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Abstract 

Background Although interest in the role of extracellular vesicles (EV) in oncology is growing, not all potential 
aspects have been investigated. In this meta‑analysis, data regarding (i) the EV proteome and (ii) the invasion and pro‑
liferation capacity of the NCI‑60 tumor cell lines (60 cell lines from nine different tumor types) were analyzed using 
machine learning methods.

Methods On the basis of the entire proteome or the proteins shared by all EV samples, 60 cell lines were classified 
into the nine tumor types using multiple logistic regression. Then, utilizing the Least Absolute Shrinkage and Selec‑
tion Operator, we constructed a discriminative protein panel, upon which the samples were reclassified and pathway 
analyses were performed. These panels were validated using clinical data (n = 4,665) from Human Protein Atlas.

Results Classification models based on the entire proteome, shared proteins, and discriminative protein panel were 
able to distinguish the nine tumor types with 49.15%, 69.10%, and 91.68% accuracy, respectively. Invasion and prolifer‑
ation capacity of the 60 cell lines were predicted with R2 = 0.68 and R2 = 0.62 (p < 0.0001). The results of the Reactome 
pathway analysis of the discriminative protein panel suggest that the molecular content of EVs might be indicative 
of tumor‑specific biological processes.

Conclusion Integrating in vitro EV proteomic data, cell physiological characteristics, and clinical data of various 
tumor types illuminates the diagnostic, prognostic, and therapeutic potential of EVs.
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Background
Cancer growth, progression and metastasis are associated 
with genomic, proteomic, transcriptomic and metabo-
lomic changes [1]. Omics sciences such as genomics, 
proteomics, transcriptomics and metabolomics are revo-
lutionizing the understanding of cancer by comparing 
vast amounts of data with clinical features [2, 3]. Sources 
of data include in vitro experiments [4], clinical samples 
[5] and liquid biopsies [6], but nowadays extracellular 
vesicles (EVs) are of increasing interest due to their role 
in cell-to-cell communication, as they influence various 
physiological processes, including tumor-related func-
tions such as immune regulation, cancer cell support, 
angiogenesis and metastasis [7–9].

Our research, along with others, suggests that EVs 
have great potential as a source of biomarkers that could 
advance the current state of cancer diagnosis because 
they provide a membrane-protected cargo that could 
reflect cell-specific pathological processes [10–14].

Numerous studies have highlighted the role of EVs in 
tumorous processes, leading to efforts to include them in 
liquid biopsy based diagnostic methods [15].

The majority of these studies have demonstrated 
that the analysis of EVs – due to the tumor-associated 
molecular pattern carried – can be used to differentiate 
between tumorous and control samples or to subcatego-
rize tumor types based on their properties (e.g. chemo-
sensitivity) [16–25].

However, there are still a number of unexplored areas 
regarding the potential utility of EVs. For instance, it is 
still under exploration whether the molecular composi-
tion of EVs can predict the invasion capacity or prolifera-
tion rate of the donor cells, or whether they could provide 
information on tumor-specific signaling pathways or 
strategies. Furthermore, as most of the studies investigate 
a limited number of groups, the degree of specificity of 
the molecular pattern carried by EVs of different tumor 
types is not fully elucidated.

Comprehensive studies of EVs derived from differ-
ent tumor types are needed to fully explore their poten-
tial use in clinical practice. As a result, in recent years, 
there has been a rise in research into the proteome of EVs 
derived from the highly diverse NCI-60 cell line panel 
compiled by the National Cancer Institute. Using omics 
approaches to investigate the NCI-60 cell line panel, 
which contains 60 cell lines from nine tumor types, has 
significantly contributed to the discovery of potential 
biomarkers and drug targets, as well as understanding 
the molecular basis of chemotherapy resistance [26–40].

Beyond the research on the cell lysates, proteomic 
analysis of EVs of the NCI-60 cell lines revealed that their 
protein content reflects the molecular composition of the 
progenitor cell at both the proteomic and transcriptomic 

levels [41]. EVs were discovered to contain components 
of the core vesicle machinery, biomarkers already known 
from tissue, and integrin content that may be tumor 
stage-specific [41, 42].

Yet as omics and clinical data volumes rise, so do advances 
in information-processing tools, such as novel machine 
learning methods and advances in bioinformatics [43].

With this in mind, we hypothesized that we could mine 
valuable information on the role of EVs in tumor pro-
cesses by comparing publicly available NCI-60 EV pro-
teomics, cell physiology and clinical data using machine 
learning and the latest bioinformatics methods.

In our meta-analysis, we created classification mod-
els based on the entire proteome identified in the NCI-
60 EVs as well as the proteins commonly identified in 
all samples. Using a selection algorithm, we compiled a 
panel of the most discriminative proteins from the entire 
proteome. Thereafter, we conducted enrichment analyses 
to determine which signal pathways our discriminative 
proteins are associated with these discriminative pro-
teins. Furthermore, we assembled protein panels capable 
of estimating the invasion capacity and proliferation rate 
of donor cells, and validated them with in  vivo clinical 
data.

