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Abstract 

Extensive research in countries with high sociodemographic indices (SDIs) to date has shown that coronavirus disease 
2019 (COVID‑19) may be directly associated with more severe outcomes among patients living with haematologi‑
cal disorders and malignancies (HDMs). Because individuals with moderate to severe immunodeficiency are likely 
to undergo persistent infections, shed virus particles for prolonged periods, and lack an inflammatory or abortive 
phase, this represents an overall risk of morbidity and mortality from COVID‑19. In cases suffering from HDMs, further 
investigation is needed to achieve a better understanding of triviruses and a group of related variants in patients 
with anemia and HDMs, as well as their treatment through vaccines, drugs, and other methods. Against this back‑
ground, the present study aimed to delineate the relationship between HDMs and the novel COVID‑19, severe acute 
respiratory syndrome coronavirus 2 (SARS‑CoV‑2). Besides, effective treatment options for HDM cases were further 
explored to address this epidemic and its variants. Therefore, learning about how COVID‑19 manifests in these 
patients, along with exploiting the most appropriate treatments, may lead to the development of treatment and care 
strategies by clinicians and researchers to help patients recover faster.
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Introduction
As of December 2019, the first confirmed cases of new 
COVID-19, SARS-CoV-2, were reported in Wuhan, 
China, and the situation has affected more than 200 
countries [1]. The infection may cause severe illness with 
shortness of breath and some symptoms of chest pain, 
which can potentially develop into pneumonia [2]. On the 
other hand, at the same time as the spread of this virus 
worldwide, its detection of this virus through laboratory 
tests such as real-time reverse transcription polymerase 
chain reaction (rRT-PCR), chest CT scans, Immuno-
globulin Rapid Diagnostic Tests (Ig-RDTs), Elisa-linked 
Immunosorbent Assays (ELISAs), and detecting serocon-
verted IgA, IgM and IgG antibodies were performed in 
serum or blood [3, 4].

Therefore, the respiratory system involved during 
SARS-CoV-2 could be associated with the dysregulated 
expression of some biomarkers [5]. In addition, lym-
phopenia is nothing special in this condition and high 
patients, which indicates anemia in cases of COVID-
19. The ferritin test shows higher than normal levels, 
indicating an acute inflammatory response in patients 
or the entry of the virus and its effects on iron metabo-
lism, which can reduce the bioavailability of iron, thereby 
depriving the virus of this element and leading to anemia 
[6, 7]. As of October 2021, there have been abundant 
reports of high mortality rates in HDM patients co-
infected with COVID-19 [8]. Notably, HDMs caused by 
overproduction of blood cells are assumed as an abnor-
mal phenomenon that leads to improper control of these 
cells in fighting infections or preventing serious bleed-
ing [9, 10]. Such malignancies and their treatment may 
affect the human immune system and put them at high 
risk of contracting COVID-19 and suffering its conse-
quences [11]. As evidenced in related studies, patients 
with HDM, above all those with acute lymphoblastic leu-
kemia (ALL), essential thrombocytopenia (ET), multiple 
myeloma (MM), and chronic myeloid leukemia (CML), 
compared to people without such conditions, have expe-
rienced a higher chance of infection with COVID-19 
[12]. Like other ribonucleic acid (RNA) viruses, CoV is 
constantly changing during the mutation process, pro-
ducing new variants with a high risk of transmission and 
pathogenicity [13]. New variants can mainly escape the 
immune response caused by infection and even vaccina-
tion [14]. Considering this issue, dealing with this virus 
and its types in patients with anemia and HDM creates 
different scenarios and hypotheses or offers suggestions 
for preventive or therapeutic purposes that should be 
considered in the treatment and care of affected patients. 
Because this virus and its variants significantly affect all 
aspects of human life worldwide, measuring these risk 
factors among patients with COVID-19 is crucial to help 

treat the disease. On the other hand, the possibility of 
false results in diagnostic tests, especially rRT-PCR, has 
been abundantly observed. According to the research 
conducted on patients with blood malignancies, there is 
a higher probability of false negatives, which can depend 
on endogenous factors such as hematocrit, triglycerides, 
cholesterol, and other blood substances [15, 16]. Hence, 
it is necessary to identify the virus in these patients by 
more sensitive tests such as CRISPR [17]. Therefore, this 
review article can help young infectious disease special-
ists, hematologists, and physicians gain a deeper under-
standing of this condition and quickly look at recent 
events caused by HDMs.

COVID‑19 in patients with anemia 
and haematological malignancies
A diverse range of the most common haematological 
manifestations, including lymphopenia, anemia, throm-
bocytopenia, hyperferritinemia, coagulopathy, and high 
D-dimer levels, can be closely related to COVID-19 [18, 
19]. The pathogenesis of this condition is mostly attrib-
uted to the severe increase of pro-inflammatory markers 
such as interleukin-1 beta (IL-1β), IL-2, IL-4, IL-6, IL-10, 
tumor necrosis factor-alpha (TNF-α), and interferon-
gamma (IFN-γ) which cause an exaggerated immune 
response [20]. The inflammatory response also causes 
disturbances in iron metabolism, contributing to high 
hepcidin levels, decreased iron utilization, hyperferri-
tinemia, and anemia [21] (Fig.  1). Such manifestations 
can be observed during the infection of COVID-19, 
which often disappear after the resolution of the infec-
tion [22]. Due to the rapid spread of the virus, it is nec-
essary to take necessary precautions regarding the risk 
factors that make these patients more vulnerable to this 
disease.

Beta‑thalassemia
Beta (β)-thalassemias represent a group of inherited 
autosomal recessive anemias that occur due to a reduc-
tion or absence of beta globulin tetramers (β4), also called 
Hb-H [23]. In cases with β-thalassemia, some polymor-
phisms of the heme oxygenase-1 (HO-1) gene, especially 
repeat mutations in the dinucleotide (GT) promoter 
region, induce the HO-1 gene to generate reactive oxygen 
species (ROS), which protects the cell [24] ( Fig.  2). In 
patients with COVID-19, longer GT sequences are likely 
to be present, resulting in modulation of blood flow [25]. 
During β-thalassemia (mainly partial form), porphyrin 
deficiency is not observed, but ferritin and excess serum 
ferritin [26, 27] and iron have been confirmed as risk fac-
tors for the exacerbation of COVID-19 [24].

