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Abstract 

Background Intracellular DNA-sensing pathway cGAS-STING, inflammasomes and pyroptosis act as critical natural 
immune signaling axes for microbial infection, chronic inflammation, cancer progression and organ degeneration, 
but the mechanism and regulation of the crosstalk network remain unclear.

Main body of the abstract Cellular stress disrupts mitochondrial homeostasis, facilitates the opening of mitochon-
drial permeability transition pore and the leakage of mitochondrial DNA to cell membrane, triggers inflammatory 
responses by activating cGAS-STING signaling, and subsequently induces inflammasomes activation and the onset 
of pyroptosis. Meanwhile, the inflammasome-associated protein caspase-1, Gasdermin D, the CARD domain of ASC 
and the potassium channel are involved in regulating cGAS-STING pathway. Importantly, this crosstalk network 
has a cascade amplification effect that exacerbates the immuno-inflammatory response, worsening the pathological 
process of inflammatory and autoimmune diseases. Given the importance of this crosstalk network of cGAS-STING, 
inflammasomes and pyroptosis in the regulation of innate immunity, it is emerging as a new avenue to explore 
the mechanisms of multiple disease pathogenesis. Therefore, efforts to define strategies to selectively modulate 
cGAS-STING, inflammasomes and pyroptosis in different disease settings have been or are ongoing. In this review, we 
will describe how this mechanistic understanding is driving possible therapeutics targeting this crosstalk network, 
focusing on the interacting or regulatory proteins, pathways, and a regulatory mitochondrial hub between cGAS-
STING, inflammasomes, and pyroptosis.

Short conclusion This review aims to provide insight into the critical roles and regulatory mechanisms of the cross-
talk network of cGAS-STING, inflammasomes and pyroptosis, and to highlight some promising directions for future 
research and intervention.
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Background
Stimulator of interferon genes (STING) is a cell mem-
brane DNA sensor widely distributed in the endoplas-
mic reticulum (ER) of mammalian immune cells, which 
is a vital mediator to regulate innate immune responses. 
Activation of STING confers host immunity and is key to 
the clearance of a variety of pathogens, including viruses 
and bacteria [1–3]. As a DNA recognition receptor, 
cyclic GMP-AMP synthase (cGAS) recognizes and binds 
double-stranded DNA (dsDNA) of both foreign and self-
origin without sequence differences. cGAS enzymatically 
converts adenosine triphosphate (ATP) and guanosine 
triphosphate (GTP) to 2’-3’ cyclic GMP-AMP (cGAMP). 
cGAMP acts as a second messenger to potently agonize 
the ER membrane protein STING. STING subsequently 
recruits and activates TANK-binding kinase 1 (TBK1) to 
initiate downstream signaling, which in turn promotes 
the phosphorylation of interferon (IFN) regulatory factor 
3 (IRF3), while STING promotes nuclear factor-kappa B 
(NF-κB) phosphorylation by activating IκB kinase (IKK). 
IRF3 is then dimerized and translocated to the nucleus 
with NF-κB to induce type I IFN and other cytokines 
[4–7]. We note that major drug discovery efforts are cur-
rently underway to explore and identify agonists of the 
cGAS-STING pathway as vaccine adjuvants or as anti-
cancer immunostimulants [8–11]. In immunocompetent 
mice with established syngeneic colon tumors, intra-
venous administration of a synthetic, non-nucleotide-
based diABZI STING agonist exhibits potent anti-tumor 
activity [12]. Vaccines adjuvated with STING agonists 
have been shown to elicit potent immune responses 
against infection and cancer [13]. The natural STING 
agonist, cGAMP, is a potent adjuvant that improves the 
immunogenicity of nanoparticulate Influenza A vaccines 
by enhancing humoral, cellular and mucosal immune 
responses in mice [14, 15]. In addition, excessive STING 
activation has been identified as contributing to the pro-
gression of various inflammatory diseases [16–19].

Inflammasomes, such as NACHT, LRR, and PYD 
domains-containing protein 3 (NLRP3) and absent in 
melanoma 2 (AIM2), initiate the release of pro-inflam-
matory cytokines upon receipt of danger signals to acti-
vate the innate immune response and are essential for 
the clearance of pathogens or damaged cells. NLRP3 is 
an intracellular sensor that recognizes a wide variety of 
microbial motifs, endogenous danger signals and envi-
ronmental irritants, triggering the formation and activa-
tion of the NLRP3 inflammasome. A two-step process 
of priming and activation is required for NLRP3 inflam-
masome [20]. In the priming stage, NF-κB is first acti-
vated by recognition receptors such as Toll-like receptors 
(TLRs) that recognize pathogen-associated molecular 
patterns (PAMPs) or danger signaling molecular patterns 

(DAMPs), followed by upregulation of NLRP3 and pro-
IL-1β [21]. During the activation stage, the inflamma-
some complex (NLRP3-ASC-caspase-1) is assembled 
and activated by various inducers, such as viral, bacte-
rial, various interventions [22–24]. Once activated, cas-
pase-1 subsequently functions to result in pyroptosis and 
cleavage of the proinflammatory cytokines pro-IL-1β and 
pro-IL-18 into their bioactive forms IL-1β and IL-18, to 
amplify the inflammatory response [25]. Upon the acti-
vation of AIM2 inflammasome, the effector protein cas-
pase-1 is recruited to the complex and cleaves gasdermin 
D (GSDMD) to release the GSDMD-N fragment, induc-
ing pyroptosis and the release of cellular contents [26]. 
Pyroptosis is a type of pro-inflammatory programmed 
cell death that is marked by cell dilation, formation of 
plasma membrane pores, rapid cell degradation, and the 
release of inflammatory cytokines [27]. Pyroptosis con-
tributes to the protection of the body from infections 
such as bacteria, but excessive pyroptosis can lead to 
chronic inflammation and immune disorders [28–31].

The last decade has witnessed a dramatic apprecia-
tion of inflammasomes, pyroptosis and cGAS-STING 
as critical innate immune components that orchestrate 
host immune homeostasis. Although inflammasomes, 
pyroptosis and cGAS-STING are relatively independent 
innate immune signaling pathways, there is an intracellu-
lar signaling network between cGAS-STING, inflammas-
omes and pyroptosis. In this review, we focus on recent 
findings regarding the impact of this crosstalk network 
as a primary driver of inflammatory diseases. We briefly 
highlight the current state of understanding of signaling 
through the cGAS-STING, inflammasomes, and pyrop-
tosis pathways, summarize the molecular mechanisms 
in different pathophysiological contexts, and analyze 
their involvement in preclinical disease models. On this 
basis, the key molecular events underlying the crosstalk 
between cGAS-STING, inflammasomes and pyroptosis 
were elucidated. In addition, in view of the important 
role of this crosstalk network in the innate immune 
response, we also concentrate on the emergence of phar-
macological approaches that target the crosstalk network 
and demonstrate their potential for clinical application. A 
better understanding of the crosstalk network of cGAS-
STING, inflammasomes and pyroptosis will guide the 
development of therapeutic strategies to combat infec-
tious and inflammatory diseases.

Inflammasomes and pyroptosis regulate 
cGAS‑STING
AIM2 inflammasome regulates cGAS‑STING
The STING-type I IFN and AIM2 inflammasome acti-
vated by DNA ligands may be crucial to elucidate (Fig. 1). 
In dendritic cells (DCs) and macrophages deficient in 
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AIM2, ASC, or caspase-1, cGAMP production, STING 
aggregation, and TBK1 and IRF3 phosphorylation were 
significantly enhanced upon cytosolic DNA exposure 
[32], demonstrating that the inhibition of the STING 
pathway by the AIM2 impacts upstream STING, thus 
reducing the entire STING pathway activation cascade. 
Similarly, AIM2 deficiency led to large aggregates of mac-
rophages  (CXCR3+CD206+) activate the STING-TBK1-
IRF3/NF-κB pathway in response to dsDNA, resulting in 
pro-inflammatory cytokines maturation and secretion, 
including C-X-C motif chemokine 10 (CXCL10), TNFα, 
and IFN-β [33]. Mycobacterial infection of  Aim2−/− 
mice induced the production of large amounts of IFN-β 
and depressed IFN-γ secretion through suppressing the 
interaction between STING and downstream TBK1 in 
macrophages and DCs [34], resulting in higher infection 
loads and more severe pathology. Thus, these findings 
suggest that the AIM2 negatively regulates the cGAS-
STING-driven production of type I IFN upon stimulation 
with various DNA forms.