Materials and methods
Data set used
Proteomic data
We obtained the proteomic data of EVs from the publi-
cation of Hurwitz et  al. as freely downloadable supple-
mentary material [41]. This data set contains the spectral 
count and intensity of 6,701 proteins for 60 EV isolates 
harvested from 60 cell lines (NCI-60) of nine different 
tumor types. In our study, we used the intensity val-
ues for the analyses. Before the analyses, the intensities 
were logarithmized in order to increase the linearity and 
reduce the variance. Imputation of missing values was 
not performed, as the 0 values in the data matrix used do 
not represent missing values, but the absence of proteins 
in the EV isolate.

Data on the invasion capacity of NCI‑60 cell lines
The invasion phenotype of the 60 cell lines were obtained 
from the publication of DeLosh et al. as freely download-
able supplementary material [44].

Briefly, DeLosh et  al. utilized CIM (cellular invasion/
migration)-Plate 16 to determine the invasion capacity of 
the NCI-60 panel.

The CIM Plate-16 consists of two chambers, one below 
the other. The chambers are separated by a micropo-
rous membrane. Microelectronic sensors are integrated 
at the bottom of the pores in the lower chamber on the 
other side of the membrane. The migration of cells from 
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the upper chamber to the lower chamber in response to 
a chemoattractant leads to their interaction and attach-
ment to the electrical sensors, hence causing an elevation 
in impedance. The impedance correlates to increasing 
numbers of migrated cells on the underside of the mem-
brane, and cell index values reflecting impedance changes 
are automatically and continuously recorded by the 
Roche xCELLigence Real-Time Cell Analyzer DP instru-
ment. Therefore, cell migration activity can be monitored 
via the cell index profile.

The invasion phenotype of 60 cell lines was deter-
mined by plotting the cell index (reflecting the mass of 
the cell detected) as a function of analysis time and then 
calculating the area under the curve (AUC). We used the 
average AUC for each cell line as published in the origi-
nal article, but refer to it as invasion capacity for ease of 
interpretation.

Data on the proliferation of NCI‑60 cell lines
Doubling time of NCI-60 cell lines data were obtained 
from the National Cancer Institute website although [45], 
to facilitate interpretation, we refer to it as proliferation 
capacity for ease of interpretation.

Data on RNA expression of the NCI‑60 cell lines
Microarray gene expression data was downloaded from 
the NCBI Gene Expression Omnibus (accession number: 
GSE32474) [46].

Data on the in situ tissue expression and survival data
In our study, we acquired information from the Human 
Protein Atlas database regarding the ex  vivo tissue 
expression of specific proteins and the overall survival 
time (in years) of patients corresponding to the tissue 
samples [47].

Classification of EV samples
During the classification, we attempted to classify the 
60 EV samples into their respective nine tumor types 
(breast, central nervous system—CNS, colon, kidney, 
leukemia, lung, melanoma, ovary, prostate).

We applied multiple logistic regression on the prot-
eomic data set for classification purposes.

First, the 60 EV sample was classified based on shared 
proteins and then on the entire proteome.

After classifying based on the entire proteome, we 
aimed to identify a discriminant protein panel for the 
nine tumor types.

The data set was split 50–50%, creating a Train and a 
Test set. We utilized the Least Absolute Shrinkage and 
Selection Operator (LASSO) method to score the pro-
teins on the Train set according to their importance in 

distinguishing the tumor types (this score is the regres-
sion coefficients). This value can be negative, positive, 
or zero, suggesting a negative or positive effect on the 
probability of classifying into a certain tumor type, or 
an irrelevant protein.

In LASSO, the so-called cost strength parameter (C), 
which can vary from 0.001 to 1000, indicates how strict 
the scoring is (affecting the number of proteins scored 
as irrelevant/meaningless). In this study, this value was 
set to 1, which resulted in neither too strong nor too 
weak scoring, and allowed us to select characteristic 
proteins for each of the nine tumor types. The opti-
mal value of the parameter C was determined by five-
fold cross-validation of the train set and fixed at the 
point where the highest classification efficiency was 
measured.

The list of characteristic proteins for the nine tumor 
types included only proteins with a positive score 
obtained by LASSO. Classification was again performed 
on the Test data set based on the proteins selected.

The efficiency of the classification was given by the 
classification accuracy (number of correctly classified 
samples divided by the total number of samples). The 
success of the classification was visualized using confu-
sion matrices.

Orange 3.27.0 [48] software was used to conduct the 
classification and create figures.

Regression for invasion and proliferation capacity
To predict invasion and proliferation capacity, mul-
tiple linear regression with LASSO (with parameter 
C = 1)  was performed. For regression, LASSO played 
the same role as in classification.

It should be noted that the approach (CIM Plate-16) 
used to determine invasiveness of the cell lines has 
been shown to be applicable only to solid tumors [44], 
therefore leukemia was not included in the determina-
tion of proteins predictive of invasion capacity.

During the procedure, the data was split 50–50%, 
creating a Train and Test set. On the Train set, LASSO 
was used to identify proteins that could potentially pre-
dict invasion and proliferation capacity. Then, using the 
Test set, the relationship between the selected proteins 
and invasion/proliferation capacity was investigated by 
multiple linear regression.

