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Abstract 

Prostate cancer, as one of the most prevalent malignancies in males, exhibits an approximate 5‑year survival rate 
of 95% in advanced stages. A myriad of molecular events and mutations, including the accumulation of oncometabo‑
lites, underpin the genesis and progression of this cancer type. Despite growing research demonstrating the pivotal 
role of oncometabolites in supporting various cancers, including prostate cancer, the root causes of their accumula‑
tion, especially in the absence of enzymatic mutations, remain elusive. Consequently, identifying a tangible therapeu‑
tic target poses a formidable challenge. In this review, we aim to delve deeper into the implications of oncometabo‑
lite accumulation in prostate cancer. We center our focus on the consequential epigenetic alterations and impacts 
on cancer stem cells, with the ultimate goal of outlining novel therapeutic strategies.
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Oncometabolites and their impact 
on the epigenetic landscapes of prostate cancer
Overview of prostate cancer
The prostate is the largest accessory gland in the male 
reproductive system, consisting of tubulo-alveolar 
glands. It comprises a glandular epithelium of vari-
able height and a stroma containing connective tissue 
and smooth muscle. In the adult male, the prostate is 
divided into four zones with different relative content in 
epithelial and stromal cells. Only 25% of the surface in 
the central zone comprises epithelial glands, while the 
peripheral zone contains more than 70% of epithelial 
tissue. The transitional and periurethral zone have few 
secretory tissues although they undergo extensive prolif-
eration in older individuals [1]. Prostate cancer (PC) is a 
significant global health concern, predominantly affect-
ing the older male population. It develops in the pros-
tate, a small walnut-shaped gland in men that produces 
seminal fluid to nourish and transport sperm. The can-
cer usually grows slowly and initially remains confined to 
the prostate gland, where it may not cause serious harm 
[2]. While some types are slow-growing and may need 

minimal or even no treatment, other types are aggressive 
and can spread rapidly [3].

The most common type of PC is adenocarcinoma, mak-
ing up about 99% of cases. Other subtypes include ductal 
adenocarcinoma, transitional cell (or urothelial) cancer, 
neuroendocrine cancer, and small cell prostate cancer [4]. 
Castration-resistant prostate cancer (CRPC) is a highly 
aggressive form of the disease that grows despite the level 
of male hormones (androgens) being suppressed to very 
low or undetectable levels in the body. It usually signifies 
that the cancer is resistant to traditional hormone ther-
apy (also known as androgen deprivation therapy), mak-
ing it significantly more challenging to manage [5–7].

The genetic underpinnings of prostate cancer are com-
plex and multifactorial. Mutations in the BRCA1 and 
BRCA2 genes, often associated with breast and ovarian 
cancer risks, have been found to increase the likelihood 
of prostate cancer as well [8]. Prostate cancer pathogen-
esis is also influenced by the roles of specific oncogenes 
and epigenetic regulators, including ERG (ETS-related 
gene), which is a member of the ETS family of tran-
scription factors, known for roles in development and 
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various cancers, including prostate cancer [9] and EZH2 
(Enhancer of Zeste Homolog 2), which is a part of the 
Polycomb group of proteins, functioning as a histone 
methyltransferase and playing a crucial role in gene 
silencing and epigenetic regulation [10]. Their interaction 
significantly impacts prostate cancer progression. Zoma 
et al. found that EZH2 methylates ERG at K362, enhanc-
ing transcription and, combined with PTEN loss, leads to 
invasive adenocarcinomas and CRPC progression [11]. 
Similarly, Xu et al. identified that EZH2 in CRPC acts as a 
coactivator for key transcription factors and this function 
is phosphorylation-dependent and necessitates an intact 
methyltransferase domain [12]. The TMPRSS2-ERG 
gene fusion event is another common genetic abnormal-
ity observed in a significant proportion of PC cases, [13]. 
This fusion product disrupts androgen receptor signaling 
and induces repressive epigenetic programs through the 
direct activation of EZH2 [14]. This molecular interplay 
between ERG and EZH2 underscores their importance in 
cancer progression and as targets for new therapies.

Epidemiologically, prostate cancer is the second most 
common cancer and the fifth leading cause of cancer-
related death among men, with an estimated 1.41 million 
new cases and 375,000 deaths worldwide in 2019, accord-
ing to the World Health Organization [4]. The prevalence 
is higher in developed countries, attributed largely to 
routine screening using prostate-specific antigen (PSA) 
tests [15]. Age, family history of the disease, and race 
are well-established risk factors for PC. Men of African 
descent are at a higher risk of developing prostate can-
cer compared to other races, and the disease is generally 
more aggressive in these men [16].

The progression of prostate cancer, similarly to many 
other types of cancer, is influenced by metabolic altera-
tions in the tumor cells [17]. These changes allow cancer 
cells to adapt to their environment and to the availabil-
ity of nutrients, enabling their survival and proliferation 
even under adverse conditions. Among the metabolic 
alterations seen in cancers, the accumulation of specific 
metabolites, referred to as ’oncometabolites’, has emerged 
as a significant contributor to tumor progression [18]. 
This leads us to a deeper understanding of how prostate 
cancer develops and evolves, which we will explore in the 
next section, focusing specifically on the role of oncome-
tabolites in tumor progression.

The understanding and management of prostate can-
cer have evolved significantly over the years. Today, due 
to enhanced screening methods and more effective treat-
ments, survival rates for prostate cancer are generally 
high, particularly for localized forms of the disease [19, 
20]. However, aggressive and late-stage forms, such as 
CRPC, present ongoing challenges that researchers are 
striving to address. The future of prostate cancer research 

involves a multidimensional approach, focusing on risk 
stratification, personalizing treatments, and continually 
developing novel therapies.

Role of oncometabolites in tumor progression
As mentioned above, among the hallmarks of can-
cers, metabolic alterations are emerging as one of the 
most intriguing and complex therapeutic targets [21, 
22] due to the strict connections of the different meta-
bolic pathways and the capacity of cancer cells to adapt 
their energetic requirements on nutrient availability and 
microenvironmental changes. Alterations of energetic 
metabolism are connected with several downstream 
pathways and regulatory mechanisms, including protein 
post-translational modifications, epigenetic variations, 
and intercellular crosstalk, corroborating the necessity 
to identify metabolic targets to specifically hit cancer 
cells, still keeping into consideration their plastic abil-
ity to change their energetic sources. In different tumor 
types, the accumulation of specific metabolites (called 
oncometabolites) has been reported, especially concern-
ing three intermediates derived from the Krebs cycle, 
i.e., 2-hydroxyglutarate (2-HG), succinate, and fumarate. 
Historically, 2-HG has been the first identified oncome-
tabolite; it is mainly produced by the mutated form of 
the enzyme isocitrate dehydrogenase (mutIDH1/2) [23] 
and it is structurally similar to α-ketoglutarate (α-KG), 
the physiological product of the wild-type IDH. Gain-
of-function mutations of IDH have been identified in 
different tumor types, including gliomas, leukemia, 
chondrosarcoma, colon cancer, and prostate carcinoma 
[24]. Interestingly, 2-HG can be derived also from the 
promiscuous activity of some key metabolic enzymes, 
including malate dehydrogenase (MDH), lactate dehy-
drogenase (LDH) [25], and phosphoglycerate dehydroge-
nase (PHGDH) [26], and can accumulate in cancer cells 
in both its enantiomeric forms (i.e., D- and L-2HG). It 
has been reported that D-2HG is released by malignant 
cells and accumulated in the extracellular space, then it 
is taken up by T lymphocytes, limiting their capacity to 
mediate antitumoral immune response (Fig.  1) [27]. In 
addition to 2-HG, also high levels of succinate and fuma-
rate have been shown to sustain cancer growth. For both, 
the cause is connected to alterations of the functionality 
of the relative enzymes, such as succinate dehydroge-
nase (SDH) and fumarate hydratase (FH), respectively, 
that include loss-of-function mutations, transcript deg-
radation by miRNAs, post-translational modifications, 
and protein degradation. Concerning SDH, its loss-of-
function mutations have been detected mainly in two 
rare tumors, such as paraganglioma and pheochro-
mocytoma [24], and are generally frequent on the two 
subunits SDHB and SDHC, whereas only few mutations 
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affect the other subunits (SDHA and SDHD) [28]. This 
enzyme is localized into mitochondria and acts in two 
crucial pathways of the energetic metabolism, such as 
the Krebs cycle and the electron transport chain, by con-
verting succinate into fumarate, together with the reduc-
tion of flavin adenine dinucleotide (FAD) into  FADH2. A 
blockage of SDH activity causes an accumulation of suc-
cinate, which then acts as an oncometabolite by activat-
ing signaling pathways, DNA hypermethylation, increase 
of reactive oxygen species (ROS) production, epithelial-
to-mesenchymal transition (EMT), hypoxia-inducible 
factor (HIF)-1α stabilization, protein modification (such 
as succinylation) to sustain cancer progression (Fig.  1) 
[28]. Similarly, the accumulation of fumarate is gener-
ally caused by loss-of-function mutations of the relative 
enzyme FH, which converts fumarate into malate, and 
these mutations have been evidenced mainly in neuro-
blastoma and glioblastoma [24]. In addition, FH expres-
sion can be decreased by miRNA-378*. The results of the 
low activity of FH determine the increased level of fuma-
rate supporting cancer spread through metabolic repro-
graming, post-translational modifications (succination), 
DNA fragmentation and hypermethylation, increase of 
ROS levels and EMT (Fig. 1) [28].

