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Carbon dioxide and MAPK signalling: 
towards therapy for inflammation
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Abstract 

Inflammation, although necessary to fight infections, becomes a threat when it exceeds the capability of the immune 
system to control it. In addition, inflammation is a cause and/or symptom of many different disorders, including meta-
bolic, neurodegenerative, autoimmune and cardiovascular diseases. Comorbidities and advanced age are typical 
predictors of more severe cases of seasonal viral infection, with COVID-19 a clear example. The primary importance 
of mitogen-activated protein kinases (MAPKs) in the course of COVID-19 is evident in the mechanisms by which cells 
are infected with SARS-CoV-2; the cytokine storm that profoundly worsens a patient’s condition; the pathogenesis 
of diseases, such as diabetes, obesity, and hypertension, that contribute to a worsened prognosis; and post-COVID-19 
complications, such as brain fog and thrombosis. An increasing number of reports have revealed that MAPKs are 
regulated by carbon dioxide  (CO2); hence, we reviewed the literature to identify associations between  CO2 and MAPKs 
and possible therapeutic benefits resulting from the elevation of  CO2 levels.  CO2 regulates key processes leading 
to and resulting from inflammation, and the therapeutic effects of  CO2 (or bicarbonate,  HCO3

−) have been docu-
mented in all of the abovementioned comorbidities and complications of COVID-19 in which MAPKs play roles. The 
overlapping MAPK and  CO2 signalling pathways in the contexts of allergy, apoptosis and cell survival, pulmonary 
oedema (alveolar fluid resorption), and mechanical ventilation–induced responses in lungs and related to mitochon-
dria are also discussed.
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Introduction
The SARS-CoV-2 pandemic highlighted how insuf-
ficiently we clinically treat excessive inflammation. 
Although the specific mechanisms leading to the pro-
duction of proinflammatory cytokines and the activation 
of immune system components, as well as the signal-
ling and other effects of proinflammatory cytokines and 

chemokines, are relatively well understood, the interre-
lationships among these factors are largely unclear. Due 
to the many mechanisms common to various pathologies 
and pathogen infections, including signalling pathways 
leading to inflammation and activated in response to 
inflammation, it is worth evaluating lessons learned dur-
ing the COVID-19 pandemic, making conclusions about 
the treatments provided, and continuing the intensive 
search for effective therapies for inflammation.

Mitogen-activated protein kinases (MAPKs) regulate 
cell proliferation, survival, differentiation, migration, and 
apoptosis; oncogenesis; and neurodegeneration [1–5]. 
Signals from cellular receptors are transduced by MAPKs 
to a wide variety of effector proteins, including transcrip-
tion factors, which regulate cell functions according to 
environmental conditions. In this review, we focus on 
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three subfamilies of MAPKs, namely, c-Jun N-terminal 
kinases (JNKs), extracellular signal-regulated kinases 1 
and 2 (ERK1/2) and p38 MAPKs, as they are key play-
ers in the regulation of inflammation and play impor-
tant roles in signalling pathways critical to the course of 
SARS-CoV-2 infection. In response to a wide variety of 
chemical and biological agents, these MAPKs not only 
promote the production of reactive oxygen species (ROS) 
and proinflammatory cytokines, including interferon-
gamma (IFN-γ), interleukin-1β (IL-1β), interleukin-6 

(IL-6) and tumour necrosis factor-α (TNF-α) but also 
regulate cellular responses to a wide range of cytokines 
[6–9].

MAPKs have been proposed to be carbon dioxide 
 (CO2) sensors because select MAPKs have been shown to 
be highly regulated by  CO2 in vitro, in human cells and in 
plants [10–13].  CO2-dependent regulation of MAPKs has 
been demonstrated in several animal cell types and tis-
sues (Table 1), but the direct influence of  CO2 on MAPK 
activity has not been previously considered. The effects 

Table 1 Signalling pathways with MAPK activity regulated by  CO2

MAPKs CO2 levels Duration of  CO2 
treatment

Starting 
MAPK 
activity

Change in 
MAPK activity in 
response to  CO2

Signalling 
pathway

Cell/tissue type Ref

ERK1/2 6.5–15% 2–15 min Baseline ↑ CO2 signalling Cultured endothe-
lial cells and bron-
chial epithelial cells

[10]

ERK1/2 10% 5–15 min Baseline ↑ Cell proliferation Human small cell 
lung cancer cell line

[14]

ERK1/2 120 mm Hg 5–30 min Baseline ↑ CO2 signalling A549 cells [11]

ERK1/2 120 mm Hg 1–30 min Baseline ↑ CO2 signalling Rat ATII cells [12]

ERK1/2 20% (120 mm Hg) 2 h Baseline ↑ CO2 signalling PC-12 rat pheochro-
mocytoma cells

[15]

ERK1/2 hypocapnic 
1000–1200 ppm

30 min Baseline ↓ CO2 signalling Rat hindleg skeletal 
muscle, ex vivo

[16]

ERK1/2 40–45%  CO2 
(∼300 mm Hg)

25 min Baseline No change CO2 signalling Rat cingulate cortex [17]

ERK1/2, p38,  JNK 20% (140 mm Hg) 5–60 min Active No change Innate immune 
responses to LPS

PMA-differentiated 
THP-1 macrophages

[18]

ERK1/2 6.5–13% 7–15 min Active ↓ H2O2, proinflam-
matory cytokines, 
SARS-CoV-2 spike 
protein

Cultured endothe-
lial cells and bron-
chial epithelial cells

[10]

ERK1/2 percutaneous 100% 
 CO2 mist

10 min once a day Active ↓ Ischaemia Rodent hindlimb 
muscle

[19]

ERK1/2 12% 1 h in vitro, 3 h 
in vivo

Active ↓ Ventilator‐induced 
lung injury, cyclic 
stretch

Murine lung, rat 
primary AECs

[20]

ERK1/2, p38 10% Overnight Active ↓ Insulin resistance 
in post-surgical 
trauma

Adipocytes [21]

ERK1/2, JNK 100% 5 min Baseline ↓ Euthanasia –  CO2 
asphyxiation

Murine brain [22]

p38 100% 5 min Baseline No change Euthanasia –  CO2 
asphyxiation

Murine brain [22]

p38  > 60 mm Hg 1 h Active ↓ Retinal ischaemia–
reperfusion injury

Retinal neural cell 
line

[23]

p38, JNK 8% 2–15 min Baseline ↓ CO2 signalling Cultured endothe-
lial cells

[10]

p38, JNK 80–100 mm Hg 4 h Active ↓ Injury ventilation; 
high-pressure 
mechanical stretch

Rat lungs (primary 
ATII cells)

[24]

JNK 80–120 mm Hg 10–15 min Baseline ↑ CO2 signalling ATII cells [25, 26]

JNK 120 mm Hg 1–15 min Baseline ↑ CO2 signalling A549 cells [11]

JNK 60 mm Hg 1–15 min Baseline No change CO2 signalling ATII cells [26]
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of  CO2 on MAPK activity are very dynamic and depend 
on the concentration of  CO2 and the duration of  CO2 
exposure. Although the mechanisms of action underly-
ing the effect of  CO2 on MAPK functions remain unclear, 
an emerging pattern indicates that inactive ERK1/2 and 
plant ERK-type MAPKs are activated, and the functions 
of all the activated MAPKs studied thus far have been 
inhibited by increased  CO2 levels (Figs. 1 and 2). Impor-
tantly, among several groups of proteins proposed to be 
 CO2 sensors, only MAPKs are common to all eukary-
otes, with the other eukaryotic  CO2 sensors being taxon 
specific.

In the following parts of this paper, we highlight 
ERK1/2-dependent processes that are augmented by an 
increase in  CO2 concentration and the harmful effects 
triggered by MAPK signalling that can be inhibited by 
elevating  CO2 levels. We indicate possible or previously 
observed consequences of purposely increasing  CO2 lev-
els in relation to various aspects of COVID-19 and the 
most common comorbidities in patients with COVID-19. 
Since the pathogenesis and therapy of COVID-19 is an 
extremely broad topic, including the roles of MAPKs and 

 CO2 in these contexts, we do not describe all the possible 
benefits of increasing  CO2 levels in COVID-19 therapy in 
this article, as these benefits have been discussed in other 
recently published papers [27–30]. We focus primarily on 
the cooperation of the  CO2–MAPK signalling module, 
because the functions of  CO2 and MAPK largely over-
lap (Table 2, Figs. 3 and 4), and it has recently been sug-
gested that MAPKs may be  CO2 receptors [10]. Due to 
text length limitations, we mainly emphasize the benefits 
of a transient increase in  CO2 levels. A broader view of 
hypercapnia can be found in many recent review papers 
[31–33].

Changes in  CO2 levels in the pathogenesis of COVID‑19
CO2 is an important component of pH regulatory mech-
anisms in biological systems. In an aqueous environment, 
dissolved  CO2 partially reacts with water to form  H2CO3, 
which dissociates into  HCO3

− and  H+. The balance 
between  H2CO3 and  HCO3

− levels underlies the most 
important mechanism of maintaining blood pH;  H2CO3 
and  HCO3

− are able to neutralize excess bases and acids, 
respectively. Additionally, the bicarbonate buffer is 
highly efficient because the respiratory system efficiently 
removes  CO2 and dissolved inorganic carbon species 
are distributed on the basis of pH (Bjerrum plot, Fig. 5). 
Namely, increasing  CO2 levels leads to acidification and 
a shift in the  CO2/HCO3

− equilibrium towards a further 
increase in  CO2 levels and a decrease in the concentra-
tion of  HCO3

−. These changes result an increased rate 
of  CO2 removal via the lungs and restoration of baseline 
pH and  CO2/HCO3

− levels. The transitions between  CO2 
and  HCO3

− are catalysed by carbonic anhydrases (CAs), 
which play important roles in the regulation of pH and 
 CO2 levels [191]. CAs, depending on the isoform, con-
ditions, pH, and  CO2/HCO3

− ratio, may accelerate the 
hydration of  CO2 or catalyse the reaction in the opposite 
direction, thereby affecting the flow of  CO2 across cell 
membranes because  CO2 can be efficiently transported 
through membranes via diffusion, while  HCO3

− trans-
port through membranes requires the action of trans-
porters [192, 193].