Value of p < 0.05 was considered significant.
The efficiency of the regression was given by the coef-

ficient of determination (R2).
Orange 3.27.0, GraphPad Prism 8.4.3 (San Diego, 

CA, USA) were used for multiple linear regression and 
visualization.
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Pathway enrichment analysis
We utilized ShinyGO 0.76.3 for Gene Ontology Enrich-
ment Analysis to determine the biological processes, 
molecular functions, and cellular components whose 
proteins are overrepresented in our data set [49]. The 
ShinyGO parameters were set to default.

Reactome (v82) was employed for simultaneous 
enrichment analysis of each sample in order to compare 
the 60 EV samples in terms of their associated signal 
pathways [50]. The Reactome parameters were set to 
default.

Value of p < 0.05 corrected with the false discovery 
rate (FDR) method was considered significant.

Hierarchical clustering
Hierarchical clustering based on proteins was performed 
after row centering and unit variance scaling. Both rows 
(proteins) and columns (EV samples) were clustered 
using correlation distance and complete linkage.

Hierarchical clustering based on the Reactome results 
was performed on raw data, without any adjustment. 
The rows (pathways) were clustered using correlation 
distance and complete linkage.

Hierarchical clustering was performed using Mor-
pheus software [51].

T‑distributed stochastic neighbor embedding
In order to visualize the proteomic data in a 2-dimen-
sional space, we utilized the t-distributed stochastic 
neighbor embedding (t-SNE) method.

For t-SNE visualization, we used Orange 3.27.0.

Examining the similarity between the EV proteome 
and the cellular RNA profile
The similarity of protein and RNA profiles of EV sam-
ples and cells for each variable was tested by Spear-
man’s correlation analysis, the results of which were 
plotted on heatmaps. In addition, the concordance of 
the two matrices (RNA profile of cells and protein con-
tent of EVs) was characterized overall with RV coeffi-
cients introduced by Escoufier [52].

In data analysis, the RV coefficient is a multivari-
ate generalization of the squared correlation coeffi-
cient, depicting the similarity between two matrices of 
quantitative variables. The RV coefficient takes values 
between 0 and 1.

The analysis was performed using the omicade4 pack-
age in the R statistical framework [53].

Survival analysis
The association between tissue expression of certain 
proteins and survival was determined by Kaplan–Meier 

analysis with logrank test, using GraphPad Prism 8.4.3. 
Value of p < 0.05 was considered significant.

Results
Machine learning methods revealed tumor‑specific protein 
patterns of EV proteome
Shared proteins of EVs are related to EV biogenesis processes
The proteomic data set of the 60 EV samples contained 
6,071 proteins. Intensity was measured for 5,908 pro-
teins, referred to as the entire proteome in this study.

According to Gene Ontology Enrichment Analysis, 
the entire proteome is significantly associated with bio-
logical processes, molecular functions and cellular com-
partments such as neutrophil-mediated immunity, cell 
adhesion to the extracellular matrix, secretory vesicles 
and granules (Additional file 1). The fold enrichment val-
ues—which indicates how drastically genes of a certain 
pathway are overrepresented—ranged between 1.68 and 
3.01. This means that we identified at least 1.68 times 
more proteins from the listed signal pathways as it would 
have been expected by chance.

Of the 5,908 proteins, 213 were present in all EV sam-
ples, referred to as the core proteome. The enrichment 
analysis of the core proteome showed that the shared 
proteins are involved in intracellular and EV biogenesis 
pathways, such as cotranslational protein targeting to 
membrane, RNA binding and cytosolic ribosomes (Addi-
tional file 2). Association of the core proteome with each 
biological pathway showed higher significance than the 
entire proteome, which was reflected in the fold enrich-
ment values ranging from 3.78 to 33.12.

Entire proteome of EVs resulted higher classification accuracy 
of tumor cell lines than core proteome
We first inspected the core proteome for tumor-specific 
patterns using the logistic regression classification model.

Remarkably, even this small subset of the entire pro-
teome affecting a few biological processes carried enough 
specific information to distinguish certain tumor types 
from the others to some extent, such as kidney, lung, leu-
kemia and melanoma (Fig. 1a, c). The classification accu-
racy of 49.14% significantly outperformed the 11.1% that 
would have been obtained with random classification.

As expected, a one-way ANOVA analysis revealed 
that the average intensity of the core proteome depends 
on tumor type (p < 0.0001). However, Pearson’s correla-
tion analyses confirmed that this difference could not 
be caused by differences in EV secretion, EV mean and 
mode size, or cell size. No significant correlation was 
identified between any parameter and the average inten-
sity of the core proteome. This suggests that the unique 
core proteome pattern is not caused by the difference 



Page 5 of 17Bukva et al. Cell Communication and Signaling          (2023) 21:333  

in EV production rate and type of EVs between the nine 
tumor types, but the different tissue origin.

Using the entire proteome, the distinction between 
tumor types had become even more defined (Fig. 1b, d). 
Classification accuracy significantly increased for CNS, 
colon, leukemia, lung, melanoma, and ovary. The aver-
age classification accuracy increased to 69.10% which is 
57.99% higher than chance.

