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Abstract 

Background  Immune escape, a process by which tumor cells evade immune surveillance, remains a challenge 
for cancer therapy. Tumor cells produce extracellular vesicles (EVs) that participate in immune escape by transferring 
bioactive molecules between cells.

The main body of the abstract  EVs refer to heterogeneous vesicles that participate in intercellular communication. 
EVs from tumor cells usually carry tumor antigens and have been considered a source of tumor antigens to induce 
anti-tumor immunity. However, evidence also suggests that these EVs can accelerate immune escape by carrying heat 
shock proteins (HSPs), programmed death-ligand 1 (PD-L1), etc. to immune cells, suppressing function and exhaust-
ing the immune cells pool. EVs are progressively being evaluated for therapeutic implementation in cancer therapies. 
EVs-based immunotherapies involve inhibiting EVs generation, using natural EVs, and harnessing engineering EVs. All 
approaches are associated with advantages and disadvantages. The EVs heterogeneity and diverse physicochemical 
properties are the main challenges to their clinical applications.

Short conclusion  Although EVs are criminal; they can be useful for overcoming immune escape. This review 
discusses the latest knowledge on EVs population and sheds light on the function of tumor-derived EVs in immune 
escape. It also describes EVs-based immunotherapies with a focus on engineered EVs, followed by challenges 
that hinder the clinical translation of EVs that are essential to be addressed in future investigations.
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Background
The term “Immune escape” or antigen escape refers 
to a process by which tumor cells evade immune cells’ 
recognition and responses, therefore getting survival 
and developing into metastatic tumor [1]. The process 
of Immune escape involves the expression of ligands 
on tumors cells and the release of immunosuppression 

factors that block function and exhaust the immune cells 
pool [1]. The immunosuppressive microenvironment of a 
tumor has an imperative role in cancer development and 
even immunotherapy responses [2]. Since immune escape 
is a main factor for tumor growth, such immune check-
point-associated proteins as programmed death-ligand 
1 (PD-L1) and programmed death-1 (PD-1); and other 
molecules have become the topic of extreme examination 
[3, 4]. Cancer is a large group of diseases that influences 
human society and the healthcare system [5, 6]. Recent 
progress in tumor cell biology has revealed the key func-
tions of extracellular vesicles (EVs) in regulating immune 
responses and the immune escape of cancer cells [7]. 
EVs are double-phospholipid vesicles released by various 
tumor cells participate in cell communication [8, 9]. They 
contain multiple ranges of biomolecules on the surface 
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of their lumen, carrying between cells, and exchanging 
information [8, 9]. The term EVs is wide-ranging and can 
encompass numerous vesicles like exosomes, ectosomes, 
and other different types of vesicles that are released by 
various cells [10]. In this regard, the International Society 
for Extracellular Vesicles (ISEV) was established in 2011, 
which sponsored the improvement and application of 
different EVs. In 2014 and then in 2018, the paper ‘Mini-
mal Information for Studies of EVs’ (MISEV) guidelines 
was released for the standardization of this field regard-
ing terms, isolation methods, characterization methods, 
and applications in preclinical and clinical trials [11, 12]. 
Tumor-derived EVs function as a double-edged sword 
since they can promote cancer growth and metastasis 
by lessening cytotoxicity, causing remodeling, and con-
serving immunosuppressive tumor microenvironment 
as well as can make up anti-cancer immune responses 
by delivering tumor antigens and various heat shock 
proteins (HSPs) like HSP90 and HSP70 [13, 14]. PD-L1 
has been reported on tumor derived EVs, which may act 
like those of cancer cells, inducing immune escape [15]. 

Although the immunosuppressive impact of EVs-PD-L1 
is confirmed; however, EVs-PD-L1 have positive effects. 
For example, the inhibitory role of PD-L1 could support 
wound healing and tissue repair [16]. Because acute pro-
inflammatory conditions after trauma may worsen tis-
sue harm [17]. There are still several problems that need 
to be considered in cancer therapy, like the escapes of 
immune surveillance and immune cell suppression [18, 
19]. In recent years, to overcome immune escape, EVs-
based therapies have emerged, for example inhibiting EVs 
generation by tumor cells or using immune cells-derived 
natural EVs approaches [20, 21]. Along with the advance 
and success of EVs-based research, engineered EVs are 
appealing to growing attention, particularly in tumor cell 
escape, because of their loading and temporal targeting 
aptitude [22] (Table 1). Each of these methods is associ-
ated with advantages and disadvantages (Table  2). For 
clinical translation, many steps are needed because EVs 
are heterogeneous in size, function and physicochemical 
properties [10]. Besides, the process engineering requires 
optimal methods regarding the type of EVs and loading 

Table 1  Facts of extracellular vesicles and their role in immune escape mechanism and treatment

Facts
• Extracellular vesicles (EVs) are heterogeneous in route of generation, size, function, and cargo

• EVs participate in several physiological and pathological conditions

• tumor-derived extracellular vesicle (T-EVs) can contribute to immune escape directly or indirectly

• T-EVs contain PD-L1 and other biomolecules that suppress the function of immune cells and induce cell death in immune cells, inducing immune 
escape

