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Abstract 

Tumors of the digestive system pose a significant threat to human health and longevity. These tumors are associated 
with high morbidity and mortality rates, leading to a heavy economic burden on healthcare systems. Several intratu-
moral microorganisms are present in digestive system tumors, and their sources and abundance display significant 
heterogeneity depending on the specific tumor subtype. These microbes have a complex and precise function 
in the neoplasm. They can facilitate tumor growth through various mechanisms, such as inducing DNA damage, influ-
encing the antitumor immune response, and promoting the degradation of chemotherapy drugs. Therefore, these 
microorganisms can be targeted to inhibit tumor progression for improving overall patient prognosis. This review 
focuses on the current research progress on microorganisms present in the digestive system tumors and how they 
influence the initiation, progression, and prognosis of tumors. Furthermore, the primary sources and constituents 
of tumor microbiome are delineated. Finally, we summarize the application potential of intratumoral microbes 
in the diagnosis, treatment, and prognosis prediction of digestive system tumors.
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Introduction
In 2019, the World Health Organization redefined the cri-
teria for classifying digestive system tumors and included 
esophageal cancer (EC), gastric cancer (GC), colorectal 
cancer (CRC), pancreatic cancer (PC), and hepatocellular 
carcinoma (HCC) [1], among others in this classification. 
Tumor types are based on their molecular phenotype in 
addition to histopathological characteristics, reflecting 

the latest advancements in the understanding of digestive 
system tumors. Although considerable improvements 
have been achieved in traditional treatment modalities 
for neoplasms of the digestive system, patient progno-
sis remains poor. This happens because of inadequate 
early screening, limitations of current treatments, and 
the increased frequency of metastasis and recurrence of 
digestive system tumors [2, 3]. Consequently, identifying 
novel diagnostic biomarkers and treatment modalities, 
mitigating the emergence of antitumor drug resistance, 
and improving the outcomes and quality of life of patients 
is crucial for healthcare professionals.

The surface barriers of human body is populated by 
complex groups of bacteria, fungi, protozoa, and viruses 
[4]. The intestinal mucosa that lines the inner surface 
of various organs contains trillions of microbial spe-
cies, and bacteria are the most dominant group among 
them [5, 6]. In 2015, Garrett et  al. suggested that bac-
teria can promote tumorigenesis by disrupting cell 
growth homeostasis and regulating immune responses 
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and drug metabolism [7]. The gastrointestinal tract acts 
as a repository of microorganisms in the human body 
and exerts a significant influence on the pathogenesis of 
various malignancies. Therefore, the gut microbiota can 
influence the development of tumors by acting as regu-
lators of immune system stimulation [8]. In a word, gut 
microbes may trigger inflammation associated with can-
cer and impact the efficacy of various cancer therapies.

Several authors reported the presence of microbes in 
tumors in the 19th century [9]. However, the origin of 
the microbes was unclear because the lack of molecu-
lar detection techniques was not available to ascertain 
whether the detected microbes originated from within 
the tumor or from external contamination. Moreover, the 
low microbial density within tumors hindered research 
on their significance for over a century. The progress in 
the detection technology and an increased understanding 
of tumor microenvironments have validated the presence 
of intratumoral microorganisms in the past few years. 
The gastrointestinal system —the largest reservoir of 
microorganisms in the human body—is a comprehensive 
physiological network that interfaces with the external 
environment through the oral cavity and digestive tract. 
Notably, intratumoral microbes are most frequently 
detected in digestive system neoplasms [10–13].

In this review, we have detailed the fundamental attrib-
utes of microbiota present in tumors of the digestive 
system and the recent advancements in this field. Fur-
thermore, we have innovatively elucidated the functions 
of typical microorganisms in gastrointestinal neoplasms 
and the underlying mechanisms by which they facili-
tate tumor initiation or inhibition of tumor progression. 
Finally, we focused on the prospective use of these micro-
organisms in the diagnosis, therapy, and predicting the 
outcomes of gastrointestinal malignancies. We express 
our genuine anticipation that our analysis will provide 
the baseline to explore novel diagnostic and therapeutic 
approaches for malignancies of the gastrointestinal tract.

Detection methods for intratumoral microbes 
and their general characteristics
The continual advancements in technology have enabled 
us to trace the origin of tumor-associated bacteria, deter-
mine the specific composition of intratumoral micro-
biota, and gauge the abundance of microorganisms in 
different types of digestive system tumors (Fig. 1).

Detection methods for microbes in digestive system 
tumors
Next-generation sequencing has emerged as a promising 
technique to obtain a comprehensive microbial profile of 
the sample without the requirement for culturing [14]. 
Deep sequencing techniques involving universal marker 

gene amplicons are frequently utilized for investigating 
microbiomes, and 16  S rRNA sequencing and shotgun 
metagenomic sequencing are the most commonly used 
methods [15, 16]. 16  S rRNA sequencing is an efficient 
technique for characterizing bacterial diversity but with 
less detailed functional information. Whole metagen-
omic shotgun sequencing has several advantages over 
16  S rRNA sequencing, including identification of both 
non-bacterial and bacterial taxa, strain/species level 
resolution, and functional annotation of the microbiota 
[17, 18]. In addition to sequencing techniques, intratu-
moral microorganisms can also be detected using fluo-
rescent labeling of microbial antigens, genetic material, 
or metabolites [14, 19]. Overall, the use of advanced 
detection methods has enabled the rapid identification of 
microorganisms present within tumor tissues.

Sources of microbiota in digestive system tumors
Bacteria can infiltrate gastrointestinal neoplasms by pass-
ing through disrupted mucosal barriers, migrating from 
adjacent normal tissue, or blood circulation [20]. Tjalsma 
et al. [21]. (2012) proposed a unique bacterial driver–pas-
senger model of CRC pathogenesis. They suggested that 
specific intratumoral bacteria (drivers) can facilitate the 
infiltration of other gut microorganisms (passengers) 
into the tumor microenvironment. Interestingly, fluo-
rescently labeled Enterococcus faecalis and GFP-labeled 
Escherichia coli (E. coli) were detected within the pan-
creatic microenvironment in mice [22]. The use of 
advanced detection methods has highlighted the exist-
ence of bacteria in otherwise normally sterile organs, 
including the pancreas [23]. Notably, the composition of 
bacterial detected in PC tissues is extremely similar to 
that observed in healthy adjacent pancreatic tissues [24, 
25]. Abed et al. reported that Fusobacterium nucleatum 
(F. nucleatum), a major constituent of the human oral 
microbiome, uses a hematogenous pathway to infiltrate 
colon adenocarcinomas [26].