Recent studies have also shown that β-thalassemia 
patients may contribute to increased susceptibility to 
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SARS-CoV-2 infection due to the nature of their chronic 
disease [28]. β thalassemias can be defined as an inher-
ited disorder caused by a defect in hemoglobin syn-
thesis, thus accelerating the continuous hemolysis and 
premature destruction of red blood cells (RBCs) in the 
bone marrow [29]. These patients are exposed to infec-
tious diseases, especially bacterial infections, acute res-
piratory infections, and SARS-CoV-2. Therefore, during 
COVID-19, people with beta-thalassemia are threatened 
by SARS-CoV-2 infection, as most of them have under-
lying diseases such as diabetes, common heart diseases, 
liver problems, and various endocrine disorders [28] 
(Fig. 3).

Sickle cell disease
Sickle cell disease (SCD) refers to a type of HDM that has 
recently been associated with SARS-CoV-2. As confirmed 
in previous research, people with swine flu (H1N1) com-
monly develop respiratory complications, including acute 
chest syndrome (ACS) [30]. Compared to other children 
with influenza, children with SCD are also referred to 
health centers much more often [31]. Consequently, such 
complications are likely to occur more rapidly in patients 
with comorbid SCD and COVID-19 [32]. Also, SCD leads 

to an increased chance of several diseases, such as pul-
monary hypertension, chronic lung disease, and kidney 
failure [33]. In this vein, chronic pulmonary injury from 
thrombo-inflammation caused by COVID-19 exacerbates 
SCD complications and increases mortality rates [34]. 
Likewise, acute vaso-occlusive crisis (VOC) attributed 
to SCD in COVID-19 patients increases the likelihood of 
pulmonary embolism (PE) and ACS [35]. Thus, individu-
als with COVID-19 who are co-infected with SCD have 
a 3.5-fold increased risk of developing PE compared to 
patients without the disease. Furthermore, the preclinical 
and procoagulant status of patients with comorbid SCD 
and COVID-19 may contribute to milder clinical symp-
toms [36]. According to some clinical studies, patients 
with SCD and subsequently infected with COVID-19 do 
not face the risk of complications or mortality from the 
epidemic. Still, the hospitalization rate is higher in these 
people, which raises two different hypotheses [37]. First, 
patients with SCD have severe hemolysis with continuous 
release of heme, consisting of toll-like receptor 4 (TLR4) 
with proinflammatory and procoagulant states [38]. In 
addition, elevated levels of plasma cytokines, such as 
IL-1, IL-6, and TNF-α, have been reported in individu-
als with persistent SCD, and S protein up-regulated them 

Fig. 1 Graphic overview of factors affecting some types of anemia and haematological disorders in the exacerbation of COVID‑19
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for SARS-CoV-2 [39]. As reported in a study, COVID-19 
patients with SCD (age > 50 years), presenting a growth 
in the serum D-dimer, creatinine (Cr), and lactate dehy-
drogenase (LDH) levels are at greater risk of mortality 
regardless of their genotype or gender [30]. Accordingly, 
the pathophysiology of SCD accounts for chronic ane-
mia, endothelial dysfunction, chronic inflammation, 
immunodeficiency disease, and hypercoagulability, all as 
risk factors for the worst outcomes of COVID-19 in indi-
viduals with a hypercoagulable state and minor patho-
physiology during Hypoxia is considered. As with renal 
modules, such patients could potentially be at increased 
risk for contracting COVID-19 [38]. Furthermore, peo-
ple with SCD are likely to develop some neurological 
complications during their lifetime. Since SARS-CoV-2 
adversely affects the central nervous system (CNS) and 
patients with SCD are completely immunocompromised, 
many concerns arise that require further investigation 
[38] (Figs. 2 and 3).

Iron‑deficiency anemia
As iron is required for the growth and reproduction of 
various cells in the immune system, iron deficiency (ID) 
can impair the host immune response [40]. As an essen-
tial trace element for the host, iron is essential for many 

enzymatic and non-enzymatic reactions as well as vari-
ous physiological processes [41]. For example, iron sig-
nificantly contributes to mitochondrial function in 
adenosine triphosphate (ATP) production or synthesis, 
RNA and deoxyribonucleic acid (DNA) repair, cell sur-
vival, and ferroptosis [42, 43]. In addition, this valuable 
element is vital for the multiplication of viruses. On the 
other hand, IL-6 is a key mediator in post-inflammatory 
iron management, as hepcidin produces iron [44, 45]. 
As a key regulator of iron homeostasis, hepcidin fur-
ther destroys the duodenum by damaging the cellular 
iron exporter, ferroportin (FPN1), which helps promote 
cell retention in macrophages and regulates cellular 
iron metabolism. Therefore, inflammation causes some 
changes in iron homeostasis due to its dysfunction [46, 
47]. This deficiency is often compensated by high levels 
of iron in the reticuloendothelial cells and ultimately by 
hyperferritinemia, while low levels of iron are present in 
the bloodstream [48]. Subsequently, inflammation lim-
its iron in RBCs, leading to anemia known as anemia of 
inflammation (AI), which is commonly seen in pregnant 
women with decreased red blood cell quantity and qual-
ity along with increased erythrocyte sedimentation rate 
(ESR). It is related to the gas exchange that occurs during 
the reduction of RBCs [49, 50] (Fig. 2). This can be caused 

Fig. 2 Abnormalities in haematological parameters of patients with anemia and RBC disorders
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Fig. 3 Graphic illustration of the potential role of different types of anemia and blood disorders in the clinical manifestations of people 
with COVID‑19, possibly influencing the pathophysiology of COVID‑19
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by a deficiency of folate and other B vitamins. Therefore, 
pregnancy when infected with COVID-19, especially in 
IDA, makes this viral infection more visible in the third 
trimester because inflammatory processes occur much 
more often. As reported in some studies, many viruses, 
including SARS-CoV-2, disrupt iron homeostasis in cells, 
caused by hemolysis, and then enhance intercellular iron 
load, which steps it accelerates the multiplication of the 
virus and ultimately increases the severity of the disease 
[51, 52]. In any case, this iron overload increases serum 
ferritin and is further associated with rheumatoid arthri-
tis (RA), multiple sclerosis (MS), antiphospholipid syn-
drome (APS), macrophage activation syndrome (MAS), 
adult-onset steel disease (AOSD), catastrophic APS 
(cAPS), and then septic shock [53, 54] (Fig. 3).

