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Abstract 

Natural killer (NK) cells are essential components of the innate lymphoid cell family that work as both cytotoxic effec‑
tors and immune regulators. Accumulating evidence points to interactions between NK cells and the central nervous 
system (CNS). Here, we review the basic knowledge of NK cell biology and recent advances in their roles in the healthy 
CNS and pathological conditions, with a focus on normal aging, CNS autoimmune diseases, neurodegenerative dis‑
eases, cerebrovascular diseases, and CNS infections. We highlight the crosstalk between NK cells and diverse cell types 
in the CNS and the potential value of NK cells as novel therapeutic targets for CNS diseases.
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Background
NK cells, belonging to the innate lymphoid cell (ILC) 
family, are crucial for innate immune responses, par-
ticipating in pathogen defense, immunosurveillance, 
and homeostasis maintenance [1]. Unlike T and B cells 
expressing diverse rearranged antigen receptors, NK 
cells express a spectrum of complex germline-encoded 
immune receptors to distinguish normal and abnor-
mal cells. The balance between activating and inhibitory 

signaling inputs determines the outcome of NK cell acti-
vation or tolerance. NK cells are activated in an anti-
gen-unspecific mode, rendering themselves as an ideal 
candidate for rapid immune responses.

Conventional wisdom has it that the central nervous 
system (CNS) is an immune-privileged site since the 
blood–brain barrier (BBB) and blood-cerebrospinal fluid 
barrier (BCSFB) insulate peripheral immune cells from 
entering the CNS. However, new perspectives in menin-
geal lymphatic vessels [2] and dural sinuses [3] have 
dramatically altered this viewpoint and expanded our 
understanding of CNS immune surveillance: constant 
and intimate interactions between CNS and peripheral 
immune system play a critical role in maintaining home-
ostasis [4]. NK cells seem to be forgotten but important 
immune cells communicating with the CNS: they can act 
as the bridge in the crosstalk between immune system 
and CNS in the context of normal aging and many neuro-
logical diseases, such as CNS autoimmune diseases (i.e., 
multiple sclerosis), neurodegenerative diseases (i.e., Alz-
heimer’s disease), cerebrovascular diseases (i.e., stroke), 
and infections. In this review, we describe the biological 
functions of NK cells and their involvement in the home-
ostatic and diseased states of CNS, and the therapeutic 
potential of NK cells-targeting strategies.
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NK cell biology
Features and classifications
NK cells originate from the same ancestor as T and B 
lymphocytes—common lymphocyte progenitor (CLP) 
and mature in the bone marrow and lymphoid organs [5, 
6]. The IFN-γ production and cytolytic capabilities are 
widely acknowledged as functional hallmarks of mature 
NK cells [7]. In terms of phenotypes, expression of CD56 
and lack of CD3  (CD56+CD3−) are typical features of 
human NK cells, while in murine NK cells, which nota-
bly lack CD56 expression, the prevalent markers include 
NK1.1, NKp46, or CD49b (DX5 antigen) [8]. On the 
basis of adhesion molecule CD56 and Fcγ receptor CD16 
expression, there are two classical subsets of human cir-
culating NK cells:  CD16+  CD56dim and  CD16−  CD56bright 
populations respectively [1].  CD56bright NK cells are gen-
erally considered as the immature phenotype and further 
differentiate into  CD56dim counterparts [9]. The former 
constitute a small part in the circulation endowed with 
the capacity to produce numerous cytokines, while the 
latter represent the majority of NK cells in the peripheral 
blood and exert powerful cytotoxicity [1, 10]. Apart from 
peripheral blood NK cells, tissue-resident NK (trNK) 
cells are also the important component of the NK cell 
pool, which respond to the complex and flexible micro-
environment. They express distinct surface receptors, 
shared  CD16−  CD56bright phenotype in different human 
tissues [7, 11]. Although murine type 1 innate lymphoid 
cells (ILC1s) have been considered as the counterpart 
of human trNK cells based on their similarity in surface 
markers and functions, this borderland between ILC1s 
and trNK cells is still a point of current controversy in the 
field [9, 12, 13].

Molecular mechanism of NK cells activation and functions
Contrarily to T and B lymphocytes, NK cells do not 
undergo the somatic gene rearrangement but express 
a diverse repertoire of activating, co-stimulatory and 
inhibitory NK cell receptors (NKRs). The combina-
tion of signals received from these receptors determines 
whether NK cells are activated or restrained [6]. Gener-
ally, normal cells constitutively express various ligands 
for NK-inhibitory receptors to restrain NK cells and 
maintain self-tolerance [14]. These constant communi-
cations assist in the functional maturation of NK cells, 
which is termed “licensing” or “education” [15]. Once 
unhealthy cells lose NK-inhibitory ligands, “licensed” 
NK cells can be rapidly activated with minimal stimulus, 
which refers to “missing self” hypothesis [16]. The acti-
vation of NK cells also relies on the enhanced activat-
ing signals, which is known as “induced self” hypothesis 
[17]. Activating NKRs, attached with adapter proteins 