• EVs can be harnessed to overcome immune escape, for example, EVs-based therapies, prevention of EVs biogenesis, and using engineered EVs

• For EVs-based therapies, T-EVs and EVs of DCs can be used as cancer vaccines, which stimulate immune responses

• For the prevention of EVs biogenesis, different agents may inhibit the biogenesis and uptake of EVs from cancerous cells

• For using engineered EVs, EVs from different sources can be modified or loaded with therapeutic agents inducing immune responses and proliferation

• Engineered EVs show promising results because they efficiently accumulate in tumor sites and profoundly stimulate immune cells

Table 2  Challenge in extracellular vesicles-based studies

Gaps
• Extracellular vesicles (EVs) are heterogeneous, therefore nomenclature, classification, isolation, and characterization of them remain a challenge

• Although tumor-derived extracellular vesicles (T-EVs) induce immune escape, however, there is evidence that T-EVs promote immune responses 
because they carry tumor antigens. This may arise from the type of EVs or tumor cells

• For EVs-based therapies, firstly, EVs must be produced in a large-scale manner and purified for downstream experiments accurately

• Although EVs from immune cells or tumor cells can induce immune responses, however, the risk of tumorigenesis remains a challenge. In addition, 
although the cancer vaccine was investigated in patients, the efficacy of these EVs is not satisfactory and dependent on cancer grade

• For the prevention of EVs biogenesis, different agents may inhibit the formation and secretion of certain EVs, however, these agents may cause side 
effects on the body and block healthy EVs. Thus, selecting a certain agent that inhibits EVs generation even uptake only from tumor cells remains 
a gold standard for this purpose. In addition, tumor cells release different types of EVs, thereby an agent may inhibit a type of EVs such as exosomes 
or microvesicles

• For using engineered EVs, many loading and engineering methods have been used by several laboratories; thereby there is a need for an optimized 
method

• The engineering methods may harm EVs structure, bio-distribution, and even function. Thus, further studies need to address these limitations

• Which EVs are suitable for drug delivery and engineering- is a main question in this field. In addition, the side effects and unwanted results may be 
associated with engineered EVs
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methods as well as the type of cargo (see reviews [23–
25]). This review aims to weigh the potential of EVs in 
inducing immune escape and highlights the significance 
of EVs experiments for beneficial applications in immune 
escape. First, we define EVs biology and heterogene-
ity. Next, the function of tumor derived EVs that cause 
immune escape will be discussed. Further sections will 
describe possible application of EVs for immune escape, 
natural EVs and engineered EVs, highlighting challenges 
for promising clinical application.

Extracellular vesicles
Many eukaryotic cells communicate with other cells 
through the interchange of EVs [26]. EVs, a population 
of heterogeneous vesicles, contain phospholipid bilayer-
membrane encircled different types of biomolecules that 
can be captured by recipient cells located either adjacent 
or distant [26]. However, it remains uncertain whether 
cells release EVs principally to evacuate cellular waste or 
unnecessary products, for intercellular communication, 
for cargo delivery, for spreading disease, or a combina-
tion of all [27–29]. Because EVs pathway shows crosstalk 
with other cellular signaling pathways [30]. However, 
EVs are broadly considered the most important factor in 
regulating physiological and pathological milieu. A grow-
ing body of literature has shown that EVs can affect target 
cells function in several ways including, internalization 
pathways, cargo delivery into the cytoplasm by direct 
fusion, and ligand-receptor interactions [31, 32]. The 
term EVs is general and comprise heterogeneous sub-
populations of cell-derived particles with various size and 
morphologies [10]. The most famous subpopulations of 
EVs include exosomes and ectosomes [33, 34]. Exosomes 
can be divided into subpopulations; however, their range 
size is 30 to 150 nm, originating from endocytosis path-
ways within multivesicular bodies (MVBs) where several 
complexes and molecules are participating in forming 
intraluminal vesicles (ILVs) and loading biological cargo 
into ILVs. When ILVs within MVBs are released out of 
cell so-called exosomes, which process needs fusion of 
MVBs with the plasma membrane [35]. Not all ILVs cul-
minate in to be exosomes, although ILVs are originators 
of exosomes. Alternatively, MVBs may fuse with lys-
osomes for degradation ILVs, even with autoghosomes 
[36]. A hybrid of exosomes and autophagosome form 
amphisomes, which also can release exosomes [37]. A 
growing body of evidence suggests that different MVB 
populations are present within a cell, proposing ILV 
subpopulations for degradation or elimination, then the 
regulation of this balance is not clear [8, 38, 39]. Interest-
ingly, when degradation by lysosomes was inhibited, exo-
some production was increased, representing that these 
MVBs also have abilities to release ILVs as exosomes [40, 