Otto Warburg won the Nobel Prize in 1931 for his 
discovery of the increased glycolytic rate of cancer cells 
accompanied by high levels of lactate production, even 
in presence of oxygen. Recently, due to its abundance in 
tumor specimens and to its capacity to influence cancer 
cell metabolism, lactate has also been categorized as an 
oncometabolite. Indeed, environmental lactate not only 
acts as a metabolic by-product, but it can be uploaded 
by lung, prostate, and pancreatic cancer cells in order to 
support metabolic pathways, including fatty acid metab-
olism [29–31]. In uveal melanoma, it has been demon-
strated that lactate supplementation to in vitro cultured 
cells increases the mRNA expression of factors involved 
in mitochondria biogenesis and activity, suggesting a 
metabolic shift towards an oxidative metabolism [32]. In 
addition, in the same paper, the authors showed that the 
expression of monocarboxylate transporter (MCT), such 
as MCT1 and MCT4, are increased by lactate, along with 
a boost in oxidative phosphorylation (OXPHOS) activity, 
supporting a quiescent state and a reduced proliferation. 
However, other data are necessary to further corrobo-
rate this mechanism. A crucial role of lactate accumula-
tion in cancer cells has been demonstrated regarding its 
ability to induce expression of anti-inflammatory and 

Fig. 1 Scheme representing the role oncometabolites in prostate cancer with addition of other tissues, highlighting potential diagnostic tools
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proangiogenic genes, together with the modification 
of histones through a process called “lactylation”, where 
a lactyl-CoA is added to lysine residues present in the 
tails of histones [33]. This epigenetic alteration results 
in cancer progression, drug resistance [34], metastasis 
and stemness induction [35, 36], metabolic alterations 
by affecting enzymes involved in the tricarboxylic acid 
cycle (TCA), and carbohydrate, amino acid, fatty acid, 
and nucleotide metabolism [35], hence opening the way 
to the generation of novel therapeutic strategies against 
lysine lactylation, not only regarding histones (Fig.  1) 
[36]. Finally, it is worth noting that other metabolic inter-
madiates or biochemical molecules may accumulate in 
cancer cells [37], thus emerging as other possible onco-
metabolites, hence maintaing open the inclusion in this 
class of pro-cancer molecules.

Role of oncometabolites in modulating the epigenetic 
landscape of cancer cells
Concerning the epigenetic alterations associated with 
oncometabolites, it has been shown that D-2HG accu-
mulation, an event that is coupled with α-KG depletion, 
inhibits histone lysine demethylases (KDMs), giving 
rise to histone hypermethylation, epigenetic program-
ming, and acquisition of additional mutations [27]. Fur-
thermore, since 2-HG is structurally similar to α-KG, it 
competitively inhibits some α-KG-dependent dioxyge-
nases, including the ten eleven translocation enzymes 
(TETs) and the Jumonji family of histone lysine demethy-
lases, giving rise to DNA and histone hypermethylation 
[38, 39]. Some evidence about the capacity of succinate 
to regulate the epigenetic pattern of cancer cells have 
also been reported. Indeed, it has been shown that the 
acetylation of SDHA causes its deactivation, which in 
turn leads to activation of H3K4me3 activation, accom-
panied by change in tumor-specific gene expression 
[40]. In addition, other authors showed epigenetic inac-
tivation of tumor suppressor genes, specifically HIC1, 
DcR1, DcR2 and CASPS8, due to succinate accumulation 

in SDH-mutated head and neck paragangliomas [41]. 
Concerning fumarate, instead, it has been reported a 
connection between it and chromatin remodeling fac-
tor lymphoid-specific helicase (LSH) in patients with 
nasopharyngeal carcinoma (NPC). Indeed, the authors 
showed that the subsequent chromatin modification 
has a key role in the determination of epithelial–mes-
enchymal transition, by conferring potent metastatic 
potential to cancer cells [42]. Interestingly, it has been 
recently demonstrated that also lactate accumulation 
influences the epigenetic pattern of cancer cells, in par-
ticular prostate cancer. Indeed, it has been shown that 
the inhibition of both the lactate transporter MCT1 and 
the key enzyme at the basis of lipid biosynthesis, i.e., the 
ATP citrate lyase (ACLY), strongly reduce the intracel-
lular levels of acetyl-CoA, bringing the authors to the 
suggestion that lactate produced by cancer-associated 
fibroblasts (CAFs) represents the main source of acetyl-
CoA in lipid-reprogrammed prostate cancer cells. Since 
lipid-derived Acetyl-CoA is one of the major sources of 
carbons for histone acetylation, the authors also showed 
that exogenous lactate induces increased levels of specific 
histones acetylation (in particular H3K9 and H3K27) that 
correlate with an open state of the chromatin, suggesting 
an active gene transcription. These interesting results are 
further supported by the evidence that lactate derived 
from CAFs enters inside cancer cells and activates 
this epigenetic process, highlighting that the interplay 
between CAFs and cancer cells is crucial and that CAFs 
act as key players in the dysregulation of metabolite accu-
mulation [29].

Impact of oncometabolites on prostate cancer progression 
and prognosis
Due to the impact of oncometabolites in cancers, differ-
ent studies have been focused on their role in prostate 
cancer (Table  1). Starting from one of the first studies 
on this topic, it has been demonstrated that missense 
mutations on codon 132 in IDH1 gene are present in 

Table 1 Publications on PubMed regarding oncometabolites and prostate cancer

Argument Number of reviews Year of publication

Prostate cancer stem cells 695 #59 in 2021
#54 in 2022
#19 in 2023 (‘til now)

Prostate cancer and oncometabolites 2 2019

Prostate cancer and epigenetic 705 #69 in 2021
#75 in 2022
#33 in 2023 (‘til now)

Prostate cancer and tumor microenvironment 902 #137 in 2021
#118 in 2022
#52 in 2023 (‘til now)
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different tumor types diverse than glioblastoma multi-
forme or gliomas, including prostate carcinomas [43], 
opening the way to the investigation of the role of 2-HG 
also in this tumor type. Indeed, thereafter, many papers 
showed the effect of IDH mutation, and thus 2-HG pro-
duction, on prostate cancer cells. Among these, it has 
been demonstrated that the TET family of α-KG dioxy-
genases catalyzes the oxidation of 5-methylcytosine to 
5-hydroxymethylcytosine correlating with DNA dem-
ethylation. Interestingly, TET2 is considered as a tumor 
suppressor gene and its enzymatic activity is inhibited 
in IDH-mutated tumors by the accumulation of 2-HG; 
this is further connected with the low levels of 5-methyl-
cytosine oxidation that sustains cancer development, 
including prostate [44]. Another interesting evidence has 
been reported about the link of IDH mutation on codon 
132 or of 2-HG high levels and the higher cell invasion 
capacity of prostate cancer cells negative for the andro-
gen receptor (AR); indeed, the authors showed that when 
AR is expressed it reverses the pro-tumorigenic effect of 
2-HG via transforming growth factor (TGF)β1 and cir-
cRNA-51217 [45].