containing immunoreceptor tyrosine-based activation 
motifs (ITAMs), bind to “induced-self” ligand especially 
under pathological circumstances such as tumorigenesis, 
infectious states, and DNA damage, thereby triggering a 
cascade of activation signals [17]. The threshold of NK 
cells activation is also determined by cytokine exposure, 
especially interleukin (IL)-2 and IL-15 [18]. IL-2 is pre-
dominantly generated by activated  CD4+ T cells, while 
IL-15 is produced by monocytes, macrophages, and den-
dritic cells in the periphery and neurons and glia cells 
in the brain. These two cytokines trigger similar down-
stream signaling pathways essential for NK cell survival, 
proliferation, priming and effector functions [6, 19–23]. 
Furthermore, other cytokines like IL-12, IL-18, and IL-27 
also contribute to the preactivated state of NK cells, while 
TGFβ and IL-10 assist in the development and mainte-
nance of tolerant phenotypes [24, 25]. Another major 
mechanism known for NK cell recognition and activa-
tion, aside from the “missing self” and “induced self” 
hypotheses, is the Antibody-Dependent Cellular Cyto-
toxicity (ADCC). This mechanism is initiated by the 
binding of CD16, the most potent activating receptor 
on NK cells, to the Fc domain of an IgG antibody [1, 26]. 
Upon stimulation, NK cells can efficiently kill target cells 
via multiple mechanisms including secretion of granules-
containing perforin and granzymes, and upregulation of 
FAS ligand (FASL) and TNF-related apoptosis-inducing 
ligand (TRAIL) [1, 6]. In addition to cytotoxic func-
tion, NK cells can also produce various cytokines and 
chemokines, such as pro-inflammatory factors like IFN-
γ, tumor necrosis factor (TNF)-α, and the growth fac-
tor granulocyte–macrophage colony-stimulating factor 
(GM-CSF) [8, 18].

NK cells in the CNS
NK cells are ubiquitously distributed across diverse tis-
sues and organs of human body [27]. Although it’s hard 
to obtain brain tissue samples from healthy people, mass 
cytometry and single-cell transcriptomic analyses con-
firm the existence of NK cells in the healthy mouse brain, 
which make up a small fraction (1.1 ± 0.14%) of the total 
immune cells in CNS compartments and reside mostly 
in the boundaries, like meninges and choroid plexus, 
instead of parenchyma [28, 29]. With reference to molec-
ular features, they exhibit remarkably higher levels of 
IL-2R and CD27, equivalently to human  CD56bright sub-
groups [28, 30]. In human, most NK cells in blood are 
 CD56dim while the  CD56bright population represents the 
majority in cerebrospinal fluid (CSF), perhaps because 
 CD56bright NK cells possess more adhesive and migratory 
capabilities related to passage through the BBB at steady 
state [31, 32]. However, both of them notably increase 
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during neuroinflammation, indicating that  CD56dim NK 
cells can be recruited in diseases (Fig. 1) [32].

How NK cells reach the CNS has been poorly inves-
tigated. A higher degree of NK cell migration to the 
CNS seems to occur in the condition of the BBB break-
down [33]. This complex process of NK cell trafficking 
requires multifaceted regulation, especially the aid of 
adhesion and chemokine networks. Blocking the inter-
action between the cell adhesion molecule VLA-4 on 
NK cells and VCAM-1 on endothelial cells precludes 
the ingress of NK cells into the brain parenchyma [34]. 
As to chemotaxis, NK cells express a variety of recep-
tors in response to chemokines and migrate toward a 
chemokine gradient [35]. CX3CR1, highly expressed 
by  CD56dim subsets, binds to neuron-derived CX3CL1, 
which guides the NK cell recruitment in different situ-
ations, such as ischemic stroke, parasitic infection, and 
experimental autoimmune encephalomyelitis (EAE) 
[36–39]. Beyond that, glial and vascular cells also secrete 

chemokines, like CCL2, CXCL10, and CXCL12, which 
mediate the chemoattraction of NK cells to the brain 
[40–43]. Interestingly, as recent evidence suggests skull 
bone marrow cavities can be an independent source of 
myeloid cells and B cells, the possibility might exist that 
NK cells in the CNS directly derive from their precursor 
cells in the skull [44, 45].

The meningeal lymphatic vessels offer a drainage sys-
tem allowing the egress of both molecules and immune 
cells from the subarachnoid space into the deep cervi-
cal lymph nodes (dCLNs) as well as the superficial cer-
vical lymph nodes (sCLNs), establishing a link between 
the peripheral immune system and the CNS [46]. Con-
sistent with this, human  CD56bright NK cells preferen-
tially express CCR7 and CD62L but express CXCR1, 
CXCR2, and CX3CR1 at a very low degree, which is 
crucial for the entry of NK cells into lymph nodes [47]. 
It is possible that these  CD56bright NK cells in the CSF 
may patrol the CNS, support normal brain functions 

Fig. 1 NK cells in the CNS. Conventional NK cells are divided into  CD56dim and  CD56bright groups. The  CD56dim cells predominantly 
circulate in the peripheral blood, whereas the  CD56bright subset chiefly populates the CSF. In the steady state of CNS, cNK cells are localized 
within the meninges while tissue‑resident NK cells or ILC1s reside in the choroid plexus and meninges. In disease states, brain‑resident cells, 
like neurons, microglia, astrocytes and endothelia cells, are able to release different chemokines to guide NK cells in their infiltration into the brain 
parenchyma. (Created with BioRender.com)
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by secreting cytokines and finally exit via meningeal 
lymphatic vessels under physiological conditions. The 
damage to meningeal lymphatics occurs during aging 
and various neurological disorders, possibly leading 
to an unbalanced meningeal immunity and the conse-
quential impairment of NK cell functions [46].

