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Abstract 

Background Mechanism underlying the malignant progression of precancer to early-stage lung adenocarcinoma 
(LUAD) as well as their indolence nature remains elusive.

Methods Single-cell RNA sequencing (scRNA) with simultaneous T cell receptor (TCR) sequencing on 5 normal 
lung tissues, 3 precancerous and 4 early-stage LUAD manifested as pulmonary ground-glass nodules (GGNs) were 
performed.

Results Through this integrated analysis, we have delineated five key modules that drive the malignant progression 
of early-stage LUAD in a disease stage-dependent manner. These modules are related to cell proliferation and metab-
olism, immune response, mitochondria, cilia, and cell adhesion. We also find that the tumor micro-environment (TME) 
of early-stage LUAD manifested as GGN are featured with regulatory T (Tregs) cells accumulation with three possible 
origins, and loss-functional state (decreased clonal expansion and cytotoxicity) of CD8 + T cells. Instead of exhaustion, 
the CD8 + T cells are featured with a shift to memory phenotype, which is significantly different from the late stage 
LUAD. Furthermore, we have identified monocyte-derived macrophages that undergo a lipid-phenotype transition 
and may contribute to the suppressive TME. Intense interaction between stromal cells, myeloid cells including lipid 
associated macrophages and LAMP3 + DCs, and lymphocytes were also characterized.

Conclusions Our work provides new insight into the molecular and cellular mechanism underlying malignant pro-
gression of LUAD manifested as GGN, and pave way for novel immunotherapies for GGN.
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Background
The National Lung Screening Trial (NLST), one of the 
largest lung cancer screening trails, revealed a survival 
benefit of 20% reduction in mortality with low dose 
computed tomography (LDCT) screening compared 
to chest radiography (CXR) [1]. The widespread adop-
tion of LDCT has led to an increase in the incidence of 
pulmonary nodules, which poses a major challenge in 
terms of accurate differential diagnosis and appropriate 
treatment. Among these pulmonary nodules, ground-
glass nodule (GGN) constitute a distinct subset of the 
characterized by an indolent clinical course, with many 
of them representing precancerous or early-stage lung 
adenocarcinoma [2]. The continuum of malignant pro-
gression of early-stage lung adenocarcinoma including 
atypical adenomatous hyperplasia (AAH), adenocar-
cinoma in  situ (AIS), microinvasive adenocarcinoma 
(MIA) and early invasive adenocarcinoma (IAC) [3]. 
AAH, AIS, MIA are considered to have excellent prog-
nosis, and deteriorated for IAC [4]. Currently, a sig-
nificant gap exists between our current practice and 
optimal strategy for the monitoring and intervention of 
GGN. This gap arises from the absence of efficient bio-
markers for predicting disease behavior and the limited 
options beyond surgery. Meanwhile Surgery carries 
the potential risks of overdiagnosis and overtreatment 
due to the high incidence and slow growth pattern of 
GGNs. This predicament is primarily attributed to our 
incomplete understanding of the genetic and immuno-
logical dynamics, as well as the mechanisms governing 
the long-term indolence and factors associated with the 
progression of early-stage LUAD.

Cancer genesis and evolution are characterized by 
both the turbulence of genomic stability and immune 
competence [5], and they show significant divergency 
in the different phases [6–9]. Several studies have illus-
trated the genetic and mutational landscape of GGN or 
various phases of early-stage LUAD [10, 11]. However, 
there is still a need for a more comprehensive under-
standing of the molecular and cellular heterogeneity 
during the malignant progression of early-stage LUAD. 
Emerging scRNA sequencing technology provides a 
powerful tool that is more effective and accurate com-
pared to the traditionally used bulk RNA sequencing 
and deconvolution estimation methods for studying 
of the tumor immune microenvironment [12]. In this 
study, we conducted droplet-based 5′ scRNA-seq and 
paired T-cell receptor sequencing (scTCR-seq) on the 
resected AIS and IAC samples presenting as GGN, 
along with matched normal samples. Our goal is to con-
struct a single cell atlas and unravel the potential mech-
anism underlying the progression of early-stage LUAD.

Methods
Ethics statement, patient cohort and sample preparation
This study received approval from the Institutional Review 
Board (IRB) of Henan Provincial People’s Hospital (No. 
201925), and all participants provided written informed 
consent. Patients with indeterminate pulmonary GGNs 
were admitted to Henan Provincial People’s Hospital and 
underwent lobectomy. Patients were enrolled based on 
the following criteria: 1) Detection of GGNs by CT scan; 
2) Undergoing surgery with pathological confirmation 
of AIS or IAC; 3) No prior anti-cancer treatment; 4) No 
history of malignancies; 5) No history of autoimmune 
diseases, interstitial lung diseases, asthma, or chronic 
obstructive pulmonary disease; 6) Willingness to provide 
written informed consent. A total of 7 patients, including 
3 with precancerous lesions and 4 with early-stage LUAD, 
were included in the study, and lesions as well as 5 normal 
tissues were collected from these patients. The nodules 
were divided into two pieces immediately after resection, 
with one piece designated for single-cell sequencing and 
the other for pathological diagnosis. Samples were care-
fully obtained from the middle area of the lesion, distin-
guishable from normal lung tissue by their typical grey 
appearance. Normal lung tissue was collected from an 
area at least 5 cm away from the edge of the nodule. The 
samples were transported in ice-cold H1640 (Gibco, Life 
Technologies) and were dissociated and suspended as 
single cell suspension with Epidermis Dissociation Kit 
(Human, 130–103-464) according to the manufacturer’s 
protocol, and Countstar Rigel S2 system was used for the 
qualification control of the suspension.

RNA‑Seq library preparation and sequencing
The Chromium single cell controller (10 × Genomics) 
was used to generate single-cell gel beads in the emul-
sion according to the manufacturer’s protocol with the 
single cell 5 ’Library and Gel Bead Kit (10 × Genom-
ics, 1,000,006) and Chromium Single Cell A Chip Kit 
(10 × Genomics, 120,236). Captured cells were lysed and 
the released RNA were barcoded through reverse tran-
scription in individual GEMs. The cDNA was generated 
and then amplified, and quality assessed using an Agi-
lent 4200. According to the manufacture’s introduction, 
Single-cell RNA-seq libraries were constructed using 
Single Cell 5’ Library and Gel Bead Kit, Single Cell V(D)
J Enrichment Kit, Human T Cell (1,000,005) and Single 
Cell V(D)J Enrichment Kit for 10 × Genomics single-cell 
5′ and TCR V(D)J sequencing. The libraries were finally 
sequenced using an Illumina Novaseq6000 sequencer 
with a sequencing depth of at least 100,000 reads per cell 
with pair-end 150 bp (PE150) reading strategy.
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scRNA‑seq data analysis and integration
The 10 × Genomics Cell Ranger (3.0.1 version) pipeline 
was used for alignment, filtering, barcode counting, and 
unique molecular identifier (UMI) counting to gener-
ate feature-barcode matrix. GRCh38 reference genome 
was used for mapping. Output files were then imported 
into the Seurat (v3) R toolkit for quality control and 
downstream analysis. Cells meet either was excluded:1) 
nCount_RNA > 50,000; 2) nFeature_RNA > 6000; 3) nFea-
ture_RNA < 200; 4) mitochondrial genes ratio > 20%.

After filtering, the SCTransform function from Seurat 
was used for the normalization and scale of the dataset as 
recommended by the developer, then “RunPCA” function 
was used to reduce the dimensionality of each dataset. 
Next, the “SelectIntegrationFeatures”, “PrepSCTIntegra-
tion”, “FindIntegrationAnchors” functions were succes-
sively used to identified high cell-to-cell varied features 
and “anchors” for the integration of individual datasets, 
finally we obtained the unbatched dataset that inte-
grated all the distinct datasets with “IntegrateData” 
function, and this “batch-corrected” dataset allowed us 
to analyze all the cells together without the affection of 
potential batch effects. “RunPCA” was then implement 
again on the integrated dataset, and we clustered cells 
using the “FindNeighbors” and “FindClusters” functions 
and performed nonlinear dimensional reduction with 
the “RunTSNE”. The resolution was set to 0.2 in the first 
round of clustering to identify major cell types, and each 
major cell type was re-clustered using the above-men-
tioned pipeline with a larger resolution value.

Marker genes identification and cell clusters annotation
After clustering of the cells, we identified mostly differ-
ential expressed genes of certain cluster compared to the 
rest of the clusters with the “FindAllMarkers” function of 
“Seurat” to identify markers of a cluster, and the cluster 
was annotated manually based on the markers. All the 
cells with two or more canonical markers or no canoni-
cal marker expressed were excluded from the subsequent 
analysis.