Aplastic anemia
Aplastic anemia (AA), also known as rare HDM, is char-
acterized by central pancytopenia due to bone marrow 
failure [55]. Although the pathogenesis of this type of 
anemia is still unclear, it is hypothesized to result from 
the destruction of hematopoietic stem cells (HPSCs) 
secondary to an aberrant immune response [56]. More 
than 50% of AA cases are also idiopathic in nature [55]. 
Despite this, chemotherapy (chemo), ionizing radia-
tion, and viral infections also contribute to this disease 
[57]. Accordingly, the most common infectious agents 
include viral hepatitis, human immunodeficiency virus 
(HIV) [58], cytomegalovirus (CMV) [59], parvovirus 
B19 (PVB19) [60], and Epstein-Barr virus (EBV) [59]. In 
this regard, SARS-CoV-2 mainly affects the pulmonary 
system, which in rarer cases leads to central neutrope-
nia, lymphopenia, and pancytopenia and disrupts the 
hematopoietic system [61]. Moreover, the overproduc-
tion of inflammatory cytokines in infectious viruses, such 
as IL-1ß, IL-6, TNF-α, and IFN-γ [62], disrupts the bone 
marrow microenvironment and subsequently causes 
bone marrow failure [63, 64] (Fig. 3).

Diamond‑blackfan anemia
Diamond-blackfan anemia (DBA) mainly affects the bone 
marrow and causes some physical abnormalities in many 
parts of the body. During DBA, the bone marrow is nor-
mally disrupted, resulting in reduced red blood cells to 
supply oxygen to the tissues [65, 66]. Actually, changes 
in Hb levels are predictive of worsening clinical progres-
sion in patients with COVID-19, as the bone marrow is 
unable to make RBCs. SARS-CoV-2 can attack the β-1 
chain of Hb and detach it from iron to form perforin. 
Therefore, often less Hb is available to carry oxygen and 
carbon dioxide  (CO2). Here, binding of the virus to Hb 
and subsequent release of ions produces free radicals 
that increase oxidative stress (OS) in organs and lead 

to hypoxia. Each Hb molecule also contains four hemes 
during chemical interactions, each of which binds pre-
cisely to oxygen in the lungs [67]. In addition, iron (II) 
and (III) ions  (Fe2+ or  Fe3+), as part of the toxic struc-
ture of oxyhemoglobin in a free state, augment OS in 
the blood. If SARS-CoV-2 binds to Hb  Fe2+ and  Fe3+, it 
may be released into blood and tissues, thus determining 
the main effects of the virus. In this case, the function of 
Hb is disturbed, the oxygen supply decreases and finally, 
hypoxia increases. As a result, shortness of breath and 
fatigue may persist even after recovery in some patients 
with COVID-19 [68, 69] (Fig. 3).

Hereditary spherocytosis
In patients with hereditary spherocytosis (HS), cellular 
stress combined with splenic clearance multiplies the 
chance of hemolysis [70]. Such individuals may live with 
chronic baseline hemolysis, sometimes requiring sple-
nectomy to treat severe chronic anemia, or there may 
be intermittent major hemolysis and splenomegaly [71, 
72]. Since the spleen is the site of RBC clearance in HS 
patients, splenectomy is often advocated as a treatment 
option [73]. Nonetheless, this surgical procedure does 
not resolve the defects in the function of the erythro-
cyte membrane and exposes patients to severe cellular 
stress and a higher chance of hemolysis [74]. Accord-
ingly, many hemolytic markers can be considered during 
this emergency. For example, bilirubin (BLR) levels are a 
significant indicator, the increase of which can be attrib-
uted to the breakdown of the protoporphyrin IX (PPIX) 
ring [70]. Likewise, ferritin is another hemolytic marker, 
as an acute phase reactant (APR), which is increased in 
patients with severe COVID-19 with cytokine storm 
(CS) [75]. Furthermore, LDH levels in severely infected 
individuals with COVID-19 are compounded due to 
increased cytokine activity, and decreased monitoring of 
Hb and hemolytic markers in cases with hemolytic disor-
ders and COVID-19 [76]. Notably, HS can have varying 
degrees of hemolysis and may be the first hemolytic event 
at the onset of COVID-19 infection [70].

Leukoerythroblastic reaction
During the leukoerythroblastic reaction (LER), immature 
RBCs and myeloid cells often circulate in the peripheral 
blood [77, 78]. This reaction is commonly reported in 
some disorders related to bone marrow fibrosis, includ-
ing myeloproliferative disorders (MPDs) and cancer 
types associated with bone marrow metastatic problems 
[79]. LER has been identified mostly in viral infections, 
such as polycythemia vera (PV) and COVID-19. In severe 
cases, SARS-CoV-2 infection is associated with over-
production of proinflammatory cytokines such as IL-2, 
IL-6, IL-7, IL-8, IFN-γ, TNF-α, transforming growth 
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factor-beta (TGF-β), C-X-C motif chemokine ligand 8 
(CXCL8), CXCL10, chemokine ligand 3 (CCL3), mac-
rophage inflammatory protein-1 alpha (MIP-1α), and -1β, 
known as CS. In patients infected with SARS-CoV-2, this 
condition results in LER, with increased production and 
the presence of immature myeloid cells in the circulatory 
system [80]. Leukoerythroblastosis can occur in children 
with Kawasaki disease. The exact etiology of Kawasaki 
disease is unknown, although an infectious agent appears 
to be the source of its initiation [81]. Hypersensitivity 
reactions or inappropriate immune responses, possibly 
caused by viruses or bacteria, can trigger an inflamma-
tory process that damages blood vessels in people who 
are genetically predisposed to the disease. Notably, KD 
and COVID-19 are very similar in this respect [82–84] 
(Fig. 3).