Typically, conventional NK cells (cNK) refer to 
those circulating in peripheral blood and are divided 
to  CD56dim and  CD56bright groups as mentioned 
above. Recent studies have broadened this perspec-
tive, coining the terms “tissue-resident NK cells” or 
“non-conventional NK cells” by identifying two dis-
tinct phenotypes of liver NK cells in mice, namely 
 CD49a−DX5+ cNK and  CD49a+DX5− trNK cells, as 
well as human liver-resident NK cells with different 
features, which holds a new era in the research of trNK 
cell biology [12, 48–50]. Subsequently, these cells have 
been identified and characterized in an array of organs 
beyond the liver, including the lungs, uterus, and intes-
tines in both humans and mice [12, 51–53]. TrNK cells 
share functional similarities with  CD56bright cNK cells 
owing to the robust capacities of cytokine production 
and weak cytotoxicity, but there are distinct features 
to distinguish them. For instance, high expression of 
adhesion molecules makes trNK cells preserve within 
tissues and restrain their egress into the circulation 
[7]. Murine NK cells and ILC1s exhibit different devel-
opmental trajectories, indicating a distinct lineage of 
trNK cells in the ILC family [54]. According to the lat-
est research, there are three subtypes of NK1.1+ cells 
in the healthy murine CNS, including  CD49a−DX5+ 
cNK cells,  CD49a+DX5+ intILC1s, and  CD49a+DX5− 
ILC1s. The ILC1s account for over half of immature 
 CD27+CD11b− NK cells and locate predominately in 
the choroid plexus and meninges. Besides CD49a, they 
also constitutively express other ILC1 markers, like 
CD200R, adhesion molecules, such as lectin CD69, 
chemokine receptors, including CXCR3 and CXCR6, 
and the death ligand TRAIL. Moreover, they depend 
on T-bet instead of Eomes [55]. Considering the simi-
lar molecular features between CNS ILC1s and trNK 
cells, these data indicate the existence of CNS-resi-
dent NK cells, which collectively contribute to a sub-
group of the NK cell lineage different from cNK cells 
[12]. They might function as a gatekeeper in the CNS 
allowing immune cell infiltration and initiating inflam-
mation because of their locations and IFN-γ produc-
tion [56]. It is valuable to provide the evidence of trNK 
cells existing in the human CNS, discriminate them 
from cNK cells in molecular and functional features 
especially related to the CNS, which offers more pre-
cise and efficient targets of regulating neuroimmune 
interactions.

NK cells in CNS diseases
Autoimmunity
Multiple Sclerosis(MS) is a chronic autoimmune dis-
ease of the CNS, mainly characterized by inflamma-
tion, demyelination and neurodegeneration [57]. Even 
though the exact etiology and mechanism are heteroge-
neous, attacks of peripheral immune cells on the brain 
and spinal cord are fundamental to lesions formation 
of MS, especially autoreactive T cells [58]. A number 
of reports have demonstrated that protective NK cells 
inhibit T cell-mediated tissue damage in MS and strat-
egies involved in promoting their regulatory capacity 
contribute to remission of the disease [59–63]. How-
ever, other studies suggested that NK cells could exac-
erbate the pathology by inducing demyelination and 
impairing neurogenesis [64, 65]. Therefore, their roles 
in the pathophysiology of CNS autoimmunity are still 
uncertain and contradictory (Fig. 2).

By co-culturing NK cells with autologous T cells 
isolated from peripheral blood, researchers found 
 CD56bright NK cells could recognize activated T cells 
instead of resting T cells via several receptors, such as 
NKp30, NKp44, and NKG2D, and killed them by trans-
ferring granzyme A (GrA) and GrK or through TRAIL-
dependent cytotoxicity [59, 60, 66]. Degranulation of 
GrK induces mitochondrial malfunction and excess 
ROS production in activated T cells, resulting in their 
death [67, 68]. GrK-expressing  CD56bright NK cells are 
enriched in both periventricular regions and demyeli-
nating lesions of MS individuals. These cells exhibit 
GrK polarization towards T cells, corroborating their 
capacities to infiltrate the CNS via the choroid plexus 
and suppress neuroinflammation in vivo [31, 69]. Apart 
from  CD56bright subsets, the  CD56dim NK cells from 
MS patients show cytotoxicity against both resting and 
activated T cells via ADCC [63].

Compromised regulatory effects due to both defec-
tive NK cell function and enhanced resistance of T cells 
may accelerate the pathology [59]. For instance, down-
regulation of DNAM-1 on NK cells leads to their reduced 
responses, while increased expression of HLA-E and 
decreased expression of CD155 on patient-derived T cells 
result in reduced sensitivity to NK cell cytotoxicity, caus-
ing out-of-control autoimmunity [31, 59]. In addition, 
recent research identified a CD8 positive NK cell subtype 
 (CD8+NK) correlated with lower risk of relapse, which 
might be attributed to its negative regulation of  CD4+ T 
cells. Activated  CD4+ T cells upregulate the expression of 
HLA-G to inhibit NK cells, while  CD8+NK cells express 
decreased HLA-G receptors (ILT2 and KIR2DL4) and 
help themselves escape from suppression [70]. Hence, 
NK cells limit CNS autoimmunity to a certain extent by 
interacting with autoreactive T cells. Disruption in this 
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regulatory mechanism could potentially exacerbate the 
disease.

Different experiments on EAE models also point to 
their role in restricting the inflammatory process since 
ablation of NK cells or limitation of their trafficking to the 
CNS exacerbates the disease while expansion of NK cells 
by IL 2 complexes lessens the disease severity [36, 61]. 
In addition to direct interactions between NK cells and 
T cells, NK cells can play a protective role by indirectly 
altering the T cell response during EAE. For example, NK 
cells are capable of killing activated microglia to suppress 
the polarization of myelin-reactive Th17 cells [61]. More-
over, meningeal NK cells produce IFN-γ to drive an anti-
inflammatory phenotype of astrocytes, which can induce 
T cell apoptosis via TRAIL-dependent mechanism [62]. 
Applying laquinimod, an immunomodulator as an oral 
treatment for MS, to EAE models activates NK cells and 
upregulates the expression of CD226, which weakens 
MHC-II-mediated antigen presentation of  CD155+ den-
dritic cells and therefore suppress the activation of T cells 

[71, 72]. In addition to regulating T cells,  CD56bright NK 
cells from patients’ blood exhibit upregulated cholinergic 
system, which is associated with regulation of immune 
system [73]. Transferring these choline acetyltransferase 
(ChAT)-expressing NK cells to EAE models significantly 
improve the disease outcome possibly by downregulat-
ing Qa-1 expression on proinflammatory  CCR2+Ly6Chi 
monocytes [39].