AIM2‑like receptors (ALRs) regulate cGAS‑STING
ALRs are essential for the type I IFN response to endog-
enous host DNA and determine the course of infections, 
inflammatory diseases, aging, and cancer [35–37]. Stud-
ies have shown that activation of ALRs is associated 
with host protection following recognition of bacterial 
DNA, a process that can occur via direct DNA sensing 
or indirect sensing of pathogen-associated intracellular 
alterations [36]. Some members of the ALRs gene fam-
ily were involved in the cGAS-STING pathway (Fig.  1), 
e.g., IFI204, IFI205 and the human homologue of IFI204, 
IFI16 [38–40]. Most known ALRs are excellent candi-
dates for innate immune DNA receptors because they 
have both a pyrin domain, which mediates protein-
protein interactions, and a HIN domain, which directly 
bind to DNA [41]. The pyrin-only protein PYR-A and 
the HIN-only protein IFI202b are exceptions among the 
murine ALRs that potently activate STING [38]. The 
p202 protein encoded by the IFI202 gene, IFI204 and 
IFI205 have been shown to be negative regulators of 

Fig. 1 Inflammasomes and pyroptosis regulate cGAS-STING. AIM2 and NLRP3 proteins, AIM2-like receptors, caspase-1, GSDMD, the CARD domain 
of ASC, potassium channel, and Nod-like receptors are involved in regulating cGAS-STING pathway
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AIM2 inflammasome, which cooperated to sense cyto-
solic dsDNA to produce a strong type I IFN response 
through activation of cGAS-STING [42–44]. IFI202b 
expression levels likely contribute to mouse strain-spe-
cific susceptibility to Theiler’s murine encephalomyelitis 
virus (TMEV)-induced central nervous system (CNS) 
lesions [45]. In accordance with this, TMEV-infected 
IFN-β−/− C57BL/6 mice show an impaired virus elimina-
tion capacity and 70% of these mice develop mild demy-
elination [45]. The mouse ALR IFI205 senses self-DNA 
derived from retrotransposons in the cytoplasm of mac-
rophages and activates the type I IFN signaling pathway 
via STING [42]. Notably, the p200 family proteins, rep-
resented by IFI204, which is well known as an ALR and 
murine ortholog of IFI16 [46, 47], were markedly induced 
in bone marrow-derived dendritic cells (BMDCs) after 
infection by mouse hepatitis coronavirus (MHV), which 
belongs to the same genus betacoronavirus as SARS-CoV 
and MERS-CoV to mimic the acute RNA virus infection 
[48]. Moreover, the consistent phenomena in HSV-1-in-
fected A549 cells with  IFI16−/−, indicating that IFI204 
might facilitate cGAS-STING DNA sensing pathway that 
leads to IRF3 activation during the infection of HSV-1 
[48]. Similarly, knockdown of IFI204 by small interfer-
ing RNA significantly inhibited IFN-β release in response 
to bacterial infections such as Francisella novicida [44], 
Mycobacterium bovis [49], Staphylococcus aureus [50], 
demonstrating IFI204 is essential for host defense against 
intracellular and extracellular bacterial infection.

IFI16, a sequence-independent nuclear innate sen-
sor ALR, was also proposed to stimulate other cellular 
pathways upon its binding to viral DNA [40]. Several 
reports assert that DNA of herpesviruses Kaposi’s sar-
coma-associated herpesvirus (KSHV), Epstein-Barr virus 
(EBV), and herpes simplex virus 1 (HSV-1) during infec-
tion assembles an IFI16-containing oligomeric structure, 
leading to the production of active caspase-1 and IL-1β 
[51, 52]. Furthermore, during HSV-1 infection, IFI16 rec-
ognizes HIV-1 proviral DNA in nuclei of infected human 
foreskin fibroblasts (HEFs), inducing IFN-β production 
via the cytoplasmic STING-TBK1-IRF3 pathway [51, 53]. 
Besides, IFI16 was also reported to sense Listeria mono-
cytogenes DNA in human macrophages, inducing IFN-β 
expression in a manner dependent on cGAS-STING [54].

NLRP3 inflammasome regulates cGAS‑STING
NLRP3 inflammasome is composed of the cytoplasmic 
sensor NLRP3, the adaptor ASC and the effector cas-
pase-1. Elevated p-TBK1 and p-IRF3 in colonic tissues 
and enhanced IFN-β levels after NLRP3 deficiency were 
observed in the mice subjected to whole abdomen radia-
tion by timed exposure to X-ray at a cumulative dose 
[55], suggesting that NLRP3 deficiency led to an increase 

in cGAS-STING-mediated IFN-β production by radia-
tion. NLRP3 deficiency increased the production of type I 
IFN and enhanced the resistance of the host to Zika virus 
in vitro and in vivo [56], which unraveled a novel antag-
onistic mechanism by which Zika suppresses the host 
immune response by manipulating the interplay between 
inflammasome and type I IFN signaling, which might 
guide the rational design of therapeutics in the future.

Caspases regulate cGAS‑STING
Increased IFN production in response to DNA viral 
infection, but not RNA viral attack, was detected in 
the inflammatory response of Casp-1−/− macrophages 
[57]. Caspase-1 interacted with cGAS during canonical 
and non-canonical inflammasome activation, cleaved 
cGAS and inhibited STING-mediated IFN production 
[57]. Upon inflammasome activation, caspase-1 binded 
directly to cGAS via its p20 domain and cleaved human 
cGAS at the D140/157 site, leading to a reduction in 
cGAMP production and cytokine expression. Also, cas-
pase-4 and caspase-5 in humans and caspase-11 in mice 
cleaved cGAS in lipopolysaccharide (LPS)-induced acti-
vation of non-canonical inflammasome [57]. Consist-
ently, induction of cGAS cleavage during Zika virus 
infection by caspase-1 inhibited phosphorylation of 
TBK1 and IRF3 and reduced type I IFN production, 
thereby evading the antiviral response [56]. In conclu-
sion, canonical and non-canonical inflammasome acti-
vation induce the production of active caspase-1, which 
interacts with cGAS and in turn inhibits cGAS-STING-
mediated type I IFN production (Fig. 1).

GSDMD regulates cGAS‑STING
The pore forming activity of GSDMD is located in gas-
dermin-N domain, while the gasdermin-C domain inhib-
its its pore forming activity. The release of gasdermin-N 
domain migrated to the cell membrane, formed pores 
with an inner diameter of 10–15 nm, thereby promoting 
pyroptosis [58–61]. Mice deficient in GSDMD exhib-
ited an enhanced IFN-β response to Francisella novicida 
infection, and GSDMD negatively regulated the IFN-β 
response in a manner independent of pyroptosis and 
IL-1β [62]. GSDMD activated by AIM2 inflammasome 
depleted intracellular  K+ through the membrane pores, 
which is sufficient and essential for the inhibition of the 
cGAS-dependent IFN-β response, and thereby inhibited 
the cGAS-driven  type I IFN response to macrophage 
DNA and F. novicida infection [62]. In summary, the 
GSDMD-K+ efflux axis targets cGAS to reduce the syn-
thesis of cGAMP, thereby inhibiting STING signaling and 
reducing IFN-β production (Fig. 1).
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The CARD domain of ASC regulates cGAS‑STING
The ligand protein ASC consists of two domains, a PYD 
domain at the N-terminal and a CARD domain at the 
C-terminal. ASC recruits caspase-1 containing the CARD 
domain via CARD-CARD interactions to form inflamma-
some. ASC deficiency led to increased IFN production 
during DNA virus infection [57]. The CARD domain of 
ASC in AIM2 inflammasome was recently found to bind 
to the N-terminal domain of STING, thereby inhibiting 
the interaction of STING with TBK1 and thus negatively 
regulating the cGAS-STING signaling pathway [34]. 
NLRC3 protein containing the CARD domain blocked 
type I IFN response and IL-1β secretion by competing 
with ASC for caspase-1 binding, disrupting ASC speck 
formation, and interfering with NLRP3 inflammasome 
assembly and activation [63]. ASC in myeloid-derived 
macrophages and dendritic cells inhibited the interaction 
of STING with downstream TBK1, thereby reducing the 
induction of type I IFN [34]. Interestingly, a negative cor-
relation between ASC expression and IFN-β levels was 
also observed in tuberculosis patients [34]. In summary, 
the CARD domain of ASC is essential for regulating the 
cGAS-STING signaling pathway (Fig. 1).