Numerous reports indicate that both  HCO3
− [194–

196] and total  CO2 concentrations are lower in patients 
who die with COVID-19 than in patients who have recov-
ered from COVID-19 [197–199].  HCO3

− levels lower 
than 22  mM have been identified as an important risk 
factor for mechanical ventilation [200] and a predictor of 
clinical deterioration in patients with nonsevere COVID-
19 [201]. The decrease in the total pool of  CO2/HCO3

− in 
COVID-19 patients is accompanied by an increased level 
of lactate. The decrease in  CO2/HCO3

−, which may result 
from the intensive removal of  CO2 by the lungs dur-
ing hyperventilation due to a decrease in blood oxygen 

Fig. 1 Profiles of MAPK activity in response to elevated  CO2 
based on the data shown in Table 1. a  CO2-dependent regulation 
of baseline ERK1/2 and JNK levels. The blue dashed line represents 
the extrapolated JNK activity values. b Inactivation of active MAPKs 
by  CO2 at elevated levels
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saturation  (SpO2), leads to an increase in the pH of bodily 
fluids. The increased production of lactate compensates 
for failure to maintain normal pH. However, the primary 
cause of the increase in lactate may be an increase in the 
local glycolysis rate, which is a typical response to infec-
tion, inflammation and a decrease in oxygen supply [202]. 
A reduced rate of aerobic respiration in conjunction with 
increased glycolytic lactate production leads not only to 
a decrease in mitochondrial  CO2 production but also to 
a decrease in pH. This acidification forces a shift in the 
 CO2/HCO3

− equilibrium, which increases the arterial 
partial pressure of  CO2  (PaCO2), and elevated  PaCO2 
accelerates the removal of  CO2 via the lungs, resulting in 
a reduction in the total pool of  CO2/HCO3

−.
Since lactate, in contrast to  CO2, cannot be removed 

easily via gas exchange, an increase in lactate can lead 
to a permanent decrease in pH and metabolic acidosis. 
Although metabolic acidosis does not typically occur in 
the course of acute COVID-19, blood lactate levels were 
the highest in nonsurvivors and were higher in hospital-
ized COVID-19 patients than in ambulatory patients 
[199, 203, 204]. The greatest differences between a group 
of patients with COVID-19-related acute respiratory dis-
tress syndrome (ARDS) who presented with the "hyper-
inflammatory" phenotype, with a significantly higher 

mortality rate and a group of those who presented with 
the "hypoinflammatory" phenotype, was elevated lactate 
levels and decreased  HCO3

− levels in patients with the 
"hyperinflammatory" phenotype; the differences in other 
markers of inflammation were much less pronounced 
[205].

Similar to the effect of lactate, permissive and thera-
peutic hypercapnia leads to a decrease in pH due to 
an increase in  PaCO2 resulting from insufficient  CO2 
removal through the lungs and the inhalation of  CO2, 
respectively. However, hypercapnia-induced respiratory 
acidosis does not lead to the many complications attrib-
uted to metabolic acidosis and exerts a protective effect 
in patients with one of many other medical conditions 
[206–209].

In addition to studies demonstrating the ability of 
elevated  CO2 to inhibit the proinflammatory response 
induced by SARS-CoV-2 elements [10], there are also 
reports based on randomized trials and case studies 
showing the benefits of using  HCO3

− in experimental 
COVID-19 therapies to improve prognosis. Patients with 
mild COVID-19 who received 14-day nasal  NaHCO3 
irrigation twice daily showed an eightfold lower risk of 
hospitalization than the overall population [210]. Supple-
menting standard COVID-19 therapy with 8.4%  NaHCO3 

Fig. 2 Cellular mechanisms regulating  CO2-dependent activation of ERK1/2



Page 5 of 29Gałgańska et al. Cell Communication and Signaling          (2023) 21:280  

Ta
bl

e 
2 

Si
gn

al
lin

g 
pa

th
w

ay
s 

w
ith

 o
ve

rla
pp

in
g 

eff
ec

ts
 o

f M
A

PK
 a

ct
iv

ity
 a

nd
 e

le
va

te
d 

 CO
2 l

ev
el

s

Pr
oc

es
s

M
A

PK
s

CO
2 i

nt
er

ve
nt

io
n

Id
en

tifi
ed

 m
ec

ha
ni

sm
s

Re
fe

re
nc

es

CO
2

M
A

PK

A
lv

eo
la

r fl
ui

d 
re

so
rp

tio
n

ER
K1

/2
, p

38
, J

N
K

10
%

  C
O

2 f
or

 2
0 

m
in

 in
 h

um
an

 A
EC

s; 
5–

12
%

  C
O

2 i
n 

ro
de

nt
 m

od
el

s
Re

gu
la

tio
n 

of
 io

n 
an

d 
w

at
er

 fl
ow

 
by

 E
N

aC
, N

a/
K-

AT
Pa

se
, C

FT
R 

an
d 

A
Q

Ps
, 

re
gu

la
tio

n 
of

 in
tr

ac
el

lu
la

r c
A

M
P 

le
ve

ls

[3
1,

 3
4–

37
]

[1
1,

 1
2,

 2
5,

 2
6,

 3
8–

47
]

LP
S-

in
du

ce
d 

lu
ng

 in
ju

ry
ER

K1
/2

2.
5–

20
%

  C
O

2 (
lu

ng
 m

ac
ro

ph
ag

es
), 

pr
op

hy
la

ct
ic

 o
r t

he
ra

pe
ut

ic
 5

%
  C

O
2 

in
ha

la
tio

n

Cy
to

ki
ne

 re
sp

on
se

s 
in

 a
lv

eo
la

r m
ac

-
ro

ph
ag

es
, d

ow
nr

eg
ul

at
io

n 
of

 T
ol

l-l
ik

e 
re

ce
pt

or
 4

 e
xp

re
ss

io
n,

 N
F-

κB
 s

ig
na

lli
ng

[3
6,

 4
8,

 4
9]

[5
0–

52
]

M
ec

ha
ni

ca
l v

en
til

at
io

n-
in

du
ce

d 
lu

ng
 

in
ju

ry
ER

K1
/2

, p
38

, J
N

K
12

–1
5%

  C
O

2 (
A

EC
s)

, 8
0–

10
0 

m
m

 H
g 

 Pa
CO

2 (
ve

nt
ila

te
d 

ra
ts

)
Re

gu
la

tio
n 

of
 N

F-
κb

, I
C

A
M

-1
, A

D
A

M
17

, 
IL

-6
, I

L-
8,

 e
pi

de
rm

al
 g

ro
w

th
 fa

ct
or

 
re

ce
pt

or
 (E

G
FR

) a
ct

iv
ity

, l
un

g 
in

fil
tr

at
io

n 
by

 n
eu

tr
op

hi
ls

 a
nd

 A
EC

 a
po

pt
os

is

[2
0,

 2
4,

 5
3–

55
]

[2
0,

 2
4,

 5
6]

H
yp

er
ox

ia
ER

K1
/2

, p
38

, J
N

K
Im

m
er

si
on

 o
f l

ow
er

 le
gs

 in
  C

O
2-

en
ric

he
d 

(1
,5

53
 m

g 
 CO

2/
l) 

w
at

er
 o

r 6
0–

14
6 

m
m

 
H

g 
 PC

O
2 (

ce
lls

, b
io

pt
at

es
 o

r t
he

 o
rg

an
-

is
m

)

H
yp

er
ox

ia
-in

du
ce

d 
ce

ll 
ap

op
to

si
s; 

N
A

D
PH

-o
xi

da
se

 a
ct

iv
ity

; p
ro

du
ct

io
n 

of
  O

2. , a
nt

io
xi

da
nt

s 
an

d 
pr

oi
nfl

am
m

at
or

y 
cy

to
ki

ne
s; 

N
rf

2,
 a

de
no

si
ne

 A
2A

 re
ce

pt
or

, 
pr

ot
ei

n 
ki

na
se

 A
 (P

KA
), 

Sr
c,

 c
A

M
P, 

sm
al

l 
m

ot
he

rs
 a

ga
in

st
 d

ec
ap

en
ta

pl
eg

ic
 3

 
(S

M
A

D
3)

, s
em

ap
ho

rin
 3

A
 a

nd
 A

-k
in

as
e 

an
ch

or
in

g 
pr

ot
ei

n 
1 

(A
ka

p1
) s

ig
na

lli
ng

 
pa

th
w

ay
s

[5
7,

 5
8]

[5
9–

66
]

A
irw

ay
 d

ila
tio

n
ER

K1
/2

, p
38

In
cr

ea
se

d 
 CO

2 c
on

ce
nt

ra
tio

ns
 

in
 th

e 
ba

th
 (i

so
la

te
d 

br
on

ch
ia

l r
in

gs
), 

an
 in

cr
ea

se
 in

  E
tC

O
2 o

f 1
 k

Pa
 (h

ea
lth

y 
vo

lu
nt

ee
rs

 a
nd

 a
st

hm
a 

pa
tie

nt
s)

