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Abstract 

G protein-coupled receptors (GPCRs) play a key role in regulating the homeostasis of the internal environment 
and are closely associated with tumour progression as major mediators of cellular signalling. As a diverse and multi-
functional group of proteins, the G protein signalling regulator (RGS) family was proven to be involved in the cellular 
transduction of GPCRs. Growing evidence has revealed dysregulation of RGS proteins as a common phenomenon 
and highlighted the key roles of these proteins in human cancers. Furthermore, their differential expression may be 
a potential biomarker for tumour diagnosis, treatment and prognosis. Most importantly, there are few systematic 
reviews on the functional/mechanistic characteristics and clinical application of RGS family members at present. In 
this review, we focus on the G-protein signalling regulator (RGS) family, which includes more than 20 family mem-
bers. We analysed the classification, basic structure, and major functions of the RGS family members. Moreover, we 
summarize the expression changes of each RGS family member in various human cancers and their important roles 
in regulating cancer cell proliferation, stem cell maintenance, tumorigenesis and cancer metastasis. On this basis, 
we outline the molecular signalling pathways in which some RGS family members are involved in tumour progres-
sion. Finally, their potential application in the precise diagnosis, prognosis and treatment of different types of cancers 
and the main possible problems for clinical application at present are discussed. Our review provides a comprehen-
sive understanding of the role and potential mechanisms of RGS in regulating tumour progression.
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Background
Cancer is one of the leading causes of human death 
worldwide. According to GLOBOCAN data released in 
2021 by the International Agency for Research on Can-
cer, a division of the World Health Organization, there 
were approximately 19.3 million new cancer cases and 
approximately 10 million deaths worldwide in 2020 [1]. 
Cumulative alterations in genome structure and function 
drive the development of cancer [2]. With the deepening 
understanding of tumours, their key characteristics have 
been generalized and are constantly being updated [3]. At 
the same time, new tumour-associated markers and their 
mechanisms of action are being discovered. Therefore, 
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it is essential to summarize the typical mechanisms and 
newly discovered pathways of tumour-associated pro-
teins mediating cancer progression so that more targeted 
interventions can be implemented to control cancer pro-
gression, further reducing cancer mortality and prolong-
ing patient survival.

Previous studies have shown that G protein signalling 
regulator (RGS) proteins can participate as GTP hydro-
lases (GAPs) in the recycling process of Gα-GDP and 
Gα-GTP in heterotrimers (GPCRs). In the absence of 
agonists, the α-subunit of the seven-transmembrane G 
protein binds to GDP to form Gα-GDP, which binds to 
the Gβγ heterodimer to form the Gα-GDP/Gβγ closed-
cycled heterotrimer. The heterotrimer complex further 
interacts with the G protein-coupled receptor (GPCR). 
In this process, the binding of GDP to Gα attenuates 
the spontaneous interchange activity of GDP with GTP. 
In contrast, the Gβγ heterodimer promotes the cou-
pling of Gα to GPCRs. Upon binding with an agonist, 
GPCRs undergo a conformational change that facili-
tates the exchange of GDP for GTP on the Gα subunit 
of the heterotrimeric complex. Both GTP-bound Gα in 
the active form and the released Gβγ heterodimer can 
subsequently stimulate the corresponding downstream 
signalling. When GAP is present, it can promote the 

hydrolysis of small phosphate groups in Gα-GTP and 
interchange with GDP to form Gα-GDP again and then 
resume the change process into the Gα-GDP/Gβγ het-
erotrimer. The RGS family can act as a GAP instead of 
regulating the enzymatic reaction between GDP and 
GTP [4–6] (Fig. 1) [7].

In recent years, GRCRs have been implicated in the 
development of a wide range of diseases. RGS proteins, 
as key regulators of GPCR signalling, may also play an 
important role in modulating the pathophysiological pro-
gression of many types of diseases. The RGS superfamily 
contains a number of regulators that bind to Gα through 
the "RGS box" domain (also known as the RH domain), 
which contains a 120 amino acid signature [7]. In cancer 
progression, these RGS proteins act as gating switches 
that are critical for regulating tumour cell growth, prolif-
eration, differentiation, and migration [5, 8, 9]. However, 
there are very limited systematic reviews on the func-
tional/mechanistic characterization and clinical applica-
tions of RGS family members in tumours at present.

In this review, we provide an overview of recent 
reports on individual members of the RGS family, sum-
marize the history and structure of RGS and its role 
in cancer, and further discuss the molecular mecha-
nisms that govern RGS protein expression, providing 

Fig. 1 The canonical regulation pattern of GPCR signalling by RGS proteins. When G protein-coupled receptors (GPCRs) specifically recognize 
and bind to agonists, GPCRs cause conformational changes that promote the activation of Gα-GDP on the α subunit of the heterotrimer complex 
in exchange for free GTP, plus the release of Gβγ dimers that can all continue to conduct some downstream signals or effectors. RGS proteins are 
Gα-GTP hydrolase accelerator proteins (GAPs) that can terminate the signal transduction of GPCRs by promoting Gα-GTPase activity and GTP 
hydrolysis inactivation after interchanging with GDP and promoting the heterotrimer complex Gβγ to recombine with the receptor on the cell 
membrane
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insights into future novel targeted drug development 
and related cancer therapies.

