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Abstract 

Background Protein phosphorylation is one of the most prevalent posttranslational modifications involved 
in molecular control of cellular processes, and is mediated by over 520 protein kinases in humans and other mam‑
mals. Identification of the protein kinases responsible for phosphorylation events is key to understanding signaling 
pathways. Unbiased phosphoproteomics experiments have generated a wealth of data that can be used to identify 
protein kinase targets and their preferred substrate sequences.

Methods This study utilized prior data from mass spectrometry‑based studies identifying sites of protein phospho‑
rylation after in vitro incubation of protein mixtures with recombinant protein kinases. PTM-Logo software was used 
with these data to generate position‑dependent Shannon information matrices and sequence motif ‘logos’. Web‑
pages were constructed for facile access to logos for each kinase and a new stand‑alone application was written 
in Python that uses the position‑dependent Shannon information matrices to identify kinases most likely to phospho‑
rylate a particular phosphorylation site.

Results A database of kinase substrate target preference logos allows browsing, searching, or downloading target 
motif data for each protein kinase (https:// esbl. nhlbi. nih. gov/ Datab ases/ Kinase_ Logos/). These logos were combined 
with phylogenetic analysis of protein kinase catalytic sequences to reveal substrate preference patterns specific 
to particular groups of kinases (https:// esbl. nhlbi. nih. gov/ Datab ases/ Kinase_ Logos/ Kinas eTree. html). A stand‑alone 
program, KinasePredictor, is provided (https:// esbl. nhlbi. nih. gov/ Datab ases/ Kinase_ Logos/ Kinas ePred ictor. html). It 
takes as input, amino‑acid sequences surrounding a given phosphorylation site and generates a ranked list of protein 
kinases most likely to phosphorylate that site.

Conclusions This study provides three new resources for protein kinase characterization. It provides a tool for predic‑
tion of kinase‑substrate interactions, which in combination with other types of data (co‑localization, etc.), can predict 
which kinases are likely responsible for a given phosphorylation event in a given tissue.
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Background
Protein phosphorylation, mediated by protein kinases 
and reversed by phosphatases, is a key process in the reg-
ulation of cellular function. There are at least 520 protein 
kinases in mammalian genomes [1], and a large propor-
tion of the human proteome is believed to be phosphoryl-
ated [2, 3]. This results in a staggering number of possible 
interactions between kinases and potential target pro-
teins. Because of their key roles, protein kinases are the 
second most common target for drugs after G-protein 
coupled receptors [2]. A fundamental objective in biology 
is to identify what protein kinase is responsible for a par-
ticular phosphorylation event in a given protein [4].

Phosphorylation usually occurs on either serine (S), 
threonine (T), or tyrosine (Y) residues in a target pro-
tein. When predicting kinase-substrate interactions, 
the amino acid sequence of the target protein is a major 
factor, but other important factors must be taken into 
account. These include relative expression levels of sub-
strates and kinases, relative localization of the substrate 
and kinases within the cell and the presence of other 
post-translational modifications including other phos-
phorylated residues. Nevertheless, a key determinant 
in the specification of kinases in signaling models is 
the sequence surrounding the phosphorylated amino 
acid in the substrate. Many tools have been introduced 
for kinase prediction based on target sequence includ-
ing Phosida [5], PhosphoNet [6], Phosphomotif Finder 
[7], SCANSITE [8], and PhosphoSitePlus [9], and these 
are based largely on curated data sets from reductionist 
experiments. Thus, many protein kinases are not repre-
sented in these databases. Combinatorial peptide library 
screening methods have also been employed to identify 
kinase target sequences, markedly increasing the num-
ber of protein kinases with known target specificities [10, 
11]. An alternative source of data for kinase substrate 
profiling is in  vitro phosphorylation/phosphoproteom-
ics, introduced by Douglass et al. in 2014 [12], in which 
mixtures of dephosphorylated proteins are incubated 
with recombinant protein kinases followed by identifi-
cation of phosphorylated sites using mass spectrometry. 
Although the Douglass et  al. study did this with a rela-
tively low number of kinases, a later study by Sugiyama 
et  al. [13] used the in  vitro phosphorylation/phospho-
proteomics technique to profile 384 recombinant human 
protein kinases, providing an extensive data set relevant 
to the identification of kinase substrate target prefer-
ences. The publication of this dataset was an important 
step forward, and the authors shared their data for the 
benefit of other investigators, although the data were 
not presented in a user-friendly fashion that would allow 
facile interrogation by potential users. Our objective was 
to curate this dataset, combined with that of Douglass 