Nod‑like acceptors (NLRs) regulate cGAS‑STING
Except as described above, there are various other 
inflammasomes, such as NLRX1, NLRP2, NLRC3, 
NLRC4, NLRC5, NLRP6, NLRP12 [64–70]. Recent 
studies have shown the emerging roles of NLRs in the 
cGAS-STING signaling pathway. Most NLRs posi-
tively influence inflammatory responses, particularly 
the inflammasome NLRs. However, emerging studies 
have revealed that NLRC3 negatively affect type I IFN 
response by sequestering and attenuating STING acti-
vation [63, 67, 68]. NLRC3 binds viral DNA and other 
nucleic acids via its LRR domain, which enhances the 
ATPase activity of nucleic acids. Furthermore, the ATP 
binding by NLRC3 reduces its interaction with STING, 
resulting in decreased production of IFN-β and IL-6 
[67, 68]. NLRC3 also interacts with pro-caspase 1 and 
ASC through its CARD domain, thereby preventing 
the formation of NLRP3 and NLRC4 inflammasomes 
and further inhibiting cell pyroptosis [63]. Similar to 
NLRC3, NLRX1 interacts with STING through its 
nucleotide-binding domain (NBD), which results in a 
block of STING-TBK1 interaction thereby inhibiting 
TBK1 activation required for type I IFN production 
[69]. NLRP2 directly interacts with TBK1, disrupting 
the TBK1-IRF3 interaction and interfering with TBK1-
induced IRF3 phosphorylation, thereby inhibiting IFN 
signaling [70]. NLRP4 negatively modulates type I IFN 
signal transduction through activation of TBK1, which 
is degraded by K48-associated ubiquitination by the 

E3 ubiquitin ligase DTX4 [71]. NLRP11 limits type I 
IFN activation by impairing TBK1-induced IFN-β pro-
moter activity, suggesting its potential involvement 
in the cGAS-STING signaling pathway [72]. NLRP14 
physically interacted with STING components and 
facilitated the ubiquitination and degradation of TBK1, 
which mediated the interactions and inhibitory func-
tion [73]. NLRP6 binds viral RNA via RNA helicase 
Dhx15 and interacts with MAVS (mitochondrial anti-
viral signaling) to trigger the production of type I IFN 
[74]. NLRC4 promotes the cGAS-STING pathway 
by enhancing TBK1 interaction with the E3 ubiquitin 
ligase CBL to promote K63-linked polyubiquitination 
and subsequent activation of TBK1 [75, 76]. Further-
more, NLRC5 has the ability to stimulate the produc-
tion of type I IFN and pro-inflammatory cytokines by 
fibroblasts and primary human cells when infected 
with cytomegalovirus or Sendai virus [77, 78].

cGAS‑STING regulates inflammasomes 
and pyroptosis
cGAS‑STING regulates NLRP3 inflammasome 
and pyroptosis
The cGAS-STING-NLRP3 signaling pathway is a specific 
mechanism that facilitates the activation of the NLRP3 
inflammasome and the secretion of IL-1β in response to 
DNA virus infection and cytoplasmic DNA stimulation 
(Fig. 2). In human myeloid cells, the cGAS-STING path-
way was necessary for cytoplasmic DNA-induced NLRP3 
activation during viral and bacterial infection [79]; simi-
larly, studies have shown that the STING-NLRP3 axis is 
critical for the pro-inflammatory response induced by 
Chlamydia trachomatis and aged macrophages [80, 81]. 
Furthermore, STING-IRF3 could trigger LPS-induced 
cardiac dysfunction, inflammation and pyroptosis by acti-
vating NLRP3 in mice [82]. In addition, in septic mouse 
neutrophils, downregulation of NAT10 inhibited ULK1 
expression, activated the cGAS-STING pathway, induced 
NLRP3 inflammasome activation, and thus promoted 
neutrophil pyroptosis [83]. Moreover, the cGAS-STING 
pathway was activated in myelodysplastic syndromes 
(MDS) to induce IFN-stimulated genes (ISG), which trig-
gered the activation of NLRP3 inflammasome [84].

During viral and bacterial infections in human myeloid 
cells, NLRP3 was tightly linked to the upstream cGAS-
STING pathway, inducing NLRP3 inflammasome activa-
tion and coordinating lysosomal cell death (LCD) in a  K+ 
efflux-dependent manner [79]. Cytoplasmic DNA was 
recognized by cGAS, and then STING was activated and 
transported to the lysosome, triggering membrane per-
meation and causing LCD [85]. Lysosomal lysed cathep-
sin leaked into the cytoplasm, altered plasma membrane 
permeability, activated  K+ efflux upstream of NLRP3 
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and ultimately induced pyroptosis [79], which triggered 
a series of inflammatory cascade responses. In summary, 
DNA-triggered the NLRP3 inflammasome activation is 
dependent on the cGAS-STING-LCD axis, and target-
ing this pathway would ameliorate the inflammatory 
response associated with cytoplasmic DNA receptor 
evocation.

Available studies indicate that STING interaction with 
NLRP3 in response to cytoplasmic DNA stimulation pro-
motes NLRP3 inflammasome activation in several ways. 
Firstly, STING recruited NLRP3 to promote its locali-
zation in the ER, thereby promoting the formation of 
NLRP3 inflammasome [86]. Secondly, TM5 (151-160aa) 
of STING interacted with NACHT and LRR domain in 
NLRP3 to attenuate NLRP3 polyubiquitination asso-
ciated with K48 and K63, i.e., STING deubiquitinated 

NLRP3 to activate the NLRP3 inflammasome [86]. 
Thirdly, in an epistatic regulatory mechanism study, 
H3K4-specific histone methyltransferase WDR5 and 
H3K79 methyltransferase DOT1L inhibitors were found 
to significantly reduce STING overexpression-mediated 
NLRP3 upregulation, suggesting that STING promoted 
NLRP3 promoter region histone methylation via WDR5/
DOT1L, thereby recruiting IRF3 to increase NLRP3 tran-
scription [87].

cGAS‑STING regulates AIM2 inflammasome
AIM2 is the only member of the PYHIN gene family 
that is truly homologous between mouse and human 
[88], and gain-of-function and loss-of-function stud-
ies at the cellular level have shown that human AIM2 
functions in the same way as its mouse counterpart, 

Fig. 2 cGAS-STING regulates inflammasomes and pyroptosis, and the key molecules in the crosstalk network of cGAS-STING, inflammasomes, 
and pyroptosis (a) cGAS-STING regulates AIM2 inflammasome, NLRP3 inflammasome, and pyroptosis. (b) the key molecules, including ox-mtDNA, 
mtROS, GSDMD, NAT10, ULK1, and cGAMP, in the crosstalk network of cGAS-STING, inflammasomes, and pyroptosis
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AIM2 [89]. Thus, studies of AIM2 in the mouse sys-
tem can be extrapolated to humans. AIM2, an innate 
sensor of the canarypox virus vector ALVAC, triggers 
inflammasome activation in human and mouse anti-
gen-presenting cells. CRISPR/Cas9 analysis reveals 
that ALVAC activated the AIM2 inflammasome 
through stimulation of the cGAS-IFI16-STING-type  I 
IFN pathway [90]. Cytoplasmic DNA in ataxia-telangi-
ectasia mutated (ATM)-deficient microglia was sensed 
by cGAS, thereby activating the cGAS-STING path-
way to initiate an antiviral response, and triggering the 
activation of the AIM2 inflammasome [91]. Activation 
of the STING pathway during Francisella infection 
promoted type I IFN production and IRF1 expression, 
which induced guanylate-binding proteins (GBPs) tar-
geting bacterial vesicles to disrupt their membranes, 
allowing bacterial products to be sensed by AIM2 and 
subsequently activating the AIM2 inflammasome [92]. 
The STING-dependent type I IFN signaling pathway 
was essential for the GBP-mediated release of Brucella 
DNA into the cytosol and the subsequent activation of 
AIM2 [93]. Collectively, these data indicated that the 
STING signaling axis-induced type I IFN is necessary 
for therelease of cytoplasmic DNA for activation of the 
AIM2 inflammasome (Fig. 2).