Classification, structural domains and regulation 
of the classical RGS protein family in cancer
Mammalian G protein signalling proteins (RGS) con-
tain more than 20 family members. Based on sequence 
homology and different protein structural domains, 
the traditional RGS family can be divided into four 
subfamilies, RGS A/RZ to RGS D/R12. Each subfam-
ily contains multiple members, and each RGS protein 
contains one or more structural domains of approxi-
mately 120 amino acids (RH), called RGS boxes, that 
are responsible for regulating the activity of GTPase-
activating protein (GAP). In turn, GAP is a key regula-
tory point in the GPCR cycle that promotes G protein 
inactivation. Thus, the RGS protein greatly enhances 
the action of GAP, further increasing GTPase activity 
by a thousand-fold (Fig. 2) [10].

RGS A/RZ subfamily
The RGS A/RZ subfamily consists mainly of three 
members, RGS17, RGS19, and RGS20, all of which are 
small and simple proteins with the major associated 
structural domain cysteine string (CYS) located near 
the N-terminus, which is used mainly to regulate the 
membrane localization of RGS proteins (Figs.  2 and 
3A). It is used mainly to regulate membrane localiza-
tion and interacts with other components as a bind-
ing site and is small in molecular weight but conserved 
and stable [11]. Garnier et  al. found that RGS17, also 
known as RGSZ2, is expressed almost exclusively in 
the brain, with little expression in other tissues of the 
body [12]. However, in the pathological state of can-
cer, it is significantly expressed in a variety of tissues. 
In particular, through methods such as high-through-
put screening, many studies have identified RGS17 
as a new target in lung and prostate cancers, and the 
specific mechanism may be related to the induction of 
tumour cell proliferation by RGS17 through regulation 

Fig. 2 Classical RGS subfamily and related structural domains. Based on the RGS homology and structural domains, the classical RGS proteins 
were divided into four subfamilies. The four subfamilies are RGS A/RZ, B/R4, C/R7 and D/R12, and the members of each subfamily are also listed 
in the figure. Each subfamily contains a G protein-specific RGS domain (RH), the "RGS Box", which acts on the Gα subunit and exhibits GAP activity, 
in addition to the cysteine string (CYS) in the RGS A/RZ subfamily. R4 subfamily RGS3 also has the domains of PSD-95, Dlg, and ZO-1/2 (PDZ); 
the R7 subfamily also contains the Dishevelled/EGL10/pleckstrin domain (DEP) and G-protein γ-like domain (GGL); and the R12 subfamily contains 
the phosphotyrosine-binding domain (PTB), Raf-like Ras-binding domain (RBD) and G-protein regulatory motif (GoLoco) in addition to the PDZ 
structural domain
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of the cAMP-PKA-CREB pathway [13–16]. It was also 
reported that RGS17 was aberrantly highly expressed 
in colorectal, hepatocellular and cervical cancer tissues 
and their cell lines [17–19], but interestingly, it is mark-
edly reduced in ovarian cancer and appears to func-
tion as a tumour suppressor gene, which may be due 
to the inhibition of the LPA-mediated AKT activation 
pathway by the expression of RGS17 [20] (Figs. 4 and 5, 
Table 1).

RGS19 is less known than RGS17, and this may be 
related mainly to its low expression level in the nor-
mal homeostasis of the organism. In a previous study, 
Michael E. et  al. found that RGS19 can regulate Wnt-
β-catenin signalling by inactivating Gα0, which is 
involved in numerous life processes in organisms [112], 
among which Wnt-β-catenin signalling can promote 
heart formation and cardiomyocyte differentiation in 
mice. However, in RGS19-overexpressing P19 teratoma 

Fig. 3 Basic structure and different structural domains of RGS proteins. A Basic structural domains of the RGS A/RZ subfamily, which contains RGS 
17, RGS 19 and RGS 20. Red: RGS-Box (RGS domain). B Basic structural domains of the RGS B/R4 subfamily, which contains RGS 1–5, RGS 8, RGS13, 
RGS16, RGS18 and RGS 21. Red: RGS-Box (RGS domain). For RGS3, yellow: C2 domain, red: RGS-Box, purple: PDZ domain. C Basic structural domains 
of the RGS C/R7 subfamily, which contains RGS6, RGS7, RGS9 and RGS11. Green: DEP domain, grey: G protein domain, red: RGS-Box. D Basic 
structural domains of the RGS D/R12 subfamily, which contains RGS10, RGS12 and RGS14. Purple: PDZ domain, blue: PID domain, red: RGS-Box, 
green: RBD1 domain, yellow: RBD2 domain, orange: Goloco domain
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cells, RGS19 inhibited cardiomyocyte differentiation by 
blocking Wnt signalling. By further studying RGS19-
overexpressing transgenic mice (RGS19TG), Young 
Rae Ji et  al. demonstrated that RGS19 affects cardiac 
development and negatively regulates cardiac func-
tion [113]. During the development of human solid 
tumours, RGS19 appears to promote the proliferation 
of tumour cells in  situ while inhibiting the migratory 
development of tumour cells. According to The Cancer 
Genetic Atlas (TCGA) and DepMap databases, RGS19 
has been reported to be overexpressed in numerous 
cancers, particularly in bladder and ovarian cancers, 
where RGS19 can achieve unrestricted cell proliferation 
by enhancing AKT signalling and cell cycle control of 
the immune system. RGS19 also regulates the cAMP/
PKA/CREB pathway and transcriptionally upregu-
lates the tumour metastasis suppressor Nm23, thereby 
attenuating the migration ability of tumour cells (Figs. 4 
and 5, Table 1). Beyond this, there may be more com-
plex mechanisms that have not been reported and that 
may require further exploration and study [24, 25, 114].