et  al. [12], and develop web resources to aid further in 
generating kinase-substrate predictions. Specifically, we 
have developed: 1) a web based listing of protein kinases 
allowing mouse-over display of sequence preference 
logos for each kinase along with “anti-logos” showing 
disfavored amino acids (https:// esbl. nhlbi. nih. gov/ Datab 
ases/ Kinase_ Logos/); 2) a dendrogram-based on kinase 
catalytic sequences mapped to kinase sequence prefer-
ence logos (https:// esbl. nhlbi. nih. gov/ Datab ases/ Kinase_ 
Logos/ Kinas eTree. html); and 3) KinasePredictor, a com-
putational tool ranking kinases with regard to the degree 
of match of their sequence preferences to an inputted 
phosphopeptide sequence (https:// esbl. nhlbi. nih. gov/ 
Datab ases/ Kinase_ Logos/ Kinas ePred ictor. html).

Methods
Kinase logo generation
The data from this resource was curated from Sugiyama 
et  al. [13]. Table S2 of Sugiyama et  al. showed UniProt 
IDs for substrates that had the presence of site-deter-
mining ions and high localization probability (P  > 0.75) 
based on PTM score. These sites were converted to 
amino acid sequences with the UniProt Retrieve/ID map-
ping tool (https:// www. unipr ot. org/ uploa dlists/). Amino 
acid sequences from the ID search with matching phos-
phorylation sites (i.e., an amino acid equivalent with the 
reported position) were reported as 13-amino-acid cen-
tralized sequences, correcting with “J” placeholders for 
sites with overhang positions at the ends of proteins. 
These substrate “Centralized AA Sequences” were united 
to their corresponding kinases in the original dataset.

For each protein kinase, the 13-amino-acid centralized 
sequences were input into PTM-Logo, described in Sae-
thang et al. [14]. All kinase logos were generated from a 
minimum of 30 target amino acid sequences. The num-
ber of input sequences needed for kinase specificity can 
vary widely based on the strength of kinase-substrate 
interactions, but prior studies have suggested that pref-
erences for specific kinases can be seen starting between 
5 and 20 input sequences [9]. All kinase-target sequence 
datasets were analyzed using Chi-squared filtering 
alpha = 0.0001. The same analysis was done for Anti-logo 
(disfavored) residues. This analysis yielded 384 protein 
kinase sequence motifs, which were then compiled into 
an online web resource (https:// esbl. nhlbi. nih. gov/ Datab 
ases/ Kinase_ Logos/).

Kinase alignment and phylogenetic tree
Protein kinases were aligned based on their catalytic sub-
units based on the classification of Manning et al. [1], and 
then converted into a phylogenetic tree using Interactive 
Tree of Life (iToL, https:// itol. embl. de/) [15]. This was 
also compiled into an online resource. https:// esbl. nhlbi. 

https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/
https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/
https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinaseTree.html
https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinaseTree.html
https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinasePredictor.html
https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinasePredictor.html
https://www.uniprot.org/uploadlists/
https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/
https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/
https://itol.embl.de/
https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinaseTree.html
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nih. gov/ Datab ases/ Kinase_ Logos/ Kinas eTree. html. Each 
protein kinase represented on the phylogenetic tree is 
associated with its respective logo.