Hemophagocytic lymphocytosis
Hemophagocytic lymphocytosis (HLH), introduced as 
a less common symptom in viral proinflammatory con-
ditions, has a high consequence in most patients with 
COVID-19 [85]. It is an ambiguous clinical condition, 
followed by immune-mediated tissue damage, which 
occurs irregularly due to viral infections or HDM. This 
phenomenon may not be observed in patients with 
COVID-19, where phagocytosis is also observed in bone 
marrow aspirates, cytopenias are present, and serum fer-
ritin elevations below ≥ 2000 ng/mL occur [86]. Also, 
MAS is a life-threatening proinflammatory syndrome 
that is likely to appear in patients with severe viral infec-
tions, such as those with EBV. There is also an interesting 
pathophysiological similarity between EBV infection and 
COVID-19 in the case of MAS. During both infections, 
uncontrolled and hyperactive macrophages cause hyper-
cytokinemia, organ damage, cytopenias, and coagulopa-
thy [85]. Besides, there are several associations between 
descriptions of severe forms of COVID-19 infection and 
secondary HLH (sHLH). For example, elevated serum fer-
ritin and C-reactive protein (CRP) levels are commonly 
observed in patients with severe COVID-19 and sHLH 
[87]. Moreover, people with severe COVID-19 develop 
many complications that resemble multi-organ fail-
ure (MOF) in HLH [88]. Since COVID-19 has the same 
pathogenesis compared to sHLH, early diagnosis, and 
rapid immunosuppression before MOF are often of par-
ticular importance [89]. Therefore, all patients with severe 
COVID-19 should be screened with standard laboratory 
tests, such as HScore to detect severe inflammation [90].

Sideroblastic anemia
Sideroblastic anemia (SA) encompasses a group of 
inherited and acquired anemias characterized by inef-
fective erythropoiesis. In this type of anemia, there is 

an accumulation of ring sideroblasts (RS) in the bone 
marrow and a decrease in the production of fully devel-
oped red blood cells. These ring sideroblasts are nucle-
ated erythroblasts that show abnormal accumulation 
of iron granules in the mitochondrial matrix [91]. Such 
mechanisms contribute to the formation of iron-rich 
mitochondrial complexes around erythroblast nuclei 
instead of the standard incorporation of iron into PPIX 
in the mitochondria [92]. It has then again been hypoth-
esized that COVID-19 may induce an immune-mediated 
genetic defect in a hematopoietic clone, resulting in inef-
fective erythropoiesis and the development of RS cells 
[93]. Accordingly, COVID-19 likely induces a genetic 
change in new genes that cause SA [93]. In addition, 
SARS-CoV-2 interacts with Hb molecules through a 
cluster of differentiation 147 (CD147), CD2b, and other 
receptors commonly found on erythrocytes and other Hb 
cells, leading to Hb denaturation [94]. Considering that, 
hemoglobin concentration decreases and toxic heme is 
released, which usually causes hypoxia [94]. Furthermore, 
a gradual decrease in the Hb concentration may promote 
SA and increase erythrocyte distribution width (RDW), 
indicating overproduction of immature erythrocytes and 
an increased risk of mortality [95] (Fig. 2).

Megaloblastic anemia
In some cases, megaloblastic anemia (MA), impaired 
nerve myelin sheath integrity, impaired immune 
response, neurological complications, and degenerative 
conditions of the spine can be caused by some effects of 
low cobalamin levels [96–98]. Following these conditions, 
symptoms of vitamin B12 deficiency, including elevated 
OS and LDH, intravascular coagulation and thrombosis, 
hyperhomocysteinemia, coagulation cascade, subnormal 
reticulocyte count, vasoconstriction, and renal failure 
may often accompany COVID-19 [99, 100]. As suggested, 
high doses of methylcobalamin could potentiate the 
RNA-dependent RNA polymerase (RdRp) activity of 
SARS-CoV-2 nonstructural protein 12 (NSP12) enzymes, 
which then reduces the viral infection and severity of 
COVID-19. Overall, methylcobalamin helps reduce the 
severity of COVID-19 [101]. Vitamin B12 deficiency 
mostly causes two conditions. Sometimes, parietal cells 
can’t make enough vitamin B12 because people don’t 
have a diet rich in this vitamin. In this case, the megalo-
blast normally forms in the cells and becomes asynchro-
nous when the nucleus and cytoplasm are mixed, also 
called MA [102]. Accordingly, those suffering from MA 
do not have enough red blood cells to carry oxygen prop-
erly. A second scenario is that vitamin B12 is produced by 
the parietal cells because a person receives an adequate 
vitamin B12-rich diet but has difficulty absorbing it [103]. 
Bacteria in the large intestine also mutate so they cannot 
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absorb vitamin B12 or have challenges in the ion channels 
that absorb vitamin B12 [104]. To absorb vitamin B12, 
folate is needed in a trivalent form, and this dihydrofolate 
is converted from tetrahydrofolate by these colon bacte-
ria with the help of the dihydrofolate reductase (DHFR) 
enzyme. Therefore, mutations frequently occur that pro-
duce this enzyme and lead to pernicious anemia [105]. In 
an interesting study, vitamin B12 was identified as one 
of the viral proteins of SARS-CoV-2, so it can easily bind 
to it and reduce its effects [106]. Therefore, it is neces-
sary to maintain its level. Furthermore, SARS-CoV-2 may 
interact with the metabolic activities of vitamin B12 and 
possibly shape the microbiological distribution in the 
intestine. It occurs if symptoms such as vasoconstriction, 
increased OS, coagulation cascade, high LDH levels, pul-
monary-renal syndrome (PRS), and hyperhomocysteine-
mia are present. In addition, B12 deficiency can lead to 
some abnormalities in the CNS, gastrointestinal (GI), and 
respiratory systems [107]. Accordingly, a recent study 
has shown that extra doses of methylcobalamin may help 
minimize organ damage and even some symptoms asso-
ciated with COVID-19. For example, a study in Singapore 
showed a significant reduction in existing symptoms of 
severe COVID-19 in patients taking magnesium, vita-
min D (1000 IU), and vitamin B12 (500 μg) supplements 
[108]. Prenatal pancytopenia is also a rare manifestation, 
causing anemia, leukopenia, and thrombocytopenia with 
a simultaneous decline in all blood cell lineages. Vitamin 
B12 and folate deficiency generally present as MA, but 
rare manifestations of pancytopenia have been reported 
so far. The prevalence of vitamin B12 and folate defi-
ciency during pregnancy is currently significantly high 
in developing countries due to their poor socioeconomic 
status and nutrition. Hemodilution with interplacental 
transfer of vitamin B12 further contributes to the physi-
ological reduction of vitamin B12 levels. In addition, pan-
cytopenia is a rare manifestation of some viral infections, 
including the novel COVID-19 [109].