The RGS A/RZ subfamily, also known as RGSZ1 or 
Ret RGS in addition to RGS17 and RGS19, selectively 
binds and functions with Gαi2 and Gαz subunits. Its 
expression is similar to that of RGS19, with little or no 
expression in normal organisms. However, according 
to recent reports, RGS20 has been found to be signifi-
cantly more highly expressed in various cancer tissues 
than in adjacent normal tissues, such as breast can-
cer, metastatic melanoma, hepatocellular carcinoma, 
and bladder cancer. Li Gang et  al. found that RGS20 
could activate NF-κB signalling through a series of bio-
chemical assays, such as MTT, anchorage-independent 
growth assays, luciferase activity assays and related 
animal models. By overexpressing and knocking down 
RGS20 in different human cancer cell lines, Lei Yang 
et  al. found that RGS20 could increase the expression 
of metastasis-related markers and downregulate the 
expression of adhesion proteins, which could indicate 
that RGS20 expression could promote cell proliferation 
and enhance the invasive migration ability of cancer 
cells [27, 29, 30] (Figs. 4 and 5, Table 1).

Fig. 4 Overview of RGS family protein expression in various human tumour types. Arrows indicate the regulation in the respective tumour cells. 
The main concern is the regulation of RGS in the tumours described in this review (brain, lung, gastric, renal cell, colorectal, ovarian, cervical, thyroid, 
breast, hepatocellular, pancreatic, bladder, prostate, and melanoma). This figure was created with permission and drawn by Figdraw
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Fig. 5 Schematic diagram of the relevant signalling pathways in which RGS family members function
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Table 1 RGS family members as potential biomarkers and their role in different tumour types

RGS family RGS member Tumour Expression 
(Compare to 
normal)

Effects

RGS A/RZ RGS17 Non-small cell lung cancer Up Cell proliferation, regulation of the cAMP-PKA-CREB pathway [15, 16] 
and miRNA-199, miR-203 inter-regulation [21, 22]

Prostate cancer Up Inhibition of AMP kinase, promoting development [13, 15, 16] and miR-
203 interactions affecting cell proliferation invasion and migration ability 
[23]

Ovarian Cancer Down Regulation of LPA-mediated AKT activation process [20]

Cervical cancer Up Positive correlation with Lincoo483, promotes proliferation and invasion, 
inhibits apoptosis [19]

Hepatocellular carcinoma Up Regulation of cancer cell proliferation, migration and invasion [18]

Colorectal cancer Up Promotes growth and migration [17]

RGS19 Ovarian cancer Up Attenuates cell cycle control and enhances AKT signalling [24]

Bladder cancer Up Significant effect on survival rate [25]

Non-small cell lung cancer Down Inhibition of Ras activation-induced tumour formation [26]

RGS20 Breast cancer Up Downregulation of E-calmodulin expression, promoting metastasis [27]. 
Promotes lymph node metastasis, cancer progression, and is associated 
with poor prognosis [28]

Ovarian cancer ND Involvement in MAPK, AKT signalling pathways [29]

Bladder cancer Up Activation of NF-κB signalling is associated with cell proliferation migra-
tion, overall survival [30]

Hepatocellular carcinoma Up Associated with lincRNAs with oncogenic potential role [29]

Melanoma Up Downregulation of E-calmodulin expression promotes metastasis [27]

Oral cancer Up Reversal of miR-365, Enhances cell viability and motility [31]

RGS B/R4 RGS1 Breast cancer Up Affects inwards flow of calcium, and activation of ERK and AKT kinases, 
affects cAMP levels, regulates inwards flow of calcium, and immune 
escape [32, 33]

Ovarian cancer Up Associated with immune infiltration [34]

Cervical cancer Up Affects T-cell activation and significantly correlates with immune infiltra-
tion and ICI target expression [35]

Non-small cell lung cancer Up Affects inwards flow of calcium, activation of ERK and AKT kinases, 
immune escape [33]

Melanoma Up Value-added migration: with tumour thickness, mitotic rate, presence 
of damaged vessels; anterior lymph node metastasis [36, 37]