Concerning succinate, a lower number of studies are 
present in the literature. In one of these, the authors 
reported that after the therapeutic inhibition of AR, there 
is a metabolic shift in the regulation of energy metabo-
lism, highlighted by lower levels of SDH activity, correlat-
ing with succinate accumulation. Hence in this scenario, 
a therapeutic approach could also have a negative loop 
effect by causing an accumulation of a molecule that 
could work oppositely respect to the beneficial effect of 
the drug [46]. Moreover, also the anti-oxidant enzyme 
superoxide dismutase 2 (SOD2) has been shown to be 
indirectly involved also in the sustainment of succinate 
accumulation through a decreased activity of SDH and, 
intriguingly, an enhanced expression of Glut1 and glu-
cose uptake in prostate cancer models [47], however 
these evidence need further validations in other biologi-
cal systems. In this frame, CAFs and succinate accumu-
lation has been reported play a key role in the context 
of prostate cancer. Indeed, CAFs establish a metabolic 
connection with prostate cancer cells, through lac-
tate shuttle and thus contributing to cancer aggressive-
ness. Specifically, it has been shown that lactate uptake 
by cancer cells alters the  NAD+/NADH ratio, followed 
by sirtuin (SIRT)1-dependent peroxisome proliferator-
activated receptor gamma coactivator (PGC)-1α activa-
tion and subsequent increase of mitochondrial mass and 
activity. This scenario is then reflected on the deregula-
tion of Krebs cycle, accumulation of oncometabolites, 
downregulation of complexes II-III, and accumulation 
of ROS. In addition, the authors also showed that CAFs 
stimulated prostate cancer cells to invade and that CAFs 

conditioned media significantly enhanced malate, citrate, 
fumarate and succinate levels (not 2-HG) [48].

Three other types of metabolic alterations have been 
demonstrated in prostate cancer cells: i) increased levels 
of urea cycle intermediates, including arginine-succinate, 
arginine, and fumarate in prostate cancer cells in com-
parison to benign controls [49]; ii) overproduction of 
γ-aminobutyric acid (GABA) suggesting that the GABA 
shunt, particularly glutamate decarboxylase (GAD)65, 
may represents a molecular target in the treatment of 
castrate-resistant prostate cancer [50]; iii) the accumula-
tion of a derivate of the amino acid glycine, i.e. N-methyl-
glycine, also called sarcosine, which has been shown to 
accumulate in prostate neoplastic cells acting as an apop-
totic inhibitor [51] and as an epigenetic modifier [52], 
thus representing a potential biomarker for the diagno-
sis of this cancer in the early stage [53]. Finally, in a pilot 
study it has been shown that, by analyzing the urine of 
101 patients with prostate cancer, the concentration 
of sarcosine, together with ethanolamine, kynurenine, 
b-alanine, and isoleucine, is significantly different respect 
52 control individuals, representing new potential mark-
ers for cancer detection and prognosis [54]. This aligns 
with the findings that activation of the PTEN-PI3K-
mTORC1 pathway in prostate cancer leads to metabolic 
alterations in polyamine synthesis and decarboxylated 
S-adenosylmethionine (dcSAM) production, further 
underscoring the potential of metabolic markers in can-
cer detection and evaluation [37].

Oncometabolites and epigenetic regulation 
in cancer stem cells (CSCs) and EMT
Cancer stem cells in the context of prostate cancer
Despite prostate cancer usually grows slowly without 
spreading outside the gland, there are also more aggres-
sive forms, in which cancer cells rapidly invade the sur-
rounding tissues and can additionally spread to other 
organs. Some studies have therefore focused on the 
investigation of this particular and delicate clinical condi-
tion, until the discovery in 2005 by Collins and colleagues 
of prostate cancer stem cells (PCSCs) [55] insights into 
the understanding and nature of these cells have followed 
since then. Cancer stem cells are extremely rare within 
the tumor, indeed they represent only the 0.1–1% of the 
bulk of the malignant mass and possess specific peculi-
arities. Among these, they show self-renew capacity and 
are able to differentiate into non-CSC progeny; they 
have high tumor-initiation capacity and display a strong 
resistance to chemo- and radio-therapy. In fact, stand-
ard therapies generally kill differentiated cancer cells, 
whereas cancer stem cells survive giving rise to metas-
tasis. All these elements determine a worse clinical out-
come for cancer pathology. As a matter of fact, it is now 
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commonplace to think that the portion of patients with 
prostate cancer who are in a metastatic stage and who, 
above all, do not respond to hormonal therapy (consid-
ered a gold standard) are distinguished precisely by the 
presence of cancer stem cells [56]. This makes them one 
of the main targets in the development of new possible 
therapies for the treatment of patients to whom it is not 
possible to apply the classic treatment strategies nowa-
days. The cure and complete healing of prostate cancer 
still remains an incomplete success, but one that can be 
resolved by unmasking the intrinsic properties of PCSCs 
[56].

There are several types of cells in the prostate, each of 
which can transform and become cancerous; it therefore 
agrees that one of the main characteristics of this type 
of tumor is the relevant heterogeneity, which manifests 
itself in a range of different stadial degrees named Glea-
son grade and metastatic states [57]. In order to identify 
and analyze prostate cancer stem cells, specific markers 
have been established over the years that allow their iso-
lation; among them, CD44, CD133, aldehyde dehydro-
genase (ALDH), and androgen receptors are noteworthy 
but not the only ones. The origin of PCSCs is not yet well 
clear, although emerging data suggest the idea that they 
derive from prostate stem cells that undergo epigenetic 
modifications due to the presence of singular molecules 
released in the tumor microenvironment (TME) [58].

Role of EMT in prostate cancer progression and metastasis
One of the main traits for cancer cells is their attitude 
to undergo epithelial-to-mesenchymal transition, a 
well-recognized pathway implicated in the formation 
of CSCs. During this physiological event, cells decrease 
the expression of specific epithelial proteins and instead 
increase the expression of other mesenchymal specific 
proteins. This leads cells to lose tight and adherent junc-
tions and detach from the basement membrane, con-
sequently disrupting cell polarity; then, they migrate 
throughout the bloodstream and extravasate, colonizing 
secondary organs [59]. To do this, cells must undergo 
the opposite mechanism, which is the mesenchymal-to-
epithelial transition (MET). Over last years, many papers 
demonstrated that also prostate cancer cells possess the 
propensity to undergo EMT program, endowing tumor 
with invasive traits that facilitate metastasis and variation 
in therapeutic responses [60]. In particular, it is emerg-
ing that androgen-independent metastatic phenotype, 
advanced prostate cancer and resistant immuno-pheno-
type patients are associated with the presence of PCSCs 
[61].

During the normal process of prostate formation, 
which occurs at embryonic level, it is normal to witness 
a dynamic plasticity between EMT and MET that allows 

the formation of the endodermal and mesodermal struc-
tures [62]. However, when some of the crucial signaling 
pathways that regulate these processes are significantly 
altered, patients undergo prostate tumorigenesis. First 
of all, the Wnt pathway, that generally affects cell sur-
vival, and in particular the Wnt family member 3 (Wnt3) 
seems to be involved in the increased expression of some 
typical stem markers like CD133 and CD44 [63–65]. The 
Hedgehog signaling pathway orchestrates cell renewal 
and survival, and its abnormal regulation has been found 
in prostate cancer cells and in PCSCs [66, 67], correlating 
with poor survival because of high grade of metastasis. 
Interestingly, also Notch pathway is regulated in prostate 
cancer; indeed, recent data show that it alters the cor-
rect signaling of both phosphoinositide 3-kinase (PI3K)/
Akt pathway and AR pathway, which coordinate carcino-
genesis [68], EMT, metastasis and cancer progression in 
this tumor type [69–72]. A final pathway that is altered 
in prostate cancer is nuclear factor kB (NF-kB) signaling 
pathway, which is correlated with a complex clinical case 
since it appears to have an important role in the regula-
tion of progression, in the formation of metastases, and 
also in resistance to therapies [73, 74]. Further studies 
need to be performed to deeply investigate this topic 
which appears to be as crucial and equally important as 
those previously mentioned.

Since important pathways are significantly altered dur-
ing EMT, one of the approaches that is emerging recently 
is the search for specific markers involved in the afore-
mentioned pathways in order to use them as targets not 
only in patient screening, to better understand in which 
tumor stage are classified, but also as therapeutic tar-
gets to improve life expectancy even for those patients 
who are resistant to therapies and/or show relapses [75]. 
Moreover, in last years, in-depth studies on animal mod-
els have also been performed to further understand the 
effects that EMT and CSCs can have on prostate can-
cer [76], identifying eligible markers for possible future 
patient-specific treatments, in a historical moment in 
which the precision medicine seems to be the new fron-
tier in the fight against cancer.

