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Abstract 

Digestive tract tumors are heterogeneous and involve the dysregulation of multiple signaling pathways. The Janus 
kinase-signal transducer and activator of transcription (JAK–STAT) pathway plays a notable role in the oncogenesis 
of digestive tract tumors. Typically activated by pro-inflammatory cytokines, it regulates important biological pro-
cesses, such as cell growth, differentiation, apoptosis, immune responses, and inflammation. The aberrant activa-
tion of this pathway manifests in different forms, including mutations in JAKs, overexpression of cytokine receptors, 
and sustained STAT activation, and contributes to promoting the malignant characteristics of cancer cells, includ-
ing uncontrolled proliferation, resistance to apoptosis, enhanced invasion and metastasis, angiogenesis, acquisition 
of stem-like properties, and drug resistance. Numerous studies have shown that aberrant activation of the JAK-STAT 
pathway is closely related to the development and progression of digestive tract tumors, contributing to tumor 
survival, angiogenesis, changes in the tumor microenvironment, and even immune escape processes. In addition, 
this signaling pathway also affects the sensitivity of digestive tract tumors to chemotherapy and targeted therapy. 
Therefore, it is crucial to comprehensively understand the oncogenic mechanisms underlying the JAK-STAT path-
way in order to develop effective therapeutic strategies against digestive tract tumors. Currently, several JAK–STAT 
inhibitors are undergoing clinical and preclinical trials as potential treatments for various human diseases. However, 
further investigation is required to determine the role of this pathway, as well as the effectiveness and safety of its 
inhibitors, especially in the context of digestive tract tumors. In this review, we provide an overview of the structure, 
classic activation, and negative regulation of the JAK-STAT pathway. Furthermore, we discuss the pathogenic mecha-
nisms of JAK-STAT signaling in different digestive tract tumors, with the aim of identifying potential novel therapeutic 
targets.
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Introduction
The Janus kinase-signal transducer and activator of tran-
scription (JAK-STAT) pathway is a crucial cell signaling 
pathway that is frequently activated by an extensive rep-
ertoire of extracellular cytokines and growth factors [1–
3]. It plays a critical role in regulating essential biological 
processes, including cellular processes, inflammation, 
and immunological responses. As a result, it is evolu-
tionarily conserved across different species [4–7]. Acti-
vation of the JAK-STAT pathway begins with the binding 
of an extracellular ligand to the cell surface receptor. 
This process triggers a cascade of complex steps, which 
includes the recruitment and subsequent phosphoryla-
tion of JAKs within the receptor complex, the phospho-
rylation and dimerization of STAT, the combination of 
STAT dimers with specific responsive element regions 
on the nucleus, and ultimately, the regulation of target 
gene transcription [8–11]. In this way, the extracellular 
signals and stimuli are relayed to the nucleus (Fig.  1). 
Under normal physiological conditions, the JAK-STAT 
signaling pathway regulates gene expression and cellular 
function by responding to extracellular signal molecules 

such as cytokines and growth factors. Numerous studies 
have demonstrated that JAK-STAT is involved in multiple 
biological processes, including cell proliferation, differen-
tiation, apoptosis, immune response, hematopoietic reg-
ulation and embryonic development. Specifically, in the 
immune system, it participates in regulating the develop-
ment, proliferation, and function of T cells and B cells; 
in the hematopoietic system, it controls the prolifera-
tion and differentiation of blood cells; and in embryonic 
development, it plays a role in organ formation and cell 
fate determination. Furthermore, the JAK-STAT signal-
ing pathway can interact with other signaling pathways to 
form complex network regulatory systems. This network 
regulation helps maintain the biological balance of nor-
mal cells and ensures the normal function of tissues and 
organs.

The dysregulation of the JAK–STAT pathway has 
been found to contribute to carcinogenesis by promot-
ing several oncogenic processes, including cell prolif-
eration, invasion, metastasis, anti-apoptosis, immune 
escape, and angiogenesis [1, 12, 13]. Numerous studies 
have reported hyperactivation and frequent mutations 

Fig. 1 The components and activation of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway
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in JAK–STAT signaling proteins in various human disor-
ders, such as rheumatoid arthritis, inflammatory bowel 
disease, inflammatory skin conditions, myeloprolifera-
tive neoplasms, and solid tumors [14–17]. Considering 
its near-ubiquitous role in diverse diseases, an increasing 
number of small-molecule inhibitors or natural products 
targeting JAK-STAT proteins have been synthesized or 
developed [18–21]. Of them, many have been approved 
for clinical use and more selective inhibitors are currently 
undergoing clinical investigation [22–25].

Digestive tract tumors encompass a heterogeneous 
range of cancers, typically including esophageal, gastric, 
colorectal, liver, and pancreatic cancers [26, 27]. Despite 
the widespread availability of endoscopic examinations 
has greatly improved the early detection rates for certain 
digestive tract tumors, their non-specific symptoms and 
the limited therapeutic interventions for advanced-stage 
cancers pose a formidable challenge to improving the 
survival rates of patients [28–30]. Based on the GLOBO-
CAN 2020 statistics, digestive tract cancers comprised 
23.4% of all cancer cases and 30.9% of all cancer-related 
deaths worldwide, emphasizing the substantial burden 
they impose on global public health [31, 32]. Hence, elu-
cidating their pathogenesis and exploring novel biomark-
ers and therapeutic targets is imperative [33].