Identification of malignant cells from normal epithelial 
cells
To separate malignant tumor cells from non-malignant 
epithelial cells, large-scale chromosomal copy number 
variations were inferred from the expression intensity 
of genes across positions of the genome by “infercnv” 
(v1.8.1) package with default parameters, all the epithe-
lial cells from AIS and IAC tissues were input, all the 
immune cells and stromal cells was used as reference 
“normal” cells. CNV score was calculated as previously 
described, briefly, the input cells were sorted by the mean 

square of all the CNV values across the genome, the 
Pearson correlation coefficient of individual input cell’ 
CNV value and mean CNV value of top 5% of the cells 
was defined as CNV score of each cell. CNV score > 0.3 
was considered as “malignant”.

Single‑Cell Weighted Gene Co‑expression Network 
Analysis (scWGCNA)
We conducted Single-Cell WGCNA on the normal 
epithelial cells and inferred malignant cells to identify 
functional modules that are significantly relevant to 
developmental stages. Firstly, we identified all the genes 
with an expression pattern associated with develop-
mental stages using a linear model with mixed effects 
by “nlme” package (v3.1–161), all the genes with an 
FDR < 0.001 were considered significantly associated with 
stages and were kept for the subsequent analysis. Then 
“scWGCNA” (v0.0.0.9000) package was used to con-
struct metacells as recommended by the developer. Then 
an expression matrix of the metacells and genes filtered 
from linear model was input in to the “WGCNA” pack-
age pipeline, codes were adapted from https:// horva th. 
genet ics. ucla. edu/ html/ Coexp ressi onNet work/ Rpack 
ages/ WGCNA/ index. html.

Differential Expressed Genes (DEG) Analysis and Gene 
Enrichment analysis
DEG Analysis was carried out using the “FindMarker” 
function of “Seurat” package with default settings. Gene 
Ontology (GO) enrichment analysis were carried out 
with “clusterProfiler” R package (v4.0.5) with default set-
tings. GSVA was also performed, 50 hallmark pathways 
gene-set was downloaded from Molecular Signatures 
Database v7.2 (https:// www. gsea- msigdb. org/ gsea/ index. 
jsp). GSVA were performed with “GSVA” R package 
(v1.42.0), GSVA scores were compared between differ-
ent groups with “limma” package (v3.48.3), an adjusted p 
value < 0.01 was considered significant.

Definition of exhaustion, naive, cytotoxicity scores
Three well defined gene-sets were used to represent 
the state of cells. Exhaustion gene-set including: LAG3, 
TIGIT, PDCD1, CTLA4, HAVCR2. Naïve gene-set 
including: CCR7, TCF7, LEF1, SELL. Cytotoxic gene-
set including: PRF1, IFNG, GNLY, NKG7, GZMB, 
GZMA, GZMH, KLRK1, KLRB1, KLRD1, CTSW, CST7. 
“AddModuleScore” function with default settings of Seu-
rat package was used to calculate the scores of each cell 
based on the average expression of the gene-sets.

Cell–Cell interaction analysis
“iTALK” R package (v0.1.0) was used to infer cell–cell 
interaction based on ligand-receptor relationships. All 

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/index.html
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/index.html
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/index.html
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
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the DEG analysis in the processing of “iTALK” was set 
to “Wilcoxon rank sum test”. Codes were adopted from 
https:// github. com/ Coolg enome/ iTALK.

Cell development trajectory inferred by monocle
“Monocle” R package (v2.20.0) was used to create a new 
“Cell Data Set” the with counts data from RNA slot of the 
Seurat object as input. Highly variable expressed marker 
genes between cell clusters were identified by “FindAll-
Markers” function of with the Seurat as genes used for 
dimension reduction with “reduceDimension” function, 
with “max_components” set to 2 and “method” choose as 
“DDRTree”. Next, “orderCells” was used to calculate the 
pseudotime value and decide the stage of each cell, which 
together encode where each cell maps to the trajectory.

Translational Factors (TFs) analysis by SCENIC
“SCENIC” R package (v1.2.4) was used to investigate the 
translational factors (TFs) with default setting. hg19-
500  bp-upstream-7species databases was downloaded 
from https:// resou rces. aerts lab. org/ cista rget/ datab ases 
for “RcisTarget”, “GRNboost”, and “AUCell”. The normal-
ized expression matrix from Seurat object was used as 
input.

TCGA data analysis
The survival analysis and gene expression correlation 
analysis of TCGA dataset was conducted with the on-line 
tool in Gepia2 developed by Zhang Zemin’s lab (http:// 
gepia2. cancer- pku. cn/# index).

TCR data analysis
After acquiring the raw data, Cell Ranger (v.3.0.2) was 
used for demultiplexing, gene quantification and TCR/
BCR clonotype assignment, with GRCh38 as reference. 
Each unique TCR α-chain (TRA)—TCR β-chain (TRB) 
pair was defined as a clonotype, and only cells with one 
and only one clonotype were kept for further analysis. 
Clonal cells were defined as cells that harboring same 
clonotype, the number of cells with a certain clonotype 
indicated the degree of clonality of the clonotype.

Immunofluorescence staining
In tissue section preparation, paraffin-embedded samples 
underwent deparaffinization and rehydration through a 
series of steps involving environmentally friendly dewax-
ing solutions, anhydrous ethanol, and distilled water. 
Antigen retrieval was performed based on specified con-
ditions, ensuring adequate buffer presence. Subsequently, 
sections were subjected to hydrogen peroxide sealing 
and serum blocking, with primary antibodies added and 

incubated overnight. After washing, corresponding HRP-
conjugated secondary antibodies were applied, followed 
by TSA dye and further washing. Microwave treatment 
facilitated antigen retrieval. The secondary antibodies 
were added and incubated overnight, followed by incu-
bation with fluorescent-conjugated secondary antibodies. 
DAPI was used for nuclear counterstaining, and endoge-
nous fluorescence was quenched if needed. Finally, slides 
were sealed, and images were acquired under appropriate 
excitation and emission wavelengths.

Primary antibody used: CD68 (Servicebio, NO: 
GB113150, 1:2000), FABP3 (Proteintec, NO:10,676–
1-AP), FABP4 (Servicebio, NO: GB115466, 1:200). Sec-
ondary antibody: HRP-labeled Goat anti-Rabbit IgG 
(Servicebio, NO: GB23303, 1:500 dilution), Alexa Fluor 
488-labeled Goat anti-Rabbit IgG (Servicebio, NO: 
GB25303, 1:400 dilution).

Statistical analysis and plotting
The statistical methods used for each analysis are 
described in the above “Methods” sections and in the fig-
ure legends. In addition to above mentioned packages, 
“ggplot2” (v3.3.5), “RColorBrewer” (v1.1–2), “pheatmap” 
(v1.0.12) R packages are also used for plotting.

Results
Single‑cell transcriptome atlas of initial and early‑stage 
LUAD manifested as ground glass nodules
A total of 12 samples, including 3 AIS, 4 IAC and 5 nor-
mal lung samples were obtained from 7 patients. These 
samples were subsequently digested into single cell sus-
pensions. Then droplet-based 5′ scRNA-seq and paired 
T-cell receptor sequencing (scTCR-seq) was simulta-
neously carried out on 10X platform. Following strin-
gent quality control measures, we successfully obtained 
a total of 38,814 cells (average 3,234 cells per sample) 
contained ~ 2.1 × 1e8 unique transcripts (average 1,671 
genes per sample) for further analysis (Fig.  1A). We 
firstly clustered the cells into 9 types which were anno-
tated based-on canonical markers (Fig.  1B), including 
CD3D + T cells, KLRF1 + NK cells, AIF1 + myeloid cells, 
EPCAM + cells, DCN + fibroblasts, MS4A1 + B cells, 
MZB1 + plasma cells, RAMP2 + endothelium cells and 
TPSB2 + mast cells. The cells clustered based on their 
types rather than the origins and the number of UMI or 
genes they contained (Figs. 1B, C and S1A, B, C). In addi-
tion, the markers were almost exclusively expressed in 
the corresponding clusters (Fig. 1D). These observations 
collectively suggest the successful integration of multi-
ple datasets and the effectiveness of quality filtering. The 
proportion of different cell types vary across different 
stages, yet the differences were not statistical except for 
the mast cells and the plasma cells (Figs. 1E and S2). This 

https://github.com/Coolgenome/iTALK
https://resources.aertslab.org/cistarget/databases
http://gepia2.cancer-pku.cn/#index
http://gepia2.cancer-pku.cn/#index
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could be attributed to the relatively small sample size, 
and further investigation of the data was needed.