The immunoregulative role of NK cells are enhanced 
after some MS therapies. Interferon β(IFN-β) is a well-
known disease-modifying therapy designed for relaps-
ing remitting MS(RRMS), the possible mechanism of 
which includes the increased number of  CD56bright NK 
cells after treatment [74, 75]. Daclizumab is a therapeu-
tic humanized monoclonal antibody targeting CD25 to 
abolish high-affinity IL2-R, which was once approved for 
the treatment of adult MS owing to the promising clini-
cal effects but has been withdrawn nowadays due to its 
severe adverse events [68, 76]. IL-2 is first defined as a “T 
cell growth factor” as its potent role in T cell expansion 

Fig. 2 The roles of NK cells in CNS diseases. In EAE, NK cells play a pivotal role in curtailing excessive autoimmune responses by eliminating 
autoreactive T cells and activated microglia, and fostering anti‑inflammatory astrocytes. The malfunction of NK cells in their immunoregulatory 
roles may accelerate the progression of the disease. Conversely, NK cells also lyse neural stem cells and participate in demyelination, resulting 
in brain damage. During normal aging, NK cells accumulate in aged dentate gyrus, where they engage in elimination of senescent neuroblasts, 
consequently impairing neurogenesis. The roles of NK cells in neurodegenerative diseases remain elusive. NK cells may serve as scavengers 
of α‑synuclein aggregates in PD, but concurrently exacerbate ALS by causing neuronal damage and creating inflammatory milieu. During stroke 
onset, NK cells infiltrate into brain parenchyma and kill hypoxic neurons and endothelia cells, thereby aggravating secondary brain injury. In CNS 
infectious diseases, NK cells exert positive effects in combating infections, but their enhanced cytotoxicity and cytokine production may yield 
adverse consequences. Treatment of cerebral malaria with IL‑15 successfully improves outcomes of the disease by activating NK cells to modulate 
deleterious responses of pathogenic T cells. (Created with BioRender.com)
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and daclizumab is designed to block the activation and 
expansion of T cells to limit autoimmunity [77]. How-
ever, there is a remarkable expansion of  CD56bright NK 
cells accompanied by a significant reduction in the 
ratios of  CD4+ T/NK and  CD8+ T/NK cells in both the 
CSF and peripheral blood of patients administered with 
daclizumab [63, 78]. That’s likely because  CD56bright 
NK cells express great abundance of CD122 with inter-
mediate IL-2 affinity and bind excess IL-2 after CD25 
blockade [74, 79]. Additionally, a differentiation switch 
of ILCs from lymphoid tissue inducer (LTi) cells to NK 
cell lineage occurs after applying daclizumab, contribut-
ing to enlarging NK cells [80]. Moreover, daclizumab also 
restores compromised regulatory functions of NK cells 
by enhancing the expression of GrA and GrK, as well as 
augmenting CD155 expression on  CD4+ T cells [31, 60]. 
NK cells might also be involved in the adverse events 
(AEs) of daclizumab. For example, in a clinical study of 
31 patients, the incidence of skin AEs was 77%, with 19% 
of participants suffering moderate to severe skin rash 
and 13% terminating treatment. Notably, there was a 
robust infiltration of  CD56+ cells in the skin of patients 
with moderate and severe rashes [81]. Even though the 
occurrence and the clinical severity of skin AEs did not 
correlate with the expansion of  CD56bright NK cells in 
PBMCs, this phenomenon might indicate that the over-
reaction of  CD56bright NK cells could drive autoimmun-
ity in other tissues and cause untoward reactions [81, 82]. 
Another study reported a daclizumab-treated patient 
developed CNS vasculitis and found the decreasing num-
ber of regulatory CD4 T cells and lack of the expansion 
of  CD56bright NK cells [83]. The possible explanation of 
this participant might be that unresponsive  CD56bright 
NK cells could not compensate for the daclizumab-medi-
ated Tregs depletion, leading to the excessive immune 
response [84]. Therefore, we hypothesize that the inap-
propriate response of  CD56bright NK cells might be one 
of the mechanisms by which AEs occur, which needs 
further exploration. Alemtuzumab is another approved 
monoclonal antibody for relapsing MS, which acts by 
binding to CD52 expressed on T and B cells, resulting 
in depletion of CD52 positive T and B cells followed by 
subsequent repopulation [85, 86]. Unexpectedly, ampli-
fied  CD56bright NK cells are observed after treatment, 
which persist for a long duration, at least 2 years, indicat-
ing their indispensable roles in disease modification [87–
89]. Autologous hematopoietic stem cell transplantation 
(HSCT) is an emerging strategy for patients with aggres-
sive MS, achieving the reestablishment of immune toler-
ance and a long-duration remission [90]. After receiving 
HSCT, increased  CD56bright NK cells replace the old 
 CD56dim subset and regulate detrimental Th1 and Th17 
cells via the NKG2D-dependent cytotoxicity [91–93].

Paradoxically, while various studies have pointed to the 
protective role of NK cell, some work concludes opposite 
views. For instance, NK cells are found to accumulate 
near vascular areas in the brain sections of MS patients. 
With the assistance of activated T cells, these NK cells 
penetrate the demyelinated cortical gray matter and 
ultimately cause perivascular cortical demyelination via 
ADCC. Intriguingly, depletion of NK cells ameliorates 
perivascular lesions instead of subpial damage, suggest-
ing their trafficking to the brain through vascular routes. 
These facts indicate  CD56dim NK cells may be responsi-
ble for this harmful demyelination [64]. Another study 
characterized a NK-mediated impairment of neurogen-
esis in MS. There are two main neurogenic niches in the 
adult brain, the subgranular zone (SGZ) in the dentate 
gyrus and the subventricular zone (SVZ) along the lateral 
ventricles, where neural stem cells (NSCs) maintain self-
renewal and differentiate into neurons and glia [94]. NK 
cells are detected within the SVZ region of MS patients 
and persist even during the chronic inflammatory phase 
under the auspices of IL-15 derived from NSCs. NSCs 
downregulate the expression of Qa1, transform into 
missing-self cells and become the targets of NK cells, 
which results in the impaired reparative capacities dur-
ing the recovery phase of neuroinflammation [65]. The 
plausible explanations for these contradictory observa-
tions may encompass variations in the disease’s distinct 
phases, the discrete subsets of NK cells, the disparate 
microenvironments where NK cells accumulate, and the 
divergent target cells engaging with NK cells. The contra-
dictory results underscore the intricate interplay between 
immune cells and the CNS environment, while also illu-
minating a promising role of NK cells in regulating the 
CNS immunity.