Advanced molecular biology and cutting-edge 
sequencing technologies have consistently identified 
the abnormal activation of JAK-STAT signaling in sev-
eral digestive tract tumors. Moreover, the dysregulation 
of this pathway is associated with more malignant cell 
behaviors and tumor development, such as increased cell 
migration, invasion, and metastasis [34]. By regulating 
the reorganization of the cell skeleton and the expression 
of adhesion molecules, it promotes the migration ability 
of tumor cells [35–38]. At the same time, the JAK-STAT 
signaling pathway enhances the invasive ability of tumor 
cells by regulating the expression and activity of matrix 
metalloproteinases (MMPs), which can degrade extra-
cellular matrix and provide invasion pathways for tumor 
cells [39–41]. In addition, it interacts with key transcrip-
tion factors that promote epithelial-mesenchymal transi-
tion (EMT), making tumor cells more invasive [42–45]. 
These findings highlight that the JAK-STAT pathway sig-
nificantly drives the progression and spread of digestive 
tract tumors. Reviewing its role in digestive tract tumors 
comprehensively will help us better understand its regu-
latory mechanisms and provide insights for developing 
more precise targeted treatment strategies.

Here, we have reviewed the involvement and mecha-
nisms of the aberrantly activated JAK-STAT pathway in 
digestive tract tumors. Further, we have systematically 
analyzed the clinical significance of this pathway as a 
source of both potential biomarkers for early screening 

and therapeutic targets. Finally, we have discussed the 
application and prospects of targeting this pathway 
to enhance the clinical management of digestive tract 
tumors.

 JAK‑STAT pathway
The JAK-STAT pathway is a crucial signaling pathway 
inside the cell that involves two protein families: JAK and 
STAT [10].

The JAK family comprises four non-receptor tyrosine 
kinases, namely JAK1, JAK2, JAK3, and tyrosine kinase 2, 
which have a shared domain structure but distinct func-
tions within the cell [34, 46, 47]. By analyzing, we have 
been able to understand the complete domain structure 
of JAKs with apparent molecular masses of 120–140 
kDa [48]. JAKs are composed of seven Jak homology 
(JH) regions spanning four functional domains: a C-ter-
minal tyrosine kinase domain formed by JH1, a pseu-
dokinase domain constituted by JH2, a Src-homology 2 
(SH2) domain comprising the JH3-JH4 regions, and an 
N-terminal FERM domain (band 4.1, ezrin, radixin, and 
moesin) containing the JH5-JH7 regions [49–51]. Thor-
oughly dissecting the functions and interactions of each 
domain within the JAK family will enhance our under-
standing of its role in signal transduction. The kinase 
domain, which is the most pivotal domain of JAKs, 
exhibits tyrosine kinase activity to phosphorylate target 
substrates like STATs, thus activating downstream signal-
ing pathways and cellular responses [52]. Inhibiting the 
activity of the kinase domain usually disrupts an aber-
rantly activated JAK-STAT pathway, making this domain 
the major target for the development of JAK inhibitors 
[53–55]. The characteristic pseudokinase domain, which 
is beside the kinase domain, executes crucial regulatory 
functions rather than catalytic functions. It modulates 
JAK activation and substrate specificity by interact-
ing with other proteins, but also prevents the excessive 
activation of JAK-STAT signaling by providing negative 
feedback [56]. Moreover, mutations in the pseudokinase 
domain have been proven to affect the basal activity of 
the kinase domain [57]. The SH2 domain functions as 
scaffolding to both facilitate the localization of JAK to 
activated receptors and phosphorylate STAT. As a result, 
it affects the nuclear translocation of STAT and down-
stream gene expression regulation [58–60]. The FERM 
domain is involved in interacting with transmembrane 
receptors and maintaining kinase activity [61, 62]. Sev-
eral studies have reported that variations in the FERM 
domain contribute to aberrant JAK-STAT signaling in a 
wide range of human diseases [63, 64].

Signal transduction through the JAK-STAT pathway 
is mediated by four cytosolic JAKs situated near the 
cell membrane [65, 66]. Each JAK can bind to multiple 



Page 4 of 18Zhao et al. Cell Communication and Signaling           (2024) 22:68 

types of cytokine receptors, resulting in different down-
stream effects [67]. JAK1, JAK2, and tyrosine kinase 2 
are ubiquitously expressed in mammals, whereas the 
expression of JAK3 is predominantly restricted to hemat-
opoietic, endothelial, and vascular smooth muscle cells 
[58, 68–71]. These four JAKs have been widely recog-
nized as potential drug targets in diverse diseases, such 
as leukemia, polycythemia vera, myelofibrosis, essen-
tial thrombocythemia, cutaneous T-cell lymphoma, and 
inflammatory bowel disease [72–75]. However, the thera-
peutic effectiveness and safety of targeting the JAK family 
needs further clinical verification [76, 77].

The STAT family, first discovered while studying the 
activation of the interferon system in 1994, is a family of 
seven latent cytoplasmic transcription factors (STAT1-
STAT4, STAT5A, STAT5B, and STAT6) in humans with 
a conserved separate window ranging from 750 to 850 
amino acids [78–80]. Most STAT proteins possess similar 
structures: an N-terminal domain, a coiled-coil domain, a 
DNA-binding domain, a linker domain, an SH2 domain, 
and a C-terminal transactivation domain (STAT2 and 
STAT6 are exceptions because they lack the PMSP motif ) 
[81–83]. The C-terminal transactivation domain is the 
main site for the phosphorylation of serine residues. The 
SH2 domain mediates STAT phosphorylation as well as 
the interaction between STATs and JAKs leading to STAT 
dimerization. The DNA-binding domain contains precise 
amino acid sequences to recognize and bind to specific 
DNA sequences, thus dictating DNA-binding specificity 
[84–88]. Multiple studies have discovered that different 
molecules activate specific STATs (especially STAT3 and 
STAT5) to initiate distinct regulatory mechanisms and 
functions that contribute to normal physiology as well as 
disease development [82, 89, 90]. Moreover, STAT3 and 
STAT5 are considered the most significant of all STATs 
because they are involved in malignant transformation 
[91–93]. Inhibiting constitutively activated STATs has 
also been demonstrated to suppress tumor growth, jus-
tifying the development of small-molecule STAT inhibi-
tors to treat human cancers [94–96].