B-cell lymphoma Up Impact on overall survival [38]

RGS2 Breast cancer Down Mediates the MCPIP1 pathway to inhibit growth [39]. Negatively cor-
related with miR-183-5p [40] Mediated Slug regulates epithelial-mesen-
chymal transition [41]

Bladder cancer Down Inhibition by UHRF1 is associated with cell proliferation [42] Regulation 
by ZHX3 affects the migration and invasive ability of tumour cells [43]

Ovarian cancer Down Epigenetic changes related to histone modifications and DNA meth-
ylation [44]. Regulation of lipopolysaccharide-mediated downstream 
signalling [45]

Prostate cancer Down Growth inhibitory factor, ERK 1/2 is involved; affects androgen-independ-
ent tumour cell growth [46, 47]

Non-small cell lung cancer Down Degrading transcription factors, a biomarker of proliferative retardation 
and poor prognosis [48]

Stomach cancer Up Significant association with CD8 + T-cell infiltration [49]

Colorectal cancer Down Participates in ERK phosphorylation, regulates Rho activity, and affects cell 
proliferation [50, 51]; has a role in cancer metastasis [52]

Melanoma Down Partial effect antagonist, affecting cell proliferation; [53] inhibits MAPK 
and AKT pathways [54]
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Table 1 (continued)

RGS family RGS member Tumour Expression 
(Compare to 
normal)

Effects

Oral cancer Down Associated with proliferation of lymphovascular invading cells [55]

Glioblastoma Down Stress [56], cell proliferation, migration and invasion are affected 
by TRPM2-AS expression [57]

RGS3 Non-small cell lung cancer Up Negatively correlated with miR-25 and influences apoptotic cell death 
[58]

Stomach cancer Up Negatively regulates microRNA-133a and affects cell proliferation [59]

Hepatocellular carcinoma Up Promotes value addition and inhibits apoptosis [60]

RGS4 Breast cancer Down Affects pseudopod formation, affects G protein-coupled receptor signal-
ling, and is associated with migratory invasion [61–63]

Ovarian cancer Down Negative regulation that attenuates LPA-stimulated cell signalling [64]

Thyroid cancer Down Interacts with miR-3663-3p and is involved in cell proliferation, apoptosis 
[65]

Colorectal cancer Down Participates in ERK phosphorylation, regulates Rho activity, and affects cell 
proliferation [50]

Renal cell carcinoma Down Associated with P16 and poor prognosis [66]

Non-small cell lung cancer Down Proliferation is positively correlated, but migration is not; [67] negative 
correlation with lymph node metastasis and TNM staging [62]

Glioblastoma Up Affects the invasion and migration ability of cancer cells and induces 
apoptosis [68] Regulates the mTOR signalling pathway [69]

Neuroblastoma Down Inhibits 5-HT (1B) receptor coupling; inhibits Akt pathway [70] regulates 
δ-opioid receptor signalling [71]

RGS5 Ovarian cancer Up Hypoxia reduces the MAPK/ERK signalling pathway [72] and affects 
the angiogenic microenvironment [73]

Thyroid tumours Up Physiological modulators of calcium-sensitive receptors [74]

Parathyroid tumour Up Inhibition of signalling at calcium-sensitive receptors [75]

Non-small cell lung cancer Up Associated with invasion and metastasis; [76] induces apoptosis 
and affects adhesion capacity [77]

Hepatocellular carcinoma Up Induction of epithelial-mesenchymal transition is associated with hepato-
cyte injury and fibrosis [78] and is involved in the regulation of GSK-3β 
activity and Wnt/β-catenin signalling [79]

Renal cell carcinoma Up Involved in GPCR-mediated signalling [80] and affects angiogenesis [81]

Stomach cancer ND Positively correlated with tumour differentiation and negatively correlated 
with MVD [82, 83]

Pancreatic cancer Up Pericyte markers that affect the normalization of the tumour vascular 
system [84]

RGS8 ND ND ND

RGS13 B-cell lymphoma Up A possible novel marker for MCL [85]

RGS16 Breast cancer Down Attenuates phosphatidylinositol 3-kinase signalling, affects cell prolifera-
tion [86] and is negatively correlated with tumour cell aggressiveness [87]

Colorectal cancer Up Prognostic markers [88]

Melanoma Up Negatively correlated with T-cell stemness-related genes [89]

Pancreatic cancer Down Interaction with FosB affects lymph node metastasis and overall survival 
[90]

Chondrosarcoma ND Negatively correlated with miR-181a and growth, angiogenesis 
and metastasis [91]

Glioblastoma Down Activation of the PI3K-AKT pathway affects survival, and epithelial-mesen-
chymal transition is significantly associated with poor prognosis [92]

RGS18 ND ND ND

RGS21 ND ND ND

RGS C/R7 RGS6 Breast cancer Down Activates apoptosis, involved in Bax/Bcl-2, P53 pathway [93, 94], promotes 
cell apoptosis and inhibits cell growth [95]