Microbial diversity in digestive system cancers
The utilization of next-generation sequencing technol-
ogy enables the identification of all microorganisms, 
without the requirement of culturing, while enabling the 
identification of bacterial species based on their genetic 
profiles [16]. Bacterial colonization within tumors of the 
digestive system is a well-documented phenomenon, and 
these bacteria originate from diverse sources and show 
significant species-level variability [11, 27, 28]. Several 
common bacteria have been identified in digestive sys-
tem tumors. Helicobacter pylori (H. pylori), a recognized 
risk factor for chronic gastritis and stomach cancer [29], 
is present not only in the cases of gastric malignancies 
but also in those of HCC and PC [23, 30]. The bacterial 
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genus Fusobacterium, frequently detected in CRC [31], 
has also been associated with an unfavorable prognosis 
in PC [32]. Bacteroides fragilis (B. fragilis) colonizes the 
tumor microenvironment of colitis-associated CRC and 
can cause DNA damage [33]. The presence of E. coli in 
CRC can disrupt the gut vascular barrier and promote 
the development of a conducive microenvironment for 
liver metastases [34]. The diversity of bacteria present in 
digestive system tumors is extensive, thereby necessitat-
ing comprehensive investigations involving large sample 
sizes.

Microbial heterogeneity within digestive system tumors
The composition of bacterial species in each tumor is 
considerably variable. The microbiome in the cohorts 
of patients with upper gastrointestinal tract EC and GC 
predominantly comprised Bacteroidetes and Firmicutes 

at the phylum level. In contrast, only Bacteroidetes were 
dominant in the samples collected from the patients 
with lower gastrointestinal tract cancers [27]. Addition-
ally, bacterial diversity was significantly different between 
cancerous and adjacent non-cancerous tissues [27, 35]. 
Yuan and colleagues reported that Porphyromonas gin-
givalis was predominant and frequently present in the 
samples of EC and esophageal dysplasia tissues [36]. 
However, the bacterium was infrequently present in 
matched noncancerous segments. Similarly, Fusobac-
terium species were highly abundant in human colonic 
adenomas compared to the adjacent normal tissues [37].

Further, the composition of bacteria can vary dur-
ing different phases of tumor progression. As the GC 
advances, H. pylori gradually diminishes in the tumor tis-
sues and eventually disappears [38, 39]. B. fragilis toxin 
(BFT) facilitates inflammation, and advanced-stage CRC 

Fig. 1 Intratumoral microbes: Detection methods and general characteristics. a. Several methods are used to detect microorganisms 
in tumors, and next-generation sequencing technology is the primary detection method.b. Microbes can enter and colonize tumor tissue 
by crossing damaged mucosal barriers, migrating from adjacent normal tissues, or through the circulatory system.c. Fusobacterium,Bacteroides 
fragilis, Escherichia coli, Helicobacter pylori, and Malassezia are the common microbes in digestive system tumors.d. Microbes show substantial 
heterogeneity in various types of tumors and during different stages of the same tumor. Moreover, microbial populations in tumors differ 
from those in neighboring healthy tissues
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tissues show high BFT positivity compared to early-stage 
counterparts [33]. Nevertheless, it is unclear whether this 
happens due to an increased number of bacterial colo-
nies in late-stage CRC or an increased secretion of tox-
ins. Overall, the variations in microbial diversity among 
distinct tumors, cancerous versus non-cancerous tis-
sues, and different stages of tumor progression can be 
exploited to develop new diagnoses and treatment strate-
gies for digestive system tumors.

Furthermore, the relative abundance and source of 
bacteria within digestive tumors also exhibits substantial 
heterogeneity. In the microenvironment of HCC, there 
was a significant alteration in the abundance of micro-
organisms, including a reduction in the prevalence of 
Pseudomonadaceae and an increase in the prevalence of 
Agrobacterium and Rhizobiaceae [40]. Specially, a posi-
tive and linear correlation was observed between the 
presence of Pseudomonadaceae and the prognosis of 
patients with HCC. Bifidobacteria, as intestinal com-
mensal bacteria, can infiltrate CRC tissues through dis-
rupted intestinal intestinal barrier, leading to elevated 
abundance of Bifidobacteria [21, 41, 42]. Additionally, 
the secretion of lactic acid and acetic acid by Bifidobac-
teria enhances the growth and immune evasion of CRC, 
thereby negatively impacting prognosis [43]. Further 
investigations are required to identify variations in the 
abundance and source of microorganisms and their influ-
ence on the prognosis of distinct subtypes of digestive 
tumors.

Intratumoral microbiome in different digestive 
system tumors
The role of microorganisms in the development, detec-
tion,   prognostication, and therapy of cancer has been a 
matter of debate [44–46]. Next-generation sequencing 
technology has provided an unparalleled opportunity to 
investigate the genomes of tumor cells and hosts, as well 
as the diverse microorganisms that inhabit living organ-
isms [47]. The following sections summarize the pub-
lished studies on microorganisms identified in tumors of 
the digestive system using novel sequencing techniques 
(Table 1; Fig. 2).

Esophageal cancer
Esophageal cancer ranks sixth in terms of global cancer 
mortality and has two main subtypes, namely esopha-
geal adenocarcinoma (EADC) and esophageal squamous 
cell carcinoma (ESCC) [90]. ESCC is the most preva-
lent histological subtype of EC worldwide [91, 92], and 
EADC is usually associated with Barrett’s esophagus [93]. 
Recently, several researchers have reported the changes 
in the microbiome inside tumors during the progression 
of EC and their influence on the cancer treatment.

Yamamura et  al. (2016) quantified the presence of F. 
nucleatum DNA in 325 excised specimens of EC using 
quantitative polymerase chain reaction (qPCR). They 
observed a significant association between the presence 
of F. nucleatum and decreased survival rates [48]. Addi-
tionally, the prevalence of F. nucleatum was strongly cor-
related with the growth of ESCC tissues, indicating its 
potential significance in the progression of ESCC [52]. 
Furthermore, F. nucleatum modulated the expression 
of endogenous LC3 and ATG7 proteins and facilitated 
the formation of autophagosomes, which resulted in the 
development of chemoresistance against 5-fluorouracil, 
cisplatin, and docetaxel [51]. Notably, high F. nucleatum 
load was also associated with negative side effects during 
neoadjuvant chemotherapy [50]. The bacterial abundance 
varies during EC progression, and these alterations are 
associated with the clinical characteristics and progno-
sis of EC [28, 49]. Snider et al. observed variations in the 
microbial community associated with Barrett’s esopha-
gus in patients with high-grade dysplasia and EADC [12]. 
These shifts were characterized by an increase in specific 
bacterial groups potentially associated with pathogenic-
ity, such as Proteobacteria. Overall, these findings indi-
cate that alterations in tumor microbiota are significantly 
associated with clinical prognoses and chemotherapy-
related side effects in patients.