Different biological processes drive the malignant 
progression in a disease stage‑dependent manner
Next, we carried out sub-clustering and explored the 
characteristics of each cell type. Firstly, we focused on 
the EPCAM + cells. A total of 3,122 EPCAM + cells 
were identified, with 1,183 originating from normal tis-
sues (37.9%), 866 from AIS (27.7%), and 1,073 from IAC 
(34.4%). Cells from normal tissues were subclustered 
and annotated as AT1 cells, AT2 cells, club cells and cili-
ated cells (Figs. S3A, B), which were similar to previous 
studies [13]. For the EPCAM + cells from AIS and IAC, 
inferCNV was carried out to identify malignant cells 
with all the immune and stromal cells set as reference 
(Fig.  2A). CNVscore was defined as previously reported 
(Experimental Section), and finally 1,528 malignant 
cells (78.8%) were identified from 1,939 EPCAM + cells 
(CNVscore > 0.3). To confirm the result given by 
inferCNV, we carried out DEG analysis on the inferred 
malignant cell and inferred normal cells from AIS and 
IAC, revealed 460 upregulated genes and 71 down-
regulated genes (Fig. 2B). Among the upregulated genes 
we noticed markers those were associated with cancer 
genesis and development, including SOX4, SPINK1, 
CEACAM6, KRT8 and KRT18 [14–16]. Contrarily, ran-
domly split of the cells we input in the inferCNV identify 
no DEGs (Figs.  2B  and S4A). Gene set variation analy-
ses (GSVA) using the 50 Hallmark gene-sets (MSigDB) 
also revealed that almost all the cancer related pathways 
were significantly enriched in the inferred malignant cells 
(Fig. 2C). All these results suggested the reasonability of 
inferCNV’s annotation.

Next, we considered EPCAM + cells from normal 
tissues (n = 1,183), and malignant cells inferred by 
inferCNV from AIS (n = 604) and IAC (n = 924) as three 
different stages during LUAD development, to explore 
the transcriptome evolutionary trajectories from nor-
mal tissue to AIS, and then IAC. We initially identified 
3,369 genes with expression levels that exhibited a strong 
correlation with different disease stages, using a linear 

mixed-effects model with a false discovery rate (FDR) 
threshold of < 0.001. Subsequently, employing the single-
cell weighted gene co-expression network analysis (scW-
GCNA) package [17], we separately merged the three 
groups of EPCAM + cells into metacells (as described in 
the Experimental Section). This process yielded a total 
of 401 metacells, with the following distribution: nLung: 
n = 179; AIS: n = 63; IAC: n = 159. The gene expres-
sion matrix of the 3,369 stage-associated genes within 
these 401 metacells was subjected to subsequent analy-
sis. Ultimately, we identified co-expressed genes with 
distinct expression patterns and organized them into 
five gene modules using WGCNA. These modules were 
color-coded as turquoise, yellow, brown, blue, and green, 
while a grey module represented genes that could not be 
assigned to any other modules (Fig. 3A).

The turquoise module (1,457/3,369, 43.2%) con-
tained the majority of the genes, followed by blue mod-
ule (561/3,369, 16.7%), the brown module (433/3,369, 
12.9%), yellow module (362/3,369, 10.7%), green module 
(302/3,369, 9.0%), and grey module, which had the few-
est genes (254/3,369, 7.5%) (Figs.  3A, B). Among these 
modules, turquoise and yellow represented ascending 
types, with the turquoise module showing a linear pro-
gression from normal tissue to cancer, and yellow module 
significantly rosed from AIS stage and maintaining high 
expression levels in the IAC, possibly representing early-
phase alterations in cancer cells in response to immune 
stimulation. The blue and brown modules represented 
biphasic gene-expression module, which means that the 
genes within them reached a peak of expression in AIS. 
Additionally, the green module represents the descend-
ing module (Figs. 3A, B).

We summarize signatures of each module through 
functional enrichment analysis with redundancy reduc-
tion by Revigo [18] to the pathways (Fig.  3B). The 
turquoise module was primarily associated with metab-
olism and proliferation, cell death regulation and signal 
transduction, supporting the requirements for exponen-
tial growth and proliferation in the process of acquiring 
malignant phenotypes  (Figs.  3B and  S5A). The yellow 
module was strongly linked to antigen presentation and 
response to cytokine, representing interactions between 

(See figure on next page.)
Fig. 1 Overview of cells in major clusters. A Flow chart of the study design. B TSNE plot of 38,814 cells, colored according to cell types (Top 
left), according to origin of the cells (Topright),andsplitbytheoriginofthecellsrespectively (Bottom). Each dot represents a single cell. C TSNE plot 
of 38,814 cells colored by number of UMIs RNA and genes detected. Each dot represents a cell. D Canonical markers expression across major 
cellclusters. E The proportion of cellular composition in different patients’ groups. F Percentage of each cell type in different groups. Error 
bars represent mean ± SEM. Colored dots represent different samples. Differences with p < 0.05 were indicated; two-sided unpaired Wilcoxon 
rank sum test was used for comparison. Abbreviation: TSNE: T-distributed Stochastic Neighbor Embedding; SEM: Standarderrorofmean; UMI: 
UniqueMolecularIdentifier; * p < 0.05
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Fig. 1 (See legend on previous page.)
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hyperplasia or cancerous cells and the immune system, 
which together reflecting a stimulated immune response 
from the precancer stage of LUAD (Figs. 3B and S6A). 
In addition, the blue module was over-represented by 
pathways related to mitochondria, including the res-
piratory chain, cytochrome complexes and oxidative 
phosphorylation, suggesting unique energy metabolism 
reprogramming in the transition of pre-malignancy 
to cancerous cells  (Figs.  3B and  S7A). The brown 
module was associated with cilium and microtubule 

processes (Figs. 3B and S8A). Lastly, the green module, 
which exhibited decreased expression with disease pro-
gression, was enriched in cellular adhesion related path-
ways, possibly indicating the process of acquiring the 
ability to detach from extracellular matrix and invade 
(Figs. 3B and S9A).

The network between genes with the highest eigen-
gene-based connectivity (kME value) in each module 
were also visualized (Fig. S10A). These findings suggest 
that the development of LUAD is a signaling-intense and 

Fig. 2 Identification of malignant cells in GGN by InferCNV and characterization of epithelia from different stage by WGCNA. A Heatmap showing 
large-scale CNVs for individual cells (rows) for all the EPCAM + cells as input, immune and stromal cells were as references (top), and large-scale 
CNVs were observed in malignant cells (bottom), with the color shows the log 2CNV ratio. Red represents gene amplifications and blue represents 
deletions. B Validation of inferCNV results. DEG analysis on the malignant and normal cells we inferred in the EPCAM + cells from AIS and IAC 
samples, and same cells randomly spited into to subsets for three times, with genes of interested was framed with black box (Left). Significantly 
enriched Hallmark pathways in inferred normal and malignant cells as determined by GSVA score (Right) C Scale-free topology model fitting, 
with the horizontal axis representing different soft thresholds and the vertical axis representing the value of the model (Left top); Average degree 
of connectivity, with the horizontal axis representing different soft thresholds and the vertical axis representing the average degree of connectivity 
(Left bottom). Clustering of different gene modules (Right middle). Abbreviation: AIS: Adenocarcinoma in situ; CNV: Copy Number Variation; DEG: 
Differential expressed gene; GSVA: Gene set variation analysis; IAC: Invasive adenocarcinoma; WGCNA: Weighted correlation network analysis
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Fig. 3 Five modules of co-expressed genes identified with linear combined with scWGCNA. A The gene-expression measurement represents 
the mean expression level of genes in each module, and error bar indicated SEM. Bubble plot beneath each gene-expression measurement 
was created on Revigo, shows the over-represented GOBP terms in each module, the color of the bubbles corresponds to the FDR value, the size 
of the bubble corresponds to the LogSize value for the GO Term, and the edge means the 3% of the strongest GO term pairwise similarities, 
as per to the developer of Revigo. GO terms that can be clustered into one category were circle by dotted oval with color that corresponded 
to the color of signature on the right top of each subfigure. Abbreviation: FDR: False discovery rate; GOBP: Gene Ontology Biological Process; SEM: 
Standard error of mean
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metabolically demanding process with high dynamic and 
complexity, along with the evoking of immune response 
and loss of detachment in the initial stage of LUAD.

Accumulation of tregs with diverse sources 
and loss‑functional State of CD8 + T cells instead 
of exhaustion features the TME of initial and early‑stage 
LUAD manifested as GGN
T cells and NK cells are closely related cell components 
and serve as the major effector cells in the TME [19]. Sub-
clustering of a total of 18,268 T/NK cells revealed eight 
subtypes of T cells and two subtypes of NK cells (Figs. 4A 
and S11A). Among these, there were five clusters of 
CD4 + T cells (CD3 + CD4 + CD8-), each with distinct 
characteristics. CD4-C1 was defined as naïve CD4 + T 
cell (CCR7 + SELL +), CD4-C2 as effector memory 
CD4 + T cell (ANXA1 + GZMA +), CD4-C3 as exhausted 
CD4 + T cells (PDCD1 + TOX + CTLA4 + TIGIT +), CD4-
C4 as cytotoxic CD4 + T cell (GZMA + GZMH +), and 
CD4-C5 as regulatory CD4 + T cell (CD4 + Treg) (FOXP
3 + IL2RA + CTLA4 + TIGIT +) (Fig. 4B, C).