41]. Various ILV generation- and loading mechanisms 
have been suggested, which result in subpopulations of 
MVBs/exosomes. Besides, it was suggested that a single 
MVBs may contain different ILVs subpopulations [42]. 
It seems that exosome cargo loading is a regulated pro-
cess and various mechanisms participate. Such markers 
as LAMP1/2, syntenin, various proteins from the ESCRT 
complex, CD81, CD9, and CD63 are often reported as 
specific markers for exosomes [43, 44]. Another EVs fam-
ily is ectosomes, for example, microvesicles; which origi-
nate by blebbing of the plasma membrane, showing the 
composition of the plasma membrane [45]. Various ecto-
some subpopulations, produced via diverse biogenesis 
pathways, have been defined during several physiological 
cell stages or by many cell types [34] (Fig. 1). Ectosomes 
contain cell membrane markers and are very heterogene-
ous in size. Some typical markers such as SLC3A2, ARF6, 
annexin A1/2, and basigin, as well as CD9 and CD81, 
have been suggested to be the most specific [43]. Overall, 
because of the heterogeneous nature of EVs, they play a 
multipurpose function in physiological and pathological 
conditions [46–48]. EVs contribute to regulating different 
types of diseases such as cancers. EVs from Immune cells 
are also heterogeneous in route of biogenesis, size and 
cargo and are present in the blood, saliva, cerebrospinal 
fluid, and urine [49, 50], participating in different dimen-
sions of tumors.

Role of EVs in immune escape
EVs carrying PD‑L1
The roles of different EVs from various cancer cells 
in inducing immune responses have been reported. 
Tumour cells escape immune identification by increas-
ing the expression levels of PD-L1 that binds to PD-1 
receptors on T cells to provoke the immune checkpoint 
response [51]. This action induces tumor growth. The 
PD-1/PD-L1 interaction are far more complex. PD-1 
have two ligands PD-L1 and PD-L2. PD-L1 is mainly 
expressed on different cells such as tumor-associated 
dendritic cells (DCs) [52], macrophages [52], neutro-
phils [53], monocyte-derived myeloid DCs [54], mast 
cells [55], fibroblasts [56], and other non-cancerous cells 
[57]. PD-L2 is expressed in DCs [58] and macrophages 
[59]. Both PD-L1 and PD-L2 are present in several tumor 
cells. Recent studies have indicated that EVs-PD-L1 can 
be more effective than tumor cell-associated PD-L1 in 
expediting escape from antitumor immunity since EVs 
can be prevalent in body fluids and may bind to their 
recipient cells more simply than tumor cells [60]. In glio-
blastoma cancer, interferon-γ (IFN-γ) stimulated PD-L1 
expression on EVs, which inhibited T cell activation. In 
addition, circulating EVs of glioblastoma patients contain 
PD-L1 DNA that is correlated with tumor size [61]. EVs 
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from metastatic melanomas have been shown to express 
PD-L1 on their surface. Several cell culture and animal 
models showed that exposure to IFN-γ up-regulated the 
amount of PD-L1 EVs, which inhibited the function of 
CD8 + T cells and promoted tumor growth. In metastatic 
melanoma patients, the amount of circulating EVs-PD-L1 
is positively associated with that of IFN-γ, and differs fol-
lowing anti-PD-1 therapy [62], Inhibiting the cystine/glu-
tamate transporter cystine-glutamate exchange resulted 
in higher PD-L1 levels in melanoma and increased 
EVs-PD-L1 secretion, which in turn induced M2 mac-
rophage polarization and prevented the efficiency of 
anti-PD-1/PD-L1 therapy in melanoma [63]. The pres-
ence of PD-L1 in EVs of human and mouse breast cancer 
has been described in  vitro and in  vivo [64]. These EVs 
repressed the T-cell activation proteins for example CD3/
CD28-driven ERK phosphorylation and NF-κB signaling, 

along with IL-2 secretion. The authors concluded that 
these EVs could bind to PD-1 and destroy T-cell func-
tion, thus inhibiting tumor growth in animal models [64]. 
The result reported by Chatterjee and co-workers found 
that TGF-β up-regulated PD-L1 on EVs from breast can-
cer cells that participated in CD8 T-cell dysfunction by 
weakening phosphorylation of T-cell receptor (TCR) 
signaling [65]. Furthermore, in the xenograft mouse 
model of oral squamous cell carcinoma, mitochondrial 
Lon-induced EVs containing PD-L1 (EVs-PD-L1) could 
induce the production of IFN and IL-6 from M2 mac-
rophages, which promoted T-cell dysfunction and tumor 
progression [66]. Chemotherapies have been shown to 
induce the production of EVs-PD-L1, which contrib-
utes to immunosuppression responses in gastric cancer 
via the miR-940/Cbl-b/STAT5A axis [67]. In addition, 
radiotherapy can increase EVs-PDL-1 which promotes 

Fig. 1  Heterogeneity in extracellular vesicles (EVs). Cells produce various types of EVs, which are different in route of biogenesis, shape, size, 
and cargo. In general, EVs may divided into two major groups including ectosomes and exosomes; both contain subgroups. Exosomes are 
the most common EVs that considerably were investigated in cell culture and animal models. Multivesicular bodies (MVBs) within cells are 
a place where exosomes are generated and loaded with biological cargo. Rather than a secretory pathway, MVBs may fuse with lysosomes 
or autophagasomes vesicles to produce amphisomes. Exosomes have subpopulations themselves based on size and cargo. Other EVs such 
as microvesicles, apoptotic bodies and other small EVs are generated by cells. Similar to exosomes, microvesicles have been studied for their pivotal 
roles in immune responses and drug delivery systems
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immune escape and increases tumor growth [68]. In 
prostate cancer, Poggio et  al. declared that the genetic 
block of EVs-PD-L1 prolonged survival by endorsing 
anti-tumor immunity. These EVs suppressed T cell activ-
ity in the draining lymph node. They reported that the 
systemically administration of EVs-PD-L1 rescued the 
progress of tumors unable to produce their own [69]. 
Stem cell-derived EVs may participate in immune scape. 
For example, EVs from mesenchymal stem cells (MSCs) 
of cancerous mice carry PD-L1 that prevented CD8 + T 
cells proliferation and activation in experimental models, 
a role tumor immunosuppression [70] (Fig. 2).