Chlamydia trachomatis replication or metabolism 
induced type I interferon responses are critical media-
tors of inflammasome activation and pyroptosis in 
macrophages [80]. cGAS-STING-dependent TNF 
and IFN signaling triggers necroptosis in response to 
cytosolic DNA [94]. In addition, mtDNA activates the 
STING pathway that subsequently enhances RIPK3/
MLKL expression to trigger necroptosis [95]. Emerg-
ing evidence suggests that ER stress associated with 
STING activation can trigger apoptosis [96–98]. 
Therefore, cGAS-STING signaling can trigger multiple 
cell death pathways including pyroptosis, apoptosis, 
and necrosis, and a better understanding of the regula-
tory mechanisms across different cell types, states and 
health, and environmental and/or stimulus-dependent 
mechanisms will require further investigation. In addi-
tion, the key role played by the cGAS-STING signal-
ing pathway in multiple cell death pathways, such as 
the newly described PANopoptosis, ferroptosis, and 
cuproptosis, remains to be thoroughly investigated and 
explored. Further mechanistic elucidation will help 
answer questions such as what determines the bidirec-
tional regulation of cGAS-STING and cell death path-
ways. More importantly, the answers to these critical 
questions will provide new ways and methods to tar-
get the cGAS-STING-mediated cell death pathways for 
the treatment of infectious diseases, inflammatory dis-
eases, and so on.

Key molecules in the crosstalk network 
of cGAS‑STING, inflammasomes, and pyroptosis
Ox‑mtDNA and mtROS
Mitochondria regulates the innate immune system 
through the release of numerous pro-inflammatory 
signals, such as mitochondrial reactive oxygen spe-
cies (mtROS), mitochondrial DNA (mtDNA) and  Ca2+, 
which is vital for the inflammasomes and cGAS-STING 
pathways activation (Fig. 2) [99–102]. Exposure of newly 
synthesized mtDNA to ROS induces oxidized mtDNA 
(Ox-mtDNA) production [103]. Ox-mtDNA was either 
repaired by 8-oxoguanine-DNA glycosylase (OGG1) or 
cleaved into 500–650 bp fragments by flap-structure-
specific endonuclease 1 (FEN1). These fragments leaked 
from the mitochondria via 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (mPTP)- and voltage-dependent 
anion channel (VDAC)-dependent channels and trig-
gered NLRP3 inflammasome activation in the cytoplasm 
[104]. Ox-mtDNA fragments also led to phosphoryla-
tion of the STING Ser365 site, which was required for 
cGAS-STING-IRF3 binding and activation of the type 
I IFN response [104]. Brown adipose tissue (BAT) acts 
as an important thermogenic organ, regulating energy 
metabolism through thermogenesis [105–107]. BAT 
inflammation is associated with mitochondrial dysfunc-
tion and impaired thermogenesis [108–110]. mtROS was 
scavenged by mitochondrial thioredoxin-2 (TRX2), and 
TRX2 deficiency induced massive mtROS production, 
mitochondrial integrity disruption, and cytosolic release 
of mtDNA, which activated aberrant innate immune 
responses in BAT, including the cGAS-STING and the 
NLRP3 inflammasome pathways [111].

XBP1 deficiency induced the excessive production of 
ROS to promote hepatocyte pyroptosis through the acti-
vation of NLRP3 and pyroptosis signaling, which made it 
easier to release the mtDNA into the extracellular space. 
mtDNA released from thioacetamide (TAA)-stressed 
hepatocytes was engulfed by macrophages, further induc-
ing cGAS- and dose-dependent macrophage STING 
activation [112]. The mitochondrial oxidative stress 
response also plays a role in bacterial infection. Mito-
chondrial oxidative stress-induced release of mtDNA in 
bacterial infection mediated the secretion of type I IFNs 
via the cGAS-STING pathway and triggered activation 
of the NLRP3 inflammasome [113, 114]. Mycobacterium 
abscessus facilitated the production of Ox-mtDNA to 
enhance cGAS-STING-dependent IFN production and 
NLRP3 inflammasome-mediated IL-1β [115]. Intracel-
lular mtROS/mtDNA induced bacterial replication after 
phagosome rupture and escaped into the cytoplasm, dis-
rupting membrane integrity in a type I IFN-dependent 
manner [115]. Type I IFN, on the other hand, inhibited 
NLRP3 inflammasome activation via the STAT pathway 
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[116, 117]. In addition, type I IFN-mediated generation 
of nitric oxide synthase (iNOS) and NO inhibited NLRP3 
protein oligomerization, thereby preventing the assembly 
of NLRP3 inflammasome [118].

GSDMD
GSDMD not only promotes the effective release of 
IL-1β and IL-18, but also acts as an end-effector of 
pyroptosis. Another function of GSDMD is to promote 
the non-selective release of  K+ in cells. During infec-
tion with F. novicida, cGAS-induced IFNs were inhib-
ited by GSDMD-mediated  K+ efflux, and GSDMD 
deficiency was found to prevent cytoplasmic  K+ efflux 
and enhance dsDNA binding to cGAS, thereby activating 
the cGAS-STING pathway and promoting IFNs secre-
tion [62], suggesting that GSDMD inhibits cGAS medi-
ated IFNs secretion. Furthermore, given the central role 
of the cGAS pathway in the innate immune response, 
it is expected that various modulations and modifica-
tions to cGAS control its activity. Further studies indi-
cates that members of the tripartite motif 56 (TRIM56) 
induced the Lys335 monoubiquitination of cGAS, which 
resulted in a marked increase of its dimerization, DNA-
binding activity, and cGAMP production of cGAS [119, 
120]. In summary, bacterial dsDNA triggers the activa-
tion of inflammasomes, leads to GSDMD cleavage, and 
causes  K+ efflux, thereby limiting the binding of bacte-
rial dsDNA to cGAS, inhibiting the activation of the 
cGAS-STING pathway, and disrupting the inflammatory 
response of IFNs (Fig. 2).

NAT10 and ULK1
As the first identified RNA acetyltransferase, N-acetyl-
transferase 10 (NAT10) catalyzes the N4 acetylation of 
cytidine (ac4C) to regulate mRNA stability and transla-
tion, and is implicated in a variety of cellular processes 
including cell division, cellular senescence, autophagy 
and DNA damage [121, 122]. Neutrophils play an impor-
tant role in the progression of sepsis as major effector 
cells against infection and as important regulators of 
innate immunity [123]. During sepsis, large amounts of 
bacterial products (e.g., CpG DNA) as well as the host’s 
own DNA (including nuclear and mitochondrial DNA) 
were released into the cytoplasm, leading to the activa-
tion of cGAS-STING and pyroptosis [124]. NAT10 was 
a negative regulator of neutrophil pyroptosis, and its 
reduced expression led to increased neutrophil pyrop-
tosis and secretion of large amounts of the pro-inflam-
matory cytokines IL-1β and IL-18 [83]. In neutrophil, 
down-regulation of NAT10 led to a decrease in UNC-
52-like kinase 1 (ULK1) expression level. In contrast, as 
a regulator of STING phosphorylation, deletion of ULK1 
activated the STING-IRF3 pathway, which subsequently 

triggered NLRP3 inflammasome activation and neutro-
phil pyroptosis [125]. On the other hand, ULK1 has been 
shown to be involved in NLRP3 autophagy, suggesting 
that ULK1 has a direct regulatory effect on the NLRP3 
inflammasome in addition to inhibiting STING (Fig.  2) 
[126].

cGAMP
cGAMP, as a second messenger, directly binds to 
STING and its upstream key synthetase cGAS, which 
further activated TBK1, induced IRF3 and NF-κB 
into the nucleus, produced type I IFN and cytokines, 
and defended against various viral infections. Studies 
showed that cGAMP increased the activation of AIM2 
and NLRP3 inflammasomes via cGAS-STING (Fig.  2). 
cGAMP induced the activation of AIM2 and NLRP3 
inflammasomes in addition to type I IFN by increasing 
mRNAs encoding key components of the inflammasome 
(AIM2, NLRP3, Casp1, IL-1β, and ASC), thereby inhibit-
ing DNA virus infection [127].