Bladder cancer Down Tumour suppressors that promote P53 activation and DNMT1 downregu-
lation [96–98]
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RGS B/R4 subfamily
The RGS B/R4 subfamily is the most abundant mem-
ber of these four subfamilies, including RGS1-5, RGS8, 
RGS13, RGS16, RGS18, and RGS21. All of these members 
are between 20–30 KD in size, except for RGS3, which 
has a larger molecular weight. The reason for the large 
molecular weight of RGS3 is that its structural domain 
is composed of PDZ [115] (Figs.  2 and 3B). Although 
the molecular weight of R4 family members is generally 
small, surprisingly, the major structural domain of these 
proteins, the "RGS Box", is able to recognize and bind dif-
ferent small subunit conformations of Gα to classify them 
[116], which is an important regulatory point for the par-
ticipation of R4 members in the GPCR cycle. As the tis-
sue distribution of each member of the RGS R4 subfamily 
and its relationship with physiology and disease have 
been reported in many studies previously [115, 117], we 
will mainly summarize its relationship with the develop-
ment of each solid tumour here.

RGS1, an important member of the R4 RGS subfamily, 
has been shown to be associated with a variety of B-cell 
activation and B-cell chemokine regulatory induction 
signals [118], which are involved mainly in the immune 
response, interfering with the normal clearance function 
of lymphocytes, creating an immune escape, and provid-
ing a favourable microenvironment for the development 
of tumour cells [32]. However, the exact mechanism is 

not well understood. RGS1 is significantly upregulated in 
a variety of solid tumours, including renal cell tumours, 
melanoma, ovarian cancer, and cervical cancer, among 
others [119]. It was demonstrated that in melanoma, 
RGS1 can regulate Gαs-mediated phosphorylation of 
AKT and ERK to promote melanoma development; how-
ever, interestingly, this regulation is not involved in the 
hydrolysis process of GTP in GPCRs, and it has a non-
GAP function [36, 37]. Moreover, Javier Rangel et al. also 
reported that upregulation of RGS1 expression was asso-
ciated with increased tumour thickness and increased 
mitotic rate. Although the exact mechanism of action 
remains to be discovered, it is certain that RGS1 pro-
motes tumour cell proliferation, migration and invasion 
and is associated with poor prognostic survival in diffuse 
large B-cell lymphoma and multiple myeloma [38, 120] 
(Figs. 4 and 5, Table 1).

In comparison to RGS1, RGS2 shows some differences. 
The expression of RGS2 is generally downregulated in 
most solid tumours, which is very different from the 
expression of RGS1. RGS2 specifically recognizes and 
prefers binding of Gαq subunits over other family mem-
bers for GAP action [45]. Therefore, RGS2 is more char-
acteristic of inhibiting cancer development than other 
members. The expression of RGS2 mRNA in breast can-
cer tissues is lower than that in the normal group, the 
expression of RGS2 in cancerous breast cells is also lower 

Table 1 (continued)

RGS family RGS member Tumour Expression 
(Compare to 
normal)

Effects

Ovarian cancer Down Negative regulation that attenuates LPA-stimulated cell signalling [64]

Non-small cell lung cancer Down Interacts with SMAD4 and inhibits epithelial-mesenchymal transition [97]

Colorectal cancer Down Associated with CEA levels, TNM staging, and lymphatic metastasis [99]

Pancreatic cancer Down Associated with tumour differentiation, pT classification, and survival [100]

RGS7 Melanoma Down Inhibitory factor, associated with tumour cell anchor growth, migration 
[101]

RGS9 ND ND ND

RGS11 Non-small cell lung cancer Up Biomarkers, which play an important role in cancer-related metastasis 
[102] are associated with advanced and aggressive cancer [103]

RGS D/R12 RGS10 Colorectal cancer Down There is a negative correlation with DNA methylation [104]

Ovarian cancer Down Antagonizes mTOR signalling, cancer cell viability [105, 106]. Related 
to histone deacetylation and DNA methylation [107, 108]

Neuroblastoma ND Involved in the regulation of AKT signalling pathway in relation to cellular 
self-viability [105]

RGS12 Prostate cancer Down Negative regulation of AKT and MNX1 pathways [109]

Oral cancer Down Interferes with PTEN phosphorylation and ubiquitination-like modifica-
tions that affect cell proliferation and migration [110]

Osteosarcoma Down Inhibitory factor, inhibits tumour metastasis [111]

RGS14 ND ND ND

ND Not determined
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than that in normal breast cells, and its overexpression 
can inhibit the growth of breast cancer cells, although 
this mechanism needs to be further explored [39]. RGS2 
protein expression is reduced in human prostate cancer 
specimens compared to adjacent normal or hyperplastic 
tissues, and RGS2 can regulate ERK1/2-mediated andro-
gen-independent androgen receptor (AR) activation. 
Based on this, X Cao et al. suggested that RGS2 could act 
as a growth inhibitor for androgen-independent pros-
tate cancer cells [46, 121]. It has also been reported that 
RGS2 expression could promote the migration and inva-
sive ability of bladder uroepithelial carcinoma, and that 
inhibition of RGS2 expression in bladder uroepithelial 
carcinoma provides a promising target for the treatment 
of cancer [43]. However, RGS2 indicates the opposite 
in other tumour cancer types, and Yang S. et  al. dem-
onstrated elevated expression levels of RGS2 in gastric 
cancer cells by protein blotting and immunofluorescence 
staining. Pancancer analysis also showed that RGS2 was 
significantly associated with TMB, TID and CD8 + T-cell 
infiltration in other cancer types [49] (Figs.  4 and 5, 
Table 1).