The distinct roles of other tumor derived EVs in 
immune escape have been prepared in Table 3.

Other molecules
EVs from metastatic oral cancer loaded with HSP90 
could induce tumor-associated macrophage (TAM) 
polarization to an M2 phenotype that promotes tumor 
development [81]. Head and neck squamous cell carci-
noma-derived EVs carry CD73, which supports cancer 
progression and causes immune evasion [82]. These EVs 
promoted the activity of NF-κB pathway in TAMs, thus 

preventing immune responses by promoting cytokines 
production like TNF-α, IL-10, IL-6, and TGF-β1 [82]. EVs 
derived from melanoma cells can reach draining lymph 
nodes and macrophages. These EVs contain tumor anti-
gens that lead to apoptosis in antigen-specific CD8 + T 
cells and tumor immune inhibition [83]. Melanoma cell-
derived EVs stimulate the immunosuppressive functions 
of MDSCs in regulating T cells. For instance, Andreola 
et al. found that FasL-bearing EVs could stimulate MDSC 
differentiation through prostaglandin E2 and TGF-β 
signaling, which lessened MDSC-mediated immunosup-
pression [84]. They showed that these EVs up-regulated 
the expression of Cox2, arginase-1, and VEGF in the 
MDSCs. EVs from two mouse tumor cell lines (the mela-
noma line MO5 and the thymoma line EG7) expressing 
the OVA antigen. Participated in prompting tumor anti-
gen-specific immunosuppression, probably by inhibiting 
DC maturation and modulating the APCs function [85]. 
EVs from the cerebrospinal fluid of glioblastoma patients 
carry LGALS9, which could inhibit DCs antigen presen-
tation and T-cell immunity [86]. For hepatocellular carci-
noma (HCC), Ye et al. reported that HMGB1 from tumor 
cells promotes immune avoidance of HCC by stimulating 

Fig. 2  Role of tumor derived EVs in driving immune escape process. Different molecules carried by EVs from tumor cells participate in inducing 
immune escape
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TIM-1 + regulatory B cell growth [87]. Recently, it was 
demonstrated that circGSE1 cargo of EVs of HCC cells 
increased the development of HCC by prompting Tregs 
development via inducing the miR-324-5p/TGFBR1/
Smad3 signaling. Authors concluded that these EVs can 
serve as a hopeful biomarker for HCC immunotherapy 
[88]. TGF-β1 cargo of EVs from pancreatic ductal adeno-
carcinoma contain molecules that hurt NK cell function 
by lessening expression of CD107a, NKG2D, INF-γ, and 
TNF-α, also revealed to damage glucose uptake capacity 
by NK cells [89]. We presented other studies in Table 4.

EVs‑based therapies for overcome immune escape: further 
directions
As mentioned above, EVs released from tumor cells 
participate in immune escape and immunosuppres-
sion, therefore, inhibiting EVs biogenesis, secretion, 
and internalization may be a possible mechanism for 
preventing immune evade (for further study see litera-
ture [104]) (Fig.  3). Different agents or pharmacological 
inhibitors may block EVs kinetics [105, 106]. For exam-
ple, in our recent study, we found that Gallic acid inhib-
ited exosomes biogenesis from two breast cancer cells. 
We concluded that Gallic acid may serve as an antitumor 
agent [107]. Reversely, in another study, we found that 
metformin, an ant-diabetic drug, increased exosomes 
secretion from glioblastoma cells, suggesting a resistance 

against therapy [108]. In a study, it was demonstrated 
that iron death inducer and GW4869 decreased the 
production of EVs from tumor cells and declined the 
immunosuppressive impact of EVs-PD-L1 that encour-
aged anti-cancer immune response of melanoma cells 
and induced CD + 8 T cells and immune memory [109]. 
Thus, the evidence from these studies suggests that 
inhibiting EVs may be a useful approach to overcome 
immune evade, however, some limitations may remain to 
be solved. For instance, many of these studies were con-
ducted in vitro comprising cell lines and a low number of 
animal studies. Therefore, the side effects and systematic 
toxicity may be associated with these agents. In addition, 
these agents must only block EVs from cancer cells not 
from stem or healthy cells. As well, the pharmaceutics 
of these agents should be determined because EVs bio-
genesis is cross-talked with other signaling pathways. An 
inhibition in EVs biogenesis may be compensated with 
other pathways, causing cancer resistance and bystander 
effects.