Regarding the roles of ILC1s, the expression of 
chemokine receptors CXCR3 and CXCR6 of ILC1s is 
decreased during EAE, which might be attributed to 
the receptor internalization caused by increasing levels 
of chemokines exposure, suggesting their recruitment 
to the inflamed brain [55]. Infiltrated ILC1s are discern-
ible in both the meninges and parenchyma of EAE and 
facilitate the invasion of encephalitogenic Th17 cells from 
CNS borders to the parenchyma by producing inflamma-
tory cytokines, suggesting their pathogenic role in CNS 
autoimmunity [95].

Aging
Human aging is a physiological, dynamic and complex 
process accompanied with time-dependent malfunction 
at multiple levels [96]. The mechanism underlying age-
related cognitive decline has remained obscure. Increas-
ing evidence has suggested the immune system is actively 
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involved in the process of brain aging, not just a passive 
bystander [97–99].

Cellular senescence is one of the main features of aging 
[100], referring to stable cell cycle arrest and the con-
sequent profound phenotypic alterations in response 
to intrinsic and extrinsic stresses [101]. Senescent cells 
often show dramatic changes in their secretome with a 
variety of pro-inflammatory cytokines and chemokines, 
termed the senescence-associated secretory phenotype 
(SASP) [102]. SASP can be a potent initiating signal to 
facilitate immune surveillance and clearance by recruit-
ing and activating different components of innate and 
adaptive immunity [102, 103]. The dentate gyrus serves 
as the gateway to the hippocampus critical for memory 
formation and adult neurogenesis [104]. Recent work 
evaluated the peripheral immune cells in the aged rodent 
and human dentate gyrus and identified NK cells with 
the most infiltration and significant changes compared 
with other lymphocytes and monocytes. Besides, the 
expansion limited to the dentate gyrus rather than other 
brain regions indicates the existence of specific microen-
vironment suitable for NK cells [99]. In this aging neu-
rogenic niche, neuroblasts undergo cellular senescence 
and display a SASP, which promotes in-situ accumulation 
and cytotoxicity of NK cells and in turn augments self-
clearance of aged neuroblasts [88]. Specifically, senescent 
neuroblasts produce IL-27 to support NK cell survival 
and upregulate RAE1, which triggers NK cell “induced-
self” recognition pattern and cytolytic function, causing 
neuroblast death and cognitive deterioration in old age 
(Fig. 2) [99]. Although removing senescent cells through 
transgenic methods or senolytic drugs have improved 
cognitive impairment in aging mice [105, 106], pro-
tecting aged neuroblast by NK cell killing significantly 
improves synaptic plasticity and cognitive function in old 
mice [99]. This indicates that by clearing senescent cells, 
it might cause unpredictable consequences owing to the 
diversity of cellular senescence. Targeting NK cells may 
serve as a therapeutic strategy to protect impaired neu-
roblasts and mitigate the age-related cognitive decline. In 
addition to NK cells, the number of ILC1s increases dur-
ing aging in the murine CNS, but remains largely unin-
vestigated [89].

It should be noted that NK cells undergo senescence 
with age as well. Selective deletion Ercc1 in mouse 
hematopoietic cells impedes DNA repair pathways and 
causes premature aging only in the immune system. 
Interestingly, an aged immune system drives senescent 
phenotypes in non-lymphoid tissues including the brain, 
suggesting brain aging might be affected by the dysfunc-
tional immune system [107]. With advanced age, NK cell 
cytotoxic functions and cytokine-releasing capacities 

remarkably decrease [108]. One possible hypothesis is 
deficits in immune surveillance during aging might result 
in the accumulation of senescent cells and a chronic and 
low-grade inflammation, which causes tissue damage and 
age-related diseases [109]. Further investigations need to 
clarify whether altered NK cell phenotypes and functions 
during aging affect the CNS and drives the age-related 
functional declines.

Neurodegeneration
Neurodegenerative disorders are age-related CNS dis-
eases, usually generally characterized by deposition of 
misfolded protein aggregates and progressive loss of neu-
rons [110]. Both innate and adaptive immune responses 
are suggested to be involved in the progression of neu-
rodegeneration, as revealed by the emerging evidences 
from clinical studies and animal models [111, 112].