, i
nh

al
ed

 
5–

10
%

  C
O

2

A
kt

-C
/E

BP
β-

CC
L2

0-
m

ed
ia

te
d 

ep
ith

e-
lia

l-m
es

en
ch

ym
al

 tr
an

si
tio

n;
 N

LR
P3

 
de

ub
iq

ui
tin

at
io

n 
an

d 
tr

an
sc

rip
tio

na
l 

up
re

gu
la

tio
n 

le
ad

in
g 

to
 N

LR
P3

 in
fla

m
-

m
as

om
e 

ac
tiv

at
io

n,
 v

ol
ta

ge
-d

ep
en

de
nt

 
 Ca

2+
 c

ha
nn

el
s; 

 Ca
2+

 a
nd

 s
ub

st
an

ce
 P

 
si

gn
al

lin
g

[6
7–

74
]

[7
5,

 7
6]

Pu
lm

on
ar

y 
ar

te
ry

 h
yp

er
te

ns
io

n
ER

K1
/2

, p
38

Et
CO

2/
Pa

CO
2 m

ea
su

re
m

en
t i

n 
pa

tie
nt

s 
w

ith
 P

A
H

, 5
%

  C
O

2 f
or

 1
0 

m
in

 (i
so

la
te

d 
pe

rf
us

ed
 ra

t l
un

gs
)

15
-H

yd
ro

xy
ei

co
sa

te
tr

ae
no

ic
 a

ci
d 

(1
5-

H
ET

E)
 a

nd
 1

5-
lip

ox
yg

en
as

e-
2 

si
gn

al
lin

g,
 

m
ito

si
s 

an
d 

ap
op

to
si

s 
of

 p
ul

m
on

ar
y 

ar
te

ria
l s

m
oo

th
 m

us
cl

e 
ce

lls
, d

iff
er

en
tia

-
tio

n 
of

 m
es

en
ch

ym
al

 s
te

m
 c

el
ls

 le
ad

in
g 

to
 v

as
cu

la
r r

em
od

el
lin

g

[7
7–

79
]

[8
0,

 8
1]

Va
sc

ul
ar

 re
m

od
el

lin
g

ER
K1

/2
, p

38
, J

N
K

10
%

  C
O

2 f
or

 1
–3

 w
ee

ks
A

ng
II-

 a
nd

 th
ro

m
bi

n-
in

du
ce

d 
ce

ll 
pr

ol
ife

ra
tio

n,
 d

ep
os

iti
on

 o
f t

he
 c

ol
la

ge
n/

ex
tr

ac
el

lu
la

r m
at

rix

[8
2]

[8
1,

 8
3,

 8
4]

Th
ro

m
bo

si
s

ER
K1

/2
, p

38
, J

N
K

10
%

  C
O

2, 
ac

id
os

is
, h

ig
he

r  C
O

2/
H

CO
3−

 
ra

tio
In

du
ct

io
n 

of
 ti

ss
ue

 fa
ct

or
 e

xp
re

ss
io

n 
an

d 
N

ET
 fo

rm
at

io
n 

(b
ro

nc
ho

al
ve

ol
ar

 
flu

id
 n

eu
tr

op
hi

l i
nfi

ltr
at

io
n,

 N
F-

κB
 a

ct
iv

a-
tio

n,
 IL

-6
 a

nd
 IL

-8
 p

ro
du

ct
io

n)

[5
3,

 8
5–

87
]

[8
8–

92
]



Page 6 of 29Gałgańska et al. Cell Communication and Signaling          (2023) 21:280 

Ta
bl

e 
2 

(c
on

tin
ue

d)

Pr
oc

es
s

M
A

PK
s

CO
2 i

nt
er

ve
nt

io
n

Id
en

tifi
ed

 m
ec

ha
ni

sm
s

Re
fe

re
nc

es

CO
2

M
A

PK

Is
ch

ae
m

ia
‒r

ep
er

fu
si

on
-in

du
ce

d 
in

ju
ry

ER
K1

/2
, p

38
, J

N
K

In
ha

le
d 

 CO
2, 

 CO
2-

en
ric

he
d 

w
at

er
 

(1
–1

.2
 g

/l,
 1

0 
m

in
 o

nc
e 

pe
r d

ay
), 

pe
rc

u-
ta

ne
ou

s 
 CO

2, 
 Et

CO
2 m

ea
su

re
m

en
t

Va
sc

ul
ar

 e
nd

ot
he

lia
l g

ro
w

th
 fa

ct
or

 
(V

EG
F)

 s
tim

ul
at

io
n,

 N
O

 p
ro

du
ct

io
n,

 
cG

M
P 

ac
cu

m
ul

at
io

n,
 c

er
eb

ra
l v

as
od

ila
-

tio
n,

 b
lo

od
‒b

ra
in

 b
ar

rie
r f

un
ct

io
n,

 h
ae

m
 

ox
yg

en
as

e-
1 

(H
O

-1
) a

nt
io

xi
da

nt
 a

ct
iv

ity
, 

at
te

nu
at

io
n 

of
 ti

ss
ue

 n
itr

at
io

n,
 in

fla
m

-
m

at
io

n 
(IL

-1
β,

 IL
-6

 a
nd

 T
N

F-
α 

pr
od

uc
-

tio
n)

 a
nd

 a
po

pt
os

is

[1
9,

 2
3,

 3
4,

 3
7,

 9
3–

96
]

[9
7–

10
0]

In
su

lin
 re

si
st

an
ce

ER
K1

/2
, p

38
, J

N
K

In
cu

ba
tio

n 
of

 a
di

po
cy

te
s 

in
 1

0%
  C

O
2

IR
S-

1 
ph

os
ph

or
yl

at
io

n
[2

1]
[1

01
–1

08
]

O
be

si
ty

ER
K1

/2
, p

38
, J

N
K

Su
bc

ut
an

eo
us

 in
je

ct
io

ns
 o

f  C
O

2, 
ba

th
in

g 
in

 n
eu

tr
al

 b
ic

ar
bo

na
te

 io
n 

w
at

er
Re

gu
la

tio
n 

of
 a

di
po

ge
ne

si
s, 

lip
og

en
es

is
, 

th
er

m
og

en
es

is
 a

nd
 b

ro
w

ni
ng

 o
f w

hi
te

 
ad

ip
os

e 
tis

su
e,

 m
od

ifi
ca

tio
n 

of
 m

ito
-

ch
on

dr
ia

l f
un

ct
io

n

[1
09

–1
11

]
[1

04
, 1

05
, 1

12
–1

15
]

A
lle

rg
ic

 re
ac

tio
ns

ER
K1

/2
, p

38
N

on
in

ha
le

d 
10

0%
  C

O
2 (

flo
w

 ra
te

 
5–

10
 m

l/s
), 

 CO
2 a

dm
in

is
te

re
d 

in
tr

an
a-

sa
lly

 fo
r 1

0–
30

 s

M
as

t c
el

l i
nd

uc
tio

n,
 i.

e.
, a

ct
iv

a-
tio

n 
of

 N
F-

κB
 a

nd
 A

P-
1,

 re
gu

la
tin

g 
th

e 
ex

pr
es

si
on

 o
f h

is
tid

in
e 

de
ca

r-
bo

xy
la

se
 a

nd
 p

ro
du

ct
io

n 
of

 h
is

ta
m

in
e 

an
d 

pr
oi

nfl
am

m
at

or
y 

fa
ct

or
s, 

hi
st

am
in

e 
si

gn
al

lin
g 

th
ro

ug
h 

H
1,

 H
2,

 H
3 

an
d 

H
4 

re
ce

pt
or

s

[1
16

–1
19

]
[1

20
–1

29
]

Pr
od

uc
tio

n 
of

 p
ro

in
fla

m
m

at
or

y 
cy

to
ki

ne
s

ER
K1

/2
, p

38
, J

N
K

2–
20

%
  C

O
2 f

or
 1

–2
4 

h 
(m

ac
ro

ph
ag

es
 

or
 v

en
ou

s 
bl

oo
d 

sa
m

pl
es

)
H

ea
t s

ho
ck

 fa
ct

or
 1

 (H
SF

1)
- a

nd
 N

F-
κB

-
de

pe
nd

en
t t

ra
ns

cr
ip

tio
na

l a
ct

iv
ity

; 
cy

to
ki

ne
 s

ec
re

tio
n,

 H
O

-1
 a

nt
io

xi
da

nt
 

ac
tiv

ity

[1
8,

 3
4,

 3
7,

 4
9,

 5
5,

 1
30

]
[6

–9
]

Br
ea

th
in

g 
re

gu
la

tio
n

ER
K1

/2
Pe

rf
us

in
g 

sp
in

al
 c

or
d 

pr
ep

ar
at

io
ns

 
w

ith
 a

rt
ifi

ci
al

 c
er

eb
ro

sp
in

al
 fl

ui
d 

eq
ui

li-
br

at
ed

 w
ith

 3
0%

  C
O

2; 
 CO

2 i
nh

al
at

io
n;

 
el

ev
at

ed
  P

aC
O

2

N
a+

 c
ur

re
nt

,  C
a2+

 a
nd

 A
kt

 s
ig

na
lli

ng
, A

TP
 

re
le

as
e,

 e
ry

th
ro

po
ie

tin
[1

31
–1

33
]

[1
34

, 1
35

]

M
em

or
y

ER
K1

/2
Pa

CO
2 8

0–
10

0 
m

m
 H

g;
 p

os
ta

cq
ui

si
tio

n 
10

%
  C

O
2 i

nh
al

at
io

n;
 C

A
 a

ct
iv

at
io

n;
 C

A
 

in
hi

bi
tio

n;
 a

ci
di

fic
at

io
n

C
A

 a
ct

iv
at

io
n;

 p
ro

to
ns

 a
s 

a 
ne

ur
ot

ra
ns

-
m

itt
er

; a
ci

d-
se

ns
in

g 
io

n 
ch

an
ne

l (
A

SI
C

); 
 N

a+
 a

nd
  C

a2+
 c

ur
re

nt
s

[1
36

–1
44

]
[1

45
–1

53
]