Gastric cancer
Gastric cancer ranks fifth among the most prevalent 
types of cancer and is the fourth leading cause of cancer-
related deaths worldwide [2, 94]. Chronic infection with 
H. pylori is considered the primary underlying factor of 
noncardia GC, and approximately all instances of this 
type of cancer are linked to this bacterium [95, 96]. How-
ever, the development of carcinoma of the cardia is not 
correlated with H. pylori infection and shows an inverse 
correlation in certain populations [97, 98].

Wang et  al. (2015) evaluated a Chinese cohort and 
indicated that the primary impact of H. pylori on the 
microbial community is the increased bacterial load in 
the stomach rather than a change in the proportional 
abundances of non- H. pylori bacterial groups [53]. 
However, two years later, Liu et al. determined that the 
proportion of H. pylori in GC tissues obtained from 
patient groups in China and Mexico was lower than 
that in the adjacent nontumor tissues obtained from 
these patients. Moreover, the relative abundance of 
non-H. pylori bacteria was also altered in the tumor tis-
sues, suggesting a potential alteration of the microbial 
composition in GC samples [39]. Subsequently, Ferreira 
et  al. analyzed the gastric microbial community using 
16  S rRNA sequencing and real-time qPCR [54]. The 
authors revealed the dysbiotic microbiota associated 
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with GC, indicated by reduced microbial diversity, 
decreased abundance of H. pylori, and enrichment of 
other intestinal commensal bacteria. Furthermore, Liu 
et al. analyzed gastric microbiota by targeting the 16 S 
rRNA gene in a cohort of 276 patients with GC who 
had not received preoperative chemotherapy [55]. The 
authors proposed that the composition and diversity 
of the gastric microbiota were determined by specific 
stomach microhabitats associated with GC rather than 
being influenced by the stages or types of GC. Mannion 
et  al. (2023) used the shotgun metagenomic approach 
to determine the microbial functional and composition 
variations of the microbiome within high-risk and low-
risk cohorts of GC [56]. They claimed that it was pos-
sible to identify specific intratumoral microorganisms 
associated with GC by taking advantage of next-gener-
ation sequencing methods. Overall, these findings offer 
novel insights for the prophylaxis, therapy, and diagno-
sis of GC based on the associated microbiome.

Colorectal cancer
Colorectal cancer is the third leading cause of cancer-
associated morbidity, and despite a gradual reduction 
in mortality since 1978, it remains the second most 
prevalent cause of cancer-related fatalities in both males 
and females [2, 3]. Several authors have suggested a 
close association between CRC and the gut microbiota 
[99–101].

Several researchers have used novel identification 
methodologies such as qPCR, 16  S rRNA sequencing, 
and metagenomic analysis and reported the prevalence 
of Fusobacterium in individuals diagnosed with CRC 
[57–59]. Additionally, the concentration of F. nuclea-
tum DNA in CRC tissue is negatively correlated with 
patient survival, ultimately resulting in shorter survival 
times [60, 64, 72]. In the research, this negative correla-
tion was attributed to the ability of bacteria to promote 
nerve invasion, vascular tumor thrombus formation, 
and location of tumor [72]. Hamada et al. indicated that 

Fig. 2 Research studies on intratumoral microbiomes in different digestive system tumors. The number of samples included in different studies 
on bacteria in tumors of the digestive system is listed in a chronological order using a time axis
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F. nucleatum modulated immune response within the 
tumor microenvironment [70]. The bacterium inhib-
ited adaptive antitumor immune responses in MSI-High 
CRC, whereas showed pro-inflammatory effects in MSI-
Low CRC. Moreover, increased F. nucleatum DNA within 
cancerous tissues was correlated with increased mac-
rophage permeation and CDKN2A hypermethylation 
in MSI-High CRCs [66]. F. nucleatum impaired T-cell-
mediated immune responses against colorectal tumors, 
thereby promoting the tumor growth. Therefore, F. nucle-
atum DNA can be considered a prognostic biomarker for 
CRC [64]. Thus, the administration of antibiotics target-
ing F. nucleatum may potentially affect the development 
and advancement of CRC [67, 74]. Interestingly, the load 
and abundance of microorganisms in the tumor may also 
vary depending on various factors, including the stage of 
cancer and location of tumor [61, 65, 73]. In addition to F. 
nucleatum, other bacteria may also influence the devel-
opment, progression, and clinical manifestations of CRC 
[62, 63, 68, 77]. Coker et al. performed metabolomic and 
metagenomic analysis on stool samples from 386 subjects 
and demonstrated that bacterial metabolites, such as 
l-alanine, glycine, and l-proline, can promote the devel-
opment of CRC and serve as markers for the non-inva-
sive diagnosis of colorectal neoplasia [76].

The intratumoral enteric viruses, a critical constituent 
and regulator of the gut microbiota, influence the com-
position and abundance of intestinal microorganisms. 
Therefore, these viruses can influence the incidence, 
development, and outcomes of CRC [69, 99]. Further-
more, modifications in the composition of the intestinal 
fungal community were associated with CRC. The con-
centrations of Malassezia spp. increased, whereas those 
of Saccharomyces and Pneumocystis markedly declined in 
CRC tissue samples [71, 75].

Pancreatic cancer
Pancreatic cancer is a malignant neoplasm with high 
mortality rates, where the incidence and mortality rates 
are almost similar [2]. The disease has a highly unfavora-
ble prognosis and is the third most common cause of 
cancer-associated deaths in the United States [102, 103]. 
The presence of intratumoral microorganisms not only 
facilitates the onset and progression of PC but also influ-
ences treatment responsiveness and prognostication [11, 
22].

Several authors have reported the colonization of the 
pancreas by multiple microorganisms both in healthy and 
diseased states [24, 80, 81]. However, the mechanisms 
by which microorganisms can infiltrate the supposedly 
aseptic pancreas are debatable. Nalluri et al. identified a 
considerable rise in the prevalence of Enterobacteriaceae 
in PC tissues among patients who underwent biliary 

stent implantation, suggesting that the biliary tract could 
potentially serve as a channel for microbial entry into the 
pancreas [25]. Kohi et al. found that the microbes in the 
duodenal fluid of adenocarcinoma patients were differ-
ent from those in the duodenal fluid of healthy controls 
[87]. Moreover, microbial composition in PC tissues was 
similar to that in the duodenum, suggesting that bacte-
ria may migrate from the intestine to the pancreas. Geller 
et  al. also supported this hypothesis [80]. However, fur-
ther studies are required to explore the mechanisms by 
which microorganisms gain access to the pancreas and 
determine whether these entry routes influence the pro-
gression and outcome of PC.