KinasePredictor
The kinase prediction software (KinasePredictor) is made 
using the Python programming language (Python 3.8.5). 
The program and its associated data files are available 
at (https:// esbl. nhlbi. nih. gov/ Datab ases/ Kinase_ Logos/ 
Kinas ePred ictor. html). Using the sequence data from the 
Sugiyama et al. dataset, we generated a series of informa-
tion content and probability matrices for each kinase, 
showing the likelihood of each amino acid appearing at 
each position relative to the modified residue. KinasePre-
dictor takes a centralized 13 amino acid input sequence. 
For each kinase, KinasePredictor calculates a scalar based 
on the residue and position according to the following 
equation:

Where k is the index of the kinase, j is the position 
index of the input sequence x, i is the index for the amino 
acid and Pk

j  is the information content score for each 
kinase at that position and amino acid. These values are 
then totaled to give a scalar representation of the likeli-
hood of each kinase to recognize the input sequence. The 
program then provides a ranked list of each of the kinases 
by these predictive values. Users can sort the results and 
save them as a csv export.

Results
Kinase substrate logo database
We generated target sequence preference motifs for each 
of the 384 protein kinases using the data from Sugiyama 
et  al. [13]. These data originated from mass spectrom-
etry based identification of phosphorylated peptides 
after incubation of dephosphorylated protein mixtures 
from HeLa cells with each of 384 recombinant protein 
kinases (Supplemental Spreadsheet 1). To generate logos 
for each kinase, centralized versions of these phospho-
peptide sequences were input into PTMLogo, a program 
for generating sequence-based substrate preference logos 
utilizing position-specific information content [14]. The 
resulting database of kinase sequence motif logos is 
provided as a searchable and downloadable online web 
resource at https:// esbl. nhlbi. nih. gov/ Datab ases/ Kinase_ 
Logos/. PTMLogo also allows us to calculate disfavored 
amino acid residues for particular kinase substrate pref-
erence sequences, or “Anti-Logos”. These were also 
included in the online resource web page.

Selected examples of kinase logos and anti-logos are 
shown in Fig. 1. (A complete PDF file of all logos can be 

Mk
s = x(i, j)× Pk

j

accessed in Data Supplement 1.) Fig. 1A shows the result-
ing logo (left) and anti-logo (right) for protein kinase A, 
i.e. cAMP-activated catalytic subunit alpha (Prkaca). 
Consistent with expectations, protein kinase A has a clear 
preference for basic amino acids (R/K) at the − 2, and − 3 
positions, and more weakly at − 5, along with nonpolar 
amino acids at + 1. The anti-logo for protein kinase A is 
also distinctive, showing that proline is disfavored in the 
+ 1 position along with basic residues downstream par-
ticularly at positions + 1,+ 2, and + 3. Figure  1B shows 
the logo/anti-logo for CDC2 (Cdk1), which demonstrates 
the classical proline in the + 1 position typical of many 
kinases of the Cyclin-dependent, Mitogen-activated, Gly-
cogen synthase, and CDK-like kinase (CMGC) family. 
Like PKA, CDC2 also disfavors basic residues in + 1, but 
also aspartic acid (D) in + 3. Figure  1C shows the logo/
anti-logo for an acidophilic protein kinase, casein kinase 
2 alpha 1 (Csnk2a1) with the classical aspartic acid and 
glutamic acid moieties in position + 1 and + 3. Finally, 
Fig.  1D shows the logo/anti-logo for EGFR, a classical 
tyrosine kinase, and shows a general preference for acidic 
residues (D/E) at multiple positions surrounding the 
phosphorylation site. In addition, EGFR strongly disfa-
vors the basic residue R in the + 1 position as shown on 
the anti-logo.

Validation: comparison of logos between two kinase 
profiling studies
The kinase profiling studies performed by Sugiyama et al. 
are in vitro phosphorylation studies using proteins from 
HeLa cells. To further validate the quality of the data, 
we compared representative kinases from the Sugiyama 
dataset with another kinase profiling dataset using a 
similar LC/MS technique performed using proteins iso-
lated from a mixture of tissues from rats [12]. The com-
parison between these two studies is shown in Fig.  2. 
Kinases from multiple families are represented, includ-
ing the CAMK kinases (CaMK2δ, DAPK1, MAPKAPK2, 
PKD3, and PIM1), AGC kinases (PKACα, AKT1, SGK, 
and PKCδ), CMGC kinases (p38α, and GSK3β), STE 
kinases (OSR1, and STLK3), and Others (CK2α1/2, and 
Wnk1). The sequence similarities between these kinases 
are shown in the context of a dendrogram, which is based 
on kinase catalytic subunit sequence alignment. Com-
parison between the two studies shows broad similarity 
of the substrate preferences, which largely conform to 
known substrate preferences within the different kinase 
families (e.g. proline in the + 1 position for the CMGC 
kinases, basophilic residues upstream of the phosphoryl-
ation site in the AGC kinases). However, as expected, this 
concordance seems to apply mainly to the high informa-
tion content positions (large characters in logo) and the 
match is best with logos identified with larger numbers 