Sl
ee

p 
an

d 
ci

rc
ad

ia
n 

rh
yt

hm
ER

K1
/2

N
at

ur
al

 fl
uc

tu
at

io
ns

 in
  C

O
2 l

ev
el

s
C

RE
B-

de
pe

nd
en

t t
ra

ns
cr

ip
tio

n
[1

54
–1

58
]

[1
59

–1
61

]

Sl
ee

p 
ap

no
ea

ER
K1

/2
, p

38
, J

N
K

Et
CO

2 r
ai

se
d 

by
 2

–4
 m

m
 H

g
Re

gu
la

tio
n 

of
 p

os
ts

yn
ap

tic
 d

en
si

ty
 9

5 
(P

SD
-9

5)
 e

xp
re

ss
io

n
[1

62
]

[1
63

, 1
64

]

A
nx

ie
ty

ER
K1

/2
5–

35
%

  C
O

2 i
nh

al
at

io
n

Se
ro

to
ni

n 
an

d 
BD

N
F 

si
gn

al
lin

g,
 C

RE
B-

de
pe

nd
en

t t
ra

ns
cr

ip
tio

n
[1

65
]

[1
66

]



Page 7 of 29Gałgańska et al. Cell Communication and Signaling          (2023) 21:280  

Ta
bl

e 
2 

(c
on

tin
ue

d)

Pr
oc

es
s

M
A

PK
s

CO
2 i

nt
er

ve
nt

io
n

Id
en

tifi
ed

 m
ec

ha
ni

sm
s

Re
fe

re
nc

es

CO
2

M
A

PK

N
eu

ro
de

ge
ne

ra
tio

n/
ne

ur
op

ro
te

ct
io

n
ER

K1
/2

, p
38

, J
N

K
50

–1
00

 m
m

 H
g 

 Pa
CO

2 (
0.

5–
2 

h 
pe

r d
ay

, 
ra

ts
), 

20
%

  C
O

2 i
nh

al
at

io
n 

fo
r 2

 m
in

 (m
ic

e)
N

eu
ro

na
l a

po
pt

os
is

, i
m

pr
ov

em
en

t 
of

 e
xp

lo
ra

to
ry

 b
eh

av
io

ur
 a

nd
 to

ta
l 

lo
co

m
ot

or
 a

ct
iv

ity
; d

ow
nr

eg
ul

at
io

n 
of

 g
lu

ta
m

at
e 

af
te

r b
ra

in
 in

ju
ry

,  C
a2+

 
si

gn
al

lin
g

[1
67

–1
69

]
[1

–5
, 1

70
–1

72
]

Lo
ng

ev
ity

, c
el

l s
ur

vi
va

l a
nd

 p
ro

lif
er

at
io

n
ER

K1
/2

2–
30

%
  C

O
2 (

cu
ltu

re
d 

ce
lls

); 
se

lf-
pr

o-
du

ce
d 

hy
po

xi
c-

hy
pe

rc
ap

ni
c 

en
vi

ro
n-

m
en

t b
y 

m
ic

e 
(~

 7
%

  C
O

2)
; 5

 o
r 2

0%
  C

O
2 

(B
la
st
oc
la
di
a)

Pr
ot

ei
n 

ki
na

se
 C

 (P
KC

) a
nd

 s
er

ot
on

in
 

si
gn

al
lin

g 
(c

ul
tu

re
d 

ce
lls

), 
de

cr
ea

se
 

in
 m

et
ab

ol
ic

 ra
te

, b
od

y 
te

m
pe

ra
tu

re
, 

an
d 

fo
od

 c
on

su
m

pt
io

n,
 a

cc
el

er
at

ed
 

w
ou

nd
 h

ea
lin

g

[1
4,

 1
73

–1
77

]
[5

, 1
4]

A
po

pt
os

is
ER

K1
/2

, p
38

, J
N

K
C

A
 a

ct
iv

at
io

n;
 C

A
 in

hi
bi

tio
n;

 a
ci

di
fic

at
io

n;
 

 Pa
CO

2 8
0–

10
8 

m
m

 H
g

Re
gu

la
tin

g 
pr

o-
su

rv
iv

al
 a

nd
 p

ro
-d

ea
th

 
BC

L-
2 

pr
ot

ei
ns

 a
nd

 m
ito

ch
on

dr
ia

l f
un

c-
tio

n;
 p

21
 a

nd
 A

kt
 s

ig
na

lli
ng

 p
at

hw
ay

s, 
H

O
-1

 a
nt

io
xi

da
nt

 a
ct

iv
ity

[3
4,

 3
7,

 5
5,

 1
30

, 1
69

, 1
78

–1
80

]
[4

, 1
81

–1
83

]

M
ito

ch
on

dr
ia

l f
un

ct
io

n
ER

K1
/2

, p
38

, J
N

K
Pe

rc
ut

an
eo

us
  C

O
2 (

ro
de

nt
s)

, 5
%

  C
O

2 
in

ha
la

tio
n 

(h
um

an
s)

M
ito

ch
on

dr
ia

l b
io

ge
ne

si
s, 

fu
si

on
, fi

s-
si

on
, f

ra
gm

en
ta

tio
n 

an
d 

m
ito

ph
ag

y,
 

su
pp

re
ss

io
n 

of
 c

er
eb

ra
l m

et
ab

ol
ic

 ra
te

 
of

 o
xy

ge
n

[1
9,

 1
84

]
[1

81
, 1

85
–1

90
]



Page 8 of 29Gałgańska et al. Cell Communication and Signaling          (2023) 21:280 

steam inhalation led to an improvement in clinical 
parameters in patients with mild to moderate symptoms 
[211]. A positive effect of 10  ml administration of 4.2% 
 NaHCO3 every 6 h was found on mechanically ventilated 
patients [212].

Opposing effects of elevated  CO2 levels
Although the physiological importance of  CO2 is well 
understood, its effects at the molecular and cellular levels 
are poorly understood, and the broad spectrum of  CO2 
concentrations has almost never been compared in  CO2 
signalling studies or for the therapeutic application of 
 CO2. The different effects of specific  CO2 concentrations 
have been reflected in numerous seemingly contradictory 
results from research groups that reported results based 
on different  CO2 concentrations. Notably, the long-term 
effect of severe hypercapnia exerted the exact opposite 
effect of short-term  CO2 application, e.g., airway muscles 
were constricted after long-term (3 or 7 days of 10%  CO2 
inhalation) treatment with  CO2 [213] and were dilated 
after short-term exposure to elevated  CO2 [67].  CO2 
dilates airways that are constricted, e.g., by drugs such as 
serotonin, methacholine, bethanechol and carbachol, or 
by the occlusion of the pulmonary artery [68, 69]. Impor-
tantly, short- but not the long-term effects of hypercapnia 

are opposite those of hypocapnia, as transient hypercap-
nia dilates and hypocapnia constricts airways, as found in 
dog [70], porcine [71] and rat [72] models. In contrast to 
acute long-term hypercapnia, slightly elevated  CO2 lev-
els exert a bronchodilator effect in healthy subjects and 
in patients with asthma before and after exercise [73, 74]. 
Consistent with the proposed inhibition of active ERK1/2 
induced by elevated  CO2, inhibition of ERK1/2 increased 
airway conductance in patients with asthma [75].

The abovementioned opposing effects of  CO2 at the 
physiological level are analogous to the opposite effects 
of  CO2 on ERK1/2 functions (the activation of inac-
tive ERK1/2 and inhibition of activated ERK1/2). For 
example, in healthy subjects, elevated  PaCO2 levels 
increased pulmonary artery pressure [214], but inhaled 
5%  CO2 reduced preexisting pulmonary artery hyper-
tension (PAH) [77]. Importantly, PAH has been associ-
ated with high levels of ERK1/2 and p38 activity [80]. 
A direct comparison indicated that cyclic stretch–
induced injury in human bronchial and alveolar epithe-
lial cells was more efficiently inhibited by hypercapnia 
applied after cell stretching had begun than by pre-
conditioning the cells via induced hypercapnic acido-
sis [53]. The specific effects of  CO2 on MAPK activity 
and physiology are limited to a relatively narrow range 

Fig. 3 An overview of the involvement of MAPKs and the potential beneficial effects of elevated  CO2 levels on the pathogenesis of COVID-19 
and comorbidities. Red arrows: confirmed impact of elevated  CO2 levels
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of  CO2 concentrations. For example, drastically ele-
vated  CO2 (20%,  PaCO2 140  mm  Hg) did not inhibit 
ERK1/2 activity [18] unlike lower  CO2 levels. Similarly, 
moderate hypercapnia  (PaCO2 of 80–100  mm  Hg), 
conferred better protection from high-pressure venti-
lation–induced inflammatory injury on rat lungs than 
 PaCO2 > 100 mm Hg [54].

In summary, prolonged exposure to very high lev-
els of  CO2 exerts detrimental effects on organisms. 
However, in the following sections of this review, we 
focus on the beneficial effects of  CO2 and its potential 

therapeutic use, specifically, the short-term effect of 
slightly elevated  CO2 concentrations.