Furthermore, three subtypes of CD8 + T cells 
(CD3 + CD4-CD8 +) were identified. CD8-C1 was defined 
as cytotoxic CD8 + T cell (CX3CR1 + GZMH + GZMB + G
ZMA +). CD8-C2 was characterized with low expression 
of coinhibitory molecules and high expression of GZMK, 
displaying a pattern reminiscent of previously reported 
pre-exhausted CD8 + T cells [20, 21], and was thus defined 
as GZMK + pre-Exhausted CD8 + T cell. CD8-C3 showed 
strong expression of ZNF683, CXCR3 and CXCR6, resem-
bling tissue-resident memory CD8 + T cell, and was also 
considered as pre-exhausted CD8 + T cells as an alterna-
tive evolution pathway of naïve CD8 + T cells to terminal 
exhausted CD8 + T cells. Therefore, we defined CD8-C3 as 
ZNF683 + pre-Exhausted CD8 + T (ZNF683 + CD8 + Texp) 
(Fig.  4B, C) [21, 22]. NK cells were annotated as NK-C1 
(CD16 +) and NK-C2 (CD16-XCL1 + XCL2 +) based on 
the expression pattern of FCGR3A (which encodes CD16) 
(Fig. 4B, C). Notably, no terminal exhausted CD8 + T cell 
clusters expressing high level coinhibitory molecules were 
identified. Additionally, a cluster referred to as the ’Unde-
fined cluster’ displayed neither T nor NK markers expres-
sion and exhibited significantly low gene counts, and was 
consequently considered a cluster of low-quality cells, sub-
sequently excluded from further analysis.

Compared to normal lung tissue, IAC exhibited a sig-
nificantly increase in the proportions of several cell 
types, including naïve CD4 + T cells (CD4-C1, p = 0.016), 
exhausted CD4 + T cells (CD4-C3; p = 0.016), effector 
memory CD4 + T cells (CD4-C2; p = 0.016), CD4 + Treg 
(CD4-C5; p = 0.016), ZNF683 + pre-exhausted CD8 + T 
cells (CD8-C3; p = 0.016) and GZMK + pre-exhausted 
CD8 + cells (CD8-C2; p = 0.032). Conversely, CD16 + NK 

cell (NK-C1; p = 0.032) decreased in IAC compared to 
normal lung tissue. CD8-C1 also exhibited a reduc-
tion with marginal significance (p = 0.063). In AIS, most 
cell types displayed intermediate levels between those 
observed in normal lung tissue and IAC. Of note, effec-
tor memory CD4 + T cells (CD4-C2; p = 0.036) and 
CD4 + Treg (CD4-C5; p = 0.036) showed significant 
increase in AIS compared to normal lung tissue (Fig. 4D).

Simultaneously, we retrieved TCR sequencing data from 
8,451  T cells (71.33%, 8,451/11,847) that had produc-
tive and unique TCR α- and β-chain pairs after stringent 
quality-control filtering (Fig. 5A), with a total of 5,774 dis-
tinct clonotypes. In addition, AIS have a comparable V(D)
J genes usage with nLung, which were apparently differed 
from IAC (Fig.  5B). Such selective usage of V(D)J genes 
suggests that different immunodominant epitopes may 
drive the molecular composition of T cell responses and 
may be associated with disease stage specific responses. 
Furthermore, AIS and IAC both displayed significantly 
decreased clonal expansion when compared to nLung, as 
evidenced by an increase in the number of unique clonal 
types (Figs.  5C, D) and a decrease in the percentage of 
clonal cells (Figs. 5E and S11B) from nLung to IAC. Addi-
tionally, CD4 + T cells generally showed lower clonal per-
centage compared to CD8 + T cells, with the exception of 
the Cytotoxic CD4 + T cell (CD4-C4) cluster (Fig.  S11C). 
This observation suggests higher clonal activity of cells with 
effector function. In particular, CD4-C1, CD4-C2, CD4-
C3, CD4-C4, CD8-C2 from AIS or IAC showed a signifi-
cant decline in the percentage of clonal cells compared to 
nLung. Notably, CD4 + Treg cells(CD4-C5) were the only 
cluster that displayed a higher percentage of clonal cells in 
AIS/IAC compared to nLung (Fig. 5E). This finding is con-
sistent with a previous study in esophageal cancer [23] and 
suggests that the accumulation of Treg cells in AIS and IAC 
is at least partly attributed to the local expansion of certain 
clonotypes.

We then conducted an analysis of the overlapping of 
TCR in different subclusters of CD4 + and CD8 + T cells 
to infer the lineage tracing of various T cell clusters. 
The results revealed that cytotoxic CD8 + T cells and 
GZMK + pre-exhausted CD8 + T cells shared the high-
est number of identical clonotypes, with an overlapping 
rate of 54.10%. This was followed by naïve CD4 + T cells 
and Treg cells, which exhibited a 21.50% overlapping 
rate, and effector memory CD4 + T cells and cytotoxic 
CD4 + T cells, which shared 19.3% of identical clonotypes 
(Fig.  5F). These findings indicate specific cell fate com-
mitments. Moreover, we employed Monocle2 [24], an 
unsupervised method frequently used to infer the devel-
opmental trajectory of different cell types. The results of 
the Monocle2 analysis supported the findings of the TCR 
overlapping analysis. It demonstrated that naïve CD4 + T 
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Fig. 4 Recluster of T/NK cells and overview of TCR distribution across different groups. A. TSNE plot of 11,847 T/NK cells reclustered, colored 
according to cell subtypes (Top), colored according to TCR detected (Bottom). Each dot represents a single cell. B. Dot plot of functional genes 
expression in each T/NK subclusters. C. Canonical markers expression for each T/NK subclusters. D. Percentage of each T/NK subtypes in different 
groups. Error bars represent mean ± SEM. Colored dots represent different samples. Differences with p < 0.05 were indicated; two-sided unpaired 
Wilcoxon rank sum test was used for comparison. E. LOESS fitting plot showed the correlation between the number of T cell clones and the number 
of cells per clonotype. Solid line is used to display the correlation, and dashed line is used to separate between nonclonal and clonal cells. F. Status 
of immune repertoire space occupancy of clones across different groups by stacked bar chart. The occupancy of the clone space was analyzed 
by sorting all clonotypes in descending order based on their frequency of occurrence. The data were then separated into different bins using 
cutoff values of 10, 100, 1000, and 10,000, and stacked bar chart was then plotted to visualize the distribution of clonotypes among the different 
bins. G. The percentage of clones with different frequencies across different groups. H. Status of TRA/B genes usage across different groups. The 
colors indicate the usage percentage of specific V-J gene pairs. Abbreviation: LOESS: Locally Weighted Scatterplot Smoothing; SEM: Standard error 
of mean; TCR: T cell repertoire
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cells, effector memory CD4 + T cells, and cytotoxic 
CD8 + T cells occupied the root of the trajectories and 
preferentially developed into CD4 + Treg cells, cytotoxic 
CD4 + T cells, and GZMK + pre-exhausted CD8 + T cells, 
respectively (Fig. 6A). This observation also suggests that 
differentiation from naïve CD4 + T cells could be another 
potential source of Treg cell accumulation in the initial 
stage of LUAD, in addition to local expansion. Based on 
the inferred lineage relationship between naïve CD4 + T 
cells and Treg cells, we subsequently identified genes 
with dynamic expression over pseudotime to investigate 
the transcriptome transition during the development of 
Treg from naïve CD4 + T cells. Differential expressed 
genes were identified and clustered into four groups. 
Group 1 were primarily associated with cell adhesion and 
cell movement, which is consistent with the high migra-
tion capacity of naïve CD4 + T cells compared to Treg 
cells [25, 26]. Group 2 and Group 3 were enriched for the 
process related to T cell activation and cellular responses 
to various stimuli, reflecting the differentiation process. 
It’s worth noting that genes associated with metal ion 
regulation, including zinc regulators MT1 and MT2, 
which have been reported to be enriched in dysfunctional 
CD8 + tumor-infiltrating T cells [27], and iron regulators 
SLC40A1 and FTH1, were also found to be involved in 
this process. This finding suggests that these genes could 
potentially serve as therapeutic targets to interfere with 
the differentiation into Treg cells. Additionally, Group 4 
was enriched in genes related to immune system regula-
tion (Fig.  6B). We employed the Single-cell Regulatory 
Network Inference and Clustering (SCIENIC) algorithm 
[28] to identify differentially expressed transcription fac-
tors between naïve CD4 + T cells and Treg cells. This 
analysis demonstrated an enrichment of the methylase 
EZH2 and demethylase KDM5B in Treg cells compared 
to CD4 + T cells (Fig.  6C). This suggests that the differ-
entiation from naïve CD4 + T cells to Treg cells involves 
extensive epigenetic reprogramming [29].