Autoimmune and inflammatory haematological 
complications and COVID‑19
As confirmed in related studies, COVID-19 is asso-
ciated with some autoimmune diseases, including 
autoimmune cytopenias, cutaneous vasculitis, encepha-
litis, and Guillain–Barre syndrome (GBS). Among them, 
autoimmune hemolytic anemia (AIHA) and immune 
thrombocytopenic purpura (ITP) are the most common 
[110] (Fig. 2).

Autoimmune hemolytic anemia
In confirmed cases of COVID-19, AIHA or its reacti-
vation has been reported so far, which can be attrib-
uted to severe anemia or rituximab treatment. During 

SARS-CoV-2 infection, anemia associated with elevated 
LDH and other hemolytic markers may be more fre-
quently observed, and even if the anemia appears unex-
plained and discontinuous, AIHA is also suspected [111]. 
Also, molecular mimicry could be the highest factor 
in the development of AIHA caused by SARS-CoV-2. 
Immunological cross-reactivity between ankyrin 1 (ANK-
1), an RBC membrane protein, and spike proteins in a 
virus has been implicated in the pathogenesis of AIHA 
among patients with COVID-19 [112]. Some researchers 
also believe that the induction of AIHA in children with 
HLH is due to OS stimulation by SARS-CoV-2. In addi-
tion, the acute phase response of COVID-19 induces the 
formation of aberrant complement immune complexes 
and complement products on the RBC surface, leading to 
intravascular thrombosis [113]. This could be consistent 
with disseminated intravascular coagulation (DIC) with 
MOF induced by AIHA in COVID-19 patients. Concom-
itantly, hypercoagulability and inflammatory responses 
are exacerbated and may affect red blood cells, rupture 
their membranes, and in such cases lead to PE and vas-
cular coagulation. In this regard, iron and ferritin caused 
by hemolysis lead to OS. Accordingly, hyperferritinemia 
and impaired iron homeostasis contribute to endothelial 
damage and structural changes in red blood cells in cases 
of COVID-19 [113]. Besides, there are reports of AIHA 
in patients receiving the vaccination against this dis-
ease, particularly with influenza and diphtheria-tetanus-
pertussis (DTP) vaccines, due to the induction of warm 
and cold anti-RBC antibodies [114]. Therefore, vaccines 
as infectious agents can cause HDMs by molecular mim-
icry, lymphocyte polyclonal activation, epitope release, 
and presentation of cryptic antigens [115]. On the other 
hand, the use of some vaccines cannot protect people 
with anemia and HDM against SARS-CoV-2 and lead to 
haematological complications (Table 1).

Idiopathic thrombocytopenic purpura
Depending on viruses and immune and environmen-
tal factors, idiopathic thrombocytopenic purpura 
(ITP) refers to a disease with isolated thrombocyto-
penia and platelets less than 100 × 109/L, the causes 
of which are still unknown. Accordingly, autoantibod-
ies reduce platelet synthesis, antibodies against plate-
let membrane antigens, increase platelet secretion, 
and prolong life, while platelet production in the bone 
marrow is reduced due to thrombocytopenia [122]. 
Acute ITP is usually initiated by a viral infection, and 
platelet levels usually improve independently after a 
few weeks or months. Of note, acute ITP lasts more 
than a year if thrombocytopenia persists (Fig.  2). The 
most potential viruses as triggers are cytomegalovirus, 
hepatitis C virus (HCV), herpes simplex virus (HSV), 
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varicella-zoster virus (VZV), rubella virus, EBV, influ-
enza virus, HIV, and SARS-CoV. Furthermore, molecu-
lar mimicry between virus-specific antibodies and host 
proteins may cause virus-mediated ITP [123–125]. 
The main cause of increased mortality in SARS-CoV-2 
cases is thrombocytopenia, which can be caused by 
DIC, thrombosis, septicemia, or drugs. ITP most often 
occurs during and up to ten days after a COVID-19 
infection. In this regard, antibodies directed against 
viral glycoproteins can interact with platelet surface 
integrins, such as glycoprotein IIb/IIIa (GP IIb/IIIa) or 
GPIb-IX-V, which accounts for approximately 5–10% 
of cases of ITP caused by SARS-CoV-2 [126]. There-
fore, patients with COVID-19 and ITP can present 
with increased thrombocytopenia and excessive bleed-
ing, mainly in the second stage of the disease [127]. 
According to this, ITP thrombocytopenia is one of the 
mechanisms that is at the top of the decrease in the 
number of platelets in patients with COVID-19 [115]. 
Until now, this phenomenon has been explained for 
some reasons, especially virus-induced autoimmunity. 
Therefore, molecular mimicry along with the expres-
sion of cryptic antigens or the release of epitopes can 
clarify this immune disorder. In most cases, ITP can 
appear two to three weeks after COVID-19 infection 
and even before vaccination [128] (Fig.  3). On the 
other hand, it is noteworthy that patients with previous 
SARS-CoV-2 infection may have excessive procoagula-
tion factors that can lead to thrombosis and thrombo-
cytopenia. However, currently its pathophysiology is 
unknown. Experimental studies currently show that 
a type of soluble adenoviral spike protein leads to the 
formation of thrombosis, which ultimately results from 
graft events creates significant endothelial inflamma-
tory events, and leads to binding with endothelial cells 
expressing ACE2 [129].

Haematological malignancies and COVID‑19
Patients living with HDM are at increased risk of con-
tracting COVID-19 compared to patients without such 
symptoms [130]. Such malignancies can affect the pro-
duction and function of blood cells to fight viral infec-
tions [131]. For example, HDM cases often have multiple 
abnormalities in the innate and adaptive immune sys-
tem, including low levels of immunoglobulin G (IgG) 
in patients with chronic lymphocytic leukemia (CLL) 
or other B-cell neoplasms, as well as immature or neo-
plastic dysfunctions [132, 133]. Therefore, such immune 
disorders could make people with HDM susceptible to 
COVID-19 [134] (Figs.  4  (some are hypotheses and are 
listed in Tables 4 and 5) and 5 (hypothesis)).