Influence of oncometabolites and epigenetic changes 
on CSCs and EMT
As previously stated, the complexity of tumors often 
lies in the high heterogeneity that characterizes it and 
which, among others, is due to the coexistence of can-
cer cells and cancer stem cells. In addition to this, the 
sophisticated molecular and metabolic plasticity that 
CSCs undergo makes the clinical profile more complex. 
The mechanisms underlying this fluidity can be traced 
back to epigenetic alterations that provide a revers-
ible and rapid switch in gene expression, in response 
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to developmental and microenvironmental signals, as 
well as to hypoxic conditions [77–79]. These events 
trigger the alteration of specific oncogenes; these genes 
can be functional and active during physiological con-
ditions, producing normal amounts of metabolites. 
Their upregulation, as a consequence of epigenetic 
modifications, can result in an overabundance of key 
metabolites, known as oncometabolites, and lead to 
tumorigenesis. In fact, in addition to acting as signal 
molecules in TME, they also act on signaling path-
ways which in turn orchestrate both the expression of 
stem traits and their intracellular abundance in a meta-
bolic loop. This metaboloepigenetic rewiring is called 
“metabostemness” [80]. In detail, epigenetic modifica-
tions lead to mutations on enzymes involved in meta-
bolic pathways (among which the best noted are SDH, 
FH, and IDH) which in turn cause the accumulation 
of oncometabolites (as mentioned before, succinate, 
fumarate, and 2-hydroxyglutarate) that stimulates alter-
ations in DNA and histone modifications [28]. Each of 
the above oncometabolites regulates certain signaling 
pathways, including those regulating stemness and the 
EMT program. For example, succinate and fumarate 
inhibit TETs, important methylcytosine dioxygenases 
that not only demethylate DNA but also suppress spe-
cific microRNAs that usually inhibit EMT program 
[81]; this interference causes a constant activation of 
epithelial-to-mesenchymal transition and an increased 
expression of Zeb1, which has been identified as a 
potential risk factor for recurrence and poor progno-
sis in several types of cancers [82, 83]. In the case of 
2-hydroxyglutarate instead, it seems to induce an 
abnormal activity of telomerase reverse transcriptase 
(TERT), which in turn upregulates the transcription of 
important genes involved in stemness and tumorigenic-
ity, including CD117, Oct4, and Sox2 [84, 85].

This complexity is further elucidated in a recent study 
by Giafaglione et  al., which demonstrates that prostate 
epithelial cells, specifically basal and luminal types, pos-
sess unique metabolomes and nutrient patterns, funda-
mentally impacting their differentiation and response to 
treatment. These findings highlight the significant role of 
metabolic signaling in the regulation of prostate cancer 
progression, especially in the context of treatment resist-
ance and lineage identity [86].

In recent years there have also been studies on possi-
ble link between some mutations found in patients with 
therapy-resistant prostate cancer, and a higher level of 
expression of genes involved in stemness, EMT and inva-
siveness [61]. These data are alarming but, at the same 
time, they also leave a glimmer of hope for the identifica-
tion of markers and/or therapeutic targets that can help 
in the fight against this type of cancer (Table 2).

The impact of oncometabolites on the tumor 
microenvironment in prostate cancer
Elucidating the composition and metabolic function 
of the prostate cancer tumor microenvironment
The stroma of the human prostate is a dense connec-
tive tissue rich in smooth muscular cells with fibroblast, 
blood vessels, and nerves. There is no adipose tissue in 
the stroma, though the periprostatic adipose tissue of 
the prostate plays a fundamental role in the biology of 
the gland. In the mouse, the fibromuscular stroma is less 
prominent, and the epithelial tissue occupies most of the 
gland area [87].

Stromal cells are responsible for the growth and home-
ostasis of the epithelia. Also, they are responsible for 
extracellular matrix synthesis and turnover. The impor-
tance of the stroma in the normal gland functioning is 
obvious. Growth factors travel around and are stacked 
into the fibrous component of the extracellular matrix, 
the communication between stroma and epithelia is also 
relevant in the aging process of the gland. Aging changes 
matrix components and is characterized by increased 
pro-inflammatory cytokines that can contribute to age-
associated pathologies such as benign prostate hyperpla-
sia, prostatitis, and even prostate carcinoma [88]. In fact, 
cancer progression involves signals and interaction with 
other cell types different from tumor cells found in the 
neighboring tissue that embrace the tumor. In the pros-
tate, epithelial cancerous tissues are surrounded by cells 
that produce factors that communicate and even regulate 
tumor cells [89].

The importance of TME in PC has made the number 
of studies focused on the metabolic crosstalk between 
cancer cells and the TME rapidly increase in the last few 
years. The TME maintains the metabolic requirements of 
PC cells in different ways: (1) by the production of many 
cytokines; (2) by secreting lactate; (3) by ensuring intra-
cellular alkalinization of tumoral cells through bicarbo-
nate secretion via carbonic anhydrase IX (CAIX) [90].

The unique metabolism of PC entails that the relevant 
oncometabolites in the TME differ from other carcino-
mas. In normal prostate, glycolysis is favored because 
of the inhibition of aconitase in the TCA cycle by zinc 
accumulation [91]. On the other hand, in the first steps 
of prostate carcinogenesis, tumor cells become citrate-
dependent, increasing OXPHOS and lipogenesis. In the 
CRPC, choline, amino acid, and glycolytic metabolism 
are promoted more than OXPHOS [92]. Thus, the differ-
ent metabolic requirements along PC progression alter 
the TME, being the mitochondria at the center of the 
crosstalk.

In PC, most published studies are based on the inter-
action of tumor cells with CAFs to promote cancer pro-
gression and aggressiveness. In healthy prostate stroma, 
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fibroblasts play a fundamental role in the maintenance of 
the extracellular matrix (ECM), but acquire an activated 
state with tumor progression that resembles its role dur-
ing the repair response in injured tissues. CAFs increase 
the production of EMC components and secrete growth 
factors and cytokines [93]. In the prostate stroma, they 
increase proliferation and begin to express α smooth 
muscle actin (α-SMA), a classical marker of myofibro-
blast [94]. CAFs are found in premalignant prostatic 
intraepithelial neoplasia (PIN), but they are significantly 
increased along with tumor progression [95, 96]. They 
express high levels of EMC proteins and show high mobil-
ity and a high proliferation rate similar to fibroblast dur-
ing wound healing, but the main difference is that CAFs 
remain in the stroma of the TME [97]. This situation 
maintains oncogenic signals, including soluble factors 
produced by themselves or by modifying the availability 
of oncogenic molecules bound to the ECM components. 
The origin of CAFs remains unclear, and some propose 
that they derive from the activation of resident fibroblast 
[98, 99], from recruited bone marrow progenitors [100], 

or the transdifferentiation from endothelial [101, 102] or 
epithelial to mesenchymal [103].

CAFs show a secretory phenotype that enhances the 
proliferation and invasion of prostate cancer cells in vitro. 
However, though in  vivo, CAFs have been positive or 
negative for tumor growth, depending on the study. The 
role of CAFs in grafting-initiated prostate epithelium has 
been shown [104, 105]. The role of CAFs is to stimulate 
the cancer cells. They contribute to a permissive micro-
environment that favors angiogenesis, cell migration, 
matrix stiffening, and in turn invasive phenotypes [95, 
96]. CAF-enriched microenvironment directly affects 
EMC integrity, promoting fibrosis, interstitial pressure, 
hypoxia and impairing the delivery of antitumor drugs.

On the other hand, proteases from CAFs degrade ECM 
components and free growth factors and cytokines that 
contribute to proliferation of cancer cells. Lastly, CAFs, 
through this microenvironment modulation, could be 
relevant in the immune population and reactivity sur-
rounding the tumor cells, however their role in immuno-
suppression in prostate cancer is not yet clarified.