In the exploration for innovative therapeutics, EVs 
therapies may stand star for overcoming immune escape. 
The most famous method is using DCs-derived EVs like 
exosomes for immunotherapy. This method was inten-
sively reviewed in the literature [110, 111], where authors 
indicated that antigen-loaded exosomes can induce 
potent antitumor immunity. DCs-derived EVs can both 

Table 3  Role of EVs- PD-L1 in immune escape

Cancer type Function Mechanism Ref

Glioblastoma Promoted monocytes toward the immune suppres-
sive M2 phenotype and caused immune suppressive 
function

Up-regulated PD-L1 expression and activated STAT3 
pathway

[71]

Breast Induced an immunosuppressive microenvironment 
that encourages tumor development

PD-L1 inhibited CD8 + T cells function and polarized 
macrophages into M2-type

[72]

Gastric Caused T-cell dysfunction MHC-I stimulated impaired T cells function [73]

Prompt expression of PD-L1 on neutrophils to overturn 
T-Cell activity

HMGB1 promoted the expression of PD-L1 in neutro-
phils
Triggered STAT3 signaling

[74]

Hepatocellular Suppressed CD8 + T cells and promoted PD-L1 stabiliza-
tion

Up-regulated PD-L1 on macrophages by GOLM1 [75]

Head and neck Impaired the activity of effector T cells Suppressed CD69 expression [76]

Non-small cell lung Induced CD8 + T cells death and tumor development Suppressed production of IL-2 and IFN-γ by CD8 + T 
cells/ Reduced number of CD8 + T cells

[77]

Promoted tumor metastasis Activated NF-κB signaling and glycolysis dominated 
metabolic reprogramming pathway that induced 
the PD-L1 expression level in macrophages

[78]

Lung Improved tumor growth in vivo Inhibited cytokine production/ Promoted apoptosis 
in CD8 + T cells

[60]

Chronic lymphocytic leukemia Promoted cancer cells escape from antitumor immu-
nity

Induced the PD-L1 levels in macrophages/Increased 
miR-23a-3p in EVs/ Activated PTEN-AKT axis

[79]

Inhibited tumor immunity hY4 in EVs from CLL patients interact with TLR7 
on monocytes, thus promoting the expression 
of inflammatory factors and PD-L1 in monocytes

[80]
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directly and indirectly activate CD + 8 T cells, CD + 4 
T cells, NKs, and even B cells for anticancer immunity. 
Furthermore, DCs-EVs based cancer immunotherapy 
has been studied in clinical trials [112, 113]. The idea of 
engaging DC-EVs as an antitumor vaccine approach is 
using nature’s antigen delivery system for vaccination. 
Nevertheless, the low clinical efficiency of these vaccines 
in the stimulation of adaptive immune responses remains 
a challenge and needs further studies because it seems 
that the stage of disease and chemotherapy regime are 
involved in immunotherapy efficacy (Fig. 3).

Engineered EVs to overcome immune escape
The harnessing of EVs in cancer therapy as a drug deliv-
ery system is now being recognized. In this context, EVs 
are either modified or loaded with optional cargo to 
overcome tumor expansion and even immune escape. 
Besides reinforcement, the efficacy of anticancer thera-
pies, engineered EVs, as a novel drug delivery tool, 
might improve the unwanted effects and side effects of 
therapies including, radiotherapy and chemotherapy. 
EVs may genetically be modified or exogenously loaded 
with therapeutic drugs. However, a survey of literature 
shows a heterogeneity in both EVs source and engineer-
ing methods. However, each engineering technique has 

its benefits and difficulties and the ‘one-size-fits-all’ engi-
neering method has not been approved yet. For example, 
recently researchers genetically modified macrophages 
to overexpress hsa_circ_0004658, which was also carried 
by their exosomes. When these exosomes co-cultured 
with HCC cells profoundly inhibited cell growth via 
miR-499b-5p/JAM3 signaling [33]. Recently, Chen et  al. 
engineered an MDA-MB-231 cell line to express a high-
affinity mutant human PD-1 protein (havPD-1) and sup-
press endogenous β-2 microglobulin and PD-L1. These 
EVs decreased the growth of PD-L1 overexpressed tumor 
cells and prompted cell death, suggesting a potential for 
immunotherapy [114]. In pancreatic ductal adenocar-
cinoma, MSCs-derived EVs were used to carry siRNA 
and drugs to cancer cells. MSCs-derived EVs containing 
oxaliplatin (OXA) and galectin-9 siRNA could prompt 
cell death, and inverse the suppressive tumor immune 
microenvironment, for instance, preventing polarization 
of M2 macrophage and the enrolment of T cells, there-
fore enhancing immunotherapy effectiveness in  vitro 
and in  vivo [115]. In an HCC study, EVs were isolated 
from mouse H22 cells co-cultured with PIONs@E6 and 
then incubated with macrophages. Findings showed that 
these EVs promoted immunity against HCC via induc-
ing M1 macrophage polarization and ROS production. 