Alzheimer’s disease Alzheimer’s disease is a common, 
progressive and irreversible neurodegenerative disease, 
contributing to 60–80% of all cases of dementia world-
wide [113]. The typical pathological hallmarks of AD 
consist of deposits of amyloid β-peptide (Aβ) plaques, 
neurofibrillary tangles (NFTs) with hyperphosphoryl-
ated tau and neurodegeneration [113]. In addition, the 
BBB dysfunction has been implied as a putative upstream 
mechanism of AD pathology independent of Aβ and tau, 
offering pathways for peripheral immune cells to traffic 
into the brain and involve in disease progression [114].
Prior research shows no discrepancy in the quantity and 
proportion of NK cells in PBMCs between different stages 
of dementia and healthy controls [115–117]. Instead, bio-
informatics analyses conclude a significant decrease of 
NK cells in the peripheral blood of AD patients at single-
cell resolution [118, 119]. As for functional alterations, 
enhanced cytotoxicity and stronger cytokine produc-
tion of peripheral NK cells are detected in patients with 
amnestic mild cognitive impairment (aMCI), but there 
is a reduced cytotoxic activity in patients with later stage 
of AD, suggesting that NK cells may response actively in 
the early stage but lose function during disease progres-
sion [117, 119]. In 7–8 months 3xTg-AD model, NK cells 
mainly resident in the border of CNS, like leptomenin-
ges, choroid plexus and perivascular space, and skew to a 
proinflammatory profiles. Blocking the action of NK cells 
with anti-NK1.1 antibody, researchers found no detecta-
ble changes in amyloid Aβ deposition but amelioration of 
microglial activation and improvement in neurogenesis 
and cognitive function [120]. Of note, NK cells seem to 
interact with neural stem cells in the SVZ regions, similar 
to what has been observed in multiple sclerosis [65]. Due 
to limited studies, whether or not NK cells contribute to 
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the pathogenesis of AD and their precise role in different 
stage of the disease remain unclear and needs to be fur-
ther investigation.

DAP12 (also known as TYROBP), a signal transduc-
tion element mainly expressed by NK cells and myeloid 
cells, act as an adaptor to transmit signals received from 
immune receptors [121]. DAP12 has been linked to cog-
nitive function, as loss of functional DAP12 resulting in 
Nasu-Hakola disease (NHD) characterized by multi-
ple bone cysts and presenile neurodegeneration [122]. 
Moreover, DAP12 is also regarded as a crucial genetic 
factor in late-onset Alzheimer’s disease [123]. DAP12 
expressed by microglia regulates amyloid burden and tau 
protein phosphorylation [124, 125]. Of note, DAP12 is 
essential for NK cell cytotoxicity and cytokine secretion 
[126]. One case report describes NHD patients harboring 
TYROBP mutations exhibits decreased number of NK 
cells and immune dysfunction, similar to phenotypes of 
Tyrobp KO mice, suggesting NK cells may be involved in 
DAP12-mediated cognitive alterations in dementia [127]. 
Further work is required to address the link between NK 
cells and dementia and its related questions.

Parkinson’s disease Parkinson’s disease is a progres-
sive neurodegenerative disorder that mainly affects 
substantia nigra, causing impaired movement. Abnor-
mal α-synuclein aggregates and composes Lewy bod-
ies, the pathological hallmark of PD, which can activate 
both innate and adaptive immunity [128]. Assessment of 
PBMCs indicates that dysregulation of NK cell response 
might participate in PD. For example, a decreased 
 CD57+CD28+ NK cell subtype, associated with a more 
terminal and active phenotype of NK cells, is observed 
in patients with PD [129]. Migration of NK cells to the 
brain might be impaired owing to downregulation of 
the adhesion molecule VLA-4 on the surface of patients’ 
peripheral blood NK cells [31, 130]. NK cells are present 
in the substantia nigra of PD patients [131]. Like other 
innate immune cells, they also express Toll-like recep-
tors (TLRs), a key cluster of pattern recognition recep-
tors (PRRs) to recognize pathogen-associated molecular 
patterns (PAMP) and damage-associated molecular pat-
terns (DAMP), which makes them efficiently uptake and 
degrade extracellular α-synuclein by TLR2 and TLR4 in 
the absence of excessive self-activation [132]. Deficiency 
of NK cells in a PD model results in exacerbated synuclein 
pathology, glial cells activation and death of dopaminergic 
neuron, which suggests NK cells can be a potential scav-
enger to abnormal proteins (Fig. 2) [131]. A recent study 
analyzed single-cell RNA sequencing data and found the 
ratio of NK cells increased in PD patients’ CSF, especially 

a neuroprotective  RAC1+ subset associated with sub-
stantia nigra development [133]. Based on these find-
ings, targeting NK cells might be a potential therapeutic 
strategy for PD treatment. Evidence on the involvement 
of autoimmunity in PD pathology mechanisms continues 
to accumulate, as α-synuclein can be a strong autoanti-
gen to initiate adaptive immune [128]. Given the regula-
tory capacity of NK cells in the adaptive immunity, more 
research is warranted for exploration of NK cell functions 
in regulating adaptive immune responses in PD.

Amyotrophic lateral sclerosis Amyotrophic lateral scle-
rosis (ALS), also known as motor neuron disease (MND), 
is a progressive neurodegenerative disease that mainly 
damage motor neurons [134]. Comparing NK cells per-
centage from the blood samples of ALS patients and 
healthy controls, different studies showed diverse results, 
ranging from increased to deceased NK cells in the dis-
eased state [40, 135, 136]. Recent research reports the 
circulating NK cell number is unchanged but there is a 
significant increase in some markers involved in NK cell 
cytotoxicity and trafficking, including NKG2D, NKp46, 
CD11a, CD11b, CD38, and CX3CR1, and all of them are 
correlate with ALS severity [137]. In post mortem tissue 
of patients with ALS, NK cells are found to extend into the 
spinal cord and cerebral motor cortex, which is also con-
firmed in the  hSOD1G93A mice, an ALS transgenic model. 
They infiltrate to the injured areas via CCL2 secreted by 
neurons and ablation of NK cells delays the onset of the 
disease. After trafficking to the CNS, NK cells exert the 
cytolytic function to damage motor neurons and produce 
IFN-γ to drive an inflammatory microglia phenotype and 
limit the entrance of Treg, all of which accelerate the neu-
roinflammation and neurodegeneration of ALS (Fig.  2) 
[40]. Based on the above findings, researchers attempt to 
apply tofacitinib, an FDA-approved immunomodulating 
medication for autoimmune diseases, to ALS. They found 
tofacitinib successfully inhibited NK cell functions and 
decreased the cytotoxicity to ALS-patient derived neu-
rons in vitro. Although the experiment does not provide 
the in  vivo data about therapeutic effects to neurologic 
deficits, targeting NK cells might be a promising strategy 
to treat neurodegeneration [138].