https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinaseTree.html
https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinasePredictor.html
https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinasePredictor.html
https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/
https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/
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of phosphopeptides. In general, the identified substrate 
preferences appear to be independent of the tissue 
source, consistent with the idea that the preferences are 
properties of the specific kinases and not the population 
of target proteins. The similarity between the two studies 

highlights the robustness of the in vitro phosphorylation/
phosphoproteomics technique.

Figure  3 compares example logos from the in  vitro 
phosphorylation/phosphoproteomics technique (“Mass 
Spectrometry”) to logos from combinatorial peptide 

Fig. 1 Examples of substrate preference logos (left) and anti‑logos (right) for selected protein kinases. A PKACα (protein kinase cAMP‑activated 
catalytic subunit alpha; gene symbol: Prkaca), B CDC2 (cyclin dependent kinase 1; gene symbol: Cdk1) coupled with Cyclin B1, C CK2a1 (casein 
kinase 2 alpha 1; gene symbol: Csnk2a1), and D EGFR (epidermal growth factor receptor, gene symbol: Egfr). Logos were generated in PTM-Logo 
using a Chi squared filtering α of 0.0001. Source: https:// esbl. nhlbi. nih. gov/ Datab ases/ Kinase_ Logos/). The colors of individual amino acids indicate 
different side chain properties: blue, basic; red, acidic; green, hydrophobic; black, aromatic; magenta, polar/uncharged; orange, no side chain

Fig. 2 Comparison of substrate logos of representative kinases from two in vitro kinase profiling studies using MS‑based methods, Sugiyama et al. 
2019 [13] (left), and Douglass et al. 2012 [12] (right). Kinases are representatives from the indicated protein kinase families. Logos were generated 
in PTM-Logo (Chi squared filtering α = 0.0001) from “n” number of input peptide sequences for each kinase. Dendrograms were made using 
Interactive Tree of Life (iToL). The colors of individual amino acids indicate different side chain properties: blue, basic; red, acidic; green, hydrophobic; 
black, aromatic; magenta, polar/uncharged; orange, no side chain

(See figure on next page.)

https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/


Page 5 of 12Poll et al. Cell Communication and Signaling          (2024) 22:137  

Fig. 2 (See legend on previous page.)
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library screening (“Peptide Array”) in which a library of 
target peptides are phosphorylated in in vitro arrays [16, 
17]. In general, there is a high degree of concordance 
between the two methods. For example, logos from both 
methods for Cyclin-Dependent Kinase 2 (Cdk2) identi-
fied the known preference for proline in position + 1 and 
in addition a preference for basic amino acids in down-
stream positions, especially + 3. A comparison of logos 
from the two orthogonal methods can reveal preferences 
that may not be appreciated from one of the two meth-
ods alone. Similarly, logos from both data types for Calm-
odulin-Dependent Kinase 2 Gamma (Camk2g) identified 
the expected basic amino acids in position − 3, as well as 
concordant amino acids in position − 2 (Q), position + 1 
(F) and position + 2 (D and E). Similar observations can 
be made with regard to the other three protein kinases 
displayed in Fig. 3. Thus, we conclude that comparison of 
logos derived from the two methods can in principle be 
used to generate sequence preference maps with a higher 
degree of confidence than with one method alone.

