumor growth by preventing T 

cell activation [44]. Gu and his colleagues found that 
miR-92a-3p exosomes from GC can also be ingested 
by pulmonary macrophages, activating the ERK sign-
aling pathway by inhibiting the expression of PTEN in 
macrophages and promoting the expression of PD-L1 
in macrophages through transcriptional regulation 
[45]. Similarly, exosomes from TAMs also regulate the 
expression of PD-L1 in tumor cells. M2-type TAMs 
use exosomes to enhance PD-L1 expression in GC cells 
[46]. Conversely, M1 macrophages downregulate PD-L1 
expression in GC cells by loading miR-16-5p exosomes 
[47]. Crosstalk between different immune cell types in 
the tumor microenvironment also plays an important 
role in promoting the expression of PD-L1 on TAMs. 
Mesenchymal stem cells produce exosomes carrying 
TGF-β, C1q, and signaling proteins, which induce over-
expression of PD-L1 in undifferentiated monocytes and 
macrophages (Fig. 1) [48].

Mechanism of exosomes mediated TAM regulation 
of PD‑L1 expression
PTEN/PD‑L1 axis
Strong evidence has linked the deletion of the PTEN 
gene to tumor PD-L1 expression in various types of can-
cer [49–51]. Breast cancer (BC) cells increase PD-L1 
expression in macrophages to evade the immunologi-
cal response, cooperating with cancer cells through a 
PTEN-mediated signaling pathway. Exosomes generated 
from BC cells are enriched in miR-27a-3p, contribut-
ing to this process [52]. Similarly, miR-23a-3p, abundant 
in exosomes produced from hepatocellular carcinoma 
(HCC), reduces the expression of PD-L1 in TAMs 
through PTEN-mediated signaling pathways [53]. When 
comparing miR-183-5p exosomes produced by intra-
hepatic cholangiocarcinoma cells with primary human 
intrahepatic bile duct epithelial cells, higher expression 
was observed in the HCC. This encourages the activa-
tion of PD-L1 in macrophages through the PTEN/AKT/
PD-L1 signaling pathway, enhancing tumor immune 
evasion and reducing patient survival [54]. Surprisingly, 
TAMs possess higher levels of PD-L1 than colorec-
tal cancer (CRC) cells, and CRC cells stimulate PD-L1 
expression in macrophages by controlling the PTEN/
AKT pathway via miR-21-5P exosomes (Table 1) [55].

STAT/PD‑L1 axis
The Signal Transducer and Activator of Transcription 
(STAT) family, consisting of numerous members, exerts 
a significant regulatory influence on tumor proliferation, 
immune evasion, and metastasis [65]. Loading exosomes 
with lysyl oxidase-like 4 (LOXL4) produced by liver can-
cer cells promotes macrophage PD-L1 expression, medi-
ated by interferon and STATs [56]. Microparticles loaded 
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with PD-L1 in triple-negative breast cancer stimulate the 
TBK1/STAT6 signaling pathway, polarizing internalized 
macrophages into an immunosuppressive phenotype 
and promoting the establishment of immunosuppres-
sive features in the tumor microenvironment [66]. Mac-
rophage-derived exosomes promote PD-L1 expression in 
laryngeal squamous cell carcinoma through the STAT3 
transcription pathway, which was further confirmed by 
the addition of STAT3 inhibitors [57]. Glioblastoma plays 
a crucial role in inducing the formation of an immuno-
suppressive phenotype in macrophages through the 
STAT3-mediated signaling pathway, facilitating dynamic 
communication between malignant tumor cells [58]. 
Melatonin-exposed HCC cells reduce PD-L1 expres-
sion in macrophages via the STAT3 pathway mediated 
by exosomes, thereby altering the characteristics of 
exosomes initially promoting liver tumor growth [59]. 
Exosomes from CRC carrying miR-200a and miR-21-5p 
also stimulate the STAT1 pathway within the mac-
rophage, which is crucial in encouraging PD-L1 expres-
sion [55].