Cerebrovascular diseases
Ischemic stroke, a prevalent cerebrovascular disease, is 
frequently accompanied by the infiltration of peripheral 
immune cells. Unlike the etiology of MS, the abrupt ces-
sation of blood flow in ischemic stroke causes endothe-
lial cells to express elevated levels of adhesion molecules 
and induces subsequent damage of parenchymal cells, 
particularly neurons, which then release DAMPs. Con-
sequently, brain-resident immune cells like microglia are 
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activated and secrete cytokines and chemokines, poten-
tially promoting peripheral leukocyte adhesion, chemo-
taxis, and extravasation into the parenchyma [139]. 
Notably, the post-stroke immune cell infiltration displays 
temporal dynamics, characterized by innate immune 
cell infiltration in the early stage (typically within 24  h 
post-onslaught) and a subsequent adaptive immune 
cell response usually between days 3 to 7 [140–143]. 
Although NK cells constitute only a small proportion of 
infiltrating lymphocytes, they may play a crucial role in 
initiating and amplifying post-stroke inflammation and 
injury [140]. Increasing NK cells are found in the infarct 
and periinfarct brain regions of both patients and middle 
cerebral artery occlusion (MCAO) mouse models, which 
are chemoattracted via CX3CL1 produced by damaged 
neurons and IP-10 secreted by glial cells and endothe-
lial cells [37, 41]. IL-15 is upregulated in astrocytes after 
ischemic stroke and augments NK cell priming and acti-
vation, blockade of which by antibodies or gene knockout 
ameliorates ischemic brain injury [21, 144]. NK cells acti-
vation and cytotoxicity after infiltration is associated with 
the loss of the self-tolerant molecule Qa1 of hypoxic neu-
ron and the upregulation of activation receptor NKG2D 
on NK cells [37]. Regarding their effector functions, NK 
cells can kill ischemic neurons either directly through 
secreting perforin or indirectly releasing IFN-γ. The lat-
ter can not only induce neuronal excitotoxicity but also 
polarize the phenotype of microglia and macrophages 
to exacerbate neuroinflammation (Fig.  2) [37, 145]. An 
experiment using an in vitro BBB model after oxygen glu-
cose deprivation (OGD) treatment suggests that NK cells’ 
involvement in the BBB impairment as well [41]. Con-
sequently, NK cells could potentially play a pivotal role 
during stroke onset, and inhibiting NK cells at early stage 
may help disrupt the neuroinflammation feedback loop 
therefore carry therapeutic potential for the disease.

Hemorrhagic stroke can be divided into intracerebral 
hemorrhage (ICH) and subarachnoid hemorrhage (SAH). 
NK cells, which invade into the brain regions adjacent to 
the lesion after ICH in both patients and mouse mod-
els, mediate the BBB damage and resulting brain edema. 
Specifically, brain endothelial cells after ICH undergo 
the downregulation of MHC-I molecule H2-Kb and 
enhanced expression of NK-activating ligands RAE1 and 
MULT-1. Apart from direct damage to the BBB, infil-
trated NK cells also assist in recruiting neutrophils by 
producing CXCL2, exacerbating perihematomal edema 
(Fig.  2) [146, 147]. The elevated counts of activated 
 CD56dim NK cells are observed in the CSF of individuals 
with SAH as well, indicating a possible cytotoxic role of 
NK cells in the pathology of SAH [148, 149].

Cerebral small vessel disease (CSVD) is a chronic and 
progressive disease related to the small blood vessels in 

the brain. A recent study found cytotoxic  CD56dim NK 
cells increased and correlated with sparse nerve fibers 
in Aging-related atherosclerotic CSVD patients. Based 
on proteomic analyses, researchers found  CD56dim NK 
cells contribute to the BBB breakdown via the secretion 
of cathepsin D (CTSD). Furthermore, these cells infiltrate 
into the parenchyma and disrupt nerve fibers by releasing 
granzyme H (GZMH) [150]. These findings suggest NK 
cells may drive neural injury, exacerbate inflammation, 
and disrupt the BBB. Blocking the action of NK cells may 
be a promising treatment to improve outcome in both 
acute and chronic cerebrovascular diseases.

Infection
NK cells are best known to help the body fight infec-
tion at an early stage and provide a first line of defense 
against pathogens invading the CNS, especially intracel-
lular pathogens (viruses, bacteria, and parasites) [151]. 
Once infection occurs, peripheral NK cells migrate to 
the affected sites accompanied with trNK cell activation 
[152, 153]. However, the balance between the resist-
ance to infection and the undesired tissue damage and 
immunopathology determines the disease outcomes [9]. 
For example, IFN-γ produced by NK cells and ILC1s 
limits the proliferation of granuleneuron progenitor 
cells (GNPCs) and induces abnormal cerebellar devel-
opment after cytomegalovirus (CMV) infection (Fig.  2) 
[43, 154]. Additionally, NK cells are found in the brain 
with enhanced cytotoxicity and secretory abilities in an 
A. cantonensis-infected mice model, another parasite 
affecting the CNS, suggesting they are an accomplice of 
pathogens. In contrast, cerebral malaria is the most life-
threatening neurological complication of Plasmodium 
falciparum infection with characterized by microvascu-
lature malfunction and dysregulated inflammation [155, 
156]. Based on the potentially immunoregulatory role of 
NK cells and apparently incongruous immune responses 
in ECM, IL-15 treatment in ECM successfully prevent 
the onset of the brain injury without altering the parasite 
load by inducing NK cell persistent STAT3 activation and 
secretion of anti-inflammatory IL-10 [157, 158]. IL-10 
derived from NK cells attenuates the activation of  CD8+ 
T cells, mitigates disintegration of the BBB, and amelio-
rates brain edema, thereby improving the survival rates 
greatly (Fig. 2).