Several studies have reported that microbiota compo-
sition will significantly varies in response to a variety of 
influences [11, 82, 85–87]. Furthermore, several authors 
have determined that oral microbial communities may be 
implicated in the origin and progression of PC [79, 84]. 
The association of H. pylori with pancreatic ductal ade-
nocarcinoma (PDAC) is controversial, although H. pylori 
is considered a risk factor for GC and can be found in 
cancer tissues. Nilsson et al. reported a detection rate of 
H. pylori DNA in 75% (30/40) of PC samples [23]. Con-
versely, Jesnowski et al. [78]. reported no evidence of H. 
pylori DNA in chronic pancreatitis or other PDAC tis-
sue samples. In addition to bacteria, fungi have also been 
identified in PC tissue [104]. The findings reported by 
Aykut and colleagues provided confirmatory evidence for 
the enrichment of Malassezia in the fungal communities 
associated with PDAC [83]. Moreover, the study reveals 
that pathogenic fungi were enabled to activate mannose-
bound lectins, which can promote tumorigenesis in the 
pancreatic environment.

Hepatocellular carcinoma
Liver cancer ranks as the sixth most prevalent and the 
fourth most lethal neoplasm globally; its incidence is rap-
idly increasing worldwide [105–107]. HCC constitutes 
approximately 90% of the cases of liver cancer. Hepatitis 
B virus infection is a major risk factor for HCC, contrib-
uting to approximately 50% of reported cases [108].

The intestinal/hepatic axis establishes communication 
between the intestinal microbiota and the liver through 
the portal vein system. Microorganisms migrate from 
the intestine to the liver through the portal vein and may 
influence the pathological condition of the liver [109, 
110]. Although the effect of gut microbiota on liver dis-
eases has been extensively studied, the intratumoral 
microbiota of HCC remains unexplored [111–113]. In 
2004, Huang et al. identified the 16 S rDNA of H. pylori 
in 8 out of 20 primary liver cancer samples; however, it 
was unclear whether these H. pylori strains were pre-
sent within the tumor cells at that time [30]. In 2020, 
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Sookonian et  al. verified the presence of intrahepatic 
bacteria DNA in hepatocytes. They conducted high-
throughput sequencing analysis of the 16  S rRNA gene 
in liver tissues obtained from 97 obese patients with 
NAFLD and 19 non-obese patients with NAFLD (control 
group) [114]. Their results indicated that the bacterial 
DNA profiles of the liver of morbidly obese patients with 
NAFLD differed significantly from those of non-obese 
patients with NAFLD. Nevertheless, experimental evi-
dence for the presence of microorganisms in liver cancer 
cells is yet to be established. Interestingly, Huang et  al. 
observed a notable increase in the levels of microbial α- 
and β-diversities of both the peritumor area and HCC 
tissue compared to the normal controls [88]. He et  al. 
have discovered that the microbial diversity within HCC 
tissue is significantly higher than its surrounding tissues, 
as determined by a thorough analysis [115]. Moreover, 
they investigated the underlying mechanism by which 
microbial communities affect lipid metabolism and their 
impact on HCC progression. Recently, Sun et al. reported 
significant heterogeneity in the intratumoral microbiome 
of HCC [89]. They used microbial profile-based cluster-
ing and developed a hepatotype, which may serve as an 
independent biomarker for the prediction of HCC prog-
nosis after surgery.

Effect of intratumoral bacteria on digestive system 
tumors
Microorganisms are involved in the initiation, progres-
sion, and inhibition of tumors in the digestive tract [116–
118]. Owing to their distinct physiological characteristics, 
different microbes manifest differential effects on tumor 
survival, proliferation, and invasion [119]. The microbial 
communities of digestive system tumors show considera-
ble diversity. Herein, we elaborate on the effects of specific 
bacteria on digestive system tumors and the respective 
mechanisms underlying these effects (Table 2; Fig. 3).

Bacteroides fragilis
B. fragilis is a gram-negative anaerobic bacterium, pri-
marily inhabiting the intestinal tract [151]. B. fragilis is an 
opportunistic pathogen comprising two distinct groups, 
namely non-toxigenic Bacteroides fragilis (NTBF) and 
enterotoxigenic Bacteroides fragilis (ETBF) [152]. NTBF 
can cause limited intestinal damage [153], whereas ETBF 
causes intestinal mucosal injury and inflammation by 
secreting BFT, a 20  kDa zinc-dependent metallopro-
teinase toxin [33, 153, 154]. Notably, intestinal tissue 
inflammation and damage can induce carcinogenesis, 
particularly CRC [152, 155].

The exposure of the mucosal tissue to BFT has been 
strongly implicated in the pathogenesis of CRC. Boleij 

et  al. indicated that BFT exposure may constitute a sig-
nificant risk factor for the development of CRC [33]. The 
authors also suggested that the incidence of BFT detec-
tion is significantly higher in patients with advanced-
stage CRC compared with those with early-stage disease. 
Subsequently, several authors have investigated the pre-
cise mechanisms by which BFT promotes the develop-
ment of CRC. The co-colonization of B. fragilis and E. coli 
induced interleukin (IL)-17 secretion, leading to colonic 
epithelial DNA damage [68]. Consequently, tumor onset 
was accelerated and mortality rates increased in patients 
with CRC. Goodwin et  al. reported that BFT upregu-
lated the expression of spermine oxidase (SMO), and 
reactive oxygen species (ROS), formed as a byproduct 
of spermine oxidation, lead to DNA damage [120]. They 
also observed that SMO mediated by BFT can increase 
the generation of SMO-dependent ROS and γ-H2A.x (a 
DNA damage marker). The accumulation of DNA dam-
age promoted the uncontrolled growth of epithelial 
cells, eventually progressing into CRC [156]. However, 
Snezhkina et  al. performed qPCR analysis and revealed 
that SMO and BFT were not significantly correlated with 
each other. In addition, BFT can induce proteolytic deg-
radation of E-cadherin in the E-cadherin/β-catenin com-
plex, consequently facilitating the nuclear translocation 
of β-catenin and resulting in the malignant proliferation 
of cells [121, 122]. The nuclear factor (NF-κB) pathway 
is a prototypical pro-inflammatory signaling mechanism 
[157]. Bacterial effector protein BFT can exert a negative 
effect on IκB and consequently trigger the activation of 
the NF-κB pathway, resulting in the induction of tumori-
genesis [123–125].