TOLL/PD‑L1 axis
The intricate network of TLR-mediated signaling path-
ways is a vital component in the complex landscape of 
cancer development. As a pattern recognition receptor, 
TLRs serve as the crucial link between innate and adap-
tive immunity, allowing for effective immune responses 
against invading pathogens and malignant cells alike 
[67]. The expression of PD-L1 in M2 macrophages 
through TLR4-dependent signaling effectively shapes 
the immunosuppressive phenotype of macrophages, 
preventing T cell proliferation and providing oppor-
tunities for tumor immune escape. These secretory 
autophagosomes, derived from malignant tumors, are 
found in the pleural and abdominal fluids of tumors 
[60]. Exosomes secreted by non-small cell lung cancer 
have an immunosuppressive effect on macrophages, 
dependent on PD-L1 activation via TLR2 signaling 
[62]. Exosomes produced by tumor cells in chronic 
lymphocytic leukemia activate TLR7 to mediate PD-L1 
production in monocytes and release cytokines that 
stimulate tumor growth [63].

Fig. 1 Mechanism of exosomes mediated TAM regulation of PD-L1 expression. Exosomes regulate the expression of tumor cells and TAM PD-L1 
mainly through two ways: (a) Direct delivery dependent on PD-L1; (b) By acting on PTEN, STAT, TOLL receptor, NF-κB mediated signaling pathways
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NF‑κB/PD‑L1 axis
NF-κB has long been recognized as a key player in 
inflammatory-mediated tumorigenesis [68], and accu-
mulating evidence suggests that activated NF-κB is a key 
regulator of different functional states of TAMs and can 
directly mediate TAM PD-L1 expression [69]. Morris-
sey et  al. also emphasized the role of NF-κB-dependent 
pathways in the action of tumor-derived exosomes on 
TAMs, which, in addition to Toll-like receptors, medi-
ate enhanced glycolysis and lactate production through 
independent activation of NOS2 and HIF-1α, thereby 
promoting M2-type macrophage polarization. Increased 
lactate-driven de novo synthesis of PD-L1 expression is 
observed in TAMs, which mediates pre-metastatic niche 
formation; this effect is unrelated to exosome PD-L1 
translocation [62].

Factors affecting exosomes‑mediated TAMs regulation 
of PD‑L1‑mediated immunosuppression
Cellular stress environment
The ER stress marker was closely and positively related 
to the expression of M2 macrophages PD-L1 in oral 
squamous cell carcinoma. In  vivo and in  vitro experi-
ments revealed that co-culturing with tumor cells sub-
jected to ER stress could promote PD-L1 expression 
in macrophages [70]. Similarly, ER stress was found to 
upregulate PD-L1 expression in macrophages in breast 
cancer (BC) and hepatocellular carcinoma (HCC) 

tissues through exosomes [52, 53]. Reactive oxygen spe-
cies (ROS) generated by redox reactions in the tumor 
immune microenvironment played a significant role in 
regulating PD-L1 on macrophages. Elevated reactive oxy-
gen species (ROS) downregulated exosomal miR-155-5p 
expression in tumor cells, impacting PD-L1 expression. 
Neutralization with N-acetyl-L-cysteine (NAC) restored 
miR-155-5p levels, reducing macrophage migration and 
tumor infiltration while enhancing CD8 T cell function 
[71]. Tumor-derived exosomes were shown to produce 
lactate, which played a crucial role in metabolic repro-
gramming and increased macrophage PD-L1 expression 
through NF-κB signaling [62]. The immunosuppressive 
effects of adenosine in HCC were specific. Exosomes 
from CD73-expressing liver cancer cells (circTMEM181 
exosomes) induce macrophages to upregulate CD39 
expression, leading to adenosine accumulation and 
changes in the immune microenvironment, forming 
resistance to anti-PD-1 drugs (Table 2) [75].