The EV proteome could be used to form a discriminative 
protein panel
In exploring the discriminatory protein panel, we have 
taken care to ensure that the method does not become 
overestimated or overfitted. To achieve this, the 60 cell 
lines were split 50–50%. On one half of the cell lines, the 
Train set, we applied the LASSO algorithm.

Using the LASSO method, we were able to assign 
importance scores to each protein of the entire proteome 
based on their ability to differentiate the nine tumor types 
in the Train set. The selection algorithm (with parameter 
C = 1) resulted in 172 proteins, which were further inves-
tigated for hierarchical clustering, classification purposes 
and Reactome pathway analysis (Additional file 3).

In the hierarchical clustering, the Train and Test sets 
were analyzed together on the basis of 172 proteins.

Hierarchical clustering using a heatmap revealed that 
the 172 proteins form a well-defined pattern, enabling 
the 60 EV samples to form nearly perfectly homogenous 
clusters, while the Train and Test sets elements are clus-
tered together (Fig. 2a).

This separation is also evident in the t-SNE plots, 
which depict the various tumor types as distinct groups 
(Fig. 2b). Again, the elements of the Train and Test sets 
populated the same areas.

When the samples of the Test set were classified based 
on the 172 proteins, an average classification efficiency of 
91.67% was achieved (Fig. 2c).

For the whole data set (Train + Test), the average effi-
ciency was 96.60%.

Discriminative proteins might uncover tumor‑specific 
pathways
After selecting the proteins, we hypothesized that – 
given the proteins’ large intergroup differences – the bio-
logical signaling pathways they affect would also exhibit 

distinctive patterns. In order to place the 172 selected 
proteins in a biological context Reactome enrichment 
analysis was utilized. Only those pathways with p < 0.05 
were considered for hierarchical clustering and heatmap 
creation (Fig. 3).

The selected 172 proteins are associated with extracel-
lular matrix, nuclear processes, and cell division-related 
signaling pathways.

Although cancers of the breast and prostate lacked 
characteristic signaling pathways, the majority of the EV 
samples clustered according to their tumor type revealing 
a distinctive signaling pathway pattern.

The collagen matrix, TGF-β receptor, and ERB4 
enzyme signaling pathways were identified as common 
characteristics for both kidney and central nervous sys-
tem tumors, which clustered together.

Compared to other tumors, leukemia samples exhibit a 
predominance of nuclear processes associated with his-
tone and chromatin modification.

In general, lung tumors were distinguished by platelet-
associated biological processes and integrin-signaling 
pathways.

Extracellular vesicles carry information on invasion 
and proliferation capacity
The NCI-60 cell line panel contains not only tumors of 
different tissue origin, but also tumors with different 
invasion capacities and different division rates.

Noting that tumor cell lines with low invasion capac-
ity such as BT549 and Hs 578 T (breast) were classified 
into tumors with high invasion capacity (e.g. CNS) dur-
ing classification and hierarchical clustering the question 
arose whether further protein panels predicting invasion 
and proliferation capacity could be defined.

To construct a panel correlated with invasion and pro-
liferation capacity, multiple linear regression with LASSO 
selection method was utilized.

As in the classification procedure, the data set was split 
50–50%. On the Train set, we used LASSO to identify 
proteins that could be predictive for invasion capacity 
and proliferation, then validated the findings on the Test 
set.

The selection resulted in 20 and 15 proteins, which 
tended to have predictive potential for invasion and 

Fig. 1 Classification efficiency based on the core and entire proteome. a t‑SNE plot of the core proteome. b t‑SNE plot of the entire proteome. The 
dots with different colors represent the 60 individual EV samples belonging to the nine tumor types. The color gradient in the plot indicates the dot 
density. c Confusion matrix of the classification results using the core proteome. d Confusion matrix of the classification results using the entire 
proteome. Each row of the matrices represents the instances in an actual class while each column represents the instances in a predicted class. 
Diagonally, the percentage of the correct classification is shown in blue. The percentage of errors is indicated in red

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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proliferation capacity in the Train set, respectively (inva-
sion panel and proliferation panel).

The Test set was then used to validate the predictive 
value of the panels using multiple linear regression.

Multiple linear regression showing significant results 
for both the invasion panel and the proliferation panel 
(p < 0.0001), we also obtained remarkably high coef-
ficients of determination: R2 = 0.68 for the invasion, 
R2 = 0.62 for the proliferation capacity (Fig.  4). Pooling 

the Test and Train sets, the R2 values were found to be 
0.71 and 0.69, respectively.

After validation on the Test set confirmed the predic-
tive value of the proteins, both of the 20- and 15-member 
panels (Additional file 4) were then subjected to hierar-
chical clustering, which resulted in 2–2 clusters (Fig. 5): 
one cluster that appears to be negatively correlated and 
another that appears to be positively correlated with 
invasion or proliferation capacity.