Table 4  Role of several cargoes of EVs in immune escape

ND Not determined

Cancer type EVs cargo Function Mechanism

Epstein-Barr virus-infected naso-
pharyngeal carcinoma cells

Galectin-9 Inhibited antitumoral T cell activity ND [90]

Human, Squamous cell carcinoma FasL Prompted CD8( +) T cell apoptosis Induced Bax and Bim expression [91]

Breast ND Changed macrophage polarization Activated gp130/STAT3 signaling pathway [92]

ND Promoted tumor progress and axillary LN 
metastasis

Prompted M2 polarization [93]

Murine-derived GL26 cells ND Decreased population of CD8 + T cells/ Inhib-
ited CD8 + T cell activity

Apoptosis pathway and inhibiting release 
of IFN-gamma and granzyme B

[94]

Pleural malignant mesothelioma TGFβ Prevented lymphocyte response to Interleu-
kin-2/
Repressed NK cell function

IL-2–mediated CD25 and Foxp3 expression [95]

HeLa and A375 cells MICA*008 Reduced NK cytotoxicity/ Induced immune 
escape

Reduced surface NKG2D receptors [96]

Ovarian ND Induced T cells transform into Treg Up-regulated the expression of phospho-
SMAD2/3 and phospho-STAT3 in Treg

[97]

Hepatocellular carcinoma miR146a Induced M2-polarization/ suppressed T cells 
function

Activated SALL4/miR-146a-5p regulatory axis [98]

14–3-3ζ Impaired anti-tumor function of tumor-infil-
trating T cells

Exhausted phenotypes as measured by inhibi-
tory receptors such as PD-1, TIM-3, LAG3, 
and CTLA-4

[99]

Prostate FasL Promoted CD8 + T cell death Activated FasL-Fas signaling [100]

ND Overturned activity of CD8 + T and NK Cells Suppressed NKG2D expression [101]

Gastric miR-107 Promoted growth of MDSCs Induced DICER1 and PTEN genes [102]

Colorectal FasL/TRAIL Caused apoptosis in T cells Delivering FasL and TRAIL, thereby induced 
apoptosis signaling

[103]
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Furthermore, PIONs-contained EVs could suppress 
tumor development in HCC animal model [116]. In pan-
creatic cancer, Panc-1 cells were loaded with miR-125b2 
and miRNA-155 and then EVs were isolated. EVs con-
tain both miRNAs, which could alter the macrophage 
polarization from M2 to M1 phenotype, favorable for 
cancer therapy [117]. Table  5 presents the immunologi-
cal-engineered EVs for cancers. These findings suggest 
that harnessing engineered EVs showed a hopeful out-
come in inducing immune responses and overcoming the 

immune escape of tumor cells. For clinical translation of 
these results, further studies are essential.

Conclusion
Immune escape is a hallmark for tumor development 
and growth, and may also elucidate the failure of immu-
notherapy. Tumor cells recruit different mechanism to 
escape from immune cells, for example, they express 
PD-L1, which bind to PD-1 on immune cells, thus pre-
venting the T cells function. PD-L1 and other molecules 

Fig. 3  Extracellular vesicles (EVs)-based therapies for overcoming immune escape. To overcome immune escape several EVs-based therapies such 
as; EVs-therapy from immune cells, inhibiting EVs biogenesis and uptake, and engineering/modifying EVs from different cells (cancer cells, immune 
cells, and stem cells) have been reported. MVB: multivesicular body; MVs: microvesicles



Page 9 of 15Ahmadi et al. Cell Communication and Signaling            (2024) 22:9 	

Ta
bl

e 
5 

En
gi

ne
er

ed
 E

Vs
 fo

r i
m

m
un

ol
og

ic
al

 re
sp

on
se

s 
in

 c
an

ce
r

EV
s 

so
ur

ce
Ta

rg
et

 c
an

ce
r

Ca
rg

o
En

gi
ne

er
in

g/
lo

ad
in

g 
m

et
ho

d
Fu

nc
tio

n
Re

f

Re
N

 (H
um

an
 n

eu
ra

l p
ro

ge
ni

to
r c

el
l 

lin
e)

G
lio

bl
as

to
m

a
RG

D
yK

 p
ep

tid
e 

(R
G

D
/ 

si
RN

A
 

ag
ai

ns
t P

D
-L

1
C

he
m

ic
al

ly
/ 

G
en

et
ic

al
ly

In
du

ce
d 

C
D

8 
+

 T 
ce

lls
 a

ct
iv

ity
, S

up
-

pr
es

se
d 

tu
m

or
 g

ro
w

th
 a

nd
 in

cr
ea

se
d 

an
im

al
 s

ur
vi

va
l

[1
18

]

M
1 

m
ac

ro
ph

ag
e

LL
C

 c
el

ls
 (M

ou
se

 lu
ng

 c
an

ce
r)

Ca
ta

la
se

s/
 th

e 
an

ti-
PD

-L
1 

na
no

bo
dy

/
C

he
m

ic
al

ly
/ 

In
cu

ba
tio

n
Po

la
riz

d 
M

2 
m

ac
ro

ph
ag

es
 in

to
 M

1 
ty

pe
, D

ec
ea

se
d 

th
e 

im
m

un
os

up
pr

es
-

si
on

 o
f T

 c
el

ls
 in

 v
itr

o 
an

d 
in

 v
iv

o

[1
19

]