Interactive phylogenetic kinase tree
To gain additional insight into the structural basis 
for kinase specificity, we cross-referenced the kinase 
sequence logos from our database onto a kinase phylo-
genetic tree (Fig.  4). We used an alignment of protein 
kinase catalytic subunits that has been previously pub-
lished by Manning et al. [1]. After curating the alignment 
for the kinases present in the Sugiyama dataset [13], a 
phylogenetic tree interactive image was created using 
Interactive Tree of Life (iToL) [15]. This interactive phy-
logenetic tree is made available to users at https:// esbl. 
nhlbi. nih. gov/ Datab ases/ Kinase_ Logos/ Kinas eTree. html. 
Users can hover over each node of the phylogenetic tree 
to display the logo for each kinase. Organizing the data 
in this way allows easy visualization of how the sequence 
similarity of kinase catalytic regions can translate to simi-
larity in substrate specificity.

KinasePredictor
Using the Sugiyama data, we created an algorithm that 
can take any centralized 13-amino-acid sequence with 
a single phosphorylated site and rank-order all kinases 
with regard to degree-of-fit to their kinase target logos, 
called KinasePredictor (Fig.  5). KinasePredictor is avail-
able as a stand-alone program and is available for down-
load at https:// esbl. nhlbi. nih. gov/ Datab ases/ Kinase_ 
Logos/ Kinas ePred ictor. html. The Python source code is 
also made available on the same page. For each kinase, 
KinasePredictor calculates a scalar product (“dot prod-
uct”) from two matrices. The first matrix is a Boolean 
matrix (i.e. composed of 1’s and 0’s) of dimension 13 
(positions) by 20 (amino acids) that represents the input 

13-mer. The second matrix is an information content 
matrix of the same dimensions for each protein kinase 
derived through application of PTM-Logo from the mass 
spectrometry data from Sugiyama et  al. [13] calculated 
as described by Leo et al. [18]. The dot product for each 
kinase is the sum of products of the corresponding ele-
ments of the two matrices over all positions. KinasePre-
dictor outputs a rank-ordered list of the protein kinases 
and their associated dot product values. Thus, the pro-
gram can give a ranked list identifying ‘best-fit’ kinases 
that could be responsible for a given phosphorylation 
event. A similar predictor, “Score Site” in the “Kinase 
Library” has been recently introduced (https:// kinase- 
libra ry. phosp hosite. org/ site) [16].

To validate the KinasePredictor algorithm, we input 
the centralized amino acid sequences for three well stud-
ied phosphorylation sites in which the protein kinase is 
known (Phosphosite Plus) [9] (Fig.  6). The centralized 
sequences were fed into KinasePredictor and a ranked 
list of predicted kinases was generated for each site, the 
results of which are shown graphically. The three sites 
shown here are for ELK1, which is phosphorylated by 
Erk1 and Erk2 at S384 (mouse numbering) [19] (Fig. 6A), 
I-κB1α, phosphorylated by CK2a1 at S293 [20] (Fig. 6B), 
and tuberin (TSC2), phosphorylated by AMPK at S1388 
[21] (Fig. 6C). For ELK1 at S384, the known kinases Erk1 
and Erk2 were ranked 8th and 12th, respectively among 
237 possible S/T kinases. All of the surrounding kinases 
were from the CMGC family which have preference for 
proline (P) in position + 1 (light blue points) with the top 
ranked kinase being p38γ. For I-κB1α at S293, the known 
kinase, CK2α1, was ranked first. For TSC2 at S1388, 
known kinases AMPKα1 and AMPKα2 were ranked 4th 
and 5th, respectively. A closely related protein kinase 
BRSK1 was ranked first. Overall, these results illus-
trate the utility of KinasePredictor in predicting protein 
kinases that could be responsible for specific phospho-
rylation events. Although the tool does not distinguish 
strongly between top-ranked protein kinases, other types 
of data can be used to refine the prediction such as the 
relative abundances of the candidate kinases in a specific 
tissue and possible differences in kinases with regard to 
subcellular localization vis-à-vis the proposed substrate.