Then we use three well-defined gene-sets that repre-
senting naïve score (n-score), cytoxicity score (c-score) 
and exhaustion score (e-score) to further characterize the 

functional state of each cell cluster. As expected, naïve 
CD4 + T cells (CD4-C1; mean n-score = 0.31) exhibited 
the highest naïve score, followed by effector memory 
CD4 + T cells (0.08); NK-C1(mean c-score = 0.99), cyto-
toxic CD8 + T cells (CD8-C1; 0.69) and NK-C2 (0.66) 
representing the most cytotoxic cell types, CD4 + Treg 
showed least cytotoxic effector expression. Furthermore, 
CD4 + Treg (CD4-C5; mean exhausted score = 0.30) and 
exhausted CD4 + T cells (CD-C3; 0.11) represented the 
most exhausted cell types (Fig.  6D), and we’ve noticed 
that all subclusters of CD8 + T cell experienced a dra-
matic decrease of cytotoxicity along with the disease 
progression without appearance of exhausted phenotype 
(Fig. 6E), based on this observation, we propose that the 
loss of functional state, characterized by decreased cyto-
toxicity without a clear transition to terminal exhaus-
tion, may be the key feature of lymphocytes in the TME 
of early-stage LUAD. This is distinct from the late stage, 
which is characterized by the dominance of exhausted 
CD8 + T cells [20, 30].

To explore the shared biological circuits contributing 
to dysfunction in CD8 + T cells, we conducted a selection 
process to identify genes meeting the following criteria: 
1) genes with expression pattern correlated with cytotoxic 
score (Pearson correlation coefficient ≥ 0.3); 2) genes sig-
nificantly differentially expressed between nLung and 
AIS/IAC (logFC ≥ 0.3 and adj. p value < 0.05) (Fig.  6F). 
Among the upregulated genes, IL7R and LTB are indica-
tive of a memory phenotype [21]. This aligns with previ-
ous study suggesting that continuous antigen stimulation 
can lead to a memory phenotype in T cells [31]. Addi-
tionally, the high expression of DUSP4 has been associ-
ated with the acquisition of a memory phenotype and 
CD4 + T cell senescence in patients with idiopathic CD4 
lymphopenia [32] (Fig.  6C). Notably, we also observed 
upregulation of JUN and FOS, both components of the 
AP-1 complex. Interestingly, the AP-1 complex has been 
reported as a key transcriptional regulator of genes asso-
ciated with effector responses and exhaustion. However, 
exhausted T lymphocytes typically exhibit low expression 
of AP-1. This suggests that there may be other molecules 

(See figure on next page.)
Fig. 5 Clonal expansion analysis and development trajectory inferring based on combined analysis with Monocle2. A Clonal expansion status 
indicated by the percentage of clonal cells in each cell clusters. B TCR overlapping in CD4 + T cells and CD8 + T cells respectively. Color responded 
to the percentage of overlapping. C Percentage of clonal cells in each T cell subclusters across different groups. Error bars represent mean ± SEM. 
Colored dots represent different samples. Differences with p < 0.05 were indicated; two-sided unpaired Wilcoxon rank sum test was used 
for comparison. D Development trajectory of CD4 + and CD8 + T cells inferred by Monocle2, colored according to cell types (Top), and colored 
according to pseudotime value (Bottom). Gradient-colored arrow indicated the direction of development inferred. E Heatmap showing differentially 
expressed genes arranged in pseudo temporal patterns. Related GO terms revealed biological functions and representative genes in each cluster 
were indicated due to space limitation. F The most differentially enriched TFs between naïve CD4 + T cells and Tregs investigated by SCIENIC 
algorithm. Abbreviation: GO: Gene Ontology; SCIENIC: Single-cell regulatory network inference and clustering; SEM: Standard error of mean; TFs: 
Translational factors
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or mechanisms aside from AP-1 involved in regulating 
the dysfunctional state of T cells in our dataset [33]. On 
the other hand, 44 genes positively correlated with the 

cytotoxic score were downregulated in AIS and IAC. In 
addition to effector molecules and T cell activation mark-
ers [34] such as NKG7, GNLY, GZMH, PRF1, CCL4, we 

Fig. 5 (See legend on previous page.)
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also identified molecules involved in cytoskeleton regu-
lation and lymphocyte recruitment, including SUN2 and 
SPON2 [35, 36]. In addition, EFHD2, PCBP1, ADGRG1, 
PXN, PLAC8 have recently been reported [37–40] to be 
critical for the stability of effector T cell function. KLF2 
and its target gene S1PR1, as well as ZEB2 and S1PR5, 
were significantly downregulated, consistent with the 
acquisition of a residential memory phenotype [41–43]. 
Additionally, several genes with less-known associations 
with T lymphocyte function, such as MYL12A, TPST2, 
ATP5I, LPCAT1, warrant further investigation.

Monocyte‑derived macrophage experienced 
lipid‑phenotype transition and prime the suppressive 
microenvironment
Myeloid cells are major player in the suppressive micro-
environment of tumor and was shown to be involved 
from the very beginning of cancer genesis [44]. Upon 
reclustering of 9,179 myeloid cells, we identified 12 sub-
clusters (Figs. 7A, S12A, B). Among these, we identified 4 
clusters of alveolar macrophages (AM) characterized by 
high expression of PPARG, FABP4 and MARCO (AM-
C1 to AM-C4) (Fig.  7A, S12A, B). Notably, AM-C3 also 
highly expressed FCN1, a marker for monocytes, which 
imply its origination from monocytes. Furthermore, 2 
clusters of monocytes were identified, Mono-C1 cor-
responding to classical monocytes (CD14 + FCN1 +), 
and Mono-C2 was annotated as non-classical monocyte 

Fig. 6 Functional characteristics of different T/NK subclusters. A Ridge plot showing the naïve score, effector, and exhaustion score across different 
T/NK subclusters, arranged in descending order from top to bottom based on the logged expression values of each score. B The differential 
expression of different functional scores across different groups. Red boxes highlight the decrease of cytotoxic score along the progression 
of disease. C Genes significantly correlated with cytotoxic score in all groups of CD8 + T cells and differentially expressed in CD8 + T cells from AIS/
IAC compared with nLung. Green bars indicated genes that are positively correlated with cytotoxic score and downregulated in CD8 + T cells 
from AIS/IAC; Blue bars indicated genes that are negatively correlated with cytotoxic score and upregulated in CD8 + T cells from AIS/IAC; length 
of the bar indicated the value of Pearson correlation coefficient
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(CD16 + FCN1 +). Moreover, a cluster of macrophages 
that simultaneously showed expression pattern of mono-
cyte (CD14 + CD16 +) and macrophage (CD68 + MRC1 +) 
were defined as Mono-like MAC. Interestingly, this clus-
ter of macrophages also highly expressed previously 
reported tumor associated macrophage (TAM) related 
genes, including SLC40A1, although a well-defined TAM 
marker SPP1 [45] was not expressed in Mono-like MAC. 

We also retrieved 5 clusters of dendritic cells (DCs), 
DC-C1 was defined as Mono-DC due to highly expressed 
FCN1 (FCN1 + CLEC10 +), DC-C2 as CD1C + DC 
(CD1C + FCGR2B +), DC-C3 as LAMP3 + DC 
(LAMP3 +), DC-C4 as CLEC9A + DC (CLEC9A +), and 
a cluster of plasmacytoid dendritic cell (pDC, LILRA4 +) 
was also identified (Figs. 7A, S12A, B). We also examined 
classical M1 and M2 polarization markers in myeloid cells 

Fig. 7 Recluster of myeloid cells and developmental trajectory of monocytes inferred by Monocle2. A TSNE plot of 9,179 myeloid cells reclustered, 
colored according to cell subtypes. B Percentage of each myeloid subtypes in different groups. Error bars represent mean ± SEM. Colored dots 
represent different samples. Differences with p < 0.05 were indicated; two-sided unpaired Wilcoxon rank sum test was used for comparison. C 
Developmental trajectory of monocytes and Mono-like MAC inferred by Monocle2, and the expression pattern based on the trajectory of genes 
of interest. D The most differentially enriched TFs between monocytes and Mono-like MAC investigated by SCIENIC algorithm (Left), the TFs 
exclusively enriched in each clustered were highlighted with black boxes. Expression of representative TFs (Right). Abbreviation: SCIENIC: Single-cell 
regulatory network inference and clustering; SEM: Standard error of mean; TFs: Translational factors; TSNE: T-distributed Stochastic Neighbor 
Embedding. * p < 0.05
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and found no typical M1 or M2 expression patterns in any 
of the subclusters. This suggests that the status of myeloid 
cells in the tumor microenvironment is more complex 
than the classic M1 and M2 models [46] (Fig. S13A).