Diseases induced by the crosstalk network 
of cGAS‑STING, inflammasomes, and pyroptosis
A well-coordinated immune response is essential for rec-
ognizing and eliminating threats from foreign substances 
and tissue damage. However, uncontrolled inflammation 
can contribute to the pathology of chronic inflamma-
tory and degenerative diseases, as well as cancer. Chronic 
inflammation plays a prominent role in driving carcino-
genesis, as various chronic inflammatory conditions are 
associated with an increased risk of cancer. This leads 
to the accumulation of DNA damage and production of 
local inflammatory cytokines. Eventually, the phenotype 
shifts towards an altered homeostasis and becomes irre-
versibly responsive to continued inflammation, resulting 
in malignancy [128–130]. Recent studies support the idea 
that inflammation influences the fate of various com-
ponents within the complex tumor microenvironment, 
ultimately creating a tumor-promoting environment 
through reciprocal communication that promotes car-
cinogenesis either through direct mutagenesis or by acti-
vating cytokine responses that effectively shape the host 
response [128, 131].

There is increasing evidence that the risk of devel-
oping chronic inflammation can be traced back to 
early development, and its consequences are now 
known to extend throughout the life span, affect-
ing health and mortality risk in adulthood [132–134]. 
Therefore, the “inflammatory fire” sparked by the host 
response requires tight management to avoid spread-
ing and causing irreversible damage. Recent evidence 
has demonstrated that activation of the cGAS-STING 
axis in response to cytosolic DNA stimulation engaged 
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in inflammasome activation [79, 86] and GSDMD-
triggered pyroptosis [135], which is characterized by 
the dysfunctions of the immune system and the aber-
rant secretion of inflammatory cytokine. As a result, 
the interplay among the cGAS-STING axis, inflam-
masome, and pyroptosis builds a wide range of impor-
tant monitoring systems in response to tissue damage 
and pathogen invasion. Abnormalities of this crosstalk 
cause a variety of human diseases, including infectious 
diseases, autoimmune diseases, tumors, organ fibrosis 
and neurodegenerative diseases [11, 136–138]. In view 
of the critical role of cGAS-STING, inflammasomes 
and pyroptosis in immune and inflammatory responses, 
we then focused on the related diseases induced by this 
crosstalk network with the aim of providing clues for 
their prevention and treatment (Fig. 3).

Cardiac dysfunction
cGAS-STING pathway can activate the NLRP3 inflam-
masome, thereby exacerbating inflammation in the 
myocardium and promoting cardiac dysfunction. In 
cardiomyocytes, STING binds to IRF3 and phosphoryl-
ates IRF3, which subsequently translocated into nucleus 
and increased the expression of NLRP3 [82]. In contrast, 
STING knockdown inhibited IRF3 phosphorylation and 
perinuclear translocation, thereby suppressing NLRP3-
mediated cardiomyocyte inflammation and pyropto-
sis, improving cardiac function and increasing survival 
[82]. Also, in diabetic cardiomyopathy (DCM), the pro-
duction of free fatty acids induced oxidative mitochon-
drial damage, activated the cGAS-STING and NLRP3 
inflammasome signaling pathways, and ultimately pro-
moted myocardial hypertrophy in DCM by promoting 
cardiomyocyte pyroptosis [139]. Activation of STING 

Fig. 3 Diseases induced by the crosstalk network of cGAS-STING, inflammasomes, and pyroptosis. Evidence shows that the crosstalk network 
of cGAS-STING, inflammasomes, and pyroptosis is involved in the pathogenesis of a number of diseases, such as lung diseases, liver diseases, kidney 
diseases, cardiac dysfunction, spinal injury, arthritis, nervous system diseases, autoimmune diseases, and malignant tumors
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enhanced GSDMD-mediated cardiac hypertrophy [140]. 
Consistently, knock down cardiomyocyte STING in 
DCM attenuated cardiac pyroptosis and inflammatory 
responses, suppressed DCM-induced cardiac hypertro-
phy, and restored cardiac function [139]. Therefore, tar-
geting cardiomyocyte STING, NLRP3 inflammasome, 
and pyroptosis may be a potential therapeutic strategy to 
prevent cardiomyopathy.

Acute lung injury (ALI)
Macrophages are the most abundant immune cells in 
lung tissue, and inhibition of inflammatory signaling 
pathways in macrophages is essential to maintain tissue 
homeostasis. Macrophages are more likely to exhibit cel-
lular senescence, impaired mitochondria, and abnormal 
activation of the cGAS-STING and NLRP3 inflamma-
some pathways, which predispose mice to severe viral 
pneumonia during infection [141]. Cytoplasmic mtDNA 
and STING transcription factor (c-Myc) synergistically 
activated the cGAS-STING pathway in LPS-induced ALI, 
which subsequently exacerbated ALI inflammation by 
triggering NLRP3 inflammasome activation and pyrop-
tosis [142, 143]. The STING agonist diamidobenzimida-
zole (diABZI), was internalized into the cytoplasm and 
induced STING activation and dimerization, and upreg-
ulated apoptosis, pyroptosis and necroptosis (PANopto-
sis), which enhanced lung inflammation with severe acute 
respiratory distress syndrome [144]. Radiation therapy-
induced self-dsDNA was leaked into the bronchoalveolar 
space and subsequently triggered cGAS-STING activa-
tion and downstream NLRP3-mediated pyroptosis, pro-
viding a mechanistic basis for pyroptosis that connects 
cGAS-STING activation to the exacerbation of initial 
radiation-induced lung injury [145]. In summary, the 
cytoplasmic cGAS-STING-NLRP3 pathways contribute 
to LPS-induced ALI. Based on these findings, targeting 
the cytoplasmic cGAS-STING-NLRP3 pathways may be 
a therapeutic target for ALI.

Liver diseases
The liver is a prime target for toxins and acute injury as 
the primary organ for removal of various drugs and for-
eign pathogens. Macrophage infiltration is a character-
istic of liver inflammation, and macrophage activation 
of the cGAS-STING and inflammasome pathways are 
important drivers of numerous liver diseases [146–149]. 
Increased STING activation was observed in human and 
mouse liver with nonalcoholic steatohepatitis [150, 151]. 
Macrophage STING activation in acute ischemic liver 
injury facilitated by mtDNA release from injured hepato-
cytes [81]. Ox-mtDNA produced under oxidative stress 
of liver injury triggered the activation of NLRP3 inflam-
masome [152]. Experimental  CCl4 induced liver fibrosis 

and enhanced cGAS-STING activation in liver tissue, 
while STING deficiency attenuated liver inflammation 
and fibrosis [153–155]. RNA sequencing of livers from 
mice with  CCl4-induced liver fibrosis revealed that the 
STING and NLRP3 inflammasome signaling pathways 
were activated during liver fibrosis, and the activation 
of these two pathways were also verified in human and 
mouse cirrhotic tissues [87]. STING and NLRP3 signaling 
pathways are activated in cirrhosis, and both knockdown 
of STING and STING inhibitor C-176 significantly inhib-
ited NLRP3 expression and hepatocyte pyroptosis [87], 
suggesting that STING can induce hepatocyte pyroptosis 
through activation of the NLRP3 inflammasome.

GSDMD-mediated hepatocyte pyroptosis contributes 
to accelerated pathogenesis in acute and chronic liver 
disease [156–159]. In mice, activation of the NLRP3 
inflammasome resulted in hepatocyte pyroptosis, hepatic 
inflammation, and liver fibrosis [158]. In addition, cas-
pase-1 and GSDMD-mediated hepatocyte pyroptosis 
induced stellate cell activation through the release of 
inflammatory factors, thereby promoting the develop-
ment of liver fibrosis [159]. STING induced hepatic 
ischemia-reperfusion injury (IRI) by promoting calcium-
dependent caspase-1-GSDMD in macrophages, and 
STING expression enhanced with increased hepatic IRI, 
while knockdown of STING attenuated hepatic IRI [160]. 
ROS also plays a key role in hepatocyte pyroptosis [161, 
162]. Upregulation of ROS levels promoted GSDMD 
cleavage, activated the GSDMD-N terminus, and induced 
cell membrane pore formation, thereby promoting pyrop-
tosis [163, 164]. In addition, in TAA-induced liver injury, 
hepatocyte ROS-NLRP3-caspase-1-GSDMD activity was 
increased and hepatocyte pyroptosis was detected [112]. 
XBP1 deficiency in hepatocytes promoted ROS produc-
tion to activate NLRP3-Caspase-1-GSDMD signaling, 
which promoted extracellular release of mtDNA and 
macrophage phagocytosis of mtDNA, further activated 
the cGAS-STING pathway, thereby promoting hepato-
cyte pyroptosis [112].