M
ac

ro
ph

ag
e/

 m
ic

e 
br

ea
st

 c
an

ce
r

N
F-

κB
 s

iR
N

A
 /

m
iR

-5
11

–3
p/

 IL
4R

Pe
p-

1
G

en
et

ic
al

ly
/C

he
m

ic
al

ly
Re

pr
es

se
d 

tu
m

or
 g

ro
w

in
g,

 
an

d 
re

du
ce

d 
pr

od
uc

tio
n 

of
 M

2 
cy

to
ki

ne
s 

an
d 

im
m

un
e 

su
pp

re
s-

si
ve

 c
el

ls
, I

nc
re

as
ed

 M
1 

cy
to

ki
ne

s 
an

d 
im

m
un

e-
st

im
ul

at
or

y 
ce

lls

[1
20

]

29
3T

 c
el

ls
 (H

um
an

 e
m

br
yo

ni
c 

ki
dn

ey
 

29
3 

ce
lls

)
B-

LC
Ls

 (B
-L

ym
ph

ob
la

st
oi

d 
ce

ll 
lin

e)
 

an
d 

C
D

8 
+

 T/
m

ic
e

H
PV

-E
6

G
en

et
ic

al
ly

In
du

ce
d 

th
e 

ac
tiv

ity
 o

f C
D

8 
+

 T 
Ce

ll,
 

A
ct

iv
at

ed
 a

n 
an

tig
en

 c
ro

ss
-p

re
se

nt
a-

tio
n 

by
 D

C
s

[1
21

]

In
 v

itr
o 

ce
lls

/ 
M

ic
e 

br
ea

st
 c

an
ce

r
H

ER
2/

ne
u/

N
ef

m
ut

G
en

et
ic

al
ly

Pr
om

ot
ed

 C
D

8 
+

 T 
ac

tiv
ity

/ 
In

du
ce

d 
H

ER
2-

ba
se

d 
C

TL
 re

sp
on

se
s

[1
22

]

Ex
pi

29
3F

 (C
el

ls
 a

re
 d

er
iv

ed
 

fro
m

 th
e 

29
3 

ce
ll 

lin
e)

Br
ea

st
 c

an
ce

r c
el

ls
/m

ic
e

C
D

3/
EG

FR
/P

D
-1

/ 
O

X4
0

G
en

et
ic

al
ly

Ca
us

ed
 s

tr
on

g 
an

ti-
tu

m
or

 im
m

un
ity

/ 
In

hi
bi

te
d 

tu
m

or
s 

in
 m

ic
e 

m
od

el
[1

23
]

C
A

R-
T 

ce
lls

Br
ea

st
 c

an
ce

r c
el

ls
/M

ic
e

C
A

R​
G

en
et

ic
al

ly
In

cr
ea

se
d 

im
m

un
e 

an
d 

an
tit

um
or

 
re

sp
on

se
s

[1
24

]

M
ye

lo
m

a 
ce

ll
D

en
dr

iti
c 

ce
lls

/T
 c

el
ls

/M
ic

e
H

SP
70

G
en

et
ic

al
ly

Pr
om

ot
ed

 m
at

ur
at

io
n 

of
 D

C
s 

/ 
In

du
ce

d 
C

D
8(

 +
) C

TL
 −

 a
nd

 N
K-

ba
se

d 
an

tit
um

or
 im

m
un

ity

[1
25

]

Pa
nc

re
at

ic
 c

an
ce

r
Pa

nc
re

at
ic

 c
an

ce
r

Ce
6

G
en

et
ic

al
ly

A
ug

m
en

te
d 

th
e 

pr
od

uc
tio

n 
of

 c
yt

ok
in

es
 fr

om
 im

m
un

e 
ce

lls
 

an
d 

in
cr

ea
se

d 
im

m
un

ot
he

ra
py

[1
26

]

J5
58

 tu
m

or
 c

el
ls

 (m
ye

lo
m

a 
ce

ll 
lin

e)
M

ic
e

TN
F-

a
G

en
et

ic
al

ly
In

du
ce

d 
tu

m
or

 a
nt

ig
en

 P
1A

-s
pe

ci
fic

 
C

D
8 

+
 T 

ce
lls

 re
sp

on
se

s
[1

27
]

M
us

cl
e 

ce
lls

M
us

cl
e 

tis
su

es
 /

 T
 c

el
ls

/ 
m

ic
e 

lu
ng

 
ca

nc
er

N
ef

m
ut

/E
7

G
en

et
ic

al
ly

In
du

ce
d 

C
D

8 
+

 T-
ce

ll 
im

m
un

e 
re

sp
on

se
[1

28
]

C
T2

6 
(M

ur
in

e 
co

lo
re

ct
al

 c
ar

ci
no

m
a 

ce
ll 

lin
e)

, B
16

-F
10

 (M
ur

in
e 

m
el

an
om

a 
ce

ll 
lin

e)
, L

LC
 (M

ou
se

 lu
ng

 c
an

ce
r),

 
an

d 
4T

1 
(b

re
as

t c
an

ce
r c

el
ls

)

co
lo

n,
 m

el
an

om
a,

 lu
ng

, b
re

as
t

α 
-F

A
P

G
en

et
ic

al
ly

In
du

ce
d 

st
ro

ng
 T

 c
el

ls
 im

m
un

e 
re

sp
on

se
/P

ro
m

ot
ed

 th
e 

m
at

ur
at

io
n 

of
 D

C
s

[1
29

]