Table 2 Role of oncometabolite in cancer cells related to epigenetic landscape

Role of oncometabolites in cancer cells (epigenetic landscape) Reference

2‑hydroxyglutarate (2‑HG)

 Limiting T lymphocytes capacity to mediate antitumoral immune response [27, 38]

 Inhibition of histone lysine demethylases (KDMs)

 Inhibition of ten eleven translocation enzymes (TETs) and the Jumonji family of histone lysine demethylases [39]

Succinate

 DNA hypermethylation [28]

 Increase of reactive oxygen species (ROS) production

 Induction of epithelial‑to‑mesenchymal transition (EMT)

 Hypoxia‑inducible factor (HIF)‑1a stabilization

 Protein modification (such as succinylation)

 Inhibition of H3K4me3 activation, accompanied by change in tumor‑specific gene expression [40]

 Inactivation of tumor suppressor genes (HIC1, DcR1, DcR2 and CASPS8) [41]

Fumarate

 Metabolic reprograming [28]

 Post‑translational modifications (succination)

 DNA fragmentation and hypermethylation

 Increase of reactive oxygen species (ROS) levels

 Induction of epithelial‑to‑mesenchymal transition (EMT)

 Connection with chromatin remodeling factor lymphoid‑specific helicase (LSH) [42]

Lactate

 Inducing expression of anti‑inflammatory and proangiogenic genes [33]

 Modification of histones (lactylation)

 Drug resistance [34]

 Induction of metastasis and stemness [35, 36]

 Supporting metabolic alterations [35]

 Increasing levels of specific histones acetylation (in particular H3K9 and H3K27) [29]
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The second component in the prostate cancer micro-
environment is tumor vasculature. Like many other solid 
tumors, the prostate has aberrant vasculature showing a 
lack of pericyte coverage, vascular leakiness, and aber-
rant morphology of vessels [106]. In normal prostate, 
vascular endothelial growth factor (VEGF) expression is 
restricted to stromal cells. However, in carcinoma, VEGF 
expression increases in tumor cells. Prostate cancer 
favors angiogenesis, and tumor-associated vasculature 
secretes an array of paracrine effectors that can contrib-
ute to the growth of several types of solid tumors [107]. 
Experimentally, it was demonstrated that human umbili-
cal vein endothelial cells enhance the invasion of prostate 
cancer cells in  vitro [108]. The integration of vascular 
niche in the prostate is affected by androgen depriva-
tion therapy. Androgens withdrawal promotes the loss 
of vascular integrity, pointing to the possibility that the 
vascular component of the prostate microenvironment 
can be an important component of treatment-induced 
therapy resistance since some experiments have shown a 
transient loss of vascular integrity that is recovered after 
a time of androgen deprivation [109]

The changes in vascularization make the environment 
hypoxic and acidic [110]. In general, it was considered 
that tumor cells adapt their metabolism favoring glyco-
lysis to have a selective advantage in a non-physiological 
atmosphere, being glucose considered as oncometabolite. 
However, glucose is not frequently viewed as oncometab-
olite in PC, except for metastases [111]. In fact, glucose 
deprivation promotes androgen signaling and increases 
resistance to radiation treatment [112, 113]. Lactate and 
fatty acids predominate over glucose as energetic fuel in 
PC cells.

Both CAFs and the vascular component of the TME 
live together with the immune cells of the prostate 
stroma. Inflammation is a cancer-promoting process 
in the prostate. Chronic infection and inflammation 
cause cancer in the prostate [114]. Also, the progres-
sion of prostate tumors is followed by the increment of 
immune cells in the stroma, mostly dendritic cells and 
macrophages. Macrophages have a complex role in can-
cer, but in the prostate, tumor-associated macrophages 
(TAM) are frequently correlated with poorer outcomes 
[115]. Macrophages interact with fibroblasts in normal 
tissues when tissue repair is necessary. TFG-β and other 
cytokines mediate this interaction. CAFs produce high 
levels of TFG-β that correlate with lower survival in pros-
tate cancer patients. TFG-β also promotes the accumula-
tion of regulatory T cells in the tumor prostate. Thus, the 
reciprocal relation between stromal components contrib-
utes to progression and creates an immunosuppressive 
microenvironment [89]. Histology evidence reflects that 
more than 80% of prostate human samples studied have 

immune infiltration, and this chronic inflammation con-
tributes to prostate cancer development [116]. The com-
position of immune infiltrate varies with disease stage 
and patient age, but mostly,  CD3+ T cells,  CD4+ T cells, 
 CD20+ B cells, and macrophages are found [117]. Other 
frequent cells that appear in the TME of the prostate are 
natural killers (NK), mast cells and neutrophils that, in 
addition to macrophages, constitute the most relevant 
immune components of the stroma of the prostate tumor. 
Immune cell function is finely regulated by nutrient avail-
ability, and targeting metabolic activity is a recurrent 
strategy for malignant cells to proliferate.

One of the major immunosuppressive components 
in the prostatic TME is the dedifferentiated myeloid-
derived suppressor cells (MDSCs). These cells, coming 
from myeloid cells in the bone marrow, are highly het-
erogeneous and can also differentiate into endothelial 
cells, fibroblasts, tumor-associated macrophages (TAMs) 
[118], or osteoclasts [119]. Consequently, MDSCs play a 
critical role in forming the pre-metastatic niche. Accord-
ing to their morphology, MDSCs are subdivided into two 
major subsets: Monocytic (M-MDSCs) and granulocytic 
(G-MDSCs). Despite their heterogeneity, MDSCs meta-
bolically share a Warburg effect exhibition, which limits 
glucose availability for immune cells and the production 
of inhibitory cytokines by increasing fatty acid oxida-
tion (FAO). In addition, the promotion of the catabolism 
of some amino acids, such as arginine, tryptophan, and 
cysteine, by MDSCs impedes activation of T cells [120]. 
In PC, several studies have already described the pres-
ence of MDSCs to support tumor growth [121]. Interest-
ingly, enzalutamide, an AR antagonist used in metastatic 
PC, promotes the immunosuppressive activity of MDSCs 
by reducing mitochondrial metabolism and increasing 
glycolysis, VEGF and Arg1 expression in a CRPC model 
[122]. Therefore, the resistance to AR antagonism can be 
explained by MDSC metabolic function.

The biophysical properties of the stroma, like the cell 
communication between all the components of the 
stroma of the tumor prostate, play a critical role not only 
in the progression of the disease but also in the resist-
ance of the tumor to radiation or cytotoxic therapy. This 
mechanism relies on the role of ECM synthesized by cel-
lular components and the communication between these 
components and cancer cells. There is a growing inter-
est in the communication mechanism between cancer 
cells and stromal cells. The role of extracellular vesicles 
(EVs), membrane-enclosed particles secreted by sev-
eral cells, including cancer epithelial, immune, or non-
immune cells, is interesting. EVs can carry cytoplasmic 
proteins, lipids, nucleic acids, or metabolites that affect 
cells in the same vicinity or far distance. They also have 
a role in modulating tumor immune response and have 
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many functions, including oncogenic signals, angiogene-
sis, or tumor-evading signals. They are critical mediators 
by which tumors regulate their microenvironment and, 
in return, by which stromal cells modulate tumors [123, 
124]. For example, exosomes from MDSCs ease CRPC 
progression [125]. On the other hand, Xu and colleagues 
recently described how exosomes from PC cells contain-
ing interleukin-8 (IL-8) alter the metabolism of stromal 
 CD8+ T cells, switching from OXPHOS to thermogenesis 
[126].

Role of oncometabolites in shaping the tumor 
microenvironment and cancer metastasis
From the classical point of view of the Warburg Effect, 
lactate has been considered a waste product from gly-
colytic tumor cells which acidifies the TME. Lactic aci-
dosis in the TME promotes metastasis, angiogenesis, 
and immunosuppression [127]. However, lactate can 
also be catabolized to pyruvate, fueling the TCA cycle 
and stimulating different anabolic signals [128]. In 2008, 
Sonveaux et al. showed that lactate uptake is preferred in 
OXPHOS-dependent cancer cells and is involved in cel-
lular processes such as redox homeostasis [129]. In 2017, 
Hui et al. proposed lactate as the primary carbon source 
in the TCA cycle [130].

The lactate uptake, known as Reverse Warburg Effect, 
is particularly relevant in the prostatic TME and dif-
ferent from other tumors [131]. PC cells modify the 
metabolism of CAFs by Interleukin-6 (IL-6) secretion 
[132]. Epithelial tumor cells downregulate the tumor 
suppressor p62 in fibroblasts. Consequently, there is a 
reduction in the mTORC1 activity and c-Myc expres-
sion that causes a release of ROS and IL-6 and the 
activation of fibroblasts [133]. CAFs enhance glucose 
transporter GLUT1 and lactate exporter MCT4 levels, 
becoming glycolytic and secreting lactate [134, 135]. 
CAFs also activate Pyruvate kinase M2 (PKM2) in PC 
cells. This protein is translocated into the nucleus, los-
ing its metabolic function and switching the metabo-
lism to OXPHOS [134, 136]. Simultaneously, PC cells 
reduce GLUT1 levels and increase the levels of the lac-
tate importer MCT1, consuming the lactate secreted by 
CAFs (Fig. 2) [134]. In 2019, Ippolito et al. studied the 
role of lactate coming from CAFs into tumor cells more 
in-depth. Lactate impacts the  NAD+/NADH ratio, acti-
vating the mitochondrial regulator PGC-1α via SIRT1. 
Consequently, there is an increase in mitochondrial 
biomass and activity, an accumulation of oncometab-
olites from the TCA cycle, and more superoxide gen-
eration. Interestingly, along with lactate uptake, tumor 

Fig. 2 Oncometabolites in the tumor microenvironment
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cells established cellular bridges with CAFs to hijack 
functional mitochondria [48]. Although still not com-
pletely defined, this metabolic phenotype seems char-
acteristic of primary tumors. The metastatic and CRPC 
forms secrete lactate via MCT4 and present reduced 
levels of MCT1 [137, 138].