Discussion
In this paper, we present three new tools for identifying 
candidate protein kinases corresponding to phosphoryla-
tion sites identified in cell signaling studies. Kinase pref-
erences are represented as ‘logos’ that are specified by an 
information-theory based algorithm, PTM-Logo. These 
tools are provided in the form of online resources that 
allow visualization of kinase substrate preferences across 
the majority of the eukaryotic protein kinome, and allows 

https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinaseTree.html
https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinaseTree.html
https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinasePredictor.html
https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinasePredictor.html
https://kinase-library.phosphosite.org/site
https://kinase-library.phosphosite.org/site
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Fig. 3 Comparison of substrate logos of representative kinases from two studies using different profiling methods: in vitro phosphorylation/
phosphoproteomics technique (“Mass Spectrometry”) (left) and combinatorial peptide library screening method (“Peptide Array”) in which 
a library of target peptides is phosphorylated in vitro (right) [16]. Representative targets were chosen from different kinase families. In the logo 
images in the “Mass Spectrometry” column, the colors of individual amino acids indicate different side chain properties: blue, basic; red, acidic; 
green, hydrophobic; black, aromatic; magenta, polar/uncharged; orange, no side chain. The logo images in the “Peptide Array” column are 
from supplementary files from Johnson et al. [16] and use a similar format to what was used in the “Mass Spectrometry” column except that the 
anti‑logos are given as downwardly directed stacks. These logos were copied directly from reference 14. (Reference 14 was licensed under a Creative 
Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, 
as if appropriate credit is given to the original author(s) and the source. Creative Commons License: https:// creat iveco mmons. org/ licen ses/ by/4. 0/)

https://creativecommons.org/licenses/by/4.0/
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user to interact with the data to aid in hypothesis genera-
tion and validation of their own experimental data.

PTM-Logo displays predicted amino acid preferences 
as single letter amino acid designators whose height is 
proportional to the position-specific information content 
while simultaneously filtering the output to remove noisy 
predictions. For all the logos in our resource, we used the 
same filtering parameter (Chi-square filtering α) for uni-
formity. We also chose a relatively non-stringent value 
of α (α = 0.0001) to avoid filtering out relevant predic-
tive information. We have provided all of the tools and 
sequences used in supplementary files and web pages, 

allowing users to further refine the calculation for their 
kinase of interest if desired.

The basis of this resource was a large dataset published 
by Sugiyama et  al. [13], which used protein mass spec-
trometry to identify phosphorylation events resulting 
from in  vitro incubation of dephosphorylated proteins 
with individual recombinant protein kinases. The origi-
nal paper provided the data, but did not provide a practi-
cal, user-friendly means of using the data for modeling of 
signaling systems. The Sugiyama data set was in part vali-
dated by comparison of findings using phosphorylation 
data from in vitro incubation with the same recombinant 

Fig. 4 Phylogenetic tree of all protein kinases included in this database. The web version of this phylogenetic tree (https:// esbl. nhlbi. nih. gov/ Datab 
ases/ Kinase_ Logos/ Kinas eTree. html) has their respective kinase logos viewable as popups when the user hovers over each node. Kinase groups are 
AGC, PKA/PKG/PKC family; CAMK, calmodulin‑kinase family; CK1, casein kinase family; CMGC, cyclin‑dependent kinase/mitogen‑activated kinase/
glycogen‑synthase kinase/CDK‑like kinase family; STE, sterile family kinases; TKL, tyrosine‑like kinases, and atypical kinases

https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinaseTree.html
https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinaseTree.html


Page 9 of 12Poll et al. Cell Communication and Signaling          (2024) 22:137  

kinases in an earlier study by our laboratory [12] (Fig. 2). 
In general, the logos from the two studies were similar, 
and conformed to the general groupings of kinase target 
preferences, either for upstream basophilic residues (e.g 
PKA), downstream acidophilic residues (e.g. CK2a), or 
proline-directed kinases (e.g. p38α). The logos from the 
two studies were most similar for amino acid positions 
that show the highest information content. Consequently, 
we judged the Sugiyama data set to be appropriate for 
general use with one important caveat. Specifically, the 
quality of the logos appeared to be highly dependent 
on the number of phosphopeptide sequences identified 
for a given kinase in the Sugiyama data set and used for 
input into PTM-Logo. Consequently, we required at least 
n ≥ 30 input sequences, although the quality of the logos 
improved for kinases with an even greater number of 
input sequences as judged by the number of low infor-
mation amino acids represented in the logo. Users should 
take note of the number of input sequences for each 
kinase when judging how to use the derived logos.