The role of MAPKs in viral infections
MAPKs are activated by viral infection. For example, 
p38 is activated by hepatitis B virus (HBV), hepatitis C 
virus (HCV), influenza virus, enterovirus 71, human 
immunodeficiency virus (HIV) and dengue virus infec-
tion [215, 216]. Moreover, MAPKs are involved in many 
viral infection mechanisms. In addition to induction of a 
proinflammatory response and regulation of the activity 

Fig. 4 The physiological and pathological processes regulated by MAPKs and/or  CO2. Blue lines: mechanisms regulated by MAPKs; red lines: 
influence of elevated  CO2 levels; black lines: overlapping effects of MAPKs and  CO2

Fig. 5 Distribution of the species of dissolved inorganic carbon as a function of change in pH (Bjerrum plot)
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of various types of immune cells during viral infections 
(e.g., the regulation of  CD8+ T-cell apoptosis) [217], ERK, 
JNK and p38 isoforms have been shown to directly sup-
port viral multiplication. First, ERK1/2 may positively 
influence the entry of SARS-CoV-2 into host cells [218]. 
Second, the phosphorylation of different host proteins by 
MAPKs facilitates the replication and translation of many 
viral proteins [219]. Third, efficient nuclear export of viral 
ribonucleoprotein complexes depends on the activity of 
ERK1/2 (e.g., influenza virus ribonucleoproteins [220]), 
and fourth, phosphorylation of viral proteins by MAPKs 
facilitates viral complex assembly (e.g., p38α phospho-
rylates the HCV core protein, leading to its oligomeriza-
tion [215]). Consist with these findings, p38 and ERK1/2 
inhibitors impaired the replication of influenza virus and 
coronaviruses [221–223], including SARS-CoV-2 pseu-
doviruses, in an in vitro model [215].

MAPKs in the pathogenesis of COVID‑19
Angiotensin-converting enzyme 2 (ACE2), the host 
receptor of SARS-CoV-2, is a negative regulator of 
MAPK signalling and thus efficiently prevents both the 
activation of MAPKs and pneumonia caused by exposure 
to lipopolysaccharide (LPS) [50], bleomycin [224], ciga-
rette smoke [225] or particulate matter 2.5 (PM2.5) [226]. 
However, during SARS-CoV and SARS-CoV-2 infection, 
when receptor ACE2 is bound by the viral spike protein, 
ACE2 function is disrupted, leading to the activation of 
MAPKs, the production of proinflammatory cytokines 
and the pathogenesis of pneumonia or even ARDS 
[227–232]. In a model mice, COVID-19-like symptoms, 
including acute lung injury, were caused by inactive 
SARS-CoV-2 [233] or SARS-CoV-2 spike protein alone 
[234]. Moreover, ERK1/2 were activated by both SARS-
CoV-2 and the spike protein alone in, e.g., human bron-
chial epithelial cells [10], human dendritic cells [235] and 
murine primary macrophages [236]. Activation of p38 by 
spike was found in Vero E6 cells [237], human peripheral 
blood mononuclear cells [238], HEK293T cells, BHK21 
cells [215], murine alveolar macrophages [239] and 
microglia [240].

Multiple mechanisms lead to the activation of MAPKs 
by SARS-CoV-2. One such mechanism is renin-angi-
otensin system (RAS) dysregulation, as SARS-CoV-2 
causes internalization of ACE2 by inhibiting the primary 
function of ACE2, which is the cleavage of angioten-
sin (Ang) II to form Ang1-7. As a result, the production 
of Ang1-7 decreases, and the level of AngII increases, 
leading to the activation of AngII receptor type 1 (AT1) 
and downstream MAPKs. In addition to ACE2, other 
membrane receptors have been shown to interact with 
SARS-CoV-2 and trigger MAPK-mediated signalling; for 
example, spike protein activates p38 and ERK1/2 via the 

receptor CD147 in vivo [241] and in primary human car-
diac pericytes [242], respectively. The role of MAPKs in 
SARS-CoV-2 signalling is multifaceted, as the activation 
of ERK1/2, JNKs and p38 MAPKs is also triggered by the 
SARS-CoV-2 nucleocapsid protein [243].

The importance of MAPKs has been confirmed not 
only in classic signalling studies involving MAPK inhibi-
tors but also in many more-objective high-throughput 
analyses. Proteomic approaches clearly indicated that 
MAPKs have been found to be among the most highly 
activated proteins after SARS-CoV-2 infection, regardless 
of the experimental approaches, cell and sample types 
evaluated, or period of SARS-CoV-2 infection [237, 244–
246]. RNA-seq data revealed that in addition to the regu-
lation of MAPKs by SARS-CoV-2 at the transcriptional 
level in many cell types [247], the components of the 
MAPK signalling pathway were also strongly regulated 
via alternative polyadenylation sites in human peripheral 
blood mononuclear cells from COVID-19 patients [248].

All types of ACE2-positive immune cells, which are 
crucial for the pathogenesis of severe COVID-19, can be 
directly infected by SARS-CoV-2, and as a result of infec-
tion, activated MAPK signalling stimulates transcrip-
tion factors such as NF-κB and AP-1, which trigger the 
production of proinflammatory cytokines. Despite dis-
putes over whether endothelial cells can be infected by 
SARS-CoV-2, endothelial cells undoubtedly produce a 
strong proinflammatory response via MAPKs in patients 
with severe COVID-19 [249–252]. Vascular endothelial 
cells in infected organs recruit monocytes/macrophages 
and neutrophils to inflammation sites and promote fur-
ther production of proinflammatory cytokines, leading 
to a cytokine storm [253, 254]. Uncontrolled activation 
of macrophages not only leads to the secretion of high 
levels of IFN‐γ, IP-10, IL-6, IL-17, IL-10/23 and TNF-α 
but also causes a loss of inflammatory coordination 
mediated by type-I interferons, which is a hallmark of 
COVID-19. Importantly, type-I interferon production is 
inhibited by activated ERK1/2 in macrophages [255]. In 
addition, MAPKs contribute to a decrease in lympho-
cyte counts, including lymphocyte necrosis and NK and 
T-cell exhaustion promoted by IL-6, which is commonly 
observed in COVID-19 patients [254].

In addition to regulating transcription factors, MAPKs 
regulate other types of effector proteins. For example, 
p38 and ERK1/2 phosphorylate and thereby increase the 
catalytic activity of a disintegrin and metalloprotease 
17 (ADAM17). ADAM17, due to its proteolytic activ-
ity, can release the ectodomains of a variety of proteins; 
ADAM17 induces ACE2 shedding and the activation of 
proinflammatory cytokines and fibrotic factors, leading 
to enhanced organ dysfunction via increased inflam-
mation and fibrosis [256]. The roles of MAPKs in key 
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processes in the pathogenesis of COVID-19 are very 
broad, as cellular responses to cytokines leading to severe 
disease in COVID-19 patients depend on MAPK signal-
ling pathways. More detailed information on MAPK sig-
nalling in relation to SARS-CoV-2 infection can be found 
in recent comprehensive reviews [218, 254, 257].

Hypertension in COVID‑19
Hypertension is one of the most common comorbidities 
that worsens the prognosis of COVID-19. The RAS plays 
a unique role in regulating blood pressure in patients with 
COVID-19 due to the direct effect of SARS-CoV-2 on 
ACE2. SARS-CoV-2 enhances the vasoconstrictive effect 
of AngII while reducing the amount of Ang1-7, which 
exert a vasodilating effect. MAPKs constitute a hub for 
these opposing activities, as both AngII and Ang1-7 sig-
nalling is mediated by MAPKs. p38 and ERK1/2 are acti-
vated in response to AngII binding by AT1 receptors and 
induce severe vasoconstriction, increasing blood pressure 
and heart rate. Moreover, MAPKs have been proposed 
to be sensors of pressure overload because activation of 
JNK, p38 and ERK1/2 is proportional to the amount of 
pressure overload and pressure overload-induced myo-
cardial remodelling in hypertensive patients [258]. In 
contrast to that of AngII, the activation of Ang1-7 sig-
nalling by Ang1-7 binding to the Mas1 receptor leads to 
inactivation of ERK1/2 via the induction of MAPK phos-
phatase-1 (MKP-1) in endothelial and vascular smooth 
muscle cells, which causes not only hypotension but 
also antiproliferative, antithrombotic and fibrotic effects 
[259–261].

p38 is overactive in the endothelium and adventitia 
of hypertensive model rodents in contrast to its activa-
tion level in normotensive animals. Activation of p38 in 
response to AngII activity was transient in normotensive 
rats but sustained in hypertensive rats [262]. Progressive 
and sustained hypertension induced by AngII, a high-salt 
and high-fat diet, or monocrotaline treatment in model 
mice and rats was reversed by p38 inhibitors; similarly, 
endothelial dysfunction, vascular cell proliferation, car-
diac hypertrophy, and enhanced extracellular matrix and 
collagen deposition leading to vascular remodelling were 
reversed [81, 83]. Inhibition of overactivated p38 thus 
prolonged survival and increased endothelium-depend-
ent vascular relaxation [263].

ERK1/2 are activated in vascular smooth muscle cells, 
arteries and serum of hypertensive patients. ERK1/2 are 
crucial for AngII- and thrombin-induced smooth mus-
cle cell proliferation and vascular remodelling, leading 
to hypertension, atherosclerosis, and accelerated cardio-
vascular damage [264, 265]. Similar to synthetic MAPK 
inhibitors, aerobic exercise exerts beneficial effects 
on vascular and endothelial functions, including the 

inhibition of vascular smooth muscle remodelling, which 
led to the acquisition of a hypertensive phenotype by 
promoting the inactivation of overactive p38 and ERK1/2 
in spontaneously hypertensive rats [266]. However, basal 
ERK1/2 activity has been shown to be essential for main-
taining endothelial integrity in  vivo, and ERK1/2 loss 
leads to rapid development of hypertension and death 
within 5 weeks due to widespread endothelial-to-mesen-
chymal transition and degradation of endothelial cells in 
various organs [267].