Compared to nLung, IACs were enriched for Mono-
like MAC (p = 0.016) and were deprived of CD16 + CD14- 
non-classical monocytes (Mono-C2, p = 0.016). Notably, 
Mono-like MAC were also significantly enriched in 
AIS compared to nLung (p = 0.036) (Figs. 7B and S13B), 
suggesting a potential role in the very early stage of 
carcinogenesis.

As previously mentioned, Mono-like MAC exhibits a 
high level of expression for genes related to monocytes. 
To explore their potential transitional relationships, 
we applied Monocle2 analysis to Mono-C1, Mono-C2, 
and Mono-like MAC. As expected, Mono-like MAC 
appeared at the end of the developmental branches, 
while Mono-C1 and Mono-C2 were located closer to the 
beginning (Fig.  7C). The representative genes of mono-
cytes, macrophage and TAM also showed no random 
expression patter (Figs.  7D and  S14A), all these suggest 
the monocytic origin of this macrophage cluster. Next, 
we applied DEG and functional enrichment analysis on 
the Mono-like Mac cluster. Moreover, distinct pattern of 
TFs that may mediate the differentiation of monocytes 
into Mono-like MAC were revealed by SCIENIC. Com-
pared to monocytes, the Mono-like MAC cluster showed 
exclusive high levels of FOXP1, TFDP2, CLOCK, MIOS, 
RUNX, ETV5, TFEC, and STAT1, with ETV5 exhibiting 
the most variable expression and targeting the largest 
number of genes. This suggests its potential vital role in 
regulating macrophage differentiation and lipid metabo-
lism reprogramming (Figs.  7E and  S14B). In addition, 
comparing to their counterpart in normal lung tissue, 
Mono-like Mac in AIS/IAC upregulated numerous lipids 
metabolism and transportation related genes, including 
APOE, APOC1, PLTP, ABCA1, PLA2G7 etc. This indi-
cated that this macrophage cluster undergoes significant 
lipid metabolism reprogramming (Fig. 8A), a phenotype 
that were reported closely related to various diseases, 
including cancer [47]. We’ve also noticed the opposite 
expression patterns of FABP3 and FABP4, two fatty acid 
transport related genes from one family that have dis-
tinct expression pattern in different organs [48], in the 

Mono-like MAC from AIS/IAC or nLung. This indicated 
that this cluster of macrophages was regulated in a sub-
tle way that needs further study. Immunofluorescence 
confirm the accumulation of FABP3 + macrophages and 
depletion of FABP4 + macrophages in early stage LUAD 
manifested as GGN (Fig.  8B). Meanwhile, genes encod-
ing cathepsin family members (CTSB, CTSZ and CTSD), 
iron-metabolism associated genes (SLC40A1, FTL) were 
also upregulated. In addition, chemokines genes (CCL18, 
CCL13) were of the most upregulated genes, suggest-
ing their potential roles in immune modulation. We also 
noticed that MHCII molecule including HLA-DPA1, 
HLA-DRB1, HLA-DQA1 and CD74 were significantly 
downregulated in this cluster of macrophages, which may 
contribute to sub-optimal tumor antigen presentation 
(Fig. 8A).

GSVA for Hallmark gene set (MSigDB) revealed that 
Mono-like Mac in AIS/IAC were enriched for many can-
cer-related pathways, including complement pathway, 
which has recently been recognized as a key component 
in macrophage-mediated tumor progression and immu-
nosuppression [49]. Additionally, inflammation-related 
pathways and those associated with the metabolism of 
glucose, lipids, and iron were significantly altered. These 
findings collectively suggest an immune-regulated, meta-
bolically active and protein secretion-oriented phenotype 
of this macrophage cluster (Fig. S15A).

Given the significant upregulation of lipid-metabolism-
related genes in Mono-like Mac, we further apply GSVA 
using 85 previously defined gene sets related to metabo-
lism [50]. This analysis revealed extensive alterations in 
metabolism, particularly in lipid-related pathways, within 
the Mono-like Mac cluster in AIS/IAC. These pathways 
encompassed processes involved in lipid synthesis, elon-
gation, and degradation (Fig. S16A). These results further 
underscore the strong association of this macrophage 
cluster with lipid metabolism. These findings suggest that 
the enrichment of lipid metabolism-related macrophage 
clusters originating from monocytes in the early stages of 
lung adenocarcinoma genesis may contribute to the sup-
pressive microenvironment and disease progression.

Fig. 8 Functional analysis of Mono-like MAC subclusters. A. DEGs between Mono-like MAC isolated from nLung and AIS/IAC (Top). Significantly 
enriched Hallmark pathways in Mono-like MAC isolated from nLung or AIS/IAC as determined by GSVA score (Bottom). B. Significantly 
enriched metabolism-related pathways in Mono-like MAC isolated from nLung or AIS/IAC as determined by GSVA score. C. Representative 
immunofluorescence images showing FABP3 and FABP4 expression on macrophages in normal tissues and LUAD manifested as GGN. CD68 were 
stained red, FABP3 and FABP4 were stained green, and nuclei were stained blue (DAPI). Abbreviation: AIS: Adenocarcinoma in situ; DEG: Differential 
expressed gene; GSVA: Gene set variation analysis; IAC: Invasive adenocarcinoma

(See figure on next page.)
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Fig. 8 (See legend on previous page.)
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Characterization of stromal cells in early‑stage LUAD 
progression
Stromal cells play a crucial role in the remodeling of the 
tumor microenvironment (TME) [46], yet the characteris-
tics of stromal cells in the early progression of LUAD remain 
poorly understood. Therefore, next we sought to investi-
gate single-cell transcriptomic dynamics of ECs and fibro-
blasts in present dataset. A total of 2,577 ECs (RAMP2 +) 
were reclustered into 5 subclusters. Among these, 52.5% 
(1,352/2,577) originated from nLung, 28.5% (735/2,577) 
from AIS, and 19.0% (490/2,577) from IAC (Figs. 9A and 
S17A). These subclusters were characterized based on 

highly expressed marker genes: Endo-C1 as extra-alveolar 
capillary ECs (SLC6A4 + FCN3 + EDN1 +), Endo-C2 as 
alveolar capillary ECs (HPGD + EDNRB + IL1RL1 +), Endo-
C3 as tumor-associated ECs (PLVAP + SPRY1 + HSPG2 +), 
Endo-C4 as arterial ECs (GJA5 + FBLN5 +) and Endo-C5 
as lymphatic ECs (CCL21 + TFF3 +) (Figs.  9B and  S17B). 
Tumor-associated ECs were enriched in IAC compared to 
nLung as expected (p = 0.028) (Fig. 9C).

Furthermore, compared to their normal coun-
terparts, tumor-associated ECs were significantly 
enriched in most cancer related hallmark pathways. 
The top-ranking pathways including the unfolded 

Fig. 9 Recluster and functional analysis of stromal cells. A Recluster of 2,577 endothelial cells, colored according to cell subclusters (Top). Heat map 
showed marker genes in each subclusters (Bottom). B Percentage of each subclusters in different groups. Error bars represent mean ± SEM. Colored 
dots represent different samples. Differences with p < 0.05 were indicated; two-sided unpaired Wilcoxon rank sum test was used for comparison. 
C Significantly enriched Hallmark pathways in tumor-associated endothelial cells isolated from nLung or AIS/IAC as determined by GSVA score 
(Left). Significantly enriched metabolism-related pathways in tumor-associated endothelial cells isolated from nLung or AIS/IAC as determined 
by GSVA score (Right). D Expression of glycose-metabolism related genes in different clusters of endothelial cells. E Recluster of 2,513 fibroblasts, 
colored according to cell subclusters (Left). Heat map showed marker genes in each subclusters (Right). F Kaplan–Meier overall survival curves 
of TCGA LUAD patients with the top 10 most differentially expressed genes between fibroblasts isolated from nLung and AIS/IAC. Abbreviation: 
AIS: Adenocarcinoma in situ; GSVA: Gene set variation analyses; IAC: Invasive adenocarcinoma; LUAD: Lung adenocarcinoma; SEM: Standard error 
of mean; TCGA: The Cancer Genome Atlas Program. * p < 0.05
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protein response and MYC-related pathways (Fig. 9D). 
This observation led us to investigate the metabolic 
alterations in tumor-associated ECs. We found that 
pathways and genes related to glucose metabolism 
were notably altered (Fig. 9D, S18), suggesting distinct 
metabolic alterations in tumor-associated ECs during 
LUAD progression, which warrants further study.