RGS3 differs from other members of the R4 family in 
that, in addition to the "RGS Box" box, it has a PDZ struc-
tural domain at its C-terminus, which allows RGS3 to 
bind to GSK3β and inhibit its activity, enhancing the Wnt 
β-Catenin signalling pathway and thus promoting epi-
thelial-to-mesenchymal transition (EMT) [122]. EMT is 
closely related to the aggressiveness and stem cell proper-
ties of cancer cells [123]. Briefly, RGS3 enhances the inva-
sive and stem cell properties of cancer cells and interacts 
with noncoding small RNAs, which are important for 
the development of tumour cells. For example, miR-25 
is negatively correlated with RGS3 expression, and its 
interaction is involved in the regulation of cancer cell 
stemness in non-small cell lung cancer [58]. MiR-145-5p 
and RGS3 are positively promoted in hepatocellular car-
cinoma and are important in promoting cell proliferation 
and inhibiting apoptosis [60]. In addition, microRNA-
133a is also negatively correlated with RGS3 levels in gas-
tric cancer, with significantly higher expression of RGS3 
in gastric cancer cells and tissues than in corresponding 
normal tissues and cells [59] (Fig. 4, Table 1).

RGS4 is also a negative regulator of GPCRs, which can 
block relevant signalling by accelerating the hydrolysis 
of active Gα-GTP. RGS4 can form complex signalling 
molecule transduction complexes with different recep-
tors, effectors, scaffolding proteins and other signal-
ling molecules, affecting the localization, activity and 
stability of signals in cells and playing an important 
regulatory role in tumour tissues or cells [61]. Accord-
ing to Cheng Chuanle et al., the expression of RGS4 was 
higher in normal lung tissues than in non-small cell lung 

cancer specimens, and correlation analysis showed that 
the expression level of RGS4 was negatively correlated 
with lymph node metastasis and TNM stage, leading to 
RGS4 being considered a novel tumour suppressor. In a 
nude mouse metastasis model, overexpression of RGS4 
was shown to inhibit the metastatic process of tumours 
in vivo [62]. This protein is also significantly expressed in 
normal breast epithelial cells, and silencing of RGS4 in 
breast cancer cells enhances the invasive ability of cancer 
cells. Mu Xianmin et al. found that targeted drugs, while 
increasing the expression of RGS4, inhibit the formation, 
migration and invasion of plate-like pseudopods in breast 
cancer cells, the underlying mechanism of which has not 
been elucidated [61]. In addition, RGS4 exhibits features 
in other tumour types that do not share the abovemen-
tioned functions. For example, in osteosarcoma tumour 
tissues, RGS4 interacts with a noncoding RNA (miR-
874-3p) and affects the value-added and migration of 
cancer cells, and RGS4 overexpression promotes the 
value-added and migration of human osteosarcoma cells 
[124] (Figs. 4 and 5, Table 1).

RGS5, a protein that promotes apoptosis and resists 
tumour cell proliferation, is also a member of the RGS R4 
family, is involved in the negative regulation of the GPCR 
cycle and is a hallmark molecule of tumour-associated 
pericytes; however, in the tumour microenvironment, 
proapoptotic RGS5 can be restricted by other regulatory 
signals or can even be converted to antiapoptotic RGS5 
to enhance pericyte survival, and high expression in sev-
eral cancers is associated with poor tumour growth and 
prognosis [125, 126]. RGS5 is highly expressed in most 
hepatocellular carcinoma tissue samples and cell lines. 
Hu et  al. showed that knockdown of RGS5 expression 
significantly inhibited the migration and invasive ability 
of hepatocellular carcinoma cells, while overexpression 
promoted the development of epithelial-mesenchymal 
transition in hepatocellular carcinoma cells [127]. There 
is evidence that RGS5 may be involved in the regulation 
of GSK-3β activity and Wnt/β-catenin signalling, affect-
ing the development of hepatocellular carcinoma [79]. 
Moreover, Dan Wang et al. showed that RGS5 was abun-
dantly expressed in epithelial ovarian cancer compared 
to normal ovarian tissue, especially in the cytoplasm and 
microvascular structures (Figs.  4 and 5, Table  1). How-
ever, the underlying mechanism is unclear and may be 
related to the involvement of RGS5 in the regulation of 
angiogenesis [72].