One of the arguments for the use of  CO2 in COVID-19 
therapy is that the effect of  CO2 on the circulatory system 
is consistent with that of Ang1-7; increased  CO2 causes a 
decrease in vascular resistance and an increase in blood 
flow to organs [268, 269]. Experimental COVID-19 ther-
apies based on various vasodilators have improved the 
prognosis. For example, sildenafil shortened the length of 
hospital stays and reduced the need for invasive mechan-
ical ventilation [270].

In recent years, research on the effects of  CO2 on blood 
pressure has focused on the relationship between  CO2 
levels and PAH, as end-tidal  CO2  (EtCO2) is lower in 
patients with PAH than in control subjects, and PAH is 
associated with chronic alveolar hyperventilation. It has 
been shown that lower  EtCO2 or  PaCO2 results in shorter 
survival in patients with PAH [78, 79].

Thrombosis
Inflammation of blood vessels in the lungs, heart, brain 
and other organs is the cause of the most serious com-
plications of severe COVID-19, and COVID-19 is con-
sidered a form of inflammatory endotheliitis [249–252]. 
Typical pathological changes include thrombosis, which 
may result from inflammation associated with the induc-
tion of tissue factor expression (i.e., factors whose mere 
presence triggers the production of blood clots). In cells 
that are in contact with platelets, including both mono-
cytes and endothelial cells, the induction of tissue fac-
tor depends on p38. Accordingly, MAPK expression has 
been associated with platelet activation and thrombosis 
[88, 89]. However, the frequent incidence of thrombosis 
and the largeness of the thrombi in vessels of COVID-
19 patients are largely due to neutrophil activity not 
inflammatory processes in endothelial cells. In response 
to SARS-CoV-2, nucleocapsid or spike proteins, IL-6 or, 
particularly, IL-8, neutrophils extrude neutrophil extra-
cellular traps (NETs), a web of chromatin-based cytoplas-
mic materials enriched with antimicrobial agents. NETs 
promote the accumulation of activated platelets and 
coagulation factors, forming thrombi [90, 271–273].

More NETs have been found in deceased COVID-
19 patients than in survivors, and there is a correlation 
between plasma NET levels and COVID-19 severity [91]. 
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Notably, various studies have consistently shown that 
the greatest increase in NET production in COVID-19 
patients occurs soon after admission to the intensive care 
unit (ICU). Independent research groups have reported 
that increased inspiratory airflow and mechanical cell 
stretch–induced MAPK and NF-κB activation in alveolar 
macrophages trigger the release of IL-8 and IL-6, which 
are crucial for NET induction [53, 91, 274].

Treatment with JNK, ERK1/2 or p38 inhibitors abro-
gates NET formation [90–92]. Similarly, elevated  CO2 
levels inhibit the processes that contribute to the forma-
tion of NETs, including bronchoalveolar fluid neutrophil 
infiltration, NF-κB activation, and the production of IL-6 
and IL-8 [53, 85]. Moreover, the effect of  CO2 on the gen-
eration of NETs has been recognized. The formation of 
NETs is highly dependent on pH and the  CO2/HCO3

− 
ratio; specifically, NET production is induced by high pH 
and a low  HCO3

− level and inhibited by a high  CO2 level 
and low pH [86].

Assuming that the inhibition of MAPKs by  CO2 is a 
universal process, the antithrombotic role of  CO2 may 
be even broader than previously recognized, as throm-
bosis in patients with acute COVID-19 results from the 
binding of activated platelets to NETs, and MAPKs have 
been well documented in platelet activation in response 
to both SARS-CoV-2 and the spike protein [275]. In addi-
tion, the role of  CO2 in reducing ROS production, as 
shown in peripheral occlusive arterial disease, points to 
a universal antithrombosis-inducing effect of  CO2 [57]. 
Accordingly, acidosis promotes a reversible decrease in 
blood clotting [87].

Obesity and insulin resistance
Hyperinsulinaemia and hyperglycaemia induce an 
increase in the SARS-CoV-2 load [276], and high glu-
cose levels lead to higher cytokine and ROS production 
[277] and activation of ERK1/2 in response to the spike 
protein in endothelial cells [10]. MAPK-dependent modi-
fication of blood vessel development programs, includ-
ing regulation of the expression of intercellular adhesion 
molecule-1 (ICAM-1), which is responsible for the 
recruitment of leukocytes to sites of inflammation [278], 
increases the risk of patients with type 2 diabetes, among 
others with vascular disease, experiencing more severe 
COVID-19 [279]. The incidence of cardiovascular com-
plications, including stroke, and death resulting from 
venous thromboembolism and pulmonary embolism is 
several fold higher in diabetic patients than in the general 
population [280, 281].

MAPKs are involved in various mechanisms lead-
ing to obesity, insulin resistance and diabetes, includ-
ing low-level systemic inflammation; ERK1/2, JNK and 
p38, which are activated by a high-fat diet, promote the 

infiltration of monocytes/macrophages into adipose tis-
sue, proinflammatory signalling and dysregulation of 
immune responses [112, 113]. However, the central role 
of JNK in the core insulin signalling pathway is the mech-
anism best understood thus far. Activated JNK (activated, 
e.g., by hyperglycaemia, free fatty acids, cytokines or 
ER stress [101–105]) and ERK1/2 phosphorylate insu-
lin receptor substrate-1 (IRS-1) and thus prevent signal 
transduction after insulin binding to the insulin recep-
tor, leading to alterations in insulin action [106]. The 
JNK regulation of metabolism is multidimensional. JNK1 
knockout protected mice from IRS-1 serine phosphoryla-
tion, insulin resistance, fatty liver and diabetes [107, 108]. 
JNK isoforms are essential regulators in the transition 
between obesity and type-2 diabetes [104]; JNK1/2 pro-
motes the development of insulin resistance and obesity, 
whereas JNK3 protects against excessive adiposity [282]. 
JNK1/2 and p38 promote adipogenesis [283] and regulate 
lipogenesis, thermogenesis and the browning of white 
adipose tissue. One of the most important mechanisms 
among these processes is the modification of mitochon-
drial function by inhibition of the transcription factor 
peroxisome proliferator-activated receptor α (PPARα) 
and uncoupling protein 1 (UCP1) expression in response 
to, for example, ER stress or a high-fat diet [104, 105, 114, 
115].

Direct relationships between insulin resistance, 
ERK1/2 and p38 activity, and elevated  CO2 levels have 
been found in adipocytes, which become insulin resistant 
as a result of postsurgical trauma. ERK1/2 and p38 are 
highly activated after surgery. Overnight incubation of 
adipocytes in 10%  CO2 inactivated ERK1/2 and p38 and 
restored insulin receptor and IRS-1 sensitivity to insulin 
[21]. Consistent with  CO2-dependent MAPK regulation, 
subcutaneous injections of  CO2 reduced body fat [109]. 
In addition to the use of transcutaneous  CO2 as carboxy-
therapy in aesthetic medicine [110], the transcutaneous 
application of  CO2 is an efficient treatment for chronic 
diabetic wounds [284]. Importantly, the major obstacle to 
wound healing is excessive neutrophil apoptosis caused 
by the production of NETs [285]; therefore, the beneficial 
effects of  CO2 on diabetic wound healing are consistent 
with the anti-NETosis effect of  CO2, acidification and 
MAPK inhibitors [86, 90–92].

Stroke and ischeamia
Multiple organ failure is the leading cause of COVID-
19 mortality. It is a result of, among other causes, organ 
hypoxia, including hypoxia due to ischaemic stroke, 
which is a frequent complication of COVID-19. One of 
the changes observed in the brain in acute stroke patients 
is a profound reduction in  CO2 level [286].
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In addition to ischaemia, further organ damage is 
caused by the restoration of blood flow to organs; this 
damage is known as ischaemia–reperfusion injury. 
MAPKs in the brain are activated both in response to 
hypoxia and several minutes after reperfusion. MAPK 
inhibition has been shown to ameliorate brain injury due 
to reduced proinflammatory signalling and cell death. 
Decreasing MAPK activity enhances myelin regenera-
tion, increases blood‒brain barrier function, and sup-
presses inflammation [97]. Many different drugs that 
exert neuroprotective effects during cerebral ischaemia 
inhibit MAPKs and downstream responses, including 
impairment of IL-1β, IL-6 and TNF-α production by 
purpurin and the inhibition of apoptosis by tetramethyl 
pyrazine mediated via JNK inactivation [98–100]. There-
fore, blocking the proinflammatory response by inhib-
iting NF-κB-dependent gene transcription in neurons 
leads to a reduction in the number of damaged neurons 
and even to their recovery, reducing the infarct area and 
death rate of neurons [287].

Therapeutic hypercapnia exerts broadly understood 
protective effects against reperfusion and oxidative brain 
injury after ischaemic stroke [136, 286, 288, 289]. In addi-
tion to cerebral vasodilation, therapeutic  CO2 reduces 
blood‒brain barrier damage [289] and increases senso-
rimotor activity and spatial memory after focal cerebral 
ischaemia–reperfusion [136]. In hypoxic regions, pH is 
lowered to be as low as 6.0–6.5, which confers neuropro-
tection [206, 209, 290]. An increase in the concentration 
of protons may result in energy benefits; i.e., an increase 
in the number of protons contributes to maintenance of 
a higher membrane potential in the mitochondria, which 
leads to more efficient ATP production under conditions 
of oxygen deficiency. This protection has been demon-
strated in fish [291], neurons [292] and neuroendocrine 
prostate cancer cells, in which acidic pH shifted cellular 
metabolism towards oxidative phosphorylation [293]. 
This phenomenon may explain the protective role of  CO2 
under conditions of hypoxia and the reduction in oxygen 
consumption by the brain when  CO2 levels are increased 
[184].