Excessive or prolonged activation of the JAK-STAT 
pathway is prevented by multiple molecules that form 
a negative feedback loop to regulate the duration and 
intensity of the pathway. Activated STATs stimulate sup-
pressor of cytokine signaling (SOCS) proteins, which 
inhibit the further activation of STAT signaling by 
competing with STATs for binding, ubiquitinating and 
degrading SOCS substrates, and directly repressing JAK 
activity [97–99]. Protein inhibitors of activated STATs 
(PIAS) also negatively regulate JAK-STAT signaling by 
blocking the STAT-DNA interaction, inducing protein 
SUMOylation, and recruiting transcriptional co-repres-
sors to STAT target genes [100, 101]. In addition, protein 

tyrosine phosphatases dephosphorylate activated STATs, 
leading to the inactivation and termination of STAT sign-
aling [102, 103].

Abnormal JAK‑STAT pathway in digestive tract 
tumors
The JAK pathway is aberrantly activated in multi-
ple digestive tract tumors due to mutations in JAKs 
or STATs, gene fusions with JAKs or STATs, and the 
restrained expression of negative regulators, ultimately 
engendering tumor cell malignant behaviors, such as pro-
liferation, invasion, drug resistance, immune escape, and 
metastasis [3, 104–107]. A coherent understanding of 
the aberrant activity of this pathway can help research-
ers devise therapeutic strategies to decelerate tumor 
progression [108]. The JAK-STAT signaling pathway has 
emerged as a potential therapeutic target in gastrointesti-
nal tumor treatment [109–111]. One intriguing aspect is 
the involvement of JAK-STAT signaling in chemotherapy 
resistance in digestive tract tumors [112, 113]. Emerg-
ing evidence underscores the pivotal role of aberrant 
JAK-STAT pathway activation in conferring resistance 
to commonly used chemotherapy agents in the clinical 
management of digestive tract tumors [114–117]. This 
aberrant activation has been linked to the upregulation 
of anti-apoptotic proteins in tumor cells, thereby impart-
ing resistance to chemotherapy-induced apoptosis in 
digestive tract tumors [118, 119]. Additionally, within the 
realm of treatment resistance, cancer stem cells (CSCs) 
have garnered significant attention due to their involve-
ment in tumorigenesis, metastasis, and therapy resistance 
[120–122]. Studies have elucidated that JAK-STAT sign-
aling fosters the stemness properties of CSCs in digestive 
tract tumors, ultimately contributing to therapy resist-
ance and tumor recurrence [45, 123, 124]. The compelling 
body of research pointing to the involvement of JAK-
STAT signaling in chemotherapy resistance underscores 
the potential of targeting this pathway as a promising 
strategy for surmounting treatment obstacles in diges-
tive tract tumors. A comprehensive understanding of the 
intricate interplay between JAK-STAT signaling, tumor 
cell apoptosis, and the stemness properties of CSCs will 
be instrumental in shaping effective therapeutic interven-
tions to combat chemotherapy resistance and improve 
patient outcomes in the clinical management of diges-
tive tract tumors. Currently, several JAK-STAT inhibitors 
are available for clinical use in diverse diseases, such as 
rheumatoid arthritis, myeloproliferative neoplasms, and 
inflammatory bowel disease [9, 19, 23]. The efficacy of 
some inhibitors, particularly of digestive tract tumors, is 
currently being optimized, and combination therapies are 
being explored to achieve better clinical outcomes [13, 
18, 125, 126]. The heterogeneity of different malignant 
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digestive tract tumors and individual variability warrant 
further in-depth research to determine the efficacy and 
safety of a particular treatment strategy [127]. Here, we 
have summarized the carcinogenic mechanisms of dys-
regulated JAK-STAT signaling in digestive tract tumors, 
including esophageal, gastric, colorectal, liver, and pan-
creatic cancer (Fig.  2). We have also presented the effi-
cacy and mechanism of some JAK-STAT inhibitors used 
for managing digestive tract tumors.

Liver cancer
Numerous studies have established that the ubiquitous 
activation and mutations to the JAK-STAT pathway are 
essential determinants of tumor development and drug 
sensitivity in liver cancer (Fig.  3) [128, 129]. Recently, 
tumor margins have received considerable attention. 
These regions are known to significantly influence the 
infiltration and invasion of tumor cells [130–133]. A 
detailed assessment of the characteristics and biological 
properties of tumor margins offers better insights into the 
development of anti-angiogenesis therapies, tumor inva-
siveness, and the risk of recurrence [134, 135]. A spatial 

transcriptomic analysis of liver cancer revealed that JAK-
STAT3 signaling, abnormally activated by C-X-C motif 
chemokine ligand 6, induced the damaged hepatocytes in 
tumor margins to highly express serum amyloids A1 and 
A2. This led to macrophage accumulation and M2 polari-
zation, facilitating local immunosuppression and liver 
cancer progression [136, 137].