Key genes and proteins
Golgi apparatus protein 1 was found to transport PD-L1 
protein and upregulate PD-L1 expression in mac-
rophages in hepatocellular carcinoma (HCC), thus affect-
ing the response of liver cancer to anti-PD-L1 therapy. 
This process depended on proteasomes to reduce PD-L1 
protein consumption and promote PD-L1 extracel-
lular transport by inhibiting Rab27b. Treatment with 

Table 1 Exosomes that regulate PD-L1 immunosuppression

Abbreviations: LOXL4 Lysyl oxidase-like 4, GC gastric cancer, BC breast cancer, HCC hepatocellular carcinoma, CRC  colorectal cancer, AML acute myeloid leukemia, LUAD 
lung adenocarcinoma cell, CLL Chronic lymphocytic leukemia, MM multiple myeloma, TLR Toll-like receptor

Axis Exosome cargo Generate from Signaling pathway Action on Reference

PTEN/PD-L1 miR-92a-3p GC miR-92a-3p-PTEN-EPK-PD-L1 TAM [45]

miR-183-5p intrahepatic cholangiocarcinoma miR-183-5p-PTEN-AKT-PD-L1 TAM [54]

miR-27a-3p BC miR-27a-3p- MAGI2- PTEN-PI3K-AKT- PD-L1 TAM [52]

miR-23a-3p HCC miR-23a-3p- PTEN- AKT TAM [53]

miR-21-5p/ miR-200a CRC miR-21-5p/ miR-200a- PTEN-AKT-PD-L1 TAM [55]

STAT/PD-L1 LOXL4 HCC LOXL4- IFN- STATs- PD-L1 TAM [56]

miR-21-5p/ miR-200a CRC miR-21-5p/ miR-200a- SCOC1-STAT1-PD-L1 TAM [55]

/ Laryngeal carcinoma STAT3- PD-L1 TAM [57]

/ glioblastoma-derived stem cells p-STAT3 and/or p44/42 MAPK (Erk1/2)- PD-L1 TAM [58]

/ HCC STAT3-PD-L1 TAM [59]

/ / TLR4-MyD88-p38-STAT3-PD-L1 TAM [60]

hca-circRNA-001264 AML hca-circRNA-001264- RAF1- p38- STAT3-PD-L1 TAM [61]

TOLL/PD-L1 / LUAD TLR2- NF-kB- PD-L1 TAM [62]

/ / TLR4-MyD88-p38-STAT3-PD-L1 TAM [60]

hY4 CLL hY4- TLR7- PD-L1 TAM [63]

NF-κB/PD-L1 / LUAD TLR2- NF-kB- PD-L1 TAM [62]

Others / TAM P38MAPK- PD-L1 GC [46]

IL-32γ MM PR3-PFKFB3-JAK1-PD-L1 TAM [64]
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proteasome inhibitors reduced PD-L1 expression, pro-
viding evidence for the critical role of Golgi protein 1 in 
promoting the formation of tumor immunosuppressive 
environments [73]. CMTM6, an essential protein regulat-
ing PD-L1 expression, has gained unprecedented atten-
tion [76]. Pang et al. reported that CMTM6 was closely 
associated with macrophage infiltration and PD-L1 
expression in oral squamous cell carcinoma. Transfer of 
CMTM6 to macrophages through exosomes promoted 
ERK1/2-mediated M2 polarization [77]. The expression 
of CMTM6 and PD-L1 in colorectal cancer (CRC) with 
mismatch repair defect was positively correlated with the 
density of M2 macrophages. The expression of CMTM6 
in M2 macrophages was the best biomarker for predict-
ing the effectiveness of PD-1/PD-L1 inhibitors in CRC 
patients [78].

Others
Sulfasalazine has been found to disrupt the redox bal-
ance of tumor cells, leading to increased production 
of reactive oxygen species and inhibition of tumor pro-
gression. In melanoma, sulfasalazine inhibits cystine-
glutamate exchange, which promotes the production of 
two transcription factors, IRF4 and EGR1, that regulate 
PD-L1 expression. This enhances the secretion of PD-L1 
exosomes and induces M2 polarization in macrophages, 
reducing sensitivity to immune checkpoint blockade 
(ICB) treatment [72]. Counteracting the effect of LOXL4 
exosomes on increasing macrophage PD-L1 expression in 
hepatocellular cancer can be achieved by using copper or 
hydrogen peroxide scavengers [56]. In vitro experiments 
simulating the mechanical strain experienced by tumor 
cells during growth have shown that it promotes the 
release of PD-L1 exosomes from breast cancer cells in the 