Next, we re-clustered 2,513 fibroblasts and 
revealed 5 subclusters (Figs.  9E and S19A), includ-
ing immune-modulatory fibroblasts (Fibro-C1; 
IGFBP6 + SFRP2 + CCDC80 +), normal fibroblasts 
(Fibro-C2; A2M + RGCC  +), myofibroblasts (Fibro-
C3; ACTA2 + TAGLN +), POSTN + fibroblast 
(COL3A1 + COL1A1 + POSTN +), smooth muscle cells 
(Fibro-C5; ACTA2 + COX4I2 +) (Figs.  9F and S7B). None 
of these clusters was significantly enriched in the AIS and 
IAC compared to nLung (data now shown). Direct com-
parison revealed that fibroblasts derived from cancer tis-
sues were predominantly enriched for TGF-β signaling 
(Fig. S19C). The activation of TGF-β signaling was closely 
related to angiogenesis and secretion of collagens [51]. 
Furthermore, the most highly expressed genes in AIS/
IAC-derived fibroblasts were associated with worse prog-
nosis in LUAD dataset from TCGA (Fig. 9G).

Ligand‑receptor cell–cell communication analysis revealed 
immunomodulation role of stromal cells and intense 
interplay between myeloid cells and treg
The crosstalk between tumor cells, immune cells, and 
stromal cells in the TME forms complicated network 
and mediates the immunosuppressive phenotypes and 
tumor progression [52]. Using the iTALK R package 
[53], we inferred ligand-receptor cell–cell communica-
tion based on the built-in database. The total number 
of cell–cell interaction increased along with the disease 
development, indicate a more intensive signal exchange 
(nLung: n = 1328; AIS: n = 1580; IAC: n = 1863), and the 
frequency of in and out signaling in each cell clusters var-
ied across different stages, with Mono-like MAC show-
ing among the most altered cell types, suggesting an 

active phenotype (Fig.  S20). Then the interactions that 
were significantly differed in the nLung and AIS/IAC 
group were analyzed and visualized separately (Fig. 10A). 
Firstly, we noticed a declined of CX3CL1-CX3CR1 inter-
action, which is reported to be an important mechanism 
of recruiting T and NK cells to the TME [46], between 
endothelium cells and T/NK cells. A detailed investi-
gation revealed that CX3CR1 was mainly expressed 
by cytotoxic cell types, all of which showed decreased 
expression in AIS/IAC. Additionally, the expression of 
CX3CL1 decreased in most endothelium cells. These 
alterations of CX3CL1-CX3CR1 interaction may con-
tribute to the decreased proportion of cytotoxic cells 
in AIS and IAC compared to nLung. Furthermore, 
fibroblasts exhibited intense signaling to lymphocytes 
through CCL19-CCR7 and CCL19-CXCR8, potentially 
contributing to the recruitment of naïve CD4 + T cells 
and ZNF683 + pre-exhausted CD8 + T cells (Fig.  10B), 
highlighting the immunomodulatory role of stromal 
cells. Additionally, HBEGF, an EGFR ligand intensively 
involved in cancer progression, was shown to be the main 
mediator of epithelial cells and AM cells affecting other 
cell types [54], and may serve as a potential target for 
early stage LUAD treatment (Fig. 10A).

As mentioned before, the accumulation of Tregs is a 
prominent feature of the immunosuppressive TME in 
initial and early-stage LUAD. To further investigate the 
mechanism of Treg cell recruitment, we screened the 
receptors expressed on Tregs. Our results showed that 
four receptors–CCR4, CCR8, CD28 and SIRPG–were 
almost exclusively highly expressed in Tregs compared 
with other clusters and showed trends of increased 
expression along with disease progression (Figs. 10C and 
S21A). CCR4 and CCR8 are known as important recep-
tors for Treg recruitment and functionality [55]. Screen-
ing for ligands revealed that Mono-like MAC and DCs 
have the most interactions with Treg through CCL18/
CCL8-CCR8, CCL17/CCL22-CCR4 and CD80/86-CD28, 
respectively (Figs.  10C and S21B). In detail, DC-C3 
(LAMP3 + DC) cluster was the major source of CCL22, 

Fig. 10 Ligand-receptor pairs-based cell–cell cross talk analysis. A The total number of in and out going signal from different cell types (Left). 
Representative circos plots showing top 15 most differentially expressed cytokine (Right Top) and growth factor (Right Bottom) L-R pairs compared 
between AIS/IAC and nLung. The red solid lines represent L-R pairs with higher expression in the AIS/IAC group compared to the nLung group, 
while the blue lines represent the opposite. The thickness of the lines represents the log2FC of ligands differential expression, and the size 
of the arrows represents the log2FC of receptor differential expression. The colors of the outer circle correspond to different cell types. B Expression 
pattern of CX3CL1, CX3CR1, CXCR3, and CCR7 in cell subtypes. C Screening of cytokine receptors on different cell types (Top). Expression of ligands 
for CCR4, CCR8, CD28 and SIRPG on different cell types (Bottom). D Expression of CCL2, CD80, CCL17 and CD86 in different clusters of DCs. E DEGs 
between Tregs with high and low expression level of SIRPG based on the mean expression level of SIRPG (Top left). Rests are the expression 
correlation of SIRPG with MHCII genes including HLA-DRA, CD74 and HLA-DPA1 in the LUAD cohort of TCGA. Abbreviation: AIS: Adenocarcinoma 
in situ; DEG: Differential expressed gene; FC: Fold of change; IAC: Invasive adenocarcinoma; LUAD: Lung Adenocarcinoma; TCGA: The Cancer 
Genome Atlas Program. * p < 0.05

(See figure on next page.)
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CCL17 and CD80, which is consistent with recent studies 
highlighting the role of LAMP3 + DCs in creating immu-
nosuppressive environment (Fig.  10D) [56]. These find-
ings suggest that recruitment into TME by myeloid cells 
may serve as a third source of Treg accumulation in the 

TME of initial and early-stage LUAD, in addition to local 
expansion and differentiation from naïve CD4 + T cells as 
previously mentioned in this study.

Unlike SIRPA, which has been extensively studied [57], 
very few studies have focused on the role of SIRPG in the 

Fig. 10 (See legend on previous page.)
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immune system and Treg regulation. Direct comparison 
of Tregs that have high or low expression of SIRPG unex-
pectedly revealed an upregulation of MHC II molecules, 
including CD74, HLA-DPA1, HLA-DRA, HLA-DRB1. 
SIRPG was also positively related with CD74, HLA-
DPA1, HLA-DRA in the LUAD dataset from TCGA 
(Fig.  S22A). This suggests that SIRPG may serve as a 
novel marker for the MHC II expressed Tregs which was 
highly active and immunosuppressive [58], presenting a 
potential new target for eliminating Tregs in very early-
stage LUAD. In addition, CD47, the known gland for 
SIRPG, showed ubiquitously expression in all cell clus-
ters, suggesting extensive interactions of Tregs with other 
cellular components through the CD47-SIRPG pathway. 
The mechanisms underlying these interactions warrant 
further investigation.

Discussion
The molecular and immunological mechanism under-
lying the genesis and progression of early-stage LUAD 
remain elusive. In this study, we depict the dynamic 
molecular and cellular landscape of the initial stages of 
LUAD through single-cell RNA/TCR integrated analy-
sis. We have revealed the dynamic molecular and cellular 
trajectory during malignant progression of LUAD mani-
fested as GGN. These findings which may lay foundation 
for the development of novel therapeutic and diagnostic 
targets.

By pre-filtering genes with disease stage-related expres-
sion patterns and combining single-cell WGCNA, we 
have delineated five signatures that over-represent the 
disease-stage related mechanism that contributing to 
malignant progression from normal lung tissue to AIS 
and early-stage IAC. Pathways associated with metabo-
lism, proliferation and signal transduction were continu-
ously increased, which is consistent with the sustained 
proliferative nature of cancer cells [59]. Additionally, 
cell death regulation pathways were also assigned to the 
continuously ascending module, suggesting the early 
raised and sustained disturbance of balance between the 
immune surveillance and anti-apoptotic nature of can-
cerous cells. We also observed an acute upregulation of 
antigen presentation and cytokine pathway responses 
from the stage of AIS, reflecting active immunological 
interactions between abnormal epithelial cells and the 
host immune system. This suggested that pre-cancerous 
lung epithelial cells possess immunogenicity and engage 
in intense interactions with the immune system. These 
findings align with previous studies indicating that the 
adaptive immune response is strongest at the earliest 
stages of carcinoma [60, 61]. This may partly explain the 
indolent growth pattern observed in GGNs.