Growth hormone (GH) crucially regulates human 
longitudinal growth, metabolism, and tissue repair 
by directly or indirectly acting on the liver [138, 139]. 
Tumor-derived GH has been comprehensively linked 
with the pathogenesis and progression of various can-
cers, such as liver, breast, and prostate cancers [140–
143]. Sustained exposure to high levels of GH can cause 
liver cancer to occur frequently and develop aggressively 
[144–148]. The loss of STAT5 in liver cells reverses the 
pathological changes associated with chronic inflamma-
tion caused by the overactivation of GH signaling; how-
ever, it leads to the earlier occurrence of liver cancer 
with a more aggressive phenotype. The loss of STAT5 is 
compensated by the activation of the STAT3 and c-JUN 
pathways to facilitate the malignant transformation of 

Fig. 2 The involvement of the JAK-STAT pathway in digestive tract tumors
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hepatocytes. This may be attributed to the synthetic 
actions of lipodystrophy, the deletion of hepatic protec-
tive mediators, the activation of the STAT3-c-JUN path-
ways, and DNA damage [149].

Leptin is a peptide hormone that plays an important 
role in broad biological processes, including energy 
metabolism, appetite regulation, and insulin sensitivity 
[150, 151]. Emerging studies have suggested that abnor-
malities in leptin levels are correlated with the carcino-
genic processes of diverse cancers [152–155]. Leptin 
was found to enhance the malignant properties, such 
as cell invasion and migration potential, of both HepG2 
and Huh7 cells by stimulating the JAK-STAT-phosph-
oinositide 3-kinase-AKT-extracellular signal-regulated 
kinase (ERK) axis. In the absence of the STAT3 inhibitor 
AG490, leptin-induced malignant behaviors were nota-
bly restrained, further confirming the powerful carcino-
genic effect of leptin in liver cancer [156]. Transforming 
growth factor β1 markedly induced the migration and 
invasion of liver cancer cells by promoting epithelial-to-
mesenchymal transition. It activated JAK-STAT3 signal-
ing and further upregulated Twist in HepG2 cells, whose 

enhanced migratory and invasive abilities were reversed 
after AG490 treatment [157].

Hepatitis B virus (HBV) was also found to contribute 
to cell migration in liver cancer. In  vitro experiments 
showed that HBV rescued the inhibition of cell migra-
tion by downregulating miR-340-5p and elevating STAT3 
levels [158]. Interferon-alpha (IFN-α) is a well-known 
treatment option for HBV-induced hepatitis [159–161]. 
Recent studies have reported that sodium butyrate, a 
differentiation inducer, arrested cell proliferation and 
strengthened the anti-tumor efficacy of IFN-α in liver 
cancer by specifically activating STAT1 and enhancing 
IFN-α-mediated STAT1 expression [162].

The glycine N-methyltransferase (GNMT) gene func-
tions as a tumor susceptibility gene for liver cancer and 
exhibits a unique tissue expression pattern [163–165]. 
GNMT, which is generally expressed in normal liver tis-
sue, is found to be undetectable in liver cancer and shows 
attenuated expression in the livers of patients at risk of 
developing hepatocellular carcinoma [166, 167]. Knock-
ing out GNMT in mice liver activated JAK-STAT path-
ways, which promoted the malignant transformation 

Fig. 3 The regulatory mechanisms of the JAK-STAT pathway in the progression of liver cancer
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of normal liver cells, accompanied by the downregula-
tion of SOCS1, SOCS2, SOCS3, and cytokine-inducible 
SH2-containing protein and the upregulation of JAK1/2, 
STAT1, and STAT3 [168].

Eyes absent homolog 2 (EYA2) is considered a tumor 
suppressor gene in liver cancer, usually exhibiting a pat-
tern of somatic mutations (p.Ala510Glu). Downregulated 
EYA2 was found to transcriptionally upregulate SOCS3 
with the help of dachshund homolog 1. SOCS3 further 
blocked the JAK2-STAT3 pathway to check the progres-
sion of liver cancer [169]. In addition, SH2 domain-con-
taining phosphatase 1, a tumor suppressor of liver cancer, 
was detected to be markedly downregulated in human 
liver cancer tissues and associated with poor overall 
survival. Knocking it down enhanced the activity of the 
JAK-STAT3 pathway to aggravate hepatocarcinogenesis 
and exacerbate the malignant phenotype of liver cancer 
[170]. Akt/β-catenin-driven tumors possess a subtype of 
side population/CD44 + tumorigenic cells with stem/pro-
genitor-like properties that develop resistance to chemo-
therapeutic drugs. Targeting the JAK-STAT3 pathway 
has shown great promise in patients with Akt/β-catenin-
driven liver cancer [171].

Gastric cancer
Numerous studies have reported the constitutive acti-
vation of STAT3 in gastric cancers as well as its tight 
association with the prognosis and clinicopathologi-
cal characteristics of gastric cancer patients [172–174]. 
STAT3 is known to exert its oncogenic effects and regu-
late various malignant cell behaviors in gastric cancer by 
interacting with diverse downstream targets [175, 176]. A 
previous study demonstrated that STAT3 directly upreg-
ulated Toll-like receptor 2, an inflammatory mediator, to 
inhibit epithelial proliferation and anti-apoptosis, thereby 
enhancing tumorigenesis instead of inflammation in 
gastric cancer [177]. The integrity of the gastric mucosa 
is protected by trefoil factor 1 (TFF1), a small cysteine-
rich acidic secreted protein that exerts both anti-inflam-
matory and pro-apoptotic effects [178–180]. Recently, a 
study showed that the loss of TFF1 is responsible for the 
activation of STAT3. TFF1 impeded the combination of 
interleukin-6 (IL-6) with IL-6 Rα and further disrupted 
the activation of STAT3 in the gastric cancer cell lines 
AGS and STKM2 [181].