Chronic lymphocytic leukemia
As a malignancy, chronic lymphocytic leukemia (CLL) 
is characterized by an increase in monoclonal  CD5+ B 
lymphocytes, leading to intrinsic and extrinsic triggering 
events [135]. For example, the function of various ele-
ments in the immune system during viral infections can 
determine the onset of CLL [136]. Certain factors such 
as high levels of markers of immune activation such as 
IL-4, IL-10, and TNF-α, or cytokine release syndrome 
(CRS) in patients with COVID-19 and high levels of 
granulocyte colony-stimulating factor (G-CSF), IL-6, 
IL-7, IL-8, IL-10, IL-1Rα, IFN-γ, TNF-α, granulocyte–
macrophage (GM)-CSF, and monocyte chemoattractant 
protein-1 (MCP-1) are of great importance in this malig-
nancy. Such cytokines can lead to a rapid increase in the 
clonal expansion of lymphocytes in COVID-19 patients, 
potentially increasing the chance of malignancy (Fig.  4) 
[137]. After cancer patients were infected with SARS-
CoV-2, CS could effectively induce a severe form of the 
disease. In this respect, if the patient is healthy enough, 
the CS will end and the cancer treatment process will 

Table 1 Summary of studies showing haematological complications of some post‑injection COVID‑19 vaccines

Abbreviations: AA Aplastic anemia, TTP, Thrombotic thrombocytopenic purpura

Patient Vaccine or drugs Results Ref

A 60‑year‑old man Moderna mRNA vaccination No personal or family history of haematological conditions
Bone marrow biopsy confirmed very severe aplastic anemia with severely hypocellular 
bone marrow

 [116]

84‑year‑old man Pfizer and BioNTech One case of severe autoimmune hemolytic anemia was identified in the third week 
after administration of the Pfizer‑BioNTech COVID‑19 vaccine. However, the condition 
improved after corticosteroid treatment

 [117]

25‑year‑old man Spikevax (mRNA‑1273, Mod‑
erna Biotech, USA)

Diagnosis of thrombotic thrombocytopenic purpura after SARS‑CoV‑2 vaccine  [118]

75‑year‑old woman BNT162b2 Development of autoimmune hemolytic anemia after vaccination  [119]

69‑year‑old man ChAdOx1 and BNT162b2 TTP  [120]

56‑year‑old male Pfizer‑BioNTech mRNA vaccine AA  [121]



Page 10 of 33Kakavandi et al. Cell Communication and Signaling          (2024) 22:126 

not be interrupted [138]. Therefore, activated signaling 
pathways may negatively affect the therapeutic response 
and survival rate in cancer patients just at the begin-
ning and before the end of CS. Accordingly, early detec-
tion of CS in such patients (such as patients with CLL) 
with COVID-19 is critical to multiply the effectiveness 
of targeted therapy [139, 140]. During acute inflamma-
tion, this condition may be caused by high endogenous 
hormone levels, but additional processes may be ben-
eficial that require further investigation [140]. Moreo-
ver, it is not known whether the growth of lymphocyte 
count is a prognostic marker in patients with severe type 
of COVID-19 and untreated CLL. Furthermore, similar 
results are unavailable for CLL subjects who have never 
been treated. For this reason, treatment for people with 
COVID-19 and CLL poses great challenges [141]. It also 
gives the impression that the immune system is inef-
fective in CLL patients and that lymphocytes do not 
respond strongly to viral infection. Accordingly, such 
an agent is likely to help protect these patients against 
CRS and its subsequent damage and MOF [142]. How-
ever, chemotherapy in CLL and COVID-19 cases remains 

controversial, as it may increase the risk of cardiotox-
icity, SARS-CoV-2-induced immunodeficiency, and 
prognosis [143]. To minimize treatment-induced immu-
nodeficiency and drug interactions, it is therefore best to 
avoid chemotherapy in patients with comorbid CLL and 
COVID-19 [144, 145].

Acute lymphocytic leukemia 
Among the most common types of cancer recognized 
as the leading cause of death in young adults is acute 
lymphocytic leukemia (ALL) [146]. Thus, disruption 
of transcription factors that contribute to direct lym-
phocyte growth [147, 148], abnormal activation of key 
signaling pathways, and loss of tumor suppressor genes 
required for cell cycle regulation [149] are commonly 
associated with ALL pathogenesis. Furthermore, this 
condition is often implicated in gene mutations that pro-
vide epigenetic regulatory codes [149]. Notably, most 
cases of ALL and COVID-19 infection have so far not 
been reported during the pandemic, and the disease 
progresses slowly in ALL patients with or without clini-
cal symptoms. Therefore, systemic therapy should be 

Fig. 4 Graphical overview of the effectiveness of different treatments on the mechanisms of patients with haematological malignancies and severe 
COVID‑19. Created with BioRender.com
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delayed in SARS-CoV-2-positive patients (e.g., following 
the absence of primary hyperleukocytosis). Then, some 
symptoms such as dry cough, high temperature, anos-
mia and gastrointestinal problems should be carefully 
evaluated. If a diagnostic test for SARS-CoV-2 is not pos-
sible, a CT scan of the chest should be performed. Fur-
thermore, serological tests should be performed on all 
patients as soon as they are available [150]. In this line, 
some studies have further emphasized the abnormally 
expressed micro (mi)RNAs in ALL patients, as they seem 
to play a central role in controlling carcinogenesis and 
drug resistance [151]. Therefore, the etiopathogenesis of 
HDMs is related to many members of this family, namely 
miRNA-181a and -181b. Since the expression of miRNA-
181a and -181b is much higher in ALL patients than in 

healthy patients, these findings raise the possibility of 
using miRNA-181a and miRNA-181b as biomarkers 
[152]. Researchers have similarly found that all patients 
living with COVID-19 showed significantly higher levels 
of miRNA-181a expression, indicating the pathogenic 
function and prognostic significance of miRNA-181 in 
patients with comorbid ALL and COVID-19 [153] (Fig. 5 
and Table 2).