tumor microenvironment, which are then internalized by 
macrophages [74]. Patients infected with hepatitis B virus 
produce exosomes containing viral DNA and proteins, 
which upregulate PD-L1 expression in endocytic mono-
cytes/macrophages, contributing to immune suppression 
[79]. Melatonin, known for its immune regulatory effects, 
has been utilized in tumor treatment. In hepatocellular 
carcinoma cells, melatonin therapy reverses the down-
regulation of macrophage PD-L1 expression through 
the inhibition of the STAT3-mediated signaling pathway 
[59].. Researchers studying non-small cell lung cancer 
patients with varying degrees of obstructive sleep apnea 
have found that intermittent hypoxia induces hypoxia-
inducible factor-1, which enhances macrophage PD-L1 
expression induced by exosomes [80].

Discussion
Tumors have the tendency and capability to regulate 
the expression of PD-L1 in tumor-associated mac-
rophages (TAMs). TAMs undergo a transformation into 
tumor-promoting phenotypes after being influenced 
by exosomes released by tumor cells. This transforma-
tion then establishes a positive feedback loop through 
exosomes, leading to increased PD-L1 expression in 
tumor cells. This article reviews the mechanism of 
exosomes regulating PD-L1 expression between tumor-
associated macrophages (TAM) and tumor cells. It has 
been observed that PTEN, STAT, TLR and NF-κB have 
the highest frequency of occurrence in different types 
of tumor signaling pathways, presenting potential tar-
gets for inhibiting TAMs’ regulation of the PD-1/PD-L1 
immunosuppressive pathway. The specificity of exosomes 
is determined by various factors such as cell type, cellu-
lar state, and environmental factors including mechani-
cal stress, ER stress, reactive oxygen species, adenosine, 
lactic acid, among others. Proteins like Rab27, TP53, 
and CMTM6 play key roles in regulating the formation 
of exosomes that carry information involved in PD-L1 
expression regulation. Factors like melatonin, sulfasala-
zine, hepatitis B virus, and obstructive sleep apnea also 
influence the level of PD-L1 expression regulated by 
TAMs through exosomes to varying degrees. These find-
ings provide valuable research directions for targeting 
exosome-mediated PD-L1 expression and blocking the 
immunosuppressive effect of TAMs on tumor PD-L1.

Targeting TAMs to enhance the efficacy of immu-
notherapy has been clinically validated through two 
main strategies: TAMs consumption and TAMs reedu-
cation. Due to the unique biological characteristics of 
exosomes, which are easily customizable and carry sub-
stances, targeting or modifying exosomes has emerged 
as a novel approach to inhibiting the M2 polarization 
of TAMs, achieving TAMs reeducation, and improving 

Table 2 Factors affecting the regulation of PD-L1 expression 
exosomes

Abbreviations: ER endoplasmic reticulum, H2O2 hydrogen peroxide, xCT cystine-
glutamate exchange, GOLM1 Golgi membrane protein 1, OSCC Oral squamous 
cell carcinoma, NSCLC non-small-cell lung cancer, HCC hepatocellular carcinoma

Influencing factors tumour function References

ER stress OSCC Up [70]

ER stress. BC Up [52]

ER stress HCC Up [53]

oxygen species ovarian cancer Up [71]

lactate NSCLC Up [62]

H2O2 HCC Up [56]

xCT melanoma Down [72]