Tumor-associated macrophages constitute a large 
proportion of the infiltrating inflammatory cells in the 
tumor microenvironment (TME) and display remark-
able versatility and plasticity [182–184]. Recently, 
macrophages were identified to secrete CXCL8 under 
hypoxic conditions, which hyperactivated the JAK-
STAT1 pathway in gastric cancer by interacting with 

C-X-C motif chemokine receptor 1/2 (CXCR1/2) on the 
cell membrane. Subsequently, IL-10 was overexpressed 
and M2-type macrophages became polarized, estab-
lishing a positive feedback loop between macrophages 
and gastric cancer progression [185]. Tumor-associated 
macrophages have also been shown to be tightly asso-
ciated with stimulator of interferon genes (STING), 
which is indispensable for regulating the innate and 
adaptive immune systems. Knocking-down this regu-
lator induced macrophages to differentiate into pro-
inflammatory subtypes via the IL-6R-JAK-STAT-IL-24 
pathway, thus achieving pro-apoptotic effects in gastric 
cancer [186].

Dendritic cells function as antigen-presenting cells to 
dynamically balance the immune response [187–189]. 
Recent flow cytometry results suggest that YTHDF1 
knockout recruited dendritic cells and consequently, 
enhanced the infiltration of T helper cells and cytotoxic 
T cells in the TME of gastric cancer, promoting the 
reactivation of adaptive antitumor immunity. YTHDF1 
knockout was found to upregulate type I IFN-γ and 
trigger the JAK-STAT1 pathway to maintain a sustain-
able systemic antitumor immunity [190].

Additionally, emerging studies have indicated that 
tumor-infiltrating neutrophils account for the most 
influential components in the gastric cancer TME and 
are correlated with poor patient survival [191–193]. A 
novel  FasL+PD‐L2+ neutrophil phenotype was discov-
ered in advanced gastric cancer, and these cells exerted 
immunosuppressive effects in tumor development. 
Mechanistically, T helper 17 cells secrete IL‐17 A, which 
subsequently triggers the ERK-nuclear factor κB (NF‐κB) 
pathway and contributes to the expression of FasL on 
neutrophils. Tumor‐derived granulocyte colony-stimu-
lating factor markedly activated the JAK-STAT3 pathway 
and further upregulated programmed cell death-ligand 2 
(PD-L2) in neutrophils [194]. Tumor-activated neutro-
phils also highly expressed PD-L1 and strongly retarded 
the immunity of normal T cells. Granulocyte macrophage 
colony-stimulating factor in the TME activated the JAK-
STAT3 pathway to upregulate PD-L1 in neutrophils, 
thus promoting tumor-related immunosuppression and 
progression [195]. In addition, NF-κB1 polymorphisms 
were found associated with pro-tumorigenic activity in 
diverse human cancers, especially digestive tract tumors 
[196–198]. The loss of NF-κB1 in the gastric epithelial 
and hematopoietic compartments resulted in abnormal 
gastric inflammation and invasive tumor progression 
[199]. It also contributed to the overexpression of tumor 
necrosis factor and STAT1 to further increase the expres-
sion of inflammatory effectors and inhibitory immune 
checkpoint regulators, thereby exacerbating inflamma-
tion-associated tumor development [200, 201].
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Colorectal cancer
Colorectal cancer is a multifarious disease that involves 
the dysregulation of multiple signaling pathways, includ-
ing the JAK-STAT pathway, which regulates the tumor 
growth, proliferation, migration, and self-renewal char-
acteristics [202–204]. Notably, a conspicuous local 
inflammatory reaction is correlated with improved sur-
vival of colorectal cancer patients, whereas an elevated 
systemic inflammatory response is correlated with worse 
clinical outcomes [205–208]. STAT3 levels were found 
to be especially elevated in stage I-III colorectal cancer 
patients undergoing surgery, leading to abnormal local 
and systemic inflammatory responses and poorer prog-
noses [209]. Numerous studies have shown that the con-
stitutive activation of STAT3 in colorectal cancer drives 
cell proliferation and tumor growth, thus providing novel 
insights into treating this disease [210].

Using a transgenic mouse model (∆133p53 isoform) 
prone to tumors, researchers showed that IL-6 drove the 
oncogenic activity of the ∆133p53 isoform by upregulat-
ing the JAK-STAT3 pathway. Moreover, overexpression of 
∆133TP53 mRNA in human colorectal cancers signified 
a more aggressive tumor phenotype and poorer patient 
prognosis [211]. The protein tyrosine kinases BMX and 
HCK were shown to significantly activate the JAK-STAT3 
pathway, which promoted the hyperproliferative charac-
teristics of normal epithelial NCM460 cells and initiated 
adenoma formation in human intestinal organoids. These 
results contribute to our understanding of adenoma-car-
cinoma transformation during colorectal carcinogenesis 
[212].

The circular RNA circSPARC was found upregulated in 
colorectal cancer, where it served as a competing endog-
enous RNA to combine with miR-485-3p, thus elevating 
JAK levels, STAT3 phosphorylation, and STAT3 nuclear 
translocation. These changes ultimately accelerated 
tumor growth and metastasis of colorectal cancer [36]. In 
addition, the long non-coding RNA FEZF1-AS1 was dis-
covered to be overexpressed in colorectal cancer tissues 
and was associated with poor patient survival. Functional 
analysis revealed that FEZF1-AS1 upregulated pyru-
vate kinase 2 to promote aerobic glycolysis and further 
activate STAT3 signaling. These FEZF1-AS1-induced 
changes accelerated cell proliferation and metastasis in 
colorectal cancer [213].