Chronic myeloid leukemia
Chronic myeloid leukemia (CML) is usually initiated 
by BCR-ABL1 as a hybrid gene in cells with innate or 
acquired biological potential [177]. This type of cancer 
can initiate complications in patients with COVID-19 
[178]. Furthermore, drug-drug interactions between 

Fig. 5 Plausible host miRNA action modes in SARS‑CoV‑2 infection. Host miRNAs may regulate COVID‑19 infection in patients with haematological 
malignancies. Created with BioRender.com
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tyrosine kinase inhibitors (TKIs) for the treatment of this 
malignancy and those targeting COVID-19 infection may 
be very hazardous [179]. Also, the side effects of TKI are 
unbearable for patients with SARS-CoV-2. TKI is often 
used as an initial treatment for patients with CML and 
has resulted in a good prognosis and significant improve-
ment [180]. Therefore, treatment with TKIs in cases with 
CML, which shows a slight increase in the risk of infec-
tion, may be due to off-target inhibition of immune-
related kinases [181]. Therefore, the decision to withhold 
or continue TKI-based treatment during the period of 
COVID-19 seems challenging and needs further investi-
gation. Some studies have also concluded that TKIs help 
control the immune response to infection [181]. Anti-
immune genes such as CD28, CCL55, and IFN-γ and low 
expression of some such as arginase 1 (ARG1) and fuco-
syltransferase 4 (FUT4) have been observed so far [182]. 
Overall, the mortality rate of COVID-19 in Latin Ameri-
can patients with CML has been higher than in the gen-
eral population. Accordingly, this type of leukemia can 
cause problems during SARS-CoV-2. Drug interactions 
between TKIs and COVID-19 treatments can be more 
dangerous and require careful monitoring [183].

Acute myeloid leukemia
Acute myeloid leukemia (AML), as one of the most com-
mon HDMs, can have adverse effects on blood, bone 
marrow, and other tissues [184]. This condition is char-
acterized by abnormal proliferation or differentiation of 
clonal cells and a weakened immune system [185]. Cur-
rently, several effective treatments are available for AML, 
especially for young adults [185]. Therefore, infections, 
including viral infections, can be a major complication 
of AML treatment, as in other HDMs. Treatment regi-
mens used for patients with AML can also lead to severe 
granulocytopenia and an increased risk of serious infec-
tions. Therefore, a person with AML and SARS-CoV-2 is 
at high risk of respiratory failure, which requires a reduc-
tion in drug dosage and the fact that antiviral drugs [186].

Besides, it is hypothesized that AML patients with 
COVID-19 undergo a more severe form of the dis-
ease. Some even expire due to these conditions, expe-
rience significant progression to recurrence of the 
malignancy, or become resistant to therapeutic drugs, 
especially if they harbor FMS-like intronic tyrosine 
kinase-3 tandem mutations (FLT3-ITD). Based on 
the theory developed by Zalpoor et al. the pharmaco-
logical targeting of autophagy and hypoxia-inducible 
factor 1 alpha (HIF-1α) may be a potential treatment 
for FLT3-ITD mutations with COVID-19 and risk of 
mortality, development of HDMs, and drug resist-
ance [187]. In a remarkable study, Deeb et  al. estab-
lished that cytoplasmic expression of HIF-1α was 

associated with poor prognosis following conventional 
therapy in older AML patients with normal karyotype 
[188]. Therefore, they suggested that stimulation of 
autophagy and HIF-1α by COVID-19 may be a marker 
for AML patients, especially those with FLT3-ITD 
mutations. They also hypothesized that autophagy 
associated with COVID-19, FLT3-ITD, and over-
expression of HIF-1α may cause leukemia and drug 
resistance in these patients. It probably increases the 
severity of COVID-19 [188]. However, more studies 
are still needed to support it. Furthermore, autophagy-
related drugs have recently been proposed as potential 
SARS-CoV-2 treatments based on some in  vitro and 
in vivo studies [189]. Accordingly, it has been hypoth-
esized that autophagy induced by COVID-19 may con-
tribute to cancer growth, chemotherapy resistance, 
and tumor recurrence in patients. These data also 
suggest that COVID-19 can induce autophagy due to 
various factors [190]. In addition to being an antivi-
ral therapeutic strategy, targeting autophagy may be a 
viable option for treating cancer patients with COVID-
19 to reduce the risk of mortality, progression, chemo-
therapy resistance, and tumor recurrence in a variety 
of cancers [191] (Fig. 4).

Multiple myeloma
Another type of HDM is multiple myeloma (MM), 
which affects plasma cells in the bone marrow [192]. 
In cases with MM, the immune system is often com-
promised by various factors making people with 
this malignancy susceptible to infection [193]. Peo-
ple with a mean age of 65 years have more underly-
ing diseases, so they are at risk of infection [194]. 
CD4 depletion, lymphopenia, and loss of functional 
immunoglobulins can increase the chance of viral, 
bacterial, and fungal infections [195]. Thus, immuno-
suppressive drugs advocated in this regard can lead to 
neutropenia, thereby increasing the risk of contract-
ing COVID-19, as the virus exacerbates the cause of 
abnormally low concentrations of neutrophils in the 
blood [196]. Notably, new apheresis testing using 
autologous stem cell transplantation (ASCT) and 
polymerase chain reaction (PCR) is required before 
hospitalization in epidemic-affected countries [197]. 
While living with this anemia, these patients receive 
treatments that cause some changes in immune sys-
tem function, such as humoral immunodeficiency, 
hypogammaglobulinemia, and impaired B-lympho-
cyte response to SARS-COV-2. Management of MM 
in the era of COVID-19 accordingly calls for a thor-
ough assessment of patient- and disease-related vari-
ables in order to reduce the risk of developing MM 
through effective treatment [198].
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Myeloproliferative neoplasm
In myeloproliferative neoplasm (MPN), platelets, RBCs, 
and leukocytes are continuously activated from clonal 
progenitor cells to hematopoietic cells [199]. PV, ET, 
and myelofibrosis are also among the leading active 
neoplasms that can affect mortality [200]. In ET, it is 
often associated with a persistent increase in the num-
ber of platelets that have a propensity for thrombosis, 
bleeding, and activation of inflammatory mechanisms 
[201]. In patients with COVID-19 and this malignancy, 
the lungs may be involved first and then adverse effects 
on different organs may be observed. In various reports, 
thrombosis has been presented with some complica-
tions of COVID-19 [202]. Therefore, virus-induced 
thrombosis is a very important genetic thrombosis 
mechanism in this disease. Accordingly, patients with 
MPN and COVID-19 are more prone to thrombotic 
complications and higher mortality [203].