Kidney diseases
Acute kidney injury (AKI) is marked by a progression 
of rapid loss of kidney function that can lead to chronic 
kidney disease (CKD) and end-stage renal disease 
(ESRD) [165, 166]. Recent studies suggest that mtDNA-
associated chronic inflammatory responses are associ-
ated with the pathogenesis of AKI and the development 
of CKD [167–169]. Mitochondrial damage was induced 
in AKI, leading to leakage of mtDNA into the cytoplasm 
and activation of the cGAS-STING pathway, which phos-
phorylated TBK1 and IRF3, promoted the secretion of 
inflammatory factors and exacerbated the inflammatory 
response [168]. Activation of the cGAS-STING pathway 
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was observed in multiple AKI mouse models and AKI 
patients [168, 170, 171]. STING knockout mice exhibited 
reduced renal function, tubular damage and inflamma-
tion after cisplatin treatment [168]. In addition, STING 
mediated secondary renal inflammation and tubular 
injury. STING and NLRP3 inflammasome pathways 
played important roles in unilateral ureteral obstruc-
tion, adenine-induced tubulointerstitial nephritis and 
chronic renal failure [172–174]. Expression of G2-type 
apolipoprotein APOL1 (G2 APOL1) in mouse kid-
ney cells led to activation of cGAS-STING and NLRP3 
inflammasome, and APOL1 expression correlated with 
caspase-1 and GSDMD levels [175]. In a RIAKI mouse 
model, although AIM2 deficiency inhibited renal mac-
rophage pyroptosis, it surprisingly accentuated abnor-
mal inflammation as evidenced by massive macrophage 
aggregation  (CXCR3+CD206+) and activation of the 
cGAS-STING-TBK1-IRF3 pathway, which subsequently 
promoted maturation and secretion of pro-inflammatory 
cytokines. Meanwhile, dsDNA-induced AIM2-deficient 
cells escaped rapid pyroptotic elimination and partici-
pated in STING-TBK1-IRF3/NF-κB pathways, leading 
to an exacerbation of the inflammatory phenotypes [33]. 
These finding suggested that the rapid macrophage cell 
death induced by dsDNA may serve as an anti-inflamma-
tory program and may determine the healing process of 
RIAKI.

Nervous system inflammation
Microglia are important mediators of neuroinflamma-
tion and immune response after CNS injury [176, 177]. 
NLRP3 inflammasome-mediated microglia pyroptosis is 
associated with the pathogenesis of subarachnoid hem-
orrhage [178], cerebral ischemia/reperfusion injury [179, 
180], and spinal cord injury [181]. Recent studies have 
shown that cytoplasmic DNA induces NLRP3 and AIM2 
inflammasomes activation and GSDMD-triggered micro-
glia pyroptosis through activation of the cGAS-STING 
pathway [79, 86, 91, 135]. Importantly, elevation in cGAS 
and STING occurred mainly in microglia in damaged 
cortex after cerebral venous sinus thrombosis (CVST), 
and the same cellular localization was reported in cer-
ebral ischemia/reperfusion (I/R) [135] and subarach-
noid hemorrhage models [5]. Accumulation of dsDNA 
on cell membranes triggered activation of cGAS-STING 
pathway in intracranial venous and CVST, which sub-
sequently induced NLRP3 inflammasome activation, 
microglia pyroptosis, and increased the neuroinflamma-
tory burden [182]. Hyperphosphorylated Tau in the brain 
is an important pathological feature of patients with neu-
rodegenerative diseases. Tau induced NLRP3 inflamma-
some activation, which drived tau hyperphosphorylation 
and exacerbated neuroinflammation, and the biological 

process may be attributed to the immune stimulating 
activity, especially the cGAS-STING pathway [183–185]. 
The STING agonist CMA significant increased STING 
expression in microglia after subarachnoid hemorrhage 
(SAH) and exacerbation of neuronal damage [5]. In addi-
tion, in the brains of patients with different neurodegen-
erative diseases, serum/glucocorticoid-related kinase 1 
(SGK1) was elevated. SGK1 expression is widely detected 
in the brain, and it is increased in pathologic conditions 
such as Rett syndrome [186], Alzheimer disease (AD) 
[187, 188], multiple sclerosis [189], amyotrophic lateral 
sclerosis [190], and neuropathic pain [191], collectively 
suggesting that SGK1 plays pathogenic roles in neuro-
degenerative disorders. Inhibition of glial SGK1 corrects 
the pro-inflammatory characteristics of glia by reducing 
intracellular NF-κB, NLRP3 inflammasome and cGAS-
STING mediated inflammatory pathways [192]. Activa-
tion of the cGAS-STING pathway in AD mice triggered 
the formation of NLRP3 inflammasome, exacerbated cel-
lular senescence and inflammatory responses, and nicoti-
namide riboside (NR) treatment exerted beneficial effects 
through the cGAS-STING pathway [193]. Furthermore, 
inflammatory response-induced microglia activation was 
associated with neurological deficits after traumatic brain 
injury (TBI). In contrast, microglia cGAS-STING activa-
tion promoted neuroinflammatory responses after TBI, 
in part through activation of the NLRP3 inflammasome 
[194]. In conclusion, the cGAS-STING-NLRP3 signaling 
pathway may serve as a potential therapeutic target for 
neuroinflammation-induced neurological dysfunction.

Myelodysplastic syndrome (MDSs) and spinal injury (SCI)
NLRP3 inflammasome, pyroptosis and cGAS-STING 
contribute to neuroinflammation in myelodysplastic syn-
dromes (MDSs) and spinal cord injury (SCI) [84, 195]. 
cGAS-STING induced activation of interferon-stimulat-
ing factor (ISG), triggered NLRP3 inflammasome activa-
tion, and exacerbated bone marrow injury [84]. Further 
studies revealed that caspase-1 degraded the erythroid 
transcription factor GATA-binding protein 1, triggering 
anemia and myeloid bias to exacerbate the injury [84]. 
MDSs hematopoietic stem and progenitor cells (HSPCs) 
overexpressed inflammasome proteins and exhibited 
NLRP3 inflammasomes activation that directly pro-
duced IL-1β and IL-18, and drived pyroptosis [196]. As 
with somatic mutations, excess alarm protein S100A9 in 
bone marrow plasma activated NADPH oxidase (NOX), 
increased ROS levels, exposed cytoplasmic DNA to the 
cGAS-STING-NLRP3 axis, and promoted pyroptosis 
[196]. In addition, cGAS-STING and NLRP3 inflamma-
some activation in spinal microglia after sciatic nerve 
injury have been shown to exacerbate neuroinflammation 
in mice [195]. cGAS, STING, and NLRP3 were correlated 
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with the extent of intervertebral disc degeneration by 
magnetic resonance imaging (MRI) and histopathology. 
Oxidative stress initiated the STING-dependent activa-
tion of the cGAS-STING axis and NLRP3-inflammas-
ome-mediated pyroptosis in human nucleus pulposus 
cells [197]. Taken together, these data implicate the essen-
tial role of the cGAS-STING-NLRP3 axis and pyropto-
sis in the development of IVD degeneration and offer a 
potential treatment approach for the management of dis-
cogenic low back pain.

Autoimmune diseases
Activating the cGAS-STING pathway confers host 
immunity and contributes to eliminating multiple 
pathogens, including viruses and bacteria. Meanwhile, 
excessive STING and inflammasome activation have 
been identified as contributing to the progression of 
autoinflammatory diseases such as systemic lupus ery-
thematosus (SLE), rheumatoid arthritis (RA), acute 
myeloid leukemia (AML), sepsis and dry syndrome 
[83, 195, 198–202]. During SLE, STING and NLRP3 
inflammasome activation mediated caspase-1 activa-
tion and promoted maturation and secretion of inflam-
matory factors [198, 199]. In addition, monocytes in 
SLE patients showed considerable activation of cas-
pase-1 [200]. In acute myeloid leukemia (AML) with 
TP53 mutations, the therapeutic agent DNA meth-
yltransferase inhibitors (DNMTis) expressed endog-
enous retroviruses (ERVs), IFNs and activated NLRP3 
inflammasome in a STING-dependent manner [201]. 
DNA polymerase β (Pol β) was significantly decreased 
in peripheral blood mononuclear cells (PBMCs) of RA 
patients and mice with collagen-induced arthritis (CIA). 
Further studies revealed that Pol β knockdown led to 
DNA damage accumulation and cell membrane dsDNA 
leakage, which activated the cGAS-STING-IRF3-NF-κB 
signaling pathways and promoted pyroptosis [202].