Studies have also explored the regulatory relationship 
between STAT3 and microRNAs, which ultimately influ-
ences tumor oncogenesis [214–216]. Elevated miR-572 
expression and downregulation of modulator of apop-
tosis-1 were observed in colorectal cancer with high 
expression of STAT3. Mechanistically, STAT3 increased 
miR-572 levels to inhibit the expression of modulator of 
apoptosis-1, leading to enhanced cell growth, migration, 

and invasion in colorectal cancer [217]. In addition, 
PIAS3, a negative regulator of STAT signaling, was found 
to decrease the expression of miR-18a to restrain the 
activity of NF-κB and STAT3 in an azoxymethane-dex-
tran sulfate sodium-induced mouse model. The PIAS3-
mediated feedback loops exhibited the powerful ability 
to control cell proliferation in the progression of colitis-
associated colorectal cancer, thus offering promising 
therapeutic targets [218].

Pancreatic cancer
Aberrant stimulation of JAK-STAT signaling also contrib-
utes to the oncogenesis of pancreatic cancer [219, 220]. 
Patients with high STAT3 expression exhibited advanced 
tumor clinicopathological parameters and worse survival 
[219]. IL-6 activated STAT3 and increased its phospho-
rylation, thus upregulating matrix metalloproteinase 2 
and vascular endothelial growth factor in the pancreatic 
cancer line Capan-2. The STAT3-mediated enhanced 
invasion of Capan-2 cells was counteracted by AG490 
[221].

Stellate cells in the TME of pancreatic cancer also 
secrete IL-6 and drive the activation of the JAK2-STAT3 
pathway, which leads to the accumulation of myeloid-
derived suppressor cells and the maintenance of an 
immunosuppressive microenvironment [222]. TEA 
domain transcription factor 2 was found to upregu-
late CD109 in the basal-like subtype cells of pancreatic 
cancer, subsequently hyperactivating the JAK-STAT3 
pathway and leading to enhanced metastasis [223]. Pan-
creatitis was demonstrated to mediate acinar-to-ductal 
metaplasia and gradually evolve into pancreatic cancer 
[224].

Numerous studies have validated that the KRAS onco-
gene is commonly mutated in the early stages of pancre-
atic cancer [225, 226]. KRAS mutations were found to 
upregulate the transcriptional regulators yes-associated 
protein 1 and transcriptional coactivator with PDZ-bind-
ing motif to further activate the JAK-STAT3 pathway, 
thus reprogramming acinar cells and initiating tumo-
rigenesis [227]. Moreover, elevated IL-22 levels during 
pancreatic tumor development affected the plasticity of 
acinar cells and induced ductal formation, epithelial-to-
mesenchymal transition, and tumor metastasis, all of 
which were reversed by inhibiting the JAK-STAT3 path-
way [228].

IFN-α induced the survival response of human epi-
dermoid cancer cells by hyperactivating the RAS-RAF1-
MEK1-ERK1/2 pathway in an epidermal growth factor 
(EGF)-dependent manner [229, 230]. The activation 
of peroxisome proliferator-activated receptor γ also 
enhanced pancreatic cancer cell invasion and migra-
tion through diverse mechanisms involving crosstalk 
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with STAT3 [231–234]. Given these findings, research-
ers explored the synergistic effect of IFN-β and trogl-
itazone, an agonist of peroxisome proliferator-activated 
receptor γ, on the growth and autophagy of the pan-
creatic cancer cell line BxPC-3. IFN-β and troglita-
zone together exerted a stronger inhibitory influence 
on STAT3-dependent escape pathways involving the 

activation of STAT3, mitogen-activated protein kinase, 
and AKT [235].

Pancreatic cancer patients displayed increased levels 
of prolactin (PRL). PRL induced the phosphorylation 
of the JAK2-STA3-ERK-AKT pathway to facilitate the 
formation of pancospheres and enhance the migratory 
capacity of cells. These pro-cancer effects of PRL were 

Table 1 Expression and outcomes of the JAK–STAT pathway in digestive tract tumors

Cancer Expression in cancers Outcomes of the activated JAK-STAT pathway in 
cancers

Year Refs

Liver cancer upregulation of JAK1, JAK2, JAK3, and STAT3 enhanced immunosuppression, and tumor metastasis 2023  [136]

Liver cancer upregulation of JAK2, and STAT3 enhanced cell proliferation, clone formation, invasion, 
and migration

2021  [169]

Liver cancer upregulation of JAK1, JAK2, TYK2, STAT1, STAT3, 
and STAT5

enhanced cell anti-apoptosis 2006  [129]

Liver cancer upregulation of JAK1, JAK2, STAT1, and STAT3 enhanced cell proliferation 2008  [168]

Liver cancer upregulation of STAT3 enhanced cell migration, and invasion 2018  [157]

Liver cancer upregulation of STAT3 enhanced cell proliferation 2007  [156]

Liver cancer upregulation of STAT3 enhanced cell migration 2017  [158]

Liver cancer upregulation of STAT3 enhanced cell proliferation, migration, invasion, 
and tumorigenicity

2018  [170]

Liver cancer upregulation of STAT3 enhanced tumor formation, and drug resistance 2020  [171]

liver cancer downregulation of STAT1 enhanced cell growth arrest, and the responsiveness 
to IFN-α

2018  [162]

Liver cancer downregulation of STAT5 enhanced hepatoprotective functions 2012  [149]

Gastric cancer upregulation of JAK1, JAK2, and STAT1 enhanced cell proliferation and repression 2022  [190]

Gastric cancer upregulation of STAT3 enhanced cell proliferation and anti-apoptosis 2012  [177]