In contrast, some investigators have reported that B. 
fragilis can exert antitumor effects. The bacterium can 
induce the upregulation of human β-defensin-2 gene 
expression by activating the MAPK pathway. Notably, 
the insufficient expression of this gene in the intestine 
increase susceptibility to ETBF-associated diseases, 
including colitis, irritable bowel disease, and colon 
tumorigenesis [126]. Furthermore, B. fragilis exerts a 
negative effect on the NLRP3-mediated pathways of 
inflammatory signaling by stimulating the secretion of 
butyrate [127]. This compound inhibits macrophage 
activation and secretion of pro-inflammatory mediators 
such as IL-18 and IL-1β, thereby reducing the levels of 
intestinal inflammation and restricting the development 
of CRC. B. fragilis can also impair tumor formation and 
invasion by activating CD4 + T cells, thereby inducing 
the production of anti-inflammatory molecules such 
as IL-10 [128, 129]. Taken together, these pathways can 
be targeted for the development of novel therapeutic 
regimens.
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Table 2 Regulatory effect of typical intratumoral bacteria on digestive system tumors

Bacterium Regulator Signaling 
pathway

Target Regulation Expression/
Activity

Effect Neoplasm 
promotion/
suppression

Refs

Bacteroides fragilis BFT / Interleukin-17 Positive ↑ DNA damage promotion  [68]

BFT / Spermine oxidase Positive ↑ DNA damage promotion  [120]

BFT β-catenin E-cadherin Negative ↓ tumor cell prolif-
eration

promotion  [121]

BFT β-catenin E-cadherin Negative ↓ inducing c-myc 
expression

promotion  [122]

BFT NF-κB ERK1/2, p38, 
and JNK kinases

Positive ↑ inducing intesti-
nal inflammation 
and mucosal 
damage

promotion  [123]

BFT NF-κB IκB Negative ↓ inducing neutro-
phil migration

promotion  [124]

BFT NF-κB Interleukin − 8 Positive ↑ inducing intesti-
nal inflammation

promotion  [125]

BFT MAPK human beta-
defensin-2

Positive ↑ suppressing 
intestinal inflam-
mation

suppression  [126]

butyrate nod-like recep-
tor signaling 
pathway

Interleukin − 18 
and Interleukin 
− 1β

Negative ↓ suppressing 
intestinal inflam-
mation

suppression  [127]

PSA TLR-2 Interleukin − 10 Positive ↑ suppressing 
intestinal inflam-
mation

suppression  [128]

PSA Interleukin − 12/
Stat4

Th1 Positive ↑ inducing Th1 
cytokine produc-
tion

suppression  [129]

Escherichia coli colibactin / Interleukin-17 Positive ↑ DNA damage promotion  [68]

colibactin / adenine Negative ↓ DNA damage promotion  [130–133]

colibactin / copper Positive ↑ DNA damage promotion  [134]

T3SS / UshA Positive ↑ DNA damage promotion  [135]

VirF / PV-1 Positive ↑ gut vascular bar-
rier damage

promotion  [34]

acetic acid / Interleukin-1β, 
Interleukin-6, 
Interleukin-8, 
TNF-α

negative ↓ suppressing 
intestinal inflam-
mation

suppression  [136]

/ PI3K-AKT PTEN Negative ↓ inducing apop-
tosis

suppression  [137]

Fusobacterium 
nucleatum

/ TLR4 microRNA-21 Positive ↑ increasing tumor 
proliferation

promotion  [138]

/ TLR4 12,13-EpOME Positive ↑ promoting EMT 
and metastasis

promotion  [139]

FadA β-catenin E-cadherin Positive ↑ inducing intesti-
nal inflammation

promotion  [140]

/ NF-κB PTGS2, 
Interleukin-1β, 
Interleukin-6, 
Interleukin-8, 
TNF-α

Positive ↑ inducing intesti-
nal inflammation

promotion  [37]

/ / CCL20 Positive ↑ increasing tumor 
invasion

promotion  [48]

/ / CD3 + T Negative ↓ suppressing anti-
tumor immune 
response

promotion  [141]
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Table 2 (continued)

Bacterium Regulator Signaling 
pathway

Target Regulation Expression/
Activity

Effect Neoplasm 
promotion/
suppression

Refs

Fap2 / TIGIT Positive ↑ inhibiting NK cell 
cytotoxicity

promotion  [142]

Fap2 / CEACAM1 Positive ↑ inhibiting NK cell 
cytotoxicity

promotion  [143]

Helicobacter pylori CagA β-catenin / / / increasing 
β-catenin nuclear 
accumulation

promotion  [144]

CagA β-catenin PPARδ Positive ↑ inducing tumor 
proliferation

promotion  [145]

CagA NF-κB Interleukin-8 Positive ↑ inducing intesti-
nal inflammation

promotion  [146]

/ / N-acetyltrans-
ferase-10

Positive ↑ increasing mRNA 
acetylation

promotion  [147]

Salmonella typhi AvrA β-catenin phosphorylated-
β-catenin

Positive ↑ increas-
ing nuclear 
accumulation 
of β-catenin

promotion  [148–150]

Fig. 3 Effect of intratumoral bacteria on digestive system tumors. Bacteria can modulate diverse signaling pathways or initiate DNA damage 
leading to carcinogenesis in cells. Chronic inflammation constitutes a notable risk factor for tumor development. Bacteria may influence 
inflammatory cells and can directly induce inflammation, or they may regulate immune cells and inhibit inflammation
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Escherichia coli
E. coli is a facultatively anaerobic gram-negative bacte-
rium commonly present in the normal intestinal microbi-
ota [158]. Most E. coli strains are commensals and rarely 
cause diseases in their host. Nevertheless, specific strains 
can produce toxins having genotoxic properties, which 
can regulate cell differentiation, apoptosis, and prolifera-
tion [159–161]. The possible role of these toxins in either 
stimulating tumor development or inhibiting tumor pro-
gression is an active area of cancer research.