RGS16 is one of the major oncogenes of the R4 fam-
ily and promotes the malignant development of various 
human tumours [87]. Ruoyu Huang et  al. demonstrated 
that RGS16 expression was positively correlated with 
glioma grade and that overexpression of RGS16 was 
closely associated with cell proliferation, migration, 
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epithelial-mesenchymal transition, and immune and 
inflammatory responses in gliomas [128]. In addition, 
the mRNA and protein levels of RGS16 were reported 
to be higher in colorectal cancer tissues than in the cor-
responding normal tissues; therefore, RGS16 may be 
considered a predictive marker for cancers such as colo-
rectal and pancreatic cancers [88, 90]. There is also evi-
dence that inhibition of RGS16 can directly or indirectly 
enhance the migration and invasive ability of breast can-
cer cells, but the underlying mechanisms remain unclear 
[87] (Figs. 4 and 5, Table 1).

RGS C/R7 subfamily
The structural domains of the RGS C/R7 family con-
tain not only the "RGS Box" (RH) structure but also 
the Dishevelled/EGL10/Pleckstrin domain (DEP) and 
the G-protein γ-like domain (GGL). The DEP domain 
binds syntaxin-like proteins such as R7 binding protein 
(R7BP) to mediate intracellular localization, and the GGL 
domain can bind the  GB5 subunit [5] (Figs.  2 and 3C). 
The R7 subfamily contains four major members, RGS6, 
RGS7, RGS9 and RGS11. The RGS6 structural domain 
is responsible for the GAP activity of RGS6 and other 
RGS proteins and allows it to negatively regulate the 
Gαi/o protein subunit, which is specifically involved in 
the development and progression of many cancer types 
[95]. In colorectal cancer and ovarian cancer, both RGS6 
mRNA and protein expression are decreased, which is 
closely correlated with tumour size, CEA level, and TNM 
stage and is more prone to distant metastasis in lymph 
nodes [99]. RGS6 is associated with apoptosis, mediates 
apoptosis and cardiomyopathy induced by chemothera-
peutic agents (adriamycin), etc., and is associated with 
poor prognosis in patients with pancreatic cancer [129, 
130]. Interestingly, RGS6 has also been shown to regulate 
G protein-independent signalling. For example, in breast 
cancer, RGS6 promotes the degradation of the DNA 
methyltransferase DNMT1, blocking the Ras system 
from performing its important function of promoting 
cell apoptosis and inhibiting cell proliferation [131, 132] 
(Figs. 4 and 5, Table 1).

RGS7 and RGS11, also major members of the R7 fam-
ily, can participate in the negative regulation of GPCRs 
and form a costable complex with the atypical G protein 
Gβ5. As a self-protection mechanism against myocar-
dial fibrosis caused by the side effects of chemotherapy 
drugs, the expression of RGS7 and RGS11 in the heart 
increases after the patient receives chemotherapy, but 
the mechanism remains unelucidated [133, 134]. RGS7, 
initially localized as a tumour suppressor, is unstable in 
melanoma and prone to recurrent mutations, thus pro-
moting the migration and invasion of melanoma cells, 
which may be related to the diminished activity of RGS7 

in catalysing Gα-GTP hydrolysis and the instability of 
the protein itself [101]. Shenghui Yang et  al. found that 
RGS11 is highly expressed in the lymph node and bone 
metastases of lung adenocarcinoma patients, but inter-
estingly, the enhanced and diminished RGS11 expres-
sion revealed its specific role only in cell migration, and 
no correlation with cell invasion or proliferation has been 
reported [101]. Using the KM-plotter database, Yuexin 
Hu et  al. found that RGS11 is overexpressed in ovarian 
cancer and promotes the development and progression 
of ovarian cancer, but the specific mechanism has not 
been explored [34] (Figs. 4 and 5, Table 1).

RGS D/R12 subfamily
Unlike the other three subfamilies, the RGS D/R12 sub-
family contains family members that vary widely, with 
RGS10 being a relatively simple RGS protein with a size 
of 20 kDa, while RGS12 and RGS14 are much larger and 
more complex than RGS10. RGS12 and RGS14 have a 
tandem RAS-binding domain (RBD) and a C-terminal 
GoLoco motif (GoLoco), which are guanine nucleo-
tide dissociation inhibitors (GDIs) of the Gai/o-subunit 
[5] (Figs.  2 and 3D). Feyzanur Yildirimtepe et  al. found 
higher expression of RGS10 in normal colorectal tis-
sues than in tumour tissues and a negative correlation 
between DNA methylation and RGS10 transcripts [104]. 
In ovarian cancer cells, inhibition of RGS10 expression 
promotes the activation of the AKT signalling pathway, 
leading to enhanced cell proliferation, which in turn 
promotes the progression of ovarian cancer. Therefore, 
RGS10 may be one of the key targets for the treatment of 
cancer [105] (Fig. 4, Table 1).