Hodgkin’s lymphoma
Known as a curable malignancy, Hodgkin’s lymphoma 
(HL) is probably associated with EBV [204]. First, 
COVID-19 infection may play a significant role in the 
transient improvement of HL [205]. Decreased periph-
eral blood lymphocytes (PBLs) and natural killer (NK) 
cells can be observed in COVID-19 patients [206, 207]. 
As well, the total number of lymphocytes (here, the  CD4+ 
and  CD8+ cells) decreases in severe forms of the disease, 
more than in mild cases [208]. Second, inflammatory 
microenvironments may minimize the effective function 
of NK cells. The high levels of IL-6 and IL-10 in these 
patients therefore add to the capacity to reduce the cyto-
toxic process and increase the expression of NKG2A in 
killing virus-infected cells [205]. In these patients, it also 
binds to angiotensin-converting enzyme 2 (ACE2) in NK 
cells and suppresses their function [205]. SARS-CoV-2 
and subsequent immune cell inflammatory responses 
inhibit NK cell cytotoxicity, induce CRS, and amplify 
inadequate immune responses [209]. Third, individuals 
with EBV-positive HL is that the NSP10/NSP7/3CLpro/
major protease  (Mpro) and SARS-CoV-2 S proteins bind 
to the tumor necrosis factor receptor type 1-associ-
ated death domain protein (TRADD) at the binding site 
of latent membrane protein 1 (LMP1), blocking LMP1 
binds to TRADD. This interaction may therefore inhibit 
LMP1-mediated nuclear factor kappa B (NF-κB) signal-
ing to induce remission [206] (Figs. 4 and 5).

Non‑ Hodgkin’s lymphoma
The most common type of cancer in HIV-infected indi-
viduals is non-Hodgkin’s lymphoma (NHL), with an 
increased incidence of B-cell aggressive NHL [210]. 
Factors affecting the emergence and development of 

NHL include HIV infection with high viremia, the pres-
ence of EBV, and possibly SARS-CoV-2 infection [210]. 
Recent data also suggest that patients with HDM, includ-
ing patients with B-cell NHL, are at high risk of severe 
COVID-19 and may act as a persistent viral reservoir 
that gives rise to new and potentially more aggressive 
mutations. Therefore, prevention of COVID-19 or at 
least modulating its severity in these patients is of great 
importance [211]. Moreover, patients with B-cell NHL 
have lower rates of seroconversion and antibody levels 
compared to other subjects with HDM. Patients with 
B-cell NHL are also at increased risk of complications 
and mortality from SARS-CoV-2 [212]. Vaccination 
against SARS-CoV-2 reduces COVID-19-related deaths 
and hospitalizations. However, NHL cases experience 
suboptimal antibody responses to COVID-19 vaccines 
before and after B-cell-targeted therapies, such as the 
rituximab anti-CD20 antibody therapy [213] (Fig. 4).

Overview of therapeutic candidates for COVID‑ 19 
infection and related variants
The current pandemic of SARS-CoV-2 and COVID-19 
has so far resulted in high rates of mortality and morbid-
ity worldwide. Hematology societies are therefore sug-
gested to conduct prospective and multicenter studies 
to clarify the effects of this virus and even measure dis-
ease severity in patients with anemia and HDMs [214]. In 
this regard, various blood markers that act as prognostic 
markers in the severity of the disease have been investi-
gated in previous researches. In this case, patients with 
HDM are at a higher risk of contracting various infec-
tions, including SARS-CoV-2 [215] (Table 3).

On the other hand, this study is very important in the 
management of patients with blood cancers in the face 
of SARS-COV-2 and its variants. It also emphasizes the 
priority of these patients in receiving vaccines and many 
other treatments. Also, various vaccines and treatment 
methods SARS-COV-2 and its variants have been con-
sidered in different patients (Tables 4 and 5).

Conclusion and future directions
In conclusion, COVID-19 has presented unique and sig-
nificant challenges for patients with anemia and hema-
tological malignancies, who face a higher risk of severe 
illness and mortality. This review article has examined 
the risk factors, clinical guidelines, and emerging thera-
peutic approaches for managing COVID-19 in this 
patient population. While much progress has been made 
in understanding COVID-19 in this context, there are 
still many areas that require further research.

Prospective type comparative studies using different 
vaccines, drugs, or combinations against SARS-CoV-2 
and its multiple variants in HDM cases are necessary to 
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discover the best options for this specific scenario. Con-
sidering the effects of anemia and HDMs on the quality 
of human life, this issue cannot be ignored, especially 
during the COVID-19 pandemic, and even because of the 
high costs, side effects, and shortage of blood. It is hoped 
that knowing the types of anemia and HDM in the face of 
this virus, as well as the vaccines and drugs used for the 
virus itself and related types, will help reduce the clinical 
burden of COVID-19 and its variants in terms of treat-
ment and care.

For future directions, researchers must focus on uncov-
ering the long-term effects of COVID-19 on patients with 
anemia and hematological malignancies. Specifically, 
understanding the cellular and molecular mechanisms 
of SARS-CoV-2 in potential long-term effects such as 
chemotherapy resistance, metastasis, and recurrence can 
open new avenues for developing therapeutic and pre-
ventive strategies. In addition, future studies should eval-
uate the efficacy and potential side effects of vaccination 
and emerging therapeutic approaches, with a focus on 
developing new vaccines and drugs that are more suited 
to the clinical, cellular, and molecular conditions of these 
diseases to improve efficacy and reduce side effects.

This study provides a potent foundation for prepar-
ing for future outbreaks of newly emerged coronavi-
ruses. By examining the risk factors, clinical guidelines, 
and emerging therapeutic approaches for managing 
COVID-19 in this patient population, we can gain valua-
ble insights into the challenges of managing patients with 
underlying health conditions during a possible upcom-
ing new pandemic. This information can be used to guide 
the development of clinical guidelines and protocols for 
managing patients with newly emerged coronaviruses in 
the future, as well as to inform the development of thera-
peutic approaches and vaccination strategies. Overall, 
this review article on COVID-19 in patients with anemia 
and hematological malignancies is an important tool in 
preparing for and managing future outbreaks of newly 
emerged coronaviruses.
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