We also noticed that pathways associated with mito-
chondrial organization and function displayed a bipha-
sic pattern and reached their peak in the AIS stage. 
This observation aligns with previous research in skin 
tumors revealed that mitochondrial respiration strength-
ens before tumor establishment, and targeting electron 
transport chain (ETC) could inhibit the formation of 
skin tumors [62]. Similarly, in a mouse model of Kras-
induced pancreatic cancer [63], Humpton et.al reported 
that Nix-mediated mitophagy occurred during the stage 
of pancreatic intraepithelial neoplasia (PanIN), the pre-
cancerous lesion of pancreatic cancer, to drive redox 
robustness and disease progression. Based on our data 
and previous research, we propose a model in which 
mitochondria and oxidative phosphorylation may serve 
as the primary source of energy production at the very 
beginning of LUAD tumorigenesis. Subsequently, energy 
metabolism undergoes reprogramming as the disease 
progresses. Further investigations into the mechanisms 
underlying this reprogramming and the downregulation 
of mitochondria may offer insights into novel therapeutic 
targets and metabolic imaging tools for early-stage LUAD 
[64]. Another biphasic signature we observed was closely 
related with cilia, although we cannot determine whether 
pertains to primary cilia or motile cilia. Primary cilia 
were considered to be organelle with cancer suppression 
function [65], on the other hand, lung motile cilia were 
reported to involve in the oxidative stress regulation 
[66], which can also be dysregulated in cancer develop-
ment, the biological consequences of cilia disorder will 
worth further exploration since lung is motile cilia enrich 
tissue. In addition, continuously decrease in cell adhe-
sion and cell junction -associated pathways suggests the 
acquisition of invasiveness. In summary, our data provide 
insights into how lung epithelial cells progress to malig-
nant cells from various perspectives.

Immunotherapy such as PD-1/PD-L1 inhibitors holds 
great promise as therapeutic approach for various can-
cers, however, current evidence [67], albeit still pre-
liminary, suggests a limited effect of immunotherapy on 
early-stage lung cancer manifested as GGN. The underly-
ing mechanism underlying are still elusive. In the current 
study, we observed that the immune microenvironment 
in early-stage LUAD is primarily characterized by sev-
eral key features. These include the exclusion of NK cells, 
the accumulation of pre-exhausted CD8+ T cells, and a 
reduction in the effector function of T cells. Notably, we 
did not identify clusters of exhausted CD8+ T cells highly 
expressing PD-1 and other co-inhibitory molecules in 
pre-cancerous lesions and early-stage LUAD. We believe 
that these findings could partially account for the limited 
effectiveness of PD-1 inhibitors in this particular subset 
of patients. Indeed, the CD8+ T cell landscape in GGN 
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closely resembles the characteristics observed in late-
stage LUAD following responsiveness to PD-1 inhibitor 
treatment, that is the accumulation of pre-exhausted cells 
with dramatically decreased of terminal exhausted CD8+ 
T cells [20]. This similarity may reflect immune compe-
tence of AIS and early stage LUAD manifested as GGN, 
which is also consistent with the indolent growth pat-
tern of GGN in the clinical observation. The dysfunction 
of CD8+ T cells in AIS and early-stage LUAD is associ-
ated with decreased effector function and a shift toward 
a memory phenotype. We have identified transcriptional 
programs associated with these changes, and some mol-
ecules may serve as potential targets for reinvigorating 
of T cells in early stage LUAD patients. For instance, 
PCBP1, a newly defined checkpoint for T cell function 
recently, is a promising candidate [38]. TCR analysis has 
revealed a decreased clonal cell ratio of T cells, except 
for Treg cells. This also suggests a compromised prolif-
eration capacity of T cells in response to carcinogenesis, 
which is consistent with the observed decrease in effec-
tor function. Furthermore, the analysis of TCR overlap-
ping, combined with trajectory analysis, has shown that 
the transition of CX3CR1+ cytotoxic CD8+ T cells into 
GZMK+ pre-exhausted CD8+ T cells may be a crucial 
mechanism underlying the loss of CD8+ cell function. 
This finding is reminiscent of a previous study propos-
ing that exhausted CD8+ T cells in the TME of naso-
pharyngeal carcinoma may originate from peripheral 
CX3CR1+CD8+ T cells [68]. Studies have also suggested 
that pre-exhausted CD8+ T cells are precursors of ter-
minal exhausted T cells [23]. The mechanism that lead 
to CD8+ T cells persisting in the pre-exhausted status in 
GGN, such as low antigen loads due to low tumor muta-
tion burden (TMB) [11], or other factors, require further 
investigation. Furthermore, the decreased interaction 
between endothelial cells and cytotoxic cell clusters 
through CX3CL1-CX3CR1 may impair the chemotaxis 
of cytotoxic cell clusters, including NK and CD8+ T cells, 
into the TME. This deficit could further contribute to the 
loss of functional status in the early progression of LUAD.

The enrichment of Tregs is another characteristic fea-
ture observed in pre-cancerous and early-stage LUAD. 
We have provided evidence for three potential sources of 
Treg accumulation in this context: local expansion, dif-
ferentiation from naïve CD4+ T cells, and recruiting by 
other cell types through cytokine and receptor interac-
tion. Notably, myeloid cells, including monocyte-derived 
macrophages and LAMP3+ DCs, appear to play a signifi-
cant role in recruiting Tregs. To effectively target Tregs 
with different sources, it may be necessary to employ a 
combination of different approaches. We have also iden-
tified receptors that are preferentially expressed on Tregs, 
including CCR4, CCR8, CD28 and SIRPG. CCR4 and 

CCR8 have been extensively studied as potential targets 
for elimination Tregs in the TME [55, 69], and our data 
supports the possibility of implement CCR4 and CCR8 
inhibitors in GGN patients in the future. In contrast, the 
role of SIRPG in Tregs has been less explored, and it has 
often been considered less functional than SIRPA [70], 
another member from the same family. Interestingly, we 
found for the first time that SIRPG can be a marker of 
MHCII+ Tregs in early-stage LUAD. MHCII+ Tregs are 
considered mature Treg effector cells [71] with high con-
tact-dependent suppressive capacity [72]. The ubiquitous 
expression of its ligand, CD47, also suggests that SIRPG+ 
Treg can form extensive contacts with other cellular 
components. This discovery may provide new insights 
into the development of Treg-targeted therapies.

The role of macrophages in cancer has been widely 
studied, primarily in the context of metastasis and resist-
ance to treatment [73]. However, our study has identi-
fied a cluster of monocyte-derived and lipid-associated 
macrophages that may play an important role in the early 
stages of carcinogenesis. This is based on their accumu-
lation in precancerous and early-stage LUAD, as well as 
their high expression of pro-tumorigenic molecules such 
as CCL18, CSTs, and GPNMB. Recent study reported 
that alveolar resident macrophages can accumulate in 
LUAD genesis and exert pro-tumorigenic function in 
the very beginning of tumorigenesis in mouse models 
[74]. As complement, we showed that monocytes derived 
macrophages may also play pro-tumorigenic roles in 
the very early stage of LUAD. Except for macrophages, 
we also highlighted that LAMP3+ DCs may represent 
another type of highly active myeloid cells with intense 
crosstalk with Tregs. LAMP3+ DCs has drawn much 
attention in recent years as an emerging key player in 
suppressive TME, and have been observed in various 
types of cancers [56], which holds potential as novel tar-
gets for immunotherapy.

There are also several limitations of our study, first, 
the sample size in our study was relatively small. Sec-
ond, we are unable to sample the same lesion at different 
timepoints to conduct longitudinal study. In the future, 
our findings can be further validated in larger cohorts, 
or with the help of patient-derived xenografts or geneti-
cally engineered spontaneous LUAD mouse model that 
can mimic the different phase of LUAD genesis [75]. New 
technologies, such as single-cell spatial transcriptomics, 
may also help deepen our understanding of the complex 
cellular and molecular networks involved in the genesis 
and progression of early-stage LUAD.
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Conclusions
In conclusion, through single-cell RNA and TCR com-
bined sequencing and analysis, we have delineated the 
molecular and cellular trajectory during the malignant 
progression of LUAD manifested as GGN. This provides 
new insight into the mechanisms underlying the indolent 
grow pattern of GGN and unveils key features that domi-
nant the TME of GGN, along with the mechanisms that 
may promote the progression from precancerous lesions 
to LUAD. We believe that our findings could pave way for 
novel immunotherapies for GGN, which is currently in 
severe lack of internal medicine pharmacotherapy.
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colored according to the origin of the cells (Top right), and split by the 
origin of the cells respectively according to origin of the cells (Bottom). 
Each dot represents a single cell. B. Canonical markers expression for 
each endothelial subclusters. Abbreviation: TSNE: T-distributed Stochastic 
Neighbor Embedding. Fig S7. A. TSNE plot of 2,513 fibroblasts, colored 
according to the number of genes detected (Top left), colored according 
to the origin of the cells (Top right), and split by the origin of the cells 
respectively according to origin of the cells (Bottom). Each dot represents 
a single cell. B. Canonical markers expression for each fibroblast subclus-
ters. C. Significantly enriched Hallmark pathways in Fibro-C4 isolated 
from nLung or AIS/IAC as determined by GSVA score. Abbreviation: AIS: 
Adenocarcinoma in situ; GSVA: Gene set variation analysis; IAC: Invasive 
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