The lactic acidification in the TME also impacts immu-
nomodulation, particularly associated with TAMs. 
Acidosis alters interleukin-4-related macrophage activa-
tion (M2-immunosuppressive phenotype), promoting 
tumor growth. In addition, there is a negative correla-
tion between macrophage infiltration and MCT4 levels 
(Fig. 2) [139]. Recently, Chaudagar et al. found an inverse 
correlation between glycolytic activity and antitumor 
TAM phagocytosis in metastastic CRPC (mCRPC) 
patients [140].

Besides lactate production, CAFs feed cancer cells 
through ketone bodies, molecules necessary to ensure 
lipid synthesis under glucose deprivation [141, 142]. 
Lipids are metabolites highly present in the tumor 
stroma, particularly in bone metastases [143]. While 
CAFs are the most abundant cells of the TME of primary 
tumors, adipose tissue is the majority in the bone mar-
row, where PC metastasis is more frequent. The high 
metabolic activity of the adipocytes promotes the prolif-
eration and aggressiveness of cancer cells in bone metas-
tasis, being proposed as responsible for the metabolic 
disbalance from OXPHOS to glycolysis [144]. In vitro, PC 
cells in the presence of adipocytes are more glycolytic by 
increasing HIF1α levels. However, physical interaction 
is not necessary, but the specific factors involved in PC 
progression are not elucidated yet [145]. Cutruzzolà et al. 
suggest adipocyte-secreted glycerol can feed cancer cells 
by entering the glycolytic pathway [144]. On the other 
hand, Whitburn and colleagues described that bone stro-
mal cells upregulate glucose-6-phosphate dehydrogenase 
activity and, consequently, the pentose phosphate path-
way (PPP) by IL-6 secretion (Fig. 2) [146].

Another oncometabolite related to lipid metabolism is 
choline, which is part of the phospholipid phosphatidyl-
choline. Choline is highly abundant in PC cells [147], and 
the TME influences choline metabolism [148]. However, 
it has not been elucidated which component regulates 
choline levels. Furthermore, PC cells secrete extracellular 
lipid vesicles enriched in Caveolin-1, phosphatidylcho-
line, sphingolipids, and cardiolipins [149]. Therefore, the 
tumor stroma regulates choline metabolism in PC cells, 
but choline secretion can also impact the TME. On the 
other hand, cholesterol is also highly concentrated in PC 
cells [150], and CAFs upregulate its synthesis and the 
steroid biosynthesis pathway [151], possibly by proin-
flammatory cytokines and chemokines, not via oncome-
tabolite signaling.

Some amino acids are essential in shaping the TME in 
several cancers. Glutamine, the most abundant amino 
acid, plays a significant role in tumor cells but also the 
TME. Epigenetic regulation of Ras activity in prostatic 
CAFs metabolically links the stroma and the tumoral 
epithelia. The fibroblastic Ras-driven macropinocytosis 
triggers an increase in glutamine production. The glu-
tamine excess is employed by tumor cells to promote 
tumor progression, neuroendocrine differentiation, 
and resistance to androgen deprivation therapy (ADT) 
(Fig. 2) [152]. Moreover, arginine, a semi-essential amino 
acid, is particularly relevant in immune cells [153]. Argi-
nine metabolism is the metabolic bridge between malig-
nant PC cells and TAM, increasing tumor aggressiveness 
[154]. Arginase (ARG) 1 and ARG2, enzymes responsible 
for catabolizing arginine into ornithine, activate immu-
nosuppressive pathways in the hormone-refractory PC 
[155]. In addition, arginine is also in control of main-
taining the unresponsiveness of tumor-infiltrating cyto-
toxic lymphocytes. In tumor cells, inhibition of ARG 
and nitric oxide synthase (converts arginine into nitric 
oxide) promotes lymphocyte responsiveness by reducing 
tyrosine nitration [156]. In mice, extracellular arginine is 
taken by MDSCs via upregulation of cationic amino acid 
transporter 2 (Cat2/Slc7a2), reducing its availability for 
immune cells [157]. In patients, it was also confirmed 
that high levels of Arg1 in a G-MDSC population inhibit 
the proliferation and cytotoxic activity of CD8 + T cells 
[158].

The function of famous oncometabolites like 2-hydrox-
yglutarate, fumarate, or succinate has not been exten-
sively described for the PC microenvironment. Succinate 
from stromal cells can have a remarkable goal in onco-
genic potential since PC cells consume it in an acidic 
environment, having an anaplerotic effect and enhanc-
ing the aggressive potential [159, 160]. Succinate can be 
secreted from CAFs through exosomes. CAFs-derived 
exosomes include lactate, acetate, amino acids, TCA 
cycle metabolites like succinate, and lipids. Furthermore, 
exosome secretion is pH dependent, being favored under 
an acidic environment. Unlike the lactate effect alone, 
CAFs-derived exosomes inhibit the electron transport 
chain, increasing glutamine carboxylation for biosynthe-
sis in PC cells [161].

Influence of oncometabolites in CSC phenotype
Even if the impact of oncometabolites in the crosstalk 
between stromal cells and PC cells has been reason-
ably assessed, less clear is which are the oncometabolites 
responsible for maintaining the metabolic properties of 
CSCs. CSCs are generally characterized by a high glyco-
lytic rate and low OXPHOS [162], but their metabolism 
is also tissue-dependent [163]. Thus, unlike PC cells, 
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glucose can be a critical metabolite for stemness. The 
CSC cell line 3-AB OS, derived from the human osteo-
sarcoma cell line MG63, is sensitive to glucose depriva-
tion [164]. However, MG63 cells are more susceptible to 
glutamine deprivation [165]. Recently, it was described in 
the prostatic PC-3 cell line that cell density shifts metab-
olism from glycolysis towards OXPHOS and induces a 
CSC-like phenotype. However, it seems that glycolysis 
and not OXPHOS is critical for CSC phenotype since 
dichloroacetate, a pyruvate dehydrogenase inhibitor, 
blocks the acquisition of CSC properties [166]. Never-
theless, this study was performed in vitro with only one 
cell line, requiring more studies to extract consistent 
conclusions.

Among the candidates to regulate CSCs in PC, kynure-
nine, a metabolite from tryptophan metabolism, is more 
abundant than lactate in the PC microenvironment and 
can have immunosuppressive properties, promoting 
malignancy [167, 168]. Kynurenine has been involved in 
self-renewal, maintenance, and differentiation in embry-
onic stem cells (ESC) and induced pluripotent stem cells 
(iPSCs) [168, 169]. Therefore, this metabolite can be a 
major candidate for regulating CSCs in the prostate.

Therapeutic implications and future perspectives
Current Strategies targeting metabolic dysregulation, 
oncometabolites, and epigenetic modulation in prostate 
cancer
Biomarkers
Recent technical breakthroughs in analytical chemistry 
allow us to identify low-abundance metabolites in differ-
ent biological matrixes and metabolic alterations along 
key pathways [170]. Since oncometabolites are charac-
teristic of tumor development and progression, identify-
ing their differential levels in diverse biological samples 
compared to healthy individuals could be an interesting 
approach as novel prostate cancer biomarkers. Here we 
sum up the oncometabolites differently identified in pre-
clinical models and in urine, seminal fluid, and biopsies 
of PC patients.

Urine, as part of the urogenital system and an easy-to-
get sample, could be a feasible matrix to look for patient 
biomarkers. Succinate is detected and less abundant in 
PC patients’ urine (n = 32) compared to healthy controls 
(n = 32). The study’s authors explained this as an indica-
tion of the disruption of the TCA cycle in tumor cells 
[171]. Interestingly, they also found hydroxyglutarate 
downregulated in the urine of PC patients. Kyneurine, 
another oncometabolite [172, 173], was found to have 
significantly higher median values in the urine of PC 
patients (n = 101) than in controls (n = 52) [54].