Our stand-alone prediction program, KinasePredictor, 
can create a ranked list of kinases that are likely to phos-
phorylate a given site. KinasePredictor only takes into 
account the match between position-specific amino acid 
preferences and observed phosphorylation sites to rank 
the kinases. Such preferences provide only part of the 
data needed for accurate predictions in model building. 
The output from KinasePredictor can be combined with 
other types of information, such as relative kinase abun-
dances and localization inside the cell, using formalized 
Bayesian integration methods such as was carried out 
for two sites in aquaporin-2, Ser256 and Ser261 [22, 23] 
and more generally, for sites phosphorylated in response 
to vasopressin [18]. These Bayesian studies rank kinases 
based on sequential application of Bayes’ Theorem to 
calculate probabilities for each kinase in the mamma-
lian kinome using transcriptomic data, proteomic data, 
existing literature data, and target sequence matches to 
provide a more precise ranking of kinases than could be 
achieved through sequence matching alone.

One important feature of the present paper is our map-
ping of kinase preference logos to the Manning phyloge-
netic tree based on sequence similarities of the catalytic 
domains of individual kinases (https:// esbl. nhlbi. nih. gov/ 
Datab ases/ Kinase_ Logos/ Kinas eTree. html). Although 
most protein kinases have a high degree of conserved 
structural similarity, changes in charge or hydrophobic-
ity among the surface residues of the catalytic domain 
are key for kinase specificity [24, 25]. Other kinome tree 
visualization resources, such as KinMap [26], can be used 
for integration with biochemical and structural data-
bases. However, our resource directly links to our logo 
database for direct comparison of substrate preferences. 

Fig. 5 The KinasePredictor interface for inputting user 
phosphorylation sequences. Users input a centralized 13 amino‑acid 
sequence in the top entry box, and the resulting ranked list of kinases 
are shown below with their respective dot‑product scores. These 
ranked kinase results can then be saved and exported for further 
analysis

https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinaseTree.html
https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinaseTree.html
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One thing that is obvious from examination of the full 
tree architecture is that related kinases have very similar 
target preferences, which makes it impossible to iden-
tify a specific kinase based on a single phosphorylation 
target sequence. For example, most CMGC kinases such 
as Erk1 or Erk2 display the classical proline-directed 
motif (P at + 1). On the other hand, the PKC subfamily 
of kinases have a largely ill-defined motif, despite high 
sequence similarity of their catalytic domains. These 
structural insights have implications for designing novel 
pharmacological tools targeting these kinases. Very few, 
if any, protein kinase inhibitors are specific to a sin-
gle protein kinase as established by data viewable at the 
Kinase Profiling Inhibitor Database (https:// www. kinase- 
screen. mrc. ac. uk/ kinase- inhib itors). Resources are avail-
able at sites that curate kinase structural data in depth, 
such as Kincore [27].

Comparison with other kinase prediction sites
As the identification of kinase-substrate interactions 
is a common goal, both in  vivo and in  vitro tech-
niques have been previously developed to profile indi-
vidual kinases. In addition to the method used in this 
study (mass spectrometry of phosphorylation resulting 
from in vitro incubation of mixtures of dephosphoryl-
ated proteins with recombinant kinases), additional 
approaches include target peptide library arrays [16, 
17] and phosphoproteomic analysis of tissues after 
deletion or overexpression of individual kinases [28, 
29], and phosphoproteomic analysis of tissues after 
incubation with kinase inhibitors thought to be rela-
tively selective for a particular kinase. However, much 
of what we know about kinase-substrate preferences is 