Malignant tumors
Growing evidence indicates that the innate immune 
response is critical to tumorigenesis and antitumor ther-
apy [130, 203]. In mouse models and clinical patients, 
activation of the cGAS-STING pathway has been proven 
to reduce tumor growth and improve immunogenic-
ity [204]. STING enhanced IL-18 and IL-1β generation 
by macrophages by activation of NLRP3, and IL-18 and 
IL-1β induced 4-1BBL and 4-1BB expression in mac-
rophages and NK cells, respectively, which facilitated 
macrophage STING signaling to improve anti-tumor 
function, thus suppressing colorectal cancer liver metas-
tasis [205]. Macrophage STING signaling pathway pro-
moted NLRP3 inflammasome activation, enhanced 
anti-tumor function of NK cells, and inhibited liver 

metastasis from colorectal cancer [206]. However, cGAS-
STING activation-mediated chronic inflammation can 
also promote tumor metastasis through the induction 
of immunosuppressive TME [9]. Cancer cell-produced 
cGAMP enhanced tumor growth and chemoresistance 
through activation of astrocyte STING and production of 
inflammatory cytokines [207].

COVID‑19
Severe COVID-19 is characterized by an excessive 
inflammatory response, including large cytokine expres-
sion, that involves a wide range of immune cells, includ-
ing macrophages and neutrophils, that sense pathogens 
and damaged autologous structures and subsequently 
induce the production of inflammatory mediators. Infec-
tion and replication of SARS-CoV-2 in immune cells 
within the lung is a key driver of the disease. Inflamma-
some activation and the accompanying inflammatory 
response are necessary for lung inflammation in COVID-
19 [208–211]. The cGAS-STING pathway, which con-
trols immunity to cytosolic DNA, is a critical driver of 
aberrant type I IFN responses in COVID-19 [212, 213]. 
SARS-CoV-2 infection has a dual-edged sword effect on 
STING signaling, relying on the progressive stage of the 
disease and the infected tissue. Therefore, STING ago-
nists or inhibitors are promising for the prevention and 
treatment of SARS-CoV-2. For example, STING agonists 
are used in the early stage of infection to activate the 
immune response in the body to kill the virus and inhibit 
its replication, and STING inhibitors are used in the mid-
dle and late stages of infection to reduce the excessive 
immune response of the body and reduce lung inflam-
mation [212–216]. However, the specific application of 
STING modulators in the prevention and treatment of 
COVID-19 still needs further research, including the spe-
cific timing of administration and medication standards.

Although the interaction network between the inflam-
masome and cGAS-STING pathways has not been 
reported during COVID-19 infection, we have reasons 
to believe that there is an inseparable close relation-
ship and feedback regulatory mechanism between the 
two. On the one hand, SARS-CoV-2 infection induces 
inflammasome activation and triggers multiple cell death 
pathways including pyroptosis, apoptosis, and necrosis, 
which may lead to the release of dsDNA in the nucleus 
and mitochondria into the cytoplasm under certain 
conditions. cGAS recognizes dsDNA without sequence 
difference and activates STING pathway to generate 
immune response. The continuous activation of the two 
pathways induces the production of a large number of 
inflammatory factors and aggravates the immune inflam-
matory response of the body. In addition, as mentioned 
in section 2, AIM2 inflammasome, AIM2-like receptors, 
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NLRP3, caspases, GSDMD, and CARD domain of ASC 
can all participate in regulating the activition of cGAS-
STING signaling pathway. It can be seen that the cross-
talk of inflammasome and cGAS-STING pathways has 
not yet been clarified in COVID-19 patients, and how the 
two interact and how to regulate the body’s immunity are 
still key issues to be solved.

Regulators of the crosstalk network of cGAS‑STING, 
inflammasome, and pyroptosis
As described above the crosstalk network of cGAS-
STING, inflammasome and pyroptosis is correlated with 
an elevated risk of the development of a broad range of 
chronic diseases that are currently the leading cause of 
morbidity and mortality throughout the world and are 
responsible for an enormous amount of human suffering. 
At the same time, the discovery of regulators such as ago-
nists, inhibitors, vaccines and physical factors that could 
be explored to enrich this work and convert this work 
into meaningful strategies for improving human health 
(Fig. 4).

Natural products
The cGAS-STING, inflammasome and pyroptosis path-
ways exacerbate the progression and course of various 
diseases through the crosstalk network, and therefore 
the search for their modulators is of great importance 
for disease prevention, treatment and recovery. Natural 
products are currently becoming an important source of 
drug discovery for disease treatment due to their broad 
pharmacological activity, high safety profile and diversity 
of targets.

4-Octylic acid (4-OI), an immunomodulatory deriva-
tive accumulated during macrophage activation, has 
attracted widespread attention for its anti-inflammatory 
and antioxidant properties. In  vitro and in  vivo experi-
ments have shown that 4-OI inhibited the activation of 
the cGAS-STING-IRF3 pathway by eliminating mtROS 
production and mtDNA leakage in alveolar macrophages 
under oxidative stress, while alleviated LPS-induced 
NLRP3 inflammasome-mediated pyroptosis, which in 
turn ameliorated acute respiratory distress syndrome 
(ARDS) [217]. Epigallocatechin gallate (EGCG) is a cat-
echin monomer isolated from tea and is a major compo-
nent of green tea polyphenols. Advanced in  vitro study 
that EGCG could block the activation of NLRP3 inflam-
masome through down-regulation of cGAS-STING-
IRF3 pathway, and thus had significant protective effects 
against  H2O2-induced apoptosis and inflammation in 
myeloid cells [218].

Several studies have shown that the physiologic con-
centration of hydrogen sulfide  (H2S) has a vital role in 
the cardiovascular system through the regulation of 

biological functions and the maintenance of homeosta-
sis in the body [219, 220]. Conversely, the lack of endog-
enous  H2S is harmful and may lead to the development 
of various cardiovascular diseases, including atheroscle-
rosis, hypertension, myocardial infarction and heart fail-
ure [221–223]. A high-choline diet reduced plasma  H2S 
levels and induced cardiac dysfunction via the cGAS-
STING-NLRP3 inflammasome pathways, while  H2S 
treatment inhibited NLRP3 inflammasome activation 
mediated by cGAS-STING pathway activation, thereby 
restoring cardiac function [224]. As above discussed, the 
part of pathophysiological and pharmacological effects 
of  H2S have been demonstrated in  vitro and in  vivo 
studies as well as in clinical disease. However, account-
ing for these pathophysiological responses will not be 
easy in preclinical models of disease. Emodin is a natu-
ral bioactive compound from herbal medicine with anti-
inflammatory, antioxidant, anticancer, hepatoprotective 
and neuroprotective effects. In vivo and in vitro studies 
showed that emodin protected hepatocytes from aceta-
minophen (APAP)-induced liver injury by upregulating 
Nrf2-mediated antioxidant stress response, inhibiting 
NLRP3 inflammasome and cGAS-STING-IRF3 path-
ways [225]. Urolithin A, one of the principal intestinal 
metabolites of ellagitannins, attenuated fructose-induced 
hyperuricemic nephropathy through the promotion of 
Parkin-dependent mitophagy, thus limiting the inflam-
matory response mediated by the STING-NLRP3 axis 
in  vivo and in  vitro experiments [226]. In summary, 
a variety of natural products have superior effects in 
regulating cGAS-STING, inflammasome and pyropto-
sis pathways, currently being investigated in  vitro and 
in vivo, which should be explored in future research work 
to provide more diversified options for the treatment of 
related diseases.

Synthetic substance
Because of the significance of the STING pathway in 
the activation of innate immunity and the protection of 
the host against pathogens, targeting the innate immu-
nity through STING agonists is a potential strategy for 
both antiviral and antitumor therapies [227, 228]. G10, 
a human-specific STING agonist, induced STING-
dependent activation of both type I IFN and the canoni-
cal NLRP3 inflammasome in porcine cells [229]. The 
STING agonist diABZI resulted in cell death and self-
DNA release, which was detected by cGAS and formed 
2′3’-cGAMP, causing STING hyperactivation, amplify-
ing the TBK1/IRF3 and NF-kB pathways, and subsequent 
secretion of IFN-I and inflammatory TNFα and IL-6. 
Meanwhile, the recognition of self-dsDNA or mtDNA by 
NLRP3 or AIM2 triggered the activation of the inflam-
masome, thereby leading to the cleavage of the GSDMD, 
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allowing the formation of the GSDMD pore and the 
release of mature IL-1β and pyroptosis [144]. In trau-
matic brain injury (TBI), the use of the STING agonist 
ADU-S100 exacerbated the behavioral and pathological 
changes [194]. In addition, ADU-S100 promoted micro-
glia activation and exacerbated pyroptosis-associated 
neuroinflammation by increasing caspase-1 cleavage as 
well as GSDMD-N-terminal expression [194]. However, 

administration of the STING antagonist C-176 attenu-
ated TBI-induced inflammatory activation of microglia 
and reduced pyroptosis [194].