Due to the significant contribution of the prostate to 
the seminal fluid composition, it is reasonable to search 

for potential biomarkers within it. Citrate emerges as 
a widely differentially produced metabolite in seminal 
fluid. Although citrate is not an oncometabolite, it is a 
critical factor in prostate metabolism. In normal prostate, 
it is accumulated in epithelial cells due to zinc-induced 
TCA cycle blockade at the m-aconitase level. Citrate, 
along with zinc, is secreted to seminal fluid. However, 
metabolic reprogramming during PC initiation drops 
zinc and citrate levels, unblocking the TCA cycle [174]. 
Thus, citrate has lower levels in PC patients’ seminal fluid 
than in control groups across different studies (PC n = 4, 
control n = 22 [175]; PC n = 28, control n = 33 [176]; PC 
n = 52, control n = 26 [177]; and PC n = 3, control n = 4 
[178]).

Molecular and metabolic profiling of cancer biopsies 
is a novel opportunity to identify new features of solid 
tumors. Fumarate increased in patient cancer samples 
compared to adjacent benign tissue (n = 13) [49]. Further-
more, this oncometabolite positively correlated with gene 
expression of oncogenic HIF1ɑ and NF-kB pathways [49]. 
Tessem et al., 2016, tried to shed light on the metabolic 
profiling of solid tumors and find biomarkers despite dif-
ferent and complex mixtures of tissues within the sample. 
By selecting samples with a similar proportion of tumor 
and stroma across biopsies and groups, they could iden-
tify differentially elevated levels of succinate and reduced 
levels of citrate between PC patients (n = 95) and healthy 
individuals (n = 34) [179]. Finally, another oncometabo-
lite linked to in situ tumor progression is lactate. Despite 
its low concentration, using transrectal ultrasound-
guided biopsies, lactate was identified, and PC samples 
contained differentially higher levels than benign tis-
sue (n = 82). Interestingly, they could reach an ability to 
detect this increase in lactate with as little as 5% of tumor 
content in the biopsy, making it a promising tool for PC 
detection [180].

Together with the advances in detection methods of 
metabolites, the field of EVs is also growing thanks to 
better and refined methods of isolation, characteriza-
tion, and their new roles discovered in many hallmarks 
of cancer. Thus, PC patient-derived EVs isolation and 
characterization is being used as a biomarker search, as 
reviewed in [181]. Indeed, Clos-Garcia et  al., 2018, iso-
lated EVs from the urine of PC patients and then per-
formed a metabolomic analysis of their cargo. Succinate 
could be detected in all samples (PC n = 31 and BPH 
n = 14), but with a fold-change of 1.211, the p-value of 
the comparison PC vs BPH was 0.11. Citrate and isoci-
trate were also identified, and interestingly they were 
significantly downregulated in EVs from PC [182]. Other 
oncometabolites detected in EVs are lactate and fuma-
rate, identified in high concentrations in patient-derived 
CAFs, which are incorporated by PC cells in vitro to fuel 
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their metabolic demands [161]. Furthermore, succinate 
has been identified in EVs derived from PC cells in vitro, 
with significantly higher levels than non-tumoral coun-
terparts [183]. These findings make the characterization 
and search of specific (onco)metabolites in EVs of PC 
patients a stimulating research field.

Therapeutic agents
Once identified as potential biomarkers, the mechanical 
effects of oncometabolites on tumor initiation and pro-
gression also make them attractive therapeutic targets. 
Not only the classic oncometabolites and their down-
stream effects but also the different pathways related 
to the wide metabolic dysregulation that occurs along 
PC can offer an opportunity to understand more of the 
weaknesses of this tumor, trying to find new efficient 
candidate treatments.

Metabolic rewiring of glucose, lipids, and amino acids, 
among others, is a hallmark of PC. Early stages of PC, 
contrary to most tumors, are characterized by oxidative 
phosphorylation-based metabolism rather than aerobic 
glycolysis, while advanced CRPC stages rely on glycolysis 
[174, 184]. De novo lipogenesis and fatty acid oxidation 
(FAO) are early PC events, also correlating with disease 
progression [185, 186]. Glutamine, the most abundant 
amino acid in plasma, plays a crucial role in PC metab-
olism since it can be used as a substitute for glucose in 
TCA cycle, and as a building block for nucleotide syn-
thesis and fatty acid production [186, 187]. Thus, target-
ing this metabolic dysregulation at different levels could 
become a practical therapeutic approach.

Focusing on using TCA cycle derivatives and oxidative 
phosphorylation, the mitochondrial electron transport 
chain could be an effective target in PC cells. There are 
several compounds showing effectiveness in preclinical 
studies. MSDC-0160 is an inhibitor of the mitochondrial 
pyruvate carrier (MPC), which breaks the link between 
cytosolic and mitochondrial metabolism. This drug 
reduces proliferation by preventing cell cycle progres-
sion and disrupts the TCA cycle in AR-driven PC mod-
els (cell lines and xenografts) [188]. Electron transport 
chain (ETC) complex-I inhibitors rotenone, its deriva-
tive deguelin, and IACS-010759 inhibit proliferation 
and induce apoptosis in PTEN-null models of PC [189, 
190]. Metformin, which inhibits ETC complex-I and is 
the most common anti-diabetic drug, is being studied 
in 33 clinical trials as an anti-PC agent, and 8 of them 
have available results so far. Some remarkable results are 
the decline of PSA after combination of metformin with 
bicalutamide after 8  weeks (42.1% bicalutamide + met-
formin vs 11.1% only bicalutamide) in PC patients with 
overweight (ClinicalTrial.gov ID NCT02614859), and 
with castration after 7  months (placebo PSA 58.2  ng/

mL vs metformin PSA 8.36  ng/mL, ClinicalTrial.gov 
ID NCT01620593, [191]), and its detection in the pros-
tatic tissue after consumption for 12 weeks, but without 
changes in tumor progression markers (ClinicalTrials.
gov ID NCT01433913, [192]). However, other studies 
finished without concluding beneficial results, making 
it necessary to study refinement mechanisms further to 
explode the potentiality of metformin or identify poten-
tial patient candidates that could be benefited from met-
formin treatment. In  vitro, some of the mechanisms of 
action described is to effectively induce p53-dependent 
apoptosis in PC cells when combined with 2-deoxyglu-
cose, inhibiting glycolysis and mitochondrial respiration 
together [193, 194].

As an energy sensor, 5’AMP-activated kinase (AMPK) 
exerts many actions widely regarded as tumorigenic sup-
pressors. Selective AMPK-activator MT 63–78 inhibits 
proliferation and induces apoptosis in PC cells by disrupt-
ing lipogenesis [195]. Moreover, due to the dependence 
on liponeogenesis of PC cells, fatty acid synthase (FASN) 
inhibitors are showing promising results. C75-dependent 
FASN blockade reduces the proliferation of LNCaP cells 
and tumor growth in  vivo [196]. Another orally avail-
able, reversible, selective FASN inhibitor, TVB-3166, 
inhibits anchorage-dependent cell growth and induces 
apoptosis in PC cell lines and patient-derived xenografts 
through different downstream mechanisms [197]. Finally, 
FASN inhibitor TV-2640 is currently in phase I clini-
cal trial (ClinicalTrial.gov ID NCT05743621). The study 
aims to determine the effects of this drug together with 
AR-inhibitor enzalutamide in mCRPC. Fatty acid oxida-
tion is another attractive target. The commercially avail-
able drug ranolazine is employed for heart angina, but 
decreased tumor growth in a xenograft PC model [198] 
and sensitized to antiandrogen treatment in vitro and in 
a xenograft [199] when administered orally. This drug 
inhibits carnitine palmitoyltransferase (CPT1) and, thus, 
lipid oxidation.

Moreover, Telaglenastat (CB-839) is a promising orally 
available small molecule that inhibits glutaminase 1 
(GLS1). It induces autophagy and has anti-tumor activity 
in multiple preclinical tumor models, including PC, alone 
or in combination with other treatments [200]. Telagle-
nastat is currently in a Phase II clinical trial, testing the 
effectiveness of its combination with talazoparib, a poly-
ADP ribose polymerase (PARP) inhibitor, in mCRPC 
patients (ClinicalTrial.gov ID NCT04824937).

Regarding classic oncometabolites and metabolic 
rewiring, succinate is accumulated due to antiandrogen 
treatments, representing another therapeutic approach. 
Saxena et  al., 2021, showed that AR transcriptionally 
regulates SDH subunits SDHA and SDHB. Antian-
drogen therapy suppresses SDH, causing succinate 
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accumulation. Succinate triggers a response of survival 
and adaption to treatments through a complex cascade 
that activates AR co-chaperone p-Hsp27. This way, 
combining antiandrogens with the p-Hsp27 inhibitor 
Ivermectin could be a potential improvement against 
antiandrogen resistance, as shown in preclinical models 
of LNCaP xenografts [46].