Fig. 2 Classification efficiency for the selected proteins. a Heatmap with hierarchical clustering. In the heatmap, the columns and rows represent 
the 60 EV samples belonging to the nine tumor types marked with different colors and the 172 proteins, respectively. Both the columns and rows 
are clustered. Dendrogram branches ending in a square indicate the elements to be included in the Train set. b t‑SNE plot of the selected 172 
proteins. The dots with different colors represent the 60 individual EV samples belonging to the nine tumor types. In the plot, the color gradient 
indicates the dot density. c Confusion matrix of the classification results using the selected proteins on the Test set. Each row of the matrices 
represents the instances in an actual class while each column represents the instances in a predicted class. Diagonally, the percentage of the correct 
classification is shown in blue. The percentage of errors is indicated in red
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Fig. 3 Biological signaling pathways affected by the 172 selected proteins of the discriminative protein panel. The columns marked with different 
colors represent the 60 EV samples, while the rows indicate the various signaling pathways. Both the 60 samples and pathways were clustered 
hierarchically. The heatmap values represent the average intensity of the proteins that are part of a given signal pathway. The gray barplots 
next to the names of the pathways indicate the ‑log10(p value). In all instances, p < 0.05. (agg.: aggregation; biosynth.: biosynthesis; cotrans.: 
cotransporters; deacet.: deacetylate; form.: formation; mod.: modifying; org.: organization; phosph.: phosphorylation; prots.: proteoglycans; sig.: 
signaling; trans.: transcription; transl.: translocation)

Fig. 4 Results of the multiple linear regression. a Multiple linear regression of invasion capacity. The invasion capacity predicted by the invasion 
panel for each sample in the Test set is plotted on the x‑axis, while the actual invasion capacity is plotted on the y‑axis. b Multiple linear regression 
of proliferation capacity. The doubling time predicted by the invasion panel for each sample in the Test set is plotted on the x‑axis, while the actual 
doubling time is plotted on the y‑axis. (R2—coefficient of determination; p—p value.)
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Of the 20-member invasion panel, eight proteins 
(CAV2, DNAJB4, THY1, OXTR, VCAN, COL11A1, 
EDIL3, CRYAB) positively predicted the invasion 
capacity of the cell lines. Based on Reactome pathway 
analysis, these proteins were significantly associated 

with signaling pathways that upregulate tumor cell 
maintenance, invasion and binding to the extracel-
lular matrix. Similarly, the enrichment analysis of the 
remaining twelve proteins that negatively predict inva-
sion capacity was consistent with the regression results: 

Fig. 5 Predictive proteins for invasion and proliferation capacity. a Predictive protein panel for invasion capacity (invasion panel). The columns 
marked with different colors and the gray barplots indicate the 54 EV samples with the invasion capacity measured for the cell line of origin 
(leukemia not included). The rows indicate the proteins, which were clustered hierarchically. Two defined clusters were separated from each other. 
b Predictive protein panel for proliferation capacity (proliferation panel). The columns marked with different colors and the gray barplots indicate 
the 60 EV samples with the doubling time (in hours) measured for the cell line of origin. The rows indicate the proteins, which were clustered 
hierarchically. Two defined clusters were separated from each other. It should be noted that higher doubling time means lower proliferation 
capacity as it indicates more time for cell division
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these proteins play a role in pathways that negatively 
regulate the invasion (Fig. 5a).

The eight proteins that positively influence prolifera-
tion capacity were associated with processes linked to cell 
cycle. While seven proteins negatively associated with 
proliferation are linked to metabolic pathways (Fig. 5b).

We further attempted to gain more support for our 
invasion and proliferation capacity prediction panels by 
examining their impact on patients’ survival time.

The Human Protein Atlas (HPA) was considered an 
appropriate database for this purpose, as it contains sur-
vival times for a large number of cancer patients for all 
nine cancer types and is easily accessible. However, we 
had to take into account the limitation that HPA contains 
tissue RNA expression data and not EV proteomic data.

Accordingly, before utilizing the HPA database, we 
had to assess the similarity of EV protein and cellular 
RNA patterns to be permitted to investigate the effect of 
in vivo RNA tissue expression of panel members on sur-
vival time.

First, we examined how the EV protein panels  (inva-
sion and  proliferation) and the cellular RNAs correlate 
with each other (Fig.  6). Based on the results, the RNA 
and protein patterns of the invasion panel showed a 

moderately strong concordance (RV = 0.51, p = 0.020). 
While a weaker but still significant relationship was 
observed when comparing the RNA and protein matri-
ces of the proliferation panel (RV = 0.39, p = 0.048). Nota-
bly, we observed stronger pairwise correlations between 
protein and RNA content for the promoting members of 
both panels.

After assessing the relationship between EV protein 
and cellular RNA pattern, we attempted to use the cellu-
lar RNA to estimate the invasion and proliferation capac-
ity of cells using the panel members.

Based on the cellular RNA, invasion capacity could 
be estimated at R2 = 0.77 (p < 0.0001) and proliferation 
capacity at R2 = 0.32 (p = 0.037).

The in vitro data suggested that the EV proteomic and 
cellular RNA patterns are in concordance and that the 
cellular RNA content is also related to invasion and pro-
liferation capacity in a similar way as the EV proteome. 
This prompted us to investigate the impact of in  vivo 
RNA tissue expression of panel members on patient 
survival.