Recombinant vaccine
A low virulence, ESX-1 effective recombinant BCG 
vaccine (BCG::ESX-1Mmar) was developed by heter-
ologous expression of the ESX-1 region in BCG, which 

Fig. 4 Regulators of the crosstalk network of cGAS-STING, inflammasome, and pyroptosis The involvement of natural products (such as EGCG, 
emodin, urolithin A, and 4-Octylic acid), synthetic substances (such as G10, diABZI, ADU-S100, and C-176), recombinant vaccines (such as Xpa, 
BCG vaccine, KALA MEND, and virus-like particle), and physical factors (such as TTFields, Pt1/Pt2, and Radiation) in regulating the cGAS-STING, 
inflammasomes and pyroptosis pathways crosstalk network, providing potential candidates for the treatment of related diseases
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induced the cGAS-STING-type I IFNs axis and acti-
vated the AIM2 and NLRP3 inflammasomes, resulting 
in a higher proportion of  CD8+ targeting mycobacte-
rial antigens shared with  BCG+ T cell effector ratio 
and specificity of  CD4+ Th1 cells against ESX-1 anti-
gens [230]. In addition, pyroptosis of DCs via the 
cGAS-STING pathway and TLRs has recently been 
shown to be induced by a novel whole-cell inactivated 
Pseudomonas aeruginosa vaccine (XPa) [231]. Artifi-
cial nanoparticles, KALA-MENDs, delivered antigen-
encoding plasmid DNA (pDNA) to antigen-presenting 
cells and promoted immune activation, suggesting their 
use as DNA vaccine vectors [232]. Further studies dem-
onstrated that KALA-MENDs promoted IFN-β and 
IL-1β secretion through activation of the cGAS-STING 
pathway and induction of AIM2 and NLRP3 inflam-
masomes activation [232]. Similarly, a novel virus-like 
particle was effective at inducing cGAS binding, acti-
vating STING signaling, and generating type I IFN, 
and this virus-like particle also induced AIM2 inflam-
masome formation, GSDMD-mediated pyroptosis, and 
anti-tumor immunity [233].

Physical factors
The tumor treating fields (TTFields) is a therapy for the 
treatment of glioblastoma (GBM) and malignant meso-
thelioma. In addition, TTFields was found to induce 
nuclear membrane disruption in microglia, leading 
to release of large micronuclei from the cells, recruit-
ment and activation of cGAS and AIM2 cytoplasmic 
DNA sensors, and ultimately leading to activation of the 
cGAS-STING pathway and the AIM2 inflammasome 
[234]. TTField-treated GBM cells induced anti-tumor 
memory immunity and resulted in 42 to 66% cure rates 
in a STING and AIM2-dependent manner [234]. PtII 
complexes, Pt1and Pt2, acted as photoactivators of the 
cGAS-STING pathway, disrupted the mitochondrion 
and nuclear envelope under light exposure, resulting 
in cytoplasmic leakage of mtDNA and activation of the 
cGAS-STING pathway to induce pyroptosis in tumor 
cells [235]. In addition, activation of the NLRP3 inflam-
masome and caspase-1 cleavage in macrophages may be 
promoted by radiation-induced ROS generation or mito-
chondrial damage [236]. Radiation-induced nuclear DNA 
leakage into the cytoplasm can be detected by cGAS-
STING and activate the immune response; however, 
knockdown of NLRP3 over-activated the cGAS-STING 
pathway in macrophages and promoted pyroptosis and 
radiation-induced tissue damage in mice [237], suggest-
ing that NLRP3 knockdown increases radiation-activated 
cGAS-STING-mediated IFN-β production, highlighting 
the importance of fine-tuned regulation.

Discussion and conclusion
Innate immune responses are rapid responses to dis-
ease agents or danger cues that are precisely timed to 
both effectively combat disease agents and limit exces-
sive inflammation and tissue damage. However, over-
activation of innate immunity has been shown to be 
detrimental and can lead to various diseases. The study 
of cGAS-STING, inflammasomes and pyroptosis is a 
rich area within immunology, with rapidly emerging 
insights into how it works and how to regulate. Due to 
the similarities in the cGAS-STING, inflammasomes 
and pyroptosis signaling pathways response to cellular 
stress and downstream effects, the main review in this 
paper focuses on their crosstalk network. NLRP3, AIM2 
inflammasomes are able to antagonize the cGAS-STING 
signaling pathway. Upon activation of canonical and non-
canonical inflammasomes, caspase-1 could also cleaves 
cGAS, indicating cross-regulation between intracellular 
DNA-sensing pathways. Moreover, the cGAS-STING 
pathway can also be regulated by disrupting the CARD 
domain of the linker protein ASC in the inflammasome 
complex. cGAS-STING acts as an important immune 
axis for microbial infection, chronic inflammation, can-
cer progression and organ degeneration [1, 9, 18, 238], 
and also regulates NLRP3, AIM2 inflammasomes.

The cGAS-STING signaling pathway interacts with 
AIM2 and NLRP3 inflammasome mainly caused by regu-
latory molecules such as Ox-mtDNA, mtROS, GSDMD, 
cGAMP and NAT10. mtDNA exposure to ROS induces 
Ox-mtDNA production, triggering intracytoplasmic 
NLRP3 inflammasome activation, leading to phospho-
rylation of STING, which activates the cGAS-STING 
signaling pathway. AIM2 senses bacterial dsDNA, trig-
gers the formation of the AIM2 inflammasome, leads to 
the GSDMD cleavage to form membrane pores, thereby 
limiting bacterial dsDNA binding to cGAS, inhibiting 
cGAS-STING pathway activation. NAT10 is a nega-
tive regulatory factor of neutrophil pyroptosis and 
overexpression inhibits pyroptosis by blocking the ULK1-
STING-NLRP3 pathways. On the other hand, ULK1 has 
been shown to be involved in NLRP3 autophagy, sug-
gesting that ULK1 has a direct regulatory role on NLRP3 
inflammasome in addition to STING inhibition. These 
key regulatory molecules are critical for the regulation of 
the crosstalk network of cGAS-STING, inflammasomes, 
and pyroptosis, and will also provide a strong reference 
for the selection of therapeutic targets.

Thus, modulating this innate immune system has 
the potential to treat a broad range of diseases, includ-
ing infections, neurodegeneration, autoinflammation, 
metabolic disorders, and cancer. Recent studies have 
shown that the crosstalk network of cGAS-STING, 
inflammasomes, and pyroptosis exacerbates cardiac, 
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liver, lung, kidney, spinal cord, nervous system inflam-
mation, induces autoimmune disease and promotes the 
progression of malignant tumors. While refinement of 
our understanding of cGAS-STING, inflammasome and 
pyroptosis continues, targeting of this crosstalk network 
as a therapeutic for multiple diseases is rapidly progress-
ing. We therefore summarize the involvement of natural 
products, synthetic substances, recombinant vaccines, 
and physical factors in regulating the cGAS-STING, 
inflammasomes and pyroptosis pathways crosstalk net-
work, providing potential candidates for the treatment 
of related diseases. As the epitome of precision medicine 
in inflammatory diseases, the continued profiling, refine-
ment and re-purposing of direct and specific modulators 
will drive future clinical translation.

In summary, the cGAS-STING signaling pathway 
generates cascade amplification effects between inflam-
masomes, and pyroptosis, and activates immune inflam-
matory responses. On the one hand, the crosstalk of 
these signaling pathways can affect parenchymal organs 
such as heart, liver, lung, and kidney, and aggravate the 
development process of inflammatory diseases; in addi-
tion, it is also closely related to the progression of several 
autoimmune diseases. Therefore, further investigations 
are promising to uncover novel regulatory mechanisms 
that may provide new opportunities for therapeutic 
intervention in the exciting field of the crosstalk network 
of cGAS-STING, inflammasomes and the pyroptosis 
signaling axis.
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