E. coli possesses the pathogenic polyketide synthase 
(pks) genomic island, which encodes a cluster of enzymes 
responsible for synthesizing colibactin [130]. This pep-
tide alkylates DNA at the adenine residues [131, 132], 
leading to double-stranded breaks in the host DNA and 
cell-cycle arrest [130]. Consequently, the uncontrolled 
proliferation of cells leads to malignancy [133]. Arthur 
et  al. indicated that the removal of the pks genotoxic 
island from E. coli NC101 reduced tumor occurrence and 
invasiveness in mice, whereas no changes were observed 
in intestinal inflammation [162]. Liu et al. suggested that 
the pathogen engages with the intestinal epithelial cells 
through its type III secretion system and translocates 
the UshA protein [163]. UshA is a potent genotoxin that 
can degrade the intestinal epithelial cell DNA, ultimately 
leading to carcinogenesis [135]. Furthermore, E. coli can 
induce double-stranded breaks in the host DNA through 
copper-mediated oxidative cleavage and has been shown 
to promote DNA damage by inducing IL-17, ultimately 
resulting in tumorigenesis [68, 134]. Colibactin interacts 
with exchangeable copper in the gut to create a com-
plex that coordinates with oxygen in epithelial cells to 
produce activated colibactin, which attacks and cleaves 
DNA [134]. In addition, the onset of CRC facilitates the 
colonization of E. coli in the hepatic tissues by impairing 
the integrity of the intestinal vascular barricade through 
virulence regulator VirF, consequently leading to liver 
metastases of CRC [34].

In contrast, E. coli also has anti-inflammatory and 
anticancer properties. Nakkarach et  al. reported that E. 
coli secretes short-chain fatty acids (SCFA), which can 
inhibit the production of pro-inflammatory mediators, 
such as IL-1β, IL-6, IL-8, and TNF-α [136]. This down-
regulation may result in the inhibition of cancers linked 
to inflammation. However, the authors mainly examined 
the effect of bacteria on breast cancer, and further stud-
ies are required to evaluate their effect on CRC cells. E. 
coli elicits pro-apoptotic effects on CRC cells by upregu-
lating PTEN and AKT1 [137]. Dalmasto et al. proposed 
an alternative perspective on the contribution of pks + E. 
coli in the pathogenesis of CRC [164]. The research-
ers infected xenografts with pks + E. coli at a multiplic-
ity of infection of 100 and did not detect any obvious 

pro-proliferative effect. Moreover, they observed a reduc-
tion in tumor growth. Therefore, further investigations 
on the role of E. coli in tumor development hold signifi-
cant potential in CRC diagnostics and therapeutics.

Fusobacterium nucleatum
F. nucleatum is an anaerobic, gram-negative, and oppor-
tunistic bacterium that colonizes both the gastrointesti-
nal and oral tracts [165]. F. nucleatum can attach to and 
infiltrate endothelial and epithelial cells through its viru-
lence factors, including adhesin A (FadA), Fusobacterium 
autotransporter protein 2 (Fap2), and fusobacterial outer 
membrane protein A (FomA) [26, 140, 142, 166]. Several 
authors have indicated a possible connection between F. 
nucleatum and the onset of carcinogenesis.

F. nucleatum can promote the initiation, proliferation, 
and progression of tumors by eliciting an inflamma-
tory response and suppressing the anticancer immune 
response. F. nucleatum regulates microRNA-21 and 
cytochrome P450 monooxygenases, mainly CYP2J2, as 
well as its mediated product 12,13-EpOME through the 
TLR4 signaling pathway to facilitate the epithelial–mes-
enchymal transition and tumor invasion [138, 139]. Nota-
bly, patients with high microRNA-21 expression tend to 
have shorter survival times compared to those with low 
micro-RNA-21 expressions [139]. Additionally, F. nuclea-
tum exerts its modulatory effect on the tumor immune 
microenvironment and promotes tumor progression by 
inducing NF-κB-mediated inflammation, which, in turn, 
facilitates the recruitment of myeloid-derived suppressor 
cells to the tumor microenvironment [37]. This recruit-
ment is accompanied by inhibition of T-cell proliferation 
and induction of T-cell apoptosis, further underscor-
ing the role of F. nucleatum in promoting tumor growth 
[141].

Immune checkpoints play a critical role in regulating 
the immune response and facilitating T-cell dysfunction 
in autoimmunity and inflammation [167, 168]. Nonethe-
less, these inhibitory pathways can be co-opted by neo-
plastic cells to facilitate tumor immune evasion [169, 
170]. Gur et al. reported that the Fap2 outer surface pro-
tein of F. nucleatum curtailed antitumor immunity by 
binding to and inducing activation of inhibitory recep-
tors, i.e., T-cell immunoreceptor with immunoglobu-
lin and ITIM domain (TIGIT) and carcinoembryonic 
antigen-related cell adhesion molecules 1 (CEACAM1), 
which are expressed by T and natural killer cells [142, 
143]. Interestingly, F. nucleatum triggers distinct immu-
nological reactions in CRC cases with different MSI 
statuses [70]. The activation of STING signaling by F. 
nucleatum resulted in increased PD-L1 expression and 
accumulation of interferon-gamma and subsequently 
CD8 + tumor-infiltrating lymphocytes, leading to tumor 
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inhibition [171]. Such effects, when combined with 
PD-L1 blockade treatment, enhanced tumor sensitivity 
and response to the immune checkpoint blockade, lead-
ing to a marked improvement in the overall survival rates 
of patients [171]. Overall, investigating the precise mech-
anism underlying the role of F. nucleatum in the devel-
opment, invasion, and suppression of tumors will lead 
to the development of new therapeutic interventions for 
gastrointestinal cancers.

Other microorganisms
Apart from the bacteria mentioned above, other microor-
ganisms also exert a distinct influence on the metabolism 
or microenvironment of tumors. H. pylori is a gram-
negative bacterium that can selectively colonize gastric 
epithelium and is associated with the development of 
digestive system tumors [172]. The presence of H. pylori 
in gastrointestinal tumors may induce inflammation, 
thereby facilitating the proliferation of malignant cells 
through the activation of β-catenin or NF-kB pathways 
[144–146]. Moreover, H. pylori may contribute to the 
progression of GC through the upregulation of NAT10 
expression, which subsequently stabilizes MDM2 mRNA 
[147]. Furthermore, Salmonella typhi can enhance the 
proliferation of tumors in the digestive system by activat-
ing the β-catenin pathway [148–150].