based on reductionist studies. Each of these approaches 
have added valuable information and users of the tools 
introduced in this paper may benefit from considera-
tion of data from all methodologies. Over the past few 
years, multiple resources have been established to map 
phosphorylation sites to individual kinases, such as 
Phosida [5], PhosphoNet [6], Phosphomotif Finder [7], 
SCANSITE [8], PhosphoSitePlus [9] and several oth-
ers. These databases extract data from the literature, in 
most cases from reductionist experiments. However, 
many of these resources do not provide a comprehen-
sive list of kinases and their motifs, and many of the 
predictions in these online databases are the result 
of experimental observations and not unbiased high 
throughput datasets. In addition to the KinasePredic-
tor algorithm presented here, several computational 
resources have been developed to predict kinases based 
on target sequence preferences. Much of what we know 
about kinase-substrate preference is still reliant on tar-
geted reductionist studies, and these tools are generally 
trained using existing databases that draw from this 
literature. Thus, many protein kinases are underrepre-
sented in these databases.

During the preparation of this manuscript, similar 
tools have been described for analysis of sequence pref-
erence data from a different source, viz. combinatorial 
peptide library screening experiments [16]. As shown 
in Fig. 3, data from the in vitro phosphorylation/ phos-
phoproteomics technique and combinatorial peptide 
library screening method identify very similar sequence 
preferences, but may also provide complementary 
information. Consequently, we propose that the best 
predictions may be derived from use of both types of 
data and both sets of tools.

Fig. 6 KinasePredictor validation using well‑established phosphorylation sites. Three sequences with experimentally verified phosphorylation sites 
from PhosphoSitePlus were input into KinasePredictor, ELK1 at S384, a known target of Erk1/2 (A, left), IκB1α at S293, a known target of CK2α1 (B, 
mid), and TSC2 at S1388, a known target of AMPKα1/2 (C, right). For each sequence, a dot product was calculated for each kinase in the dataset, 
ranked, and then graphed with their dot product value. The lowest rank and highest dot product kinases represent those predicted most likely 
to phosphorylate the target site given the input sequence. The kinases known to target the site are indicated on each graph and their rank shown 
in parentheses. Kinases are color‑coded by their family according to the legend on the right. Kinase groups are AGC, PKA/PKG/PKC family; CAMK, 
calmodulin‑kinase family; CK1, casein kinase family; CMGC, cyclin‑dependent kinase/mitogen‑activated kinase/glycogen‑synthase kinase/CDK‑like 
kinase family; STE, sterile family kinases; TK, tyrosine kinases; TKL, tyrosine‑like kinases

https://www.kinase-screen.mrc.ac.uk/kinase-inhibitors
https://www.kinase-screen.mrc.ac.uk/kinase-inhibitors
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Limitations
Our resources provide a user-friendly and unique set of 
kinase target preference logos calculated from in vitro 
kinase profiling studies. However, the data do have 
limitations that should be kept in mind when applied to 
modeling of signaling systems. First, in vitro phospho-
rylation may identify some phosphorylation sites that 
may not be observed in vivo due to lack of interaction 
or low substrate affinity. Thus, individual phosphoryla-
tion sites observed in the Sugiyama et  al. dataset may 
not be bonafide targets of the relevant kinases in all tis-
sues. For example, of the 20,669 phosphosites mapped 
to kinases by Sugiyama et  al., only 4913 phosphosites 
match with those obtained by an ultra-deep phospho-
proteomic study of HeLa cells reported by Sharma 
et  al. [3]. As emphasized above, variables such as co-
expression and co-localization must always be taken 
into account with any predictive analysis as carried out 
by Leo et  al. [18] using Bayesian integration methods. 
Additionally, this dataset cannot account for phospho-
rylation sites that may require the binding of another 
protein or prior phosphorylation by another kinase in 
order to be favorable [24].

Final overview
Here we present new resources to visualize and interact 
with the human kinome and curation of a large-scale 
dataset describing kinase-substrate preferences. This 
set of resources provides a user-friendly way to explore 
phosphorylation networks and aid in kinase-substrate 
predictions. This represents another tool to increase 
the accuracy of predicting kinases in modeling of sign-
aling systems and for prediction of kinases involved in 
novel phosphorylation events.
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