Studies on animal models of ischaemic injury have 
shown that hypercapnic acidosis exerts a protective effect 
not only on the central nervous system but also on the 
lung, myocardium, intestine and liver [34, 93–95]. For 
example, an  EtCO2 higher than 20 mm Hg at intubation 
and its increase after resuscitation reduces neurological 
damage in patients after cardiac arrest [96].

There are known direct relationships between  CO2 
and MAPKs in protection against ischaemia‒reperfu-
sion-induced injury; for example, the protective role of 
elevated  CO2 levels in the context of ischaemia‒reperfu-
sion-induced retinal injury is mediated via the inhibition 

of activated p38 [23]. Hypoxia-induced ERK1/2 activity 
in mice was suppressed by 10 min percutaneous admin-
istration of  CO2 once per day, which was accompanied a 
 CO2-induced increase in ischaemic blood flow and capil-
lary density [19].

MAPKs and  CO2 levels in response to mechanical 
ventilation
Permissive hypercapnia is included in the treatment 
guidelines for intubated COVID-19 patients in most 
countries and institutions worldwide. A comparison 
of hypercapnic and normocapnic COVID-19 patients 
 (PaCO2 of 47.1 vs. 39.7 mm Hg, respectively) showed no 
difference in mortality despite worsened health in the 
hypercapnic patients; i.e., these patients had a higher 
body mass index (BMI) and higher number of venous 
thromboembolic events, chronic obstructive pulmonary 
disease (COPD) or ARDS [294].

In addition to the effect of hypercapnia on patients with 
COVID-19, there is debate as to whether hypercapnia 
should be used for intubated patients, as contradictory 
results have been obtained from different studies [295]. 
In addition to reports showing the benefits of hypercap-
nia, there are studies showing reduced survival times for 
mechanically ventilated patients with severe hypercap-
nic acidosis [296, 297]. However, a recent meta-analyses 
indicated that permissive hypercapnia was associated 
with lower mortality than imposed hypercapnia under 
protective ventilation conditions [298]. To date, no stud-
ies have been conducted in mechanically ventilated 
patients with a transient increase in  CO2 levels (that is, a 
level sufficient to inhibit the excessive activity of MAPKs 
in cultured cells [10], corresponding to 5%  CO2 admin-
istered for 15–20 min several times a day). It should be 
emphasized that  CO2 is a strong inhibitor of both innate 
and adaptive immune responses, including inhibition of 
lymphocyte and natural killer cell cytotoxicity, neutrophil 
and macrophage migration to sites of infection, and the 
release of proinflammatory cytokines; therefore, the pro-
longed use of elevated levels of  CO2 may lead to weak-
ened immune protection against bacterial infections and 
sepsis [31, 85], which may worsen the outcome for ICU 
patients.

The cytokine storm induced by infection with SARS-
CoV-2 is enhanced by mechanical ventilation in patients 
with severe COVID-19. High-pressure mechanical cell 
stretching exacerbates lung injury, by changing cell his-
tology, increasing lung infiltration with neutrophils, and 
inducing AEC apoptosis associated with caspase-3 acti-
vation [24]. MAPKs are involved in the mechanisms lead-
ing to all of these adverse effects in lungs; the most widely 
recognized of these mechanisms is the role of ERK1/2, 
which lead to the downstream activation of NF-κB [53], 
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ICAM-1 [54] or ADAM17 [20]. Activation of these sig-
nalling pathways as well as ventilation-induced lung 
injury, AEC apoptosis and increased neutrophil infiltra-
tion can be reduced by either elevating the  CO2 level or 
inhibiting MAPK function [20, 24, 53, 54, 56].

Since high levels of oxygen support are used in 
mechanically ventilated patients with severe COVID-19, 
it seems that there may be additional benefits from the 
use of elevated  CO2 levels in these patients, as hyperoxia 
induces profound lung injury, AEC apoptosis, and ROS 
and proinflammatory cytokine production [59–66, 299, 
300], and  CO2 inhibits the production of ROS and stimu-
lates the production of antioxidants [57, 58].

MAPKs and  CO2 regulate the resorption of alveolar fluid
Symptoms such as shortness of breath, a low  SpO2 level 
and lung failure, as well as organ failure, are largely due to 
oedema fluid (alveolar lining fluid, ALF) flooding alveo-
lar spaces. Excess ALF markedly reduces the amount of 
oxygen delivered to erythrocytes. In healthy lungs, mem-
brane transporters trigger vectorial ion transport, fol-
lowed by osmotic influx water, from the apical surface to 
the basolateral surface of alveolar epithelial cells (AECs), 
i.e., from the lumina of the alveoli into the lung interstit-
ium and endothelium. Failure of alveolar fluid clearance 
(AFC) results from a decrease in the level of membrane 
transporters needed for the flow of ions. AFC is low-
ered under hypoxic conditions [301], hyperoxic condi-
tions [302, 303], elevated airway pressure [304], pathogen 
infection and high levels of proinflammatory cytokines, 
including IL-1β, IL-8, TNF-α and transforming growth 
factor β1 (TGF-β1), in ALF [38, 301–304].

The main mechanism underlying AFC is the transport 
of  Na+ ions across the apical membranes of AECs via epi-
thelial  Na+ channels (ENaCs). Activated ERK1/2 in AECs 
phosphorylate the β and γ subunits of ENaC, leading to 
enhanced interaction of ENaC with Nedd4, an E3 ubiq-
uitin ligase, and to the endocytosis of the ENaC complex 
and subsequent downregulation [11, 39–42]. Thus,  Na+ 
ions accumulate in ALF, leading to an increase in its pH 
and volume [305]. In addition, ERK1/2 have been indi-
cated to be upstream regulators in the pathway leading 
to increased degradation of ENaC due to the phospho-
rylation of Nedd4 by JNK [11]. Inhibition of ERK1/2 or 
JNK restores the stability of ENaC in the cell membrane, 
resulting in an increase in AFC. Moreover, in response to 
IL-1β, p38 inhibits the activity of the α-ENaC gene pro-
moter and the trafficking of ENaC to the apical mem-
branes of type II AECs (ATII) [38]. After absorption into 
alveoli,  Na+ ions are eliminated through the basolateral 
side of AECs mainly via the action of Na/K-ATPase. Both 
activated ERK1/2 [12] and JNK [25, 26] inhibit Na/K-
ATPase, reducing the AFC rate.

In the studies on ENaC and Na/K-ATPase presented 
above, elevated  CO2 levels (60–120 mm Hg vs. 40 mm 
Hg of the control) inhibited AFC but were applied 
under control conditions to activate MAPKs [11, 12, 
25, 26, 42]. Under control conditions, inactive ERK1/2 
were activated by elevated  CO2 levels; therefore, the 
reduction in AFC rate induced by an increase in  CO2 
level was expected. However, elevating  CO2 levels 
shows potential therapeutic value for use under patho-
logical conditions in which excessive ALF production 
and AFC impairment are observed as a result of high 
ERK1/2 activity stimulated by infection or inflamma-
tion. As active ERK1/2 are inactivated by a transient 
increase in  CO2 concentration [10], the therapeutic 
transient elevation of  CO2 in the lungs might lead to 
an increase in AFC under pathological conditions with 
elevated MAPK activity. These hypotheses are sup-
ported, at least in part, by reports showing that tran-
sient (20  min) hypercapnia (10%  CO2) increased AFC 
when ALF production induced by forskolin was also 
increased [35].

Moreover, AFC regulation by MAPKs is mediated by 
aquaporin channels (AQPs), through which water flows 
following an osmotic gradient. The expression of a key 
aquaporin, AQP5, is downregulated by p38 and JNK, e.g., 
in human SPC-A1 cells [43] or murine lungs [44]. Gen-
erally, events or factors that activate ERK1/2, p38 and 
JNK (e.g., infection or cytokines) lead to a decrease in the 
expression of membrane ion or water transporters and an 
increase in pulmonary oedema via the action of MAPKs. 
Consistently, research on inflammation induced by pre-
B-cell colony-enhancing factor (PBEF) has shown that 
ERK1/2 downregulated the main transporters responsi-
ble for AFC, i.e., ENaC, Na/K-ATPase, and AQP1 [45].

The commonly held view is that the beneficial thera-
peutic effect of  NaHCO3 is due to elevated pH. How-
ever, there should be no long-term changes in pH in the 
lungs after inhalation of  NaHCO3, as any elevation in pH 
should be rapidly neutralized by  Na+ influx into the cyto-
plasm of AECs via ENaC and across the basolateral mem-
brane into bodily fluids. Otherwise, the increased  Na+ 
concentration would be followed by increased secretion 
of ALF with all the associated negative consequences. 
In addition, the pH of ALF is regulated by paracellular 
 HCO3

− flux across the airway epithelium. At the correct 
(i.e., slightly acidic) pH of ALF,  HCO3

− is secreted. In 
contrast, when the ALF pH is increased (e.g., in response 
to infection or proinflammatory cytokines, and presum-
ably after  NaHCO3 inhalation),  HCO3

− flow is reversed, 
limiting pH changes [305–307]. These arguments may 
support the effect of elevated  CO2 but not an increase in 
pH in the alveolar epithelium via the therapeutic use of 
 NaHCO3.
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Among the most widely used and most effective 
(though still insufficient) drugs in the treatment of acute 
COVID-19 is highly concentrated dexamethasone, a cor-
ticosteroid that inhibits the activity of MAPKs [308]. In 
addition to its anti-inflammatory effect, dexamethasone 
increases the amount of ENaC in AECs by inhibiting 
ERK1/2 [46, 47] and increases the AFC rate. However, 
under many pathological conditions where ERK1/2 are 
activated, decreased sensitivity to glucocorticoids is 
observed [309, 310]. The molecular mechanism underly-
ing the dexamethasone-dependent regulation of MAPKs 
is the upregulation of MKP-1 and, as a result, increased 
inactivation of MAPKs. Transcriptomic data indicate 
that SARS-CoV-2 infection leads to downregulation of 
MKP-1, reducing cell sensitivity to corticosteroids [311, 
312]. Consequently, in contrast to elevated  CO2, dexa-
methasone was not able to block the activity of ERK1/2 
induced by the spike protein in bronchial epithelial cells 
in the presence of IFN-γ and TNF-α [10].