Potential applications of intratumoral bacteria 
in digestive system tumors
Diagnostic value of intratumoral bacteria
Intratumoral microorganisms have great potential as 
independent diagnostic markers because of their rich-
ness and heterogeneity in different tumors [79, 173–175], 
as well as their varying composition at different stages 
of the same tumor [12, 39]. For example, altered micro-
biome composition in Barrett’s esophagus, character-
ized by a decrease in the abundance of Firmicutes and 
an increase in the abundance of Proteobacteria, has been 
associated with high-grade dysplasia and esophageal 
adenocarcinoma [12]. Therefore, microbiota alterations 
in Barrett’s esophagus may be tracked for diagnosing 
esophageal cancer. In addition, an increase in the abun-
dance of Porphyromonas gingivalis and Aggregatibacter 
actinomycetemcomitans has been linked to an increased 
probability of developing PC [79]. Therefore, multiple 
diagnostic approaches are recommended to detect any 
increase in the concentrations of these specific bacte-
ria in pancreatic tissue, thereby minimizing the risk of 
missing the diagnosis of PC. Furthermore, in addition to 
the oral microbiota, the presence of fungal genera, such 
as Malassezia, can also be considered for detecting PC 
[83, 176]. Overall, identifying the microbial composition 

and alterations in pathological tissues can be used as an 
adjunct approach to the diagnosis of cancer.

Therapeutic effects of intratumoral bacteria
Despite rapid advancements in cancer diagnosis and 
treatment, the global burden of cancer-related deaths is 
rapidly increasing [2]. According to data published by 
WHO in 2019, cancer remained a leading cause of death 
before the age of 70 in most countries worldwide. Micro-
organisms have functional significance in the initiation 
and progression of gastrointestinal tumors; therefore, it is 
imperative to examine their potential use as therapeutic 
tools in cancer management (Fig. 4).

Intratumoral microorganisms influence anticancer treatment
Currently, the modalities for cancer management include 
surgical intervention to excise neoplastic tissues, radio-
therapy to inhibit the proliferation of tumor cells, and 
chemotherapy to kill malignant cells by inducing cyto-
toxic mechanisms or using direct chemical agents [177]. 
Immunotherapy has emerged as a novel approach, which 
boosts the immune response of the host for recognizing 
and eliminating tumor cells, resulting in promising thera-
peutic outcomes [178]. Intratumoral microorganisms can 
modulate the immune response within the tumor micro-
environment, and consequently, these microbes can 
influence the effectiveness of immunotherapies for diges-
tive system tumors [173].

Nalluri et al. evaluated intratumoral microorganisms in 
PC and revealed that individuals who underwent Whip-
ple surgery or preoperative biliary stent implantation 
showed increased bacterial colonization in the pancreas 
[25]. However, the authors were not able to determine 
the correlation between these bacteria and the progno-
sis of PC. Furthermore, the influence of intestinal bacte-
ria and fungi on the response to radiotherapy has been 
observed in murine models of breast cancer and mela-
noma [179]. Nevertheless, it remains uncertain whether 
these gut microorganisms are present in the digestive 
system tumor tissues or they exert a significant effect 
on the response of tumors to radiotherapy. Chemother-
apy resistance occurs in neoplastic tissues partly due to 
the metabolic activities of intratumoral microorganisms 
[180]. Geller et al. suggested that intratumoral bacteria in 
PC can produce enzymes that metabolize the chemother-
apeutic drug gemcitabine, rendering cancer cells resist-
ant to the drug [181]. The aforementioned discovery has 
been thoroughly substantiated through a multitude of 
experimental trials [182, 183].

Introtumoral microorganisms play a positive or nega-
tive role in anti-tumor immune responses by mediat-
ing diverse immune cells and PD-1/PD-L1 axis [184, 
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185]. Numerous literatures have reported the facilitating 
role of intratumoral microorganisms in the anti-tumor 
immune responses. For example, Lachnospiraceae family 
bacteria residing in normal tissues of patients with CRC 
can degrade lysoglycerophospholipids which injury  CD8+ 
T cell activity, thereby controlling the development of 
CRC by improving immune tumor immune surveillance 
[186]. E. coli is a common bacterium isolated from solid 
tumors including CRC. E. coli TOP10 induces the activa-
tion of  CD8+ and  CD4+, which are the effector cells to 
inhibit tumor occurrence and progression [187]. Shi et al. 
observed that systemic administration and local delivery 
of Bifidobacterium promote innate immune responses 
in mice with CRC [188]. Additionally, depletion of 
microorganisms in PDAC upregulates the expression of 
PD-1, which leads to positive effects on immunotherapy 
targeting PD-1 [22]. However, intratumoral microor-
ganisms can impede the efficacy of anti-tumor immuno-
therapy. Commensal bacteria enhance the generation of 

immunosuppressive Treg cells and stimulate the growth 
of cancerous cells via metabolites such as butyrate [189, 
190]. Zhang et al. discovered a correlation between intra-
tumoral bacteria and the proportion of PD-L1 epithelial 
cells. Moreover, their findings illustrated that elevated 
levels of intratumoral Lactobacilli contributed to the for-
mation of an immunosuppressive tumor microenviron-
ment, which predicted the poor prognosis of ESCC [191].

Intratumoral microorganisms show therapeutic effects 
on cancer
Goto et  al. identified the presence of intratumoral lytic 
bacteria that can exert anticancer effects [192]. Bacte-
ria have high targeting properties and minimal toxicity, 
making them viable delivery vectors [177]. Listeria spe-
cies, co-incubated with cytotoxic and labeled antibodies, 
can specifically target and lyse PC cells, thereby inhibit-
ing cancer metastasis [193]. Interestingly, the use of Sal-
monella strains expressing Fas ligands has demonstrated 

Fig. 4 Therapeutic effect of intratumoral bacteria. Bacteria can promote or inhibit the effects of immunotherapy on the host by regulating immune 
cells. Bacteria possess oncolytic properties. They may serve as vectors or can be genetically modified to facilitate targeted therapeutics. Antibiotics 
and bacteriophages can modify the composition of intratumoral bacteria, offering potential therapeutic options for the prevention and treatment 
of cancer
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notable efficacy in inducing antineoplastic responses 
against colon cancer [194].

Genetic engineering techniques have enabled us to mod-
ify bacterial genomes to enhance their safety, antitumor 
activity, and carrier function to fulfill the unique require-
ments of complex pathological environments. These 
genetically engineered bacteria have been used for treat-
ing several tumors. The attenuated strain of Salmonella 
typhimurium VNP20009 has shown significant anticancer 
properties in several animal models of cancer [195]. The 
bacteria negatively affected the growth of PC by inducing 
severe necrosis and apoptosis in a dose-dependent manner 
[196]. The engineered microorganisms, serving as vectors, 
can penetrate necrotic and hypoxic regions within tumor 
tissue, which is beyond the reach of normal bacteria [197]. 
In addition, engineered bacteria expressing immunomod-
ulatory factors can to potentiate the immune response 
mediated by immune cells and cytokines, thereby inhib-
iting the progression and invasion of malignant tumors. 
Zheng et  al. reported that engineered bacteria secret-
ing FlaB can stimulate the infiltration and differentiation 
of immune cells via Toll-like receptors, suppressing the 
growth and metastasis of colon cancer [198].