The interplay between TME, epigenetics, and cancer 
cells is also essential. Androgen-deprivation therapy 
can produce epigenetic changes in CAFs. Hypermeth-
ylation of RASAL3 promoter, a tumor suppressor that 
inhibits Ras function, induces glutamine secretion by 
CAFs. This glutamine is incorporated via facilitated 
transport by cancer cells, which is then derived to 
TCA cycle. Selectively targeting glutamine uptake by 
L-γ-Glutamyl-p-nitroanilide (GPNA), an inhibitor of 
glutamine transporter SLC1A5, showed a reduction 
of tumor proliferation in a preclinical 3D model and 
tumor growth suppression in a xenograft when com-
bined with castration of mice [152]. Another study by 
Chaudagar et  al., 2023, explores the potential advance 
inhibiting PI3K-dependent lactate production in can-
cer cells. As previously described, lactate secreted by 
PC cells is incorporated by TAMs in the TME, inducing 
the epigenetic change of histone lactylation and further 
reducing TAMs phagocytic and immunosuppressive 
effect on the tumor cells. Targeting PI3K pathway with 
Copanlisib along with ADT reduces lactate secretion 
and, thus, tumor growth repression helped by immu-
nosuppression of activated TAMs in a PTEN/p53-defi-
cient murine PC model [140].

Cells with low or absent AR expression and IDH1 
R132H mutation are more likely to accumulate R-2HG 
than those with intact AR signaling [45]. The oncome-
tabolite R-2HG induces PC  AR− cells invasion through 
TGFβ1/p-Smad2/3 signaling in  vitro. In fact,  AR− cells 
carrying IDH1 R132H mutation metastasized more than 
their wild-type counterparts in a xenograft model. Since 
R-2HG is responsible for this phenomenon, the authors of 
this work propose the study of Tibsovo (ivosidenib). FDA 
has already approved this IDH1 inhibitor for patients 
with refractory acute myeloid leukemia (AML) who have 
IDH1 mutation(s) as a candidate drug to be tested in 
combination with bipolar antiandrogen therapy [45]. Tar-
geting IDH1 mutations in PC can also have a beneficial 
impact on epigenetic imbalance. An epigenomic study of 
mCRPC patients identified a subset of CpG Methylator 
Phenotype (CMP), this is, with a high methylation pro-
file, which harbored exclusive mutations in IDH1 among 
others (TET2 or BRAF) [201]. Altogether, IDH1 could be 
a therapeutic target in the small subset of IDH-mutant 
PCa patients by potentially improving the response to 
ADT reducing R-2HG and epigenetic imbalance.

Future directions: exploiting the Interplay 
of oncometabolites, epigenetic changes and CSCs 
for therapeutic purposes
Understanding the complex interplay of oncometabo-
lites, epigenetic changes, and CSCs has provided ground-
breaking insights into the mechanistic pathways and gene 
regulatory networks underlying the development and 
progression of prostate cancer.

The recognition that oncometabolites play a central 
role in reprogramming the cancer epigenome has spurred 
the concept of ’metabostemness’. This phenomenon 
underscores the reciprocal interaction between cancer 
metabolism and stemness, where aberrant metabolites 
can reshape the epigenetic landscape to bolster stemness 
traits and promote a more malignant phenotype [80].

Oncometabolites like succinate, fumarate, and 
2-hydroxyglutarate, arising due to mutations in meta-
bolic enzymes like SDH, FH, and IDH, have been linked 
to changes in DNA and histone modifications, further 
leading to the activation of EMT and enhancement of 
cancer stemness properties [28]. One of the potential 
therapeutic strategies could be to develop small mol-
ecule inhibitors or therapeutic agents targeting these 
mutated enzymes, thereby curbing the production of 
oncometabolites and subsequently counteracting cancer 
progression.

Such a strategy has been demonstrated in the case of 
cholangiocarcinoma, where IDH1 mutations resulted 
in the production of the oncometabolite 2-hydroxyglu-
tarate, leading to epigenetic alterations and changes in 
the expression of key genes involved in cell differentia-
tion and survival [202]. Based on these findings, small-
molecule inhibitors of the IDH1 mutated enzyme are 
currently under investigation in preclinical and clini-
cal phases as promising treatments for IDH1-mutated 
intrahepatic cholangiocarcinomas [203, 204]. Interest-
ingly, this approach is mirrored in a recent phase 3 trial 
for IDH-mutant grade 2 gliomas, where the inhibitor 
vorasidenib demonstrated significant improvements in 
progression-free survival and delay in the need for fur-
ther anticancer intervention [205]. A similar approach 
could be contemplated for prostate cancer, with the 
development of specific inhibitors targeting the meta-
bolic enzymes associated with the production of detri-
mental oncometabolites.

Moreover, the identification of specific markers associ-
ated with CSCs and EMT could provide potential thera-
peutic targets [206]. Notably, therapies could be designed 
to target these markers, thus providing a means of elimi-
nating the CSC population, attenuating EMT, and curb-
ing metastasis [207]. Such therapies could also potentially 
reverse therapy resistance, considering the role of CSCs 
in this phenomenon.
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The recent revelations about the association between 
some mutations in therapy-resistant prostate cancer 
patients, higher levels of gene expression involved in 
stemness, EMT, and invasiveness [83, 208], also provide 
an opportunity to discover new targets for therapy. There 
is a need for the development of a precision medicine 
approach to tackle prostate cancer, wherein these poten-
tial therapeutic targets can be exploited to devise patient-
specific treatments.

Furthermore, as CSCs have shown remarkable adapta-
bility to various microenvironmental signals, it is equally 
important to study the TME and its influence on the CSC 
phenotype and epigenetic landscape. These studies could 
provide clues on how to make the tumor environment 
less conducive for the growth and proliferation of CSCs.

In conclusion, future research needs to intensify efforts 
on studying the complex interplay between oncome-
tabolites, epigenetic changes, and CSCs. The key lies in 
exploiting these intricate relationships to identify poten-
tial therapeutic targets and develop effective treatment 
strategies for not only prostate cancer, but also other 
types of cancer where similar mechanisms are involved. 
The dawn of precision medicine offers a new hope in the 
fight against cancer, and the focus should be on exploring 
innovative and targeted approaches to capitalize on the 
wealth of knowledge we have gained so far.

Conclusions
Our comprehensive review discusses the interplay 
between oncometabolites, epigenetic changes, and CSCs 
in prostate cancer and offers several key insights with 
significant implications for understanding and manag-
ing this prevalent disease. Firstly, we have elucidate the 
concept of ’metabostemness’, a novel paradigm that 
underscores how metabolic dysregulation in cancer can 
perpetuate stem cell-like traits, leading to more aggres-
sive and therapy-resistant tumor phenotypes.. The dis-
covery that oncometabolites, such as succinate, fumarate, 
and 2-hydroxyglutarate, can induce significant epigenetic 
modifications offers a novel view on cancer pathogenesis. 
These insights highlight the potential of targeting meta-
bolic pathways as a novel therapeutic strategy, as occur 
in cholangiocarcinoma [209, 210] and may be translated 
to prostate cancer treatment. Additionally, we discuss 
the critical role of specific genetic and epigenetic deter-
minants in prostate cancer progression. We provide evi-
dence that therapy-resistant prostate cancer patients 
often harbor certain mutations, and exhibit higher lev-
els of genes associated with stemness, EMT, and inva-
siveness. This finding not only advances our molecular 
understanding of the disease but could be leveraged to 
discover new targets for therapy, paving the way for a 
more precise approach to prostate cancer treatment.

Another crucial aspect of our review is the emphasis on 
the TME and its influence on CSCs. Our findings suggest 
that modulating the TME could be key to inhibiting CSC 
growth and proliferation, thereby impeding cancer pro-
gression and metastasis.

In essence, this review contributes to the existing lit-
erature by integrating various molecular aspects of pros-
tate cancer into a coherent framework. It underscores 
the importance of a multi-faceted approach encompass-
ing genetic, metabolic, and epigenetic factors in devel-
oping more effective therapeutic strategies. As we move 
towards an era of precision medicine, the insights gained 
from this review not only enhance our understanding of 
prostate cancer but also highlight critical research areas 
that warrant further exploration. This work establishes 
a cornerstone for subsequent investigations, bolstering 
optimism for the enhanced treatment and care of pros-
tate cancer patients globally.
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