Gastric cancer upregulation of STAT3 enhanced dysplastic lesions and loss of mucosal integrity 2019  [181]

Gastric cancer upregulation of STAT3 enhanced the immunosuppression 
of FasL + PD-L2 + neutrophils, and tumor growth

2022  [194]

Gastric cancer upregulation of STAT3 enhanced the immunosuppression of PD-L1 + neutro-
phils, and tumor growth

2017  [195]

Gastric cancer upregulation of STAT1 enhanced inflammatory immune response 2020  [201]

Gastric cancer upregulation of STAT1 enhanced the polarization of M2-type macrophage 2022  [185]

Gastric cancer upregulation of STAT1, and STAT3 enhanced inflammation, and immune evasion 2018  [200]

Gastric cancer upregulation of STAT1, and STAT3 enhanced immunosuppression, and anti-apoptosis 2020  [186]

Colorectal cancer upregulation of JAK2, and STAT3 enhanced cell migration and proliferation 2021  [36]

Colorectal cancer upregulation of STAT3 enhanced cell proliferation, and adenoma formation 2022  [212]

Colorectal cancer upregulation of STAT3 enhanced cell invasion 2018  [211]

Colorectal cancer upregulation of STAT3 enhanced cell proliferation, and metastasis 2018  [213]

Colorectal cancer upregulation of STAT3 enhanced cell growth, migration, and invasion 2018  [217]

Colorectal cancer upregulation of STAT3 enhanced cell proliferation 2018  [218]

Pancreatic cancer upregulation of STAT3 enhanced chemotherapy resistance 2023  [223]

Pancreatic cancer upregulation of STAT3 enhanced acinar-to-ductal metaplasia 2016  [227]

Pancreatic cancer upregulation of STAT3 enhanced acinar to ductal metaplasia, stem cell features, 
and the epithelial-mesenchymal transition

2020  [228]

Pancreatic cancer upregulation of STAT3 enhanced tumor growth inhibition, and inhibited 
autophagic death

2012  [235]

Esophageal cancer upregulation of JAK1, JAK2, STAT1, and STAT3 enhanced cell migration 2004  [245]

Esophageal cancer upregulation of STAT3 enhanced tumor survival, and proliferation 2012  [244]

Esophageal cancer upregulation of STAT3 enhanced 5-FU resistance 2023  [247]

Esophageal cancer upregulation of STAT1 enhanced tumor growth, and invasion 2019  [246]
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counteracted by some antipsychotic drugs like penfluri-
dol in pancreatic cancer mouse models [236].

Esophageal cancer
STAT3 plays pivotal roles in esophageal cancer as well. 
Activated STAT3 acts as an oncogene in esophageal 
cancer by promoting cell viability, tumor angiogen-
esis, and metastasis [110, 237–239]. Polo-like kinase 1 
(PLK1) is preclinically considered a functional regulator 
in multiple critical cell events during tumor progression 
[240–242]. PLK1 was found overexpressed in esopha-
geal cancer and showed promising prognostic efficacy 
[243]. Constitutively activated STAT3 and positively 
regulated PLK1 collectively enhanced proliferation and 

apoptosis resistance in the esophageal cancer cell line 
KYSE510 [244].

Similarly, EGF receptor was also shown to augment 
cell migration in esophageal cancer. The EGF receptor-
mediated phosphorylation of STAT1 at Tyr701 led to the 
formation of the STAT1-STAT3 complex and its translo-
cation into the nucleus. JAK-STAT signaling also upreg-
ulated matrix metalloproteinase-1, thereby increasing 
keratinocyte migration in esophageal cancer [245].

Furthermore, elevated levels of ring finger protein 
168 were reported to contribute to malignant cell pro-
liferation and invasion in esophageal cancer. Ring finger 
protein 168 repressed STAT1 polyubiquitination and 
degradation to upregulate JAK-STAT1 signaling and 

Table 2 The roles and mechanisms of the JAK–STAT pathway in digestive tract tumors

Human Diseases Regulatory Mechanism of JAK-STAT pathway Roles of the activated JAK-STAT 
pathway in cancers

Refs

Liver cancer CXCL6, JAK-STAT3 pathway, and SAA tumor promoter  [136]

Liver cancer EYA2, DACH1, SOCS3, JAK2-STAT3 pathway tumor promoter  [169]

Liver cancer GH, and STAT5 tumor suppressor  [149]

Liver cancer GNMT, and JAK-STAT3 pathway tumor promoter  [168]

Liver cancer TGFβ1, JAK-STAT3 pathway, and Twist tumor promoter  [157]

Liver cancer leptin, JAK-STAT3 pathway, PI3K-AKT pathway, ERK signaling tumor promoter  [156]

Liver cancer Hepatitis B virus, miR-340-5p, and JAK-STAT3 pathway tumor promoter  [158]

Liver cancer sodium butyrate, JAK-STAT1 pathway, and IFN-α tumor suppressor  [162]

Liver cancer SHP-1, and JAK-STAT3 pathway tumor promoter  [170]

Liver cancer JAK-STAT3 pathway, AKT pathway, and β-catenin pathway tumor promoter  [171]

Gastric cancer JAK-STAT3 pathway, and TLR2 tumor promoter  [177]

Gastric cancer TFF1, and IL6-JAK-STAT3 pathway tumor promoter  [181]

Gastric cancer G-CSF, JAK‐STAT3 pathway, and PD‐L2 tumor promoter  [194]

Gastric cancer GM-CSF, JAK-STAT3 pathway, and PD-L1 tumor promoter  [195]