MAPKs and  CO2 in allergy
Among the immune cells with functional SARS-CoV-
2-entry machinery, i.e., the expression of ACE2 and 
TMPRSS2, there are mast cells that handle allergic reac-
tions [313]. Mast cells are stimulated during SARS-CoV-2 
infection via ERK1/2, which activate the transcription 
factors NF-κB and AP-1, leading to the release of a wide 
variety of proinflammatory factors [120–122]. In addi-
tion, ERK1/2 stimulate histamine production by regu-
lating the expression of histidine decarboxylase [123, 
124]. The histamine signal is received by a wide range 
of cells in various organs through H1, H2, H3 and H4 
receptors, and signalling downstream of each of these 
receptors is mediated by MAPKs [125–127]. Histamine 
signalling mediated via ERK1/2 also regulates the activ-
ity of the mast cells themselves, regulating the produc-
tion of important molecules such as nerve growth factor 
(NGF) following activation of the H1 receptor [122] and 
IL-6, TNF-α, TGF-β1, IL-8, macrophage inflammatory 
protein-1α (MIP-1α/CCL3), and monocyte chemoat-
tractant protein-1 (MCP-1/CCL2) in response to H4 
receptor stimulation [128].

Because of the participation of mast cells in the course 
of COVID-19, antihistamines are among the most com-
monly prescribed medications in COVID-19 therapy. The 
importance of H1 receptor antagonists has been con-
firmed not only in numerous in silico and in vitro studies 
but also through its use in the clinic to alleviate the symp-
toms of COVID-19 in patients. Information on various 
H1 receptor modulators in the treatment of COVID-19 
can be found in a recent review article [314]. In addition, 
competitive inhibitors of histamine H2 receptors, such as 
famotidine, are very effective in relieving mild COVID-19 

symptoms [315] and in protecting against death and intu-
bation [124, 316], although the exact molecular mecha-
nisms are yet to be elucidated.

The inhibition of overactive MAPKs by elevated  CO2 
levels in allergic reactions is of particular interest because 
MAPK/NF-κB-inhibiting drugs (e.g., lidocaine or p38 
inhibitors) [129] and elevated  CO2 levels are both effec-
tive in treating allergy symptoms. In various clinical tri-
als, noninhaled 100%  CO2 (flow rate 5–10  ml/s) was 
effective in the treatment of allergic rhinitis [116]. The 
effect of a single dose of  CO2 administered intranasally 
for 10–30 s lasted 4 to 6 h, and a 60-s dose lasted 24 h. 
Similarly, after a 20-s exposure to  CO2 prior to allergen 
exposure, the acute responses to allergen challenge were 
reduced; for example, there were a significant reduction 
in sneezing, secretion weight and bilateral rhinorrhoea 
symptoms.  CO2 also led to inhibited histamine release 
[117]. Accordingly,  CO2 inhibited mast cell degranulation 
and histamine release in vitro [118]. Moreover, a decrease 
in  PaCO2 is one of the most common initial symptoms of 
anaphylactic reactions [119], suggesting the benefits of 
using elevated  CO2 levels for inhibiting the most severe 
allergic reactions. Taken together, the evidence suggests 
that the regulation of  CO2-MAPK pathways in the inhi-
bition of allergic reactions is a promising direction for 
future research.

COVID‑19 and smoking
Early in the COVID-19 pandemic, controversial analy-
ses indicated that, contrary to predictions, smoking did 
not only not worsen the prognosis but also may have 
protected patients against the development of severe 
COVID-19 symptoms [317–319]. Various studies have 
pointed to a lower rate of daily smokers presenting with 
symptomatic COVID-19 [319] and a lower risk of hospi-
talization, serious illness or death compared to the gen-
eral population [320–326]. Interestingly, even in studies 
that concluded that smoking worsened the prognosis 
of COVID-19, the proportion of smokers with severe 
COVID-19 compared to the proportion of smokers in the 
general population showed that smoking conferred a pro-
tective effect [327].

Although the reasons for the potential protective effects 
of tobacco smoke are unknown, reports of the beneficial 
effects of smoking have been increasing, so clinical trials 
have been launched based on the hypothesis that nico-
tine plays a protective role against the development of 
COVID-19. Although the arguments presented in this 
paper may suggest that the effects of smoking considered 
to be positive may be due to the inhalation of elevated 
levels of  CO2 during smoking; however, this hypothesis 
should be considered with caution. Notably, as smokers 
have a much higher risk of cardiovascular and respiratory 
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disease, their milder COVID-19 cases may have be due 
to the protective effects of the medications they take. On 
the other hand, numerous comorbidities in this group of 
patients, compared to the general population, may sug-
gest a very strong protective effect of inhaled tobacco 
smoke.

MAPKs and  CO2 in breathing regulation
Shortness of breath is a typical symptom caused by 
infection with early variants of SARS-CoV-2; thus, the 
regulation of breathing plays an important role in the 
pathogenesis of COVID-19. During wakefulness,  CO2 
levels are sensed mainly by central chemoreceptors, i.e., 
the chemosensory neurons in the medulla oblongata 
sensitive to  CO2, which also sense a decrease in pH of 
cerebrospinal fluid, and carotid body chemoreceptors 
determine the sensitivity of central chemoreceptors to 
 CO2 [131, 132]. An elevated  CO2 level is the primary 
factor for increasing ventilation and blood flow to the 
brain. However, prolonged hypercapnia reduces the 
sensitivity of chemoreceptors to  CO2, leading to slower 
of  CO2-induced rapid breathing over time. Similarly, 
breathing becomes faster as the concentration of inspired 
 CO2 increases up to 9–10%, and a further increase in 
 CO2 concentration leads to a decrease in ventilation.

The mechanics of breathing regulation, especially,  CO2 
level sensing, are very poorly understood at the molecular 
level. Mitochondria appear to be crucial for the response 
to elevated  CO2, as  CO2 induces the immediate release of 
ATP from chemosensitive regions of the ventral surface 
of the medulla oblongata [133]. ATP release is mediated 
by connexin 26 [328] and potentiates the release of ace-
tylcholine [329]. Studies with model animals indicated 
that ERK1/2 were crucial for the regulation of respira-
tion, as inhibition of ERK1/2 in brainstem preparations 
led to impaired breathing responses to  CO2-induced aci-
dosis [134].

One of the most important goals in the treatment of 
severe COVID-19 is an increase in low  SpO2 levels. Brief 
inhalation of  CO2 increases  SpO2 [184]. The increase in 
 SpO2 was immediate, within ~ 1 min, and 2-min sessions 
of inhaled 4, 8, or 12%  CO2 with nebulized perflubron, a 
synthetic surfactant, caused  SpO2 to increase by 1.7, 1.9 
and 2.3 percentage points, respectively. The increase in 
 SpO2 was maintained for 20 min, and subsequent inha-
lation treatments (twice per day) further stabilized the 
patient, suggesting a cumulative beneficial effect. Sta-
tistically significant increases in  SpO2 in patients with 
cystic fibrosis are maintained 9 days after completion of 
the 5-day series of  CO2 inhalation [330]. In another trial, 
inhalation of 8%  CO2 increased  SpO2 in subjects with 
mild allergic asthma after allergen-induced bronchocon-
striction [331].

In addition to increasing  SpO2, inhaled  CO2 increase 
the supply of oxygen to tissues because  CO2 allows oxy-
gen to be released from haemoglobin (the Bohr effect) 
[332–334]. Thus, the  CO2 inhalation treatment led to 
simultaneous increases in  SpO2, better utilization of 
the oxygen in tissues because of the Bohr effect, and 
increases in blood flow due to vasodilation, which may 
support the use of less intense oxygen therapy.

CO2 and sleep
Sleep disturbances are common symptoms of both 
COVID-19 and post-COVID syndrome. Changes in  CO2 
levels are associated with sleep onset, wakening, and 
sleep stages. During sleep,  PaCO2 is typically 2–8  mm 
Hg higher than it is during waking hours, depending on 
the sleep stage, and the sensitivity of the medulla oblon-
gata chemosensors to  CO2 decreases and hypoventilation 
occurs [154, 155]. Thus, an increase in  PaCO2 of 2–8 mm 
Hg in mechanically ventilated patients may not be con-
sidered hypercapnic but a desirable baseline physiologi-
cal level.

The intensity of neuromotor responses regulating 
breathing is significantly reduced during sleep com-
pared to that during wakefulness; therefore, only marked 
increase in hypoxemia or hypercapnia increase venti-
lation during sleep. Similarly, waking up may be trig-
gered only by a decrease in  SpO2 to 70% or an increase 
in  PaCO2 by 15 mm Hg compared to eupnoeic levels. In 
contrast, the physiological tolerance for decreased  PaCO2 
during sleep is low, since a decrease in  PaCO2 by 3–6 mm 
Hg during sleep leads to sleep apnoea. Therefore, eup-
noeic  PaCO2 when awake may not be enough to sustain 
eupnoeic breathing during sleep [156, 157].

Maintaining waking  PaCO2 leads to long