Using the HPA database, we collected clinical data on 
the tissue expression of our panel members in the nine 
tumor types from 4,665 patients, then examined the 

Fig. 6 Correlation of EV protein and cellular RNA content. The heatmaps show the correlation between cellular RNAs and EV proteins of invasion (a) 
and proliferation (b) panel members. Columns represent the cellular RNA, rows represent the EV proteins
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relationship between tissue expression and 5-year sur-
vival rate.

In the HPA database, tissue expression was found for 19 
of the 20 proteins of the invasion panel (Additional file 5).

According to the HPA, high expression of CAV2, 
COL11A1, DNAJB4, THY1 and VCAN decreased the 
5-year survival for breast, CNS, colon, kidney, lung and 
ovarian tumors (Fig. 7a). These findings are in line with 
our results, as these proteins were found to be positively 
associated with invasion capacity according to multiple 
linear regression analysis.

The CRYAB protein was found to be controversial, as 
our results showed a positive association with invasion, 

but in HPA, high tissue expression was associated with 
a better prognosis in CNS tumors. Nevertheless, in 
colon tumors, high expression was a negative prognostic 
marker.

The case is similar for EDIL3, which is positively asso-
ciated with invasion capacity according to multiple linear 
regression analysis, but based on the HPA, higher tissue 
expression is associated with better 5-year survival in 
colon tumors. However, it still was a significantly worse 
prognostic marker in breast, kidney and melanoma 
patients.

Overall, the effects on survival found in the HPA data-
base and the effect of the proteins on invasion capacity 

Fig. 7 Survival functions for different expression levels of DNAJB4, CAPN7, DSG2, ECH1. The figure shows 4 exemplary proteins selected 
from the members of the invasion and proliferation panel and their impact on patients’ survival. a DNAJB4, which we found to be positively 
associated with invasion and which the Human Protein Atlas (HPA) suggests that its high expression is associated with a worse prognosis in kidney 
tumors (n = 877). b CAPN7 protein, which in our study is negatively associated with invasion and which the HPA suggests may be associated 
with a favorable prognosis in kidney tumors. c DSG2 protein which in our study positively predicted the proliferation capacity is a negative 
prognostic factor in CNS tumors, based on HPA. d Based on our results, ECH1 protein negatively predicted the proliferation capacity, and it 
is a favorable prognostic marker for CNS tumors
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as determined in our study were consistent in 90% of the 
cases.

Based on multiple linear regression, twelve proteins 
in our study were found to be negatively correlated with 
invasion capacity. Comparing this finding to the HPA 
database, we found more inconsistencies: according 
to the HPA, the twelve proteins are favored prognos-
tic markers for 5-year survival in most cases (73.18%) 
(Fig.  7b), but in 26.82%, the proteins have an adverse 
effect on survival than the expected. For example, 
HIST1H3A showed a negative association with inva-
siveness in our study, but its high expression negatively 
affected the survival rate of CNS tumor patients accord-
ing to the HPA database (Additional file 5).

Tissue expression was found for all the 15 proteins of 
the proliferation panel (Additional file 6). The prolifera-
tion panel contains seven proteins which were found to 
negatively predict the proliferation capacity. According 
to HPA, high tissue expression of these seven proteins 
significantly increased the 5-year survival in 64.71% of 
cases (Fig. 7c). Vice versa, the high expression of the eight 
proteins which positively predict the proliferation capac-
ity significantly reduces the 5-year survival in 72.41% of 
cases (Fig. 7d).

Taken as a whole, the EV proteome and in vitro cellular 
RNA pattern of the panel members showed concordance, 
and the effect of in  vivo tissue RNA expression of the 
panel members on patient survival is consistent with the 
results of our linear regression model. The finding poten-
tially suggests the involvement of invasion and prolifera-
tion panels in the tumorous processes.

It is noteworthy that the inconsistency with HPA 
appears for those variables where the in  vitro EV pro-
teome and cellular RNA pattern did not show a strong 
correlation (invasion capacity inhibitory members) 
(Fig. 4), or cellular RNA did not prove to be a sufficient 
predictor (overall the proliferation panel).

Discussion
Nowadays, EVs are considered as a novel and promising 
tool for liquid biopsy-based cancer diagnosis, progno-
sis and therapeutic decisions. However, there are barely 
explored segments of their potential clinical applicability.

In the present study, we aimed to determine the degree 
of specificity of the proteome carried by EVs from vari-
ous tumor types, as well as whether the EVs’ molecular 
pattern can be used to predict the invasion capacity and 
proliferation rate of the donor cells.

In our meta-analyses, we investigated the proteome of 
EVs isolated from the supernatant of NCI-60 cell lines. 
Of the total proteome, 213 proteins were present in all 
EV samples (core proteome). Although these proteins 

were observed in all tumors, they showed some degree of 
specificity.

Based on Gene Ontology Enrichment Analysis, these 
protein sets are associated with biological pathways, 
molecular functions, and cellular components including 
protein targeting, cotranslational modifications, RNA 
binding and processing, ribosomal subunit, and exocy-
totic pathways. These findings are consistent with those 
previously described by Hurwitz et al. [41, 54]. As it has 
been pointed out before, this enrichment may indicate 
that the core proteome facilitates cell-to-cell communi-
cation by directly translating the mRNA content of EVs 
following fusion with the target cell.