GOLM1 HCC Up [73]

mechanical forces BC Up [74]

melatonin HCC Down [59]
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the effectiveness of tumor treatment [81–83]. Exosomes 
can overcome the toxicity of nanoparticles and limita-
tions of phagocytic clearance by targeting specific car-
goes to lesions and tissues through cellular phagocytosis 
and homing mechanisms [84]. CpGODN, a tumor vac-
cine modified by apoptotic bodies, not only polarizes M1 
macrophages to produce more tumor suppressor factors 
but also enables these polarized macrophages to infect 
nearby macrophages, leading to a cascade reaction of 
tumor inhibitory effects [85]. Exosomes play a crucial role 
in controlling macrophage dynamic polarization in vivo, 
allowing them to transition from a pro-tumor phenotype 
to an anti-tumor one [86]. Exosomes are engineered and 
modified to deliver functional molecules that re-educate 
TAMs [87–89]. Researchers often target microRNA and 
chemotherapy drugs for exosome payloads, and anti-
sense oligonucleotides targeting key transcription factors 
and inhibitors targeting enzymes are also being consid-
ered [90–93]. Transfection of genes expressing pigment 
epithelial-derived factors into parental cells resulted in 
the ability of derived exosomes to promote the repolari-
zation of macrophages from the M2 phenotype to the 
M1 phenotype [94]. Ovarian cancer cells overexpressing 
ETS1 secrete exosomes that are more easily internalized 
by macrophages, promoting M2 polarization to facilitate 
tumor cell metastasis to the omentum. Targeting Integrin 
αVβ5, which plays a crucial role in inhibiting the polari-
zation process, with cilengitide weakens the driving effect 
of these exosomes [95].

It is noteworthy that engineering modifications of 
extracellular vesicles derived from tumor-associated 
macrophages (TAMs) offer several advantages in tumor 
treatment compared to vesicles derived from other 
cell types [96, 97]. The investigation into the modifica-
tion of exosomes derived from tumor-associated mac-
rophages (TAMs) to enhance the effectiveness of drug 
delivery is experiencing rapid growth, particularly in 
the context of M1 subtype, showcasing notable effi-
cacy in reversing tumor chemoresistance [98–101]. For 
instance, Choo et al. successfully repolarized M2 TAMs 
into M1 macrophages using exosomes derived from 
macrophages, thereby enhancing the anti-tumor effi-
cacy of anti-PD-L1 therapy [102]. By carrying anti-PD-
L1 nanobodies or binding with anti-CD73 antibodies, 
exosomes derived from M1 TAMs acquire the ability 
to reverse tumor immune suppression and increase 
the sensitivity of tumor cells to radiation therapy [103, 
104]. Hybrid cells combining macrophages and tumor 
cells can produce exosomes that effectively activate T 
cells to kill tumor cells, combining the immune-stim-
ulating abilities of macrophages with the “homing abil-
ity” of circulating tumor cells. When combined with 
anti-PD-L1 therapy, these hybrid exosomes inhibit 

tumor progression and provide insights into personal-
ized tumor immunotherapy [105]. Additionally, it is 
worth mentioning that Artemisia-derived nanovesicles 
have been found to enhance the effectiveness of PD-L1 
immune checkpoint inhibitors, suggesting that cross-
species approaches with common biological character-
istics hold promise for tumor treatment [106].

The clinical application of PD-L1/PD-1 immune 
checkpoint inhibitors has transformed the treatment of 
advanced unresectable tumors, surpassing traditional 
radiotherapy and chemotherapy. However, immuno-
therapy still poses challenges, such as low response 
rates and drug resistance. Therefore, researchers must 
focus on screening patients who respond effectively to 
immunotherapy and developing strategies to improve 
and maintain drug efficacy. In recent years, the discov-
ery of the tumor-promoting effect of immune cells in 
the tumor microenvironment has provided important 
clues for understanding tumor progression. To further 
identify and expand the population that responds to 
immune therapy, it is necessary to conduct more in-
depth research on the mechanism of tumor immune 
suppression mediated by TAMs, providing more 
diverse treatment options. TAMs are among the most 
abundant immune cells in the tumor microenviron-
ment, and their dynamic polarization and phagocytosis 
suggest that exosomes play a crucial role in TAM-
mediated tumor PD-L1/PD-1 immunosuppression. The 
evolving understanding of exosomes, from metabolic 
waste transporters to important communication medi-
ators between cells, has deepened research in the field 
of cancer. It is anticipated that exosomes will signifi-
cantly contribute to suppressing TAMs and enhancing 
PD-L1 immune development.
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