RGS12 has additional N-terminal motifs, including the 
PSD-95/DLG/ZO1 (PDZ) structural domain and phos-
photyrosine binding (PTB) structural domain, and is 
the classical RGS protein family member with the high-
est molecular weight (Fig.  3D). The PSD-95/DLG/ZO1 
(PDZ) structural domain can bind to mitogen-activated 
protein kinase (MEK2), and the PTB structural domain 
(PTB) can bind to N-type calcium channels. RGS12 is 
involved in regulating a variety of important transmis-
sions in the body, which is important for normal as well 
as tumour tissues and cells [128]. Yongquan Wang et al. 
found low RGS12 protein expression in prostate cancer 
tissues and cells obtained from African-Americans and 
demonstrated that RGS12, as a novel tumour suppres-
sor, can inhibit the AKT and MNX1 signalling pathways 
[109]. RGS12 can also act as a tumour suppressor in oste-
osarcoma by inhibiting the expression and function of 
other relevant markers of osteosarcoma [111]. C Fu et al. 
demonstrated that knocking down RGS12 in oral squa-
mous cell carcinoma significantly increased cancer cell 
proliferation and migration in transgenic mice and that 
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RGS12 can inactivate the AKT/mTOR signalling path-
way, thereby inhibiting tumour cell development [110] 
(Figs. 4 and 5, Table 1). Collectively, these findings indi-
cate that RGS12 acts as a tumour suppressor and a novel 
promising target for the treatment of various cancers.

The biological impact of RGS8, RGS18 and RGS21 of 
the R4 subfamily, RGS9 of the R7 subfamily and RGS14 
of the R12 subfamily on tumours and cancers has not 
been systematically reported. RGS13 of subfamily R4 has 
been used as a new specific marker only for condyloma 
lymphoma (MCL) in B lymphoma, and the mechanism of 
RGS13 in MCL has not been elucidated [85]. However, its 
potential impact on tumour/cancer cell generation and 
development and the high value of targeted cancer ther-
apy will be further explored in the future.

Conclusion and perspective
RGS proteins play a crucial role in cancer progression, 
and their roles in cancer are closely related to protein 
structure. All four RGS subgroups contain the RGS box 
(RH) signature motif and are involved in proliferation, 
apoptosis, migration, and kinase signalling in a variety 
of cancers, suggesting that this motif may contribute to 
their role in tumour kinase signalling. There are some 
structural differences between these four subgroups, and 
therefore, they also have some functional differences. 
Even members of the same subgroup show some func-
tional differences; for example, RGS2 and RGS4 in the B/
R4 subgroup have a low expression status in a variety of 
tumours [41, 49, 62, 63], whereas RGS1 and RGS5 have a 
high expression status in most tumour types [32, 35, 72, 
73] (Table 1). This may be due to other structural differ-
ences that cause functional changes, which need to be 
further investigated.

Current studies of RGS proteins in cancer have 
focused on phenotypic factors, such as the inhibitory or 
promotional role of RGS in cell proliferation, apopto-
sis, necrosis, metastasis, and drug resistance [15, 17, 76, 
81]. It is puzzling that although RGS proteins have sim-
ilar conserved structural domains, some RGS proteins 
have pro-cancer properties, while others play opposite 
roles. For example, some RGS proteins, namely, RGS1, 
RGS3, RGS5, and RGS13, have tumour-promoting 
effects, whereas other proteins, namely, RGS2, RGS4, 
RGS6, RGS10, and RGS12 have tumour-suppressive 
effects. This may be due to undetected structural dif-
ferences or specific structural changes in different 
tumours. In addition, depending on the tumour type, 
some RGS proteins play both tumour-suppressive and 
tumour-promoting roles, which may be the mechanism 
for their different roles in different tumour types. For 
example, RGS16 plays a tumour-promoting role and is 

a potential diagnostic marker in colorectal cancer [88], 
whereas it plays a tumour-suppressive role in breast 
cancer by inhibiting the PI3K signalling pathway [87]. 
RGS proteins may affect the activation or inactivation 
of a variety of kinases in mediating GPCR signalling. 
However, the kinases directly affected by RGS proteins 
identified to date remain unknown, and the specific 
molecular mechanisms of RGS proteins in cancer pro-
gression have not been comprehensively determined. 
Therefore, more in-depth studies are needed to clarify 
the exact functions of RGS proteins and explore their 
molecular mechanisms in cancer, to provide a theo-
retical basis for more effective cancer treatment. In 
addition, most RGS proteins have been reported to be 
associated with patient prognosis, suggesting that RGS 
proteins are potential biomarkers for cancer therapy.

It is well known that the development of efficient 
drugs for the treatment of cancer is essential. Cur-
rently, based on previous reports, the functional roles 
of RGS proteins in cancer also do not seem to have sig-
nificant specificity among different tumour types. To 
further determine the specificity of the four subgroups 
of RGS in different human cancers, the researchers 
analysed the expression of RGS in a variety of cancers 
using online databases in conjunction with research 
reports. It was found that different RGS subpopula-
tions have significant specificity for certain cancers 
(Table 1, Fig. 4), which may help in their diagnosis and 
treatment. In addition, due to the structural diversity of 
RGS proteins, it is very difficult to produce inhibitors of 
single RGS proteins. Therefore, further work is urgently 
needed to find new ways to produce efficient drugs tar-
geting RGS proteins that can contribute to cancer ther-
apy and influence drug development in other areas.
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