Therapeutic potential and future perspectives
Activated NK cells can induce cell cytotoxicity, produce 
multiple cytokines and drive a pro-inflammatory envi-
ronment, resulting in brain injuries. On the contrary, 
NK cells are able to clear out abnormal protein aggre-
gation, regulate the inflammatory milieu and allevi-
ate the brain damage caused by overreacting immune 
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responses. Therefore, precise manipulation of NK cells 
can be promising therapeutic strategies to cope with dif-
ferent neurological diseases: inhibition of NK cell traf-
ficking, activation, and effector functions may reduce 
NK-mediated brain damage, while restoration of dys-
regulated NK cell functions may limit harmful neuro-
inflammation. There are several existing treatments 
involved in enhancement of NK cell functions to balance 
abnormal neuroinflammation in MS as discussed above. 
More strategies can be learnt from cancer therapies. For 
instance, immunomodulatory agents, like thalidomide 
and related drugs, cytokines, like IL-15, antibodies block-
ing inhibitory receptors, and adoptive transferring of 
NK cells might become effective ways to restore NK cell 
functions. Targeting specific NK-activating or inhibitory 
signals might achieve goals of protecting “wanted” cells 
and eliminating “unwanted” cells dependently on differ-
ent situations.

Chimeric antigen receptors (CARs) are a type of recep-
tor proteins that endows immune cells with abilities to 
target specific antigenic proteins [159]. CAR-NK cells 
equipped with a wide range of tumor antigens have been 
advanced into preclinical trials for the treatment of dif-
ferent cancers [160]. In addition to cancer therapy, trans-
ferring anti-CD19 CAR-T cells successfully ameliorates 
CNS autoimmunity via B cell depletion in EAE mice 
[161]. Similarly, engineered CAR-NK cells with spe-
cific antigens are potential strategies to eliminate target 
cells, like autoreactive T cells and overactivated micro-
glia to promote recovery. In addition, without modifying 
to express CARs, off-the-shelf NK cell lines or induced 
pluripotent stem cell-derived NK (iPSC-NK) cells show 
enhanced functional potential, transplantation of which 
might restore the functional deficiency of NK cells, espe-
cially in MS, and inhibit excessive immune responses 
[162]. Besides, transplantation of extracellular vesicles 
(EVs) loaded with various proteins, lipids, and nucleic 
acids have been considered as a viable alternative of cell 
therapy because of better convenience and higher safety 
[163]. The NK cell-derived EVs have been shown to con-
tain components such as granzymes, perforin and FSAL, 
which showed cytotoxic effects on tumor cells in both 
cultured cells and animal models without significant 
side effects on normal cells [164–166]. Recent research 
showed NK cell-derived exosomes also alleviated depres-
sion in mice by controlling the inflammation of astrocytes 
via transferring miRNAs, indicating the immunothera-
peutic potential to the neurological diseases [167].

Although achieving much progress, there are still many 
unknowns. Firstly, finding out whether tissue-resident NK 
cells exist in the human CNS and their specific markers is 
obviously important. Decidual natural killer (dNK) cells are 
the critical type of trNK cells supporting maternal–fetal 

tolerance. The maternal–fetal interface resembles the 
BCSFB, serving as an active but controlled gate rather than 
an inert, impermeable barrier [168]. dNK cells regulate the 
immune microenvironment by inducing Tregs and inhibit-
ing effector T cells during early pregnancy to ensure immu-
nological endurance [169]. Similarly, as  CD56bright NK cells 
and ILC1s are enriched in the choroid plexus, they might 
play an important role as a gatekeeper to the BCSFB under 
normal conditions. Once the immunoregulatory capacity of 
NK cells is impaired, it might initiate uncontrolled inflam-
matory reactions and cause diseases in the CNS. Due to 
potential and crucial functions of NK cells, it is therefore 
important to develop genetic tools, such as transgenic mouse 
models, to help study and distinguish the different roles 
between brain-resident and circulating NK cells. Secondly, 
whether NK cells involved in maintaining normal brain 
functions in addition to immune functions remains to be 
determined, since increasing evidence suggests that immune 
cells may support cognitive functions of the brain [170]. Tak-
ing dNK cells as example, it is shown that activated dNK cells 
release the cytokines and chemokines that mediate tropho-
blast invasion, angiogenesis and uterine artery remodeling, 
which plays vital roles in placental and embryo development 
[169]. It is also critical to explore the interaction between NK 
cells and intrinsic cells of the brain and clarify their commu-
nication signals as the suspected role of NK cells regulating 
in normal brain functions. Besides, because many neurologi-
cal diseases are co-participated by CNS-resident cells and 
other peripheral immune cells, to what extent do NK cells 
contribute to the development of these diseases? Are they 
play a direct or supporting role in neuroinflammation? In 
addition, it has been appreciated that human NK cells exhibit 
great heterogeneity with distinct distribution, phenotypic 
and functional features. Do specific subsets of NK cells exist 
that correspond to different neurological diseases? It may 
also carry potential therapeutic advantage in identifying the 
ways to target certain subpopulation of NK cells which is 
involved in the CNS diseases.

Conclusions
Various studies demonstrate that NK cells interact with 
the CNS extensively under different circumstances. 
Despite their relatively small proportion within the CNS, 
NK cells may act as both conciliators and instigators in 
neuroinflammation, which underlines their potential for 
coordinating the immune system and the CNS. How-
ever, their exact roles related to the health and disorders, 
as well as the mechanisms for their accurate regulation 
still remain unclear. Through more in-depth exploration, 
we can understand the communications between NK 
cells and the CNS better, thereby providing evidence for 
treatments.
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