Gastric cancer NF-κB1, JAK-STAT1 pathway, and PD-L1 tumor promoter  [200]

Gastric cancer NF-κB1, JAK-STAT1 pathway, TNF, and PD-L1 tumor promoter  [201]

Gastric cancer CXCL8, CXCR1/2, JAK-STAT1 pathway, and IL-10 tumor promoter  [185]

Gastric cancer YTHDF1, IFNGR1, and JAK1/2-STAT1 pathway tumor promoter  [190]

Gastric cancer STING, IL-6R-JAK-STAT1 pathway, and IL-24 tumor promoter  [186]

Colorectal cancer BMX, HCK, and the JAK-STAT3 pathway tumor promoter  [212]

Colorectal cancer circSPARC, miR-485-3p, and JAK2-STAT3 pathway tumor promoter  [36]

Colorectal cancer IL-6-JAK-STAT3 pathway tumor promoter  [211]

Colorectal cancer lncRNA FEZF1-AS1, PKM2, and JAK-TAT3 pathway tumor promoter  [213]

Colorectal cancer JAK-STAT3 pathway, miR-572, MOAP-1 tumor promoter  [217]

Colorectal cancer NF-κB, JAK-STAT3 pathway, miR-18a, and PIAS3 tumor promoter  [218]

Pancreatic cancer TEAD2, CD109, and JAK-STAT3 pathway tumor promoter  [223]

Pancreatic cancer KRAS, JAK-STAT3 pathway, YAP1, and TAZ tumor promoter  [227]

Pancreatic cancer IL-22, JAK-STAT3 pathway, and TWIST tumor promoter  [228]

Pancreatic cancer IFN-β, PPAR-γ, and JAK-STAT3 pathway tumor promoter  [235]

Esophageal cancer JAK-STAT3 pathway, and PLK1 tumor promoter  [244]

Esophageal cancer RNF168, and JAK-STAT1 pathway tumor promoter  [246]

Esophageal cancer SNHG6, JAK-STAT3 pathway, and EZH2 tumor promoter  [247]

Esophageal cancer EGFR, JAK1/2-STAT1/3 pathway, and MMP-1 tumor promoter  [245]
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the downstream functional genes, contributing to the 
growth and invasion of esophageal cancer [246]. Small 
nucleolar RNA host gene 6 was discovered to be mark-
edly upregulated in KYSE150 and KYSE450 cells, and 
was positively associated with colony formation, migra-
tion, tumor malignancy, and 5-fluorouracil resistance in 
esophageal cancer. It increased the levels of enhancer of 
zeste homolog 2 to promote STAT3 phosphorylation and 
H3K27me3 expression, thereby enhancing 5-fluorouracil 
resistance [247].

Additionally, JAK-STAT signaling pathway plays a cru-
cial role not only through its direct influence on tumor 
cell survival, proliferation, and therapy resistance, but 
also through the crosstalk with other signaling pathways 
[248–250]. The interaction between JAK-STAT signal-
ing and other pathways is essential for the regulation of 
tumor development and progression in digestive tract 
tumors [251–254]. One vital cross-interaction in diges-
tive tract tumors involves the interplay between JAK-
STAT and PI3K-AKT signaling pathways [255, 256]. The 
crosstalk between JAK-STAT and PI3K-AKT pathways 
creates a positive feedback loop that amplifies tumor-
promoting signals and contributes to tumor growth 
and therapeutic resistance in digestive tract tumors 
[257, 258]. In addition to the PI3K-AKT pathway, JAK-
STAT signaling also interacts with other major signaling 
pathways, such as the MAPK-ERK pathway, contribut-
ing to the aggressive phenotype and therapy resistance 
observed in digestive tract tumors [259]. The cross-talk 
between JAK-STAT signaling and other pathways high-
lights the importance of a comprehensive understanding 
of the intricate network of molecular interactions in can-
cer progression and therapy response of digestive tract 
tumors. Targeting multiple signaling pathways simulta-
neously may be a promising approach to overcome ther-
apy resistance and improve patient outcomes in digestive 
tract tumors.

Conclusion and prospects
In conclusion, the JAK-STAT pathway has emerged as 
a crucial factor in the pathogenesis of digestive tract 
tumors. Its aberrant activation, triggered by pro-inflam-
matory cytokines, disrupts various biological processes 
such as cell growth, apoptosis, and migration. The cur-
rent understanding of the classic activation and regula-
tion of the JAK-STAT pathway has provided a foundation 
for identifying potential therapeutic targets for diges-
tive tract tumors. However, recent research has shown 
that the use of JAK inhibitors raises safety concerns due 
to their lack of specificity, as they inhibit multiple signal 
transduction pathways. Therefore, careful monitoring 

and management of infection complications is imperative 
when administering JAK inhibitors to treat digestive tract 
tumors.

To fully understand the mechanisms underlying the 
JAK-STAT pathway in digestive tract tumors, future 
research should focus on gaining a better understanding 
of the interplay between this pathway and other signaling 
pathways. Additionally, it is important to identify specific 
molecular targets within the JAK-STAT pathway that can 
be selectively modulated to achieve maximal therapeutic 
benefit. Recent preclinical and clinical trials have shown 
promising results with drugs targeting this pathway; 
however, striking a balance between efficacy and safety 
remains a challenge.

In summary, a better understanding of the JAK-STAT 
pathway in digestive tract tumors will pave the way for 
the development of targeted therapies that are both safe 
and effective. Further research is needed to fully eluci-
date the mechanisms involved in the dysregulation of this 
pathway and to optimize therapeutic strategies for the 
treatment of digestive tract tumors Tables 1 and 2.
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