Targeting intratumoral microorganisms for cancer treatment
The majority of intratumoral microorganisms inhibit 
the antitumor response and instead promote tumor pro-
liferation [22, 47]. Therefore, eliminating intratumoral 
microorganisms may be a potential adjunct anticancer 
treatment. Bullman et  al. administered metronidazole 
to mice hosting colon cancer xenografts and found a 
decrease in Fusobacterium load and subsequent inhi-
bition of cancer cell proliferation and overall tumor 
growth [67]. The administration of a nonsteroidal anti-
inflammatory drug, namely aspirin, has been reported 
to show direct antibacterial activity against F. nucleatum 
and decrease the prevalence of F. nucleatum in CRC [74]. 
Moreover, the treatment distinctly inhibited the promo-
tion of intestinal tumorigenesis by F. nucleatum. Apart 
from bacteria, the protective effect of fungi on the pro-
gression of PDAC has been demonstrated in mouse mod-
els, indicating that targeting the mycobiome could be a 
promising avenue for cancer treatment [38].

However, antibiotics are not selective for intratumoral 
bacteria, thereby limiting their potential antitumor 
effects. In contrast, bacteriophages are highly specific for 
their target bacteria and can precisely lyse intracellular 
microbes [199]. Scientists injected bacteriophages spe-
cifically targeting F. nucleatum into the mice and found 
that bacteriophages were able to penetrate tumor tissue 
and infect their target bacterium [200]. Zheng et al. used 
phage-modified nanoparticles for intravenous or oral 
administration in mice suffering from CRC [201]. The 

authors found an enhanced chemotherapy effect and a 
reduction in the F. nucleatum load. Taken together, bac-
teriophages precisely target specific intratumoral bacte-
ria and eliminate them, thereby providing a meticulous 
approach to cancer treatment.

Apart from eliminating intratumoral microorganisms 
through the aforementioned pathways, manipulating the 
composition of the microbiota accomplished by fecal 
microbiota transplantation is also an effective strategy 
to inhibit cancer growth [47]. Fecal microbiota trans-
plantation bolsters the body’s immune response against 
tumors and effectively inhibits the progression of patients 
with CRC [202]. Consequently, therapeutic interventions 
focused on intratumoral microorganisms exhibit signifi-
cant potential in enhancing the overall prognosis of indi-
viduals diagnosed with digestive system tumors.

Prognostic potential of intratumoral bacteria
A statistically significant association exists between 
intratumoral microorganisms and survival and mortal-
ity rates in patients with cancer [191, 203]. Therefore, the 
presence of intratumoral microorganisms can be used 
as a prognostic tool for predicting the outcome in can-
cer patients. The mucosal microbiome exhibits dynamic 
association with CRC and thus can be explored for devel-
oping microbiota-based prognostic approaches for CRC 
[61]. The prevalence of F. nucleatum simultaneously 
increases with tumor progression [60]. Additionally, a 
higher concentration of F. nucleatum DNA in CRC tissue 
is linked to decreased survival rates [64]. F. nucleatum has 
been historically linked to unfavorable prognostic out-
comes and is significantly associated with negative prog-
nosis in colorectal carcinomas, as well as esophageal and 
pancreatic malignancies [32, 48, 50]. However, Oh et al. 
challenged this assumption by showing that the influ-
ence of F. nucleatum on the prognosis of CRC depends 
on other determining factors [204]. They indicated that 
the positive prognostic impact of F. nucleatum was solely 
detected in sub-categories of non-sigmoid carcinoma 
patients with high levels of non-MSI. Therefore, they 
concluded that the position of the tumor and the com-
bined status of MSI may play a crucial role in influencing 
the diverse prognostic impact of F. nucleatum in patients 
with CRC undergoing adjuvant chemotherapy. In addi-
tion, several other microorganisms are closely associ-
ated with the prognosis of gastrointestinal malignancies. 
H. pylori releases CagA through its type IV secretion 
system, thereby resulting in increased susceptibility and 
unfavorable clinical outcomes in patients diagnosed with 
gastric or colorectal cancers [205, 206]. Streptococcus 
and Prevotella are more abundant in patients with ESCC 
having lymph node metastasis [49]. The presence of 
these microorganisms may be an independent predictive 
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indicator for the prognosis of patients with ESCC. Over-
all, the detection of microorganisms in digestive system 
tumors can predict the prognosis of patients, thereby 
guiding timely modifications in treatment strategies for 
achieving favorable outcomes in affected patients.

Intratumoral microorganisms as tumor biomarkers 
exhibit significant potential in advancing the development 
of more efficacious therapeutic approaches and prognosis 
prediction models. Hermida et al. reported that RNA-seq 
and whole-genome sequencing provided by The Cancer 
Genome Atlas documented not only extensive information 
on thousands of cancer cases but also genetic information 
from intratumoral microorganisms [207]. Furthermore, 
they suggested that combining information about tumor 
gene expression and differences between the microbes in 
the tumor and those in non-tumor tissue can predict can-
cer prognosis and drug response. Additionally, Sun et  al. 
indicated hepototype distinguished by differences in intra-
tumoral microorganisms is demonstrated to be an inde-
pendent prognostic factors for patients with postoperative 
HCC [89]. In their study, high level of Akkermansia and 
Methylobacterium is associated with favorable prognosis 
and can be used to construct clinical predictive models.

Conclusion
Currently, intratumoral microorganisms are being actively 
investigated in several types of tumors and some remark-
able results have been obtained in this context. Their 
diversity and functions have been described in detail using 
next-generation sequencing technology. Here, we reviewed 
the fundamental features, sources, types, and heterogeneity 
of microorganisms present in digestive system tumors. In 
addition, we summarized the role of some typical intratu-
moral microorganisms present in specific tumors. Finally, 
we elaborated on the potential use of tumor-associated 
microorganisms for developing novel diagnosis and treat-
ment strategies for digestive system tumors. This infor-
mation will be valuable for further investigating the role 
of microorganisms in neoplastic growth and developing 
microbial therapy for neoplasms.
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