Even though the core proteome showed differences 
between the nine tumor types, the reason for these dif-
ferences could not be determined from the available data. 
Our correlation analyses suggested that the distinct core 
proteome pattern was not caused by the difference of 
EV production rates or EV type between the nine tumor 
types. Therefore, we assumed that the source of the 
observed variance in the core proteome is the different 
origin of the nine tumor types.

Extending the analysis to the entire proteome, then 
to the selected protein set significantly improved clas-
sification accuracy, indicating that the molecular sig-
nature carried by EVs is remarkably characteristic of 
certain tumor types, and this specificity could be further 
increased by using the appropriate selection methods.

This finding is in accordance with previous  literature 
data. However, most studies have attempted to distin-
guish between cancerous samples and matched controls, 
or to subcategorize different tumor types in both in vivo 
and in vitro experiments [16].

For example, by selecting the proteins detected in EVs, Vinik 
et al. showed that the control and breast cancer patient groups 
were significantly distinguishable from each other [17].

The diagnostic efficacy of vesicles has also been dem-
onstrated for brain tumors. In an in vivo experiment with 
mice, Anastasi et  al. used principal component analysis 
to show that the proteome of control and mice with glio-
blastoma multiforme differed significantly [18].

Moreover, diagnostic importance has also been 
reported for ovarian, colon cancer and leukemia [19–21].

In addition to distinguishing a tumor cohort from a 
matched control sample, studies can be found about 
stratifying a cancerous disease according to different 
characteristics. For example, Li et al. investigated plasma 
EVs to highlight leukemia patient groups with differ-
ent imatinib resistance [22]. Choi et  al. distinguished 
between primary and metastatic colon tumors [23]. 
Mallawaaratchy et al. identified glioblastoma subtypes of 
aggressiveness [24], and Rontogianni et  al. pointed out 
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that proteomic analysis of EVs allows the differentiation 
of breast cancer subtypes [25].

Our study differs from these in that our aim was not to 
investigate the differences from control samples or to sub-
categorize a certain tumor, but to distinguish a wide range 
of tumors with different tissue origin. In a well-written 
article, which was the source of the NCI-60 proteomic 
data set Hurwitz et  al. have already demonstrated that 
some tumor types are distinguishable from the others [41].

Approaching this valuable dataset with the evolving 
machine learning based classifier algorithms suggests 
that the proteomic content carried by cancer EVs is more 
specific than expected and previously reported.

Uncovering tumor-specific signaling pathways is 
a key element in identifying drug targets [55]. Most 
research focuses on the analysis of tissue, however, 
obtaining tissue biopsy from certain tumors, particu-
larly brain tumors, carries high risks for the patient, has 
limited reproducibility, and does not provide reliable 
information due to intratumoral heterogeneity [56]. 
However, these challenges can be overcome by using 
EVs isolated from the circulation, as their molecular 
content provides information about the entire tumor-
ous condition [57].

Although there is a growing body of research on the 
use of EVs as drug carriers, no studies have investigated 
the molecular content of EVs in an attempt to identify 
drug targets [58].

Our results suggest that the proteins showing the larg-
est group differences between the nine tumor types may 
indicate tumor type-specific signaling pathways and spe-
cific strategies.

For example, matrix-related processes were proven 
to be specifically involved in CNS and kidney tumors. 
Pointer et al. have shown that collagen matrix structure 
plays a significant role in the survival of patients with 
glioblastoma: the presence of disorganized fibers is asso-
ciated with a significantly worse prognosis [59]. Similar 
results have been described in kidney cancer, where col-
lagen matrix structure predicted the tumor grade [60].

NOTCH signaling was found to be specifically char-
acteristic for colon cancers based on the EV proteome. 
Consistent with our findings, several studies have high-
lighted that NOTCH signaling is essential for the initia-
tion of colon cancer cell development [61].

We also found a strong association between the leu-
kemia EV proteome and processes associated with the 
transcription factor RUNX1, whose mutation has been 
shown to play an important role in the development of 
hematological malignancies [62].

In addition to the above examples, the results of our 
enrichment study are supported by further literature on 

leukemia [63], melanoma [64], lung [65, 66] and ovarian 
cancer [67, 68].

Extending and applying our knowledge on the invasive-
ness and proliferation rate of cancer cells is vital for the 
proper treatment and prognosis of patients. In estimating 
patient survival, the number of metastatic nodules and 
the size of the tumor mass are particularly crucial vari-
ables [69–72].

Our findings suggest that the EV proteome can provide 
information about the donor cells’ proliferation rate, and 
invasion capacity, which are crucial steps in tumor pro-
gression and metastasis formation [73].

The predictive invasion and proliferation panel were 
subjected to Reactome pathway analysis to reveal the 
physiological mechanisms of the predicted effects. For 
instance, we found that EV proteins detected in high 
invasion capacity tumor cell lines may induce HSF1-
dependent transactivation. This finding is supported by 
literature data; amplification of HSF1 was shown in a 
wide variety of tumors with a 10.33–26.54% alteration 
frequency in the most aggressive tumors, i.e. ovarian epi-
thelial tumors, breast cancer, pancreatic cancer [74, 75].