Br
ea

st
 c

an
ce

r l
in

es
Br

ea
st

H
um

an
 n

eu
tr

op
hi

l e
la

st
as

e 
(E

LA
N

E)
 

an
d 

H
ilt

on
ol

 (T
LR

3 
ag

on
is

t)
El

ec
tr

op
or

at
io

n
In

du
ce

d 
IC

D
 in

 b
re

as
t c

an
ce

r c
el

ls
[1

30
]

D
en

dr
iti

c 
ce

lls
M

el
an

om
a

O
va

lb
um

in
, a

nt
i-C

D
3 

an
d 

an
ti-

EG
FR

In
cu

ba
tio

n
In

cr
ea

se
d 

PD
-L

1 
ex

pr
es

si
on

/ 
St

im
u-

la
te

d 
th

e 
T 

ce
lls

 g
ro

w
th

 a
nd

 a
ct

iv
ity

 
in

 v
itr

o 
an

d 
in

 v
iv

o

[1
31

]

H
ep

at
oc

el
lu

la
r c

ar
ci

no
m

a 
m

ic
e

P4
7-

P/
A

FP
21

2-
A

2/
N

1N
D

-N
G

en
et

ic
al

ly
In

hi
bi

te
d 

tu
m

or
 g

ro
w

th
 a

nd
 tu

m
or

 
im

m
un

ity
[1

32
]



Page 10 of 15Ahmadi et al. Cell Communication and Signaling            (2024) 22:9 

Ta
bl

e 
5 

(c
on

tin
ue

d)

EV
s 

so
ur

ce
Ta

rg
et

 c
an

ce
r

Ca
rg

o
En

gi
ne

er
in

g/
lo

ad
in

g 
m

et
ho

d
Fu

nc
tio

n
Re

f

Ex
pi

29
3 

(H
um

an
 c

el
ls

 a
re

 d
er

iv
ed

 
fro

m
 th

e 
29

3 
ce

ll 
lin

e)
Br

ea
st

A
nt

i-h
um

an
 H

ER
2 

an
tib

od
ie

s/
 A

nt
i-

hu
m

an
 C

D
3 

an
d

G
en

et
ic

al
ly

Pr
om

ot
ed

 a
nt

i-t
um

or
 a

ct
iv

ity
 

bo
th

 in
 v

itr
o 

an
d 

in
 v

iv
o

[1
33

]

H
EK

29
3 

ce
lls

 (H
um

an
 E

m
br

yo
ni

c 
Ki

dn
ey

 c
el

ls
)

Co
lo

re
ct

al
 c

an
ce

r a
nd

 h
ep

at
oc

el
lu

la
r 

ca
rc

in
om

a
A

nt
is

en
se

 o
lig

on
uc

le
ot

id
e 

(A
SO

) 
ta

rg
et

in
g 

ST
AT

​
El

ec
tr

op
or

at
io

n/
 in

cu
ba

tio
n

In
du

ce
d 

C
D

8 
+

 T 
ce

ll-
m

ed
ia

te
d 

ad
ap

-
tiv

e 
im

m
un

ity
[1

34
]

3L
L 

ce
lls

 (M
ur

in
e 

lu
ng

 c
an

ce
r c

el
l l

in
e)

D
en

dr
iti

c 
ce

lls
/ 

M
ic

e 
lu

ng
 c

an
ce

r
TA

A
, C

D
40

L
G

en
et

ic
al

ly
Pr

om
ot

ed
 C

D
4 

+
 T 

ce
ll 

pr
ol

ife
ra

tio
n 

/
In

du
ce

d 
D

C
s 

m
ed

ia
te

d 
an

tit
um

or
 

ac
tiv

ity
 in

 3
LL

 tu
m

or

[1
35

]



Page 11 of 15Ahmadi et al. Cell Communication and Signaling            (2024) 22:9 	

can be transferred by EVs of cancer cells through the 
biological fluids and cause immunosuppression. Several 
studies including cell culture and tumor models have 
shown that EVs from tumor cells containing cargoes like 
PD-L1 or other molecules play an important function in 
the immune escape of numerous cancers. These EVs can 
directly or indirectly suppress several immune cells such 
as macrophages and T cells. Due to a heterogeneity in 
EVs types and cargoes, it seems that immune escape elic-
ited by EVs is not simple and different pathways may be 
involved. EVs-based therapies for overcoming immune 
escape have been suggested, for example, inhibiting EVs 
biogenesis and actions. In addition, EVs from immune 
cells such as DCs or lymphocytes may potent immune 
responses against tumor cells. Natural EVs may not do 
effectively on immune responses and even suppress 
immune cells. EVs could serve as a drug delivery plat-
form for cancer therapy. EVs can be modified or loaded 
with therapeutic molecules on their cargo or/and on the 
surface to interact with tumor and immune cells, caus-
ing profound antitumor immunity. Several molecules 
are conjugated into different EVs, which induce T cells 
and macrophage responses and inhibit tumor growth in 
preclinical experiments. All EVs-based therapies have 
several advantages and disadvantages regarding either 
technical or outcomes. EVs-based clinical application is 
hindered by the heterogeneity of EVs and the lack of opti-
mized engineering methods.
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