As HSF-1 is a main transactivator of HSPs expression, 
including HSP60, HSP70, and HSP90, it has multiple 
effects on cancer progression, such as promoting inva-
sion and metastasis [76].

Our data show that proteins predicting low invasion 
may cause downregulation of TGF-β signaling. Indeed, 
TGF-β may function as a tumor promoter by stimulating 
epithelial-mesenchymal transition (EMT) of tumor cells 
leading to metastasis [77]. Also, inactivation of TGF-β 
signaling suppress prostate cancer bone metastasis [78].

Panel members, which positively predict prolifera-
tion capacity are significantly associated with reversible 
histone acetylation by HDAC enzymes. Several studies 
have investigated HDAC and proliferation; for exam-
ple, HDAC enzymes are important in melanoma tumor 
cell proliferation [79]. And again, inhibition of HDACs 
represses proliferation of head and neck squamous cell 
carcinoma cells [80]. In addition, various phases of pre-
clinical trials are addressing the inhibition of HDAC 
in subjects with mutated advanced and unrespect-
able melanoma (ClinicalTrials.gov ID: NCT02836548, 
NCT02032810).

From the list of proteins which are associated with 
lower proliferation, the GLUD1 (glutamate dehydro-
genase 1) were shown to influence glutamate and glu-
tamine metabolism. It is evidenced so far that glutamine 
metabolism enhances the proliferation and tumor 
growth [76]. However, high expression of GLUD1 may 
predict good overall patient outcome [81]. Coloff et  al. 
showed negative correlation between GLUD1 and pro-
liferation, concluding that highly proliferative tumors 
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couple glutamine anaplerosis to non-essential amino 
acid synthesis [82].

Despite the fact that the results of the meta-analysis 
appear to be supported by other findings, it is important 
to draw attention to the limitations of our work.

The data set is relatively small compared to the num-
ber of elements required for machine learning: it contains 
proteomic data from EV samples of 60 cell lines, and the 
nine tumor types have different sample numbers.

However, we found that even 50% of the data was 
enough for the Train set to learn important patterns from 
the data that could be applied to the Test set. We believe 
that despite the small number of elements, we could find 
generalizable differences. Nevertheless, we acknowledge 
the importance of validating the findings on a larger data-
set to ensure the robustness of the results.

Hurwitz et  al. described a strong correlation between 
the proteomic pattern of EVs and the cellular RNA con-
tent [41]. Our study has highlighted that within the entire 
proteome, our invasion and proliferation panels are also 
in concordance with the cellular RNA pattern. This find-
ing prompted us to investigate the impact of in vivo RNA 
expression of panel members on tumor patient survival.

The predictive value of the invasion and proliferation 
panel established in this study was supported by the lit-
erature and the Human Proteome Atlas (HPA) database. 
Nevertheless, the authors acknowledge and strongly 
emphasize that comparing the in vitro EV proteome and 
in  vivo tissue RNA expression is an implicit approach 
even if the relationship between the EV proteome and 
the in  vitro cellular RNA pattern has been successfully 
assessed. The comparison is not intended to validate the 
panel members, but rather to suggest potential biomarker 
targets that may be worthy of further research.

The main limitation of the study is that its results are 
based on 2D in vitro data. 2D cultures have several limi-
tations, such as perturbation of interactions between the 
cellular and extracellular environment, changes in cell 
morphology, polarity and proliferation mode [83]. The 
authors certainly acknowledge the need for further vali-
dation, and consider the results presented here only as 
promising research candidates, not as an unimprovable 
approach to the in vivo phenomenon.

A previous meta-analysis has already analyzed the pro-
teome of NCI-60 EVs, but with different assumptions 
[84]. In this research, the investigation aimed to deter-
mine the potential support of EV proteomes in facili-
tating the functional transfer of cancer hallmarks. The 
study conducted a meta-analysis, where a comparison 
was made between EVs and entire cell proteomes derived 
from the NCI-60 cell lines. A distinct subset of proteins 
within each cancer hallmark signature was identified, 

demonstrating both high abundance and consistent 
expression within EVs across all cell lines.

To our knowledge, ours is the first study to classify 
such a large number of tumor types based on proteomic 
data from EVs, looking for discriminative patterns, and 
to investigate the predictive value for donor cell invasion 
capacity and proliferation rate using machine learning 
techniques, which could greatly help in evaluating the 
potential clinical applications of EVs.

Conclusions
Our results suggest that the extensive body of knowledge 
on EV omics research to date is worth re-exploring with 
the emerging and increasingly available state-of-the-art 
methods. Integrating proteomic data from EVs from dif-
ferent tumor types with cell physiological and clinical 
data can help to reveal the full potential of EVs in oncol-
ogy. By studying their molecular content, it may be pos-
sible to obtain information on tumor properties that are 
crucial for patient treatment, such as invasion and pro-
liferation capacity. In addition, they may also allow us to 
unravel the signaling pathways and biological processes 
underlying the specific characteristics of different tumor 
types, helping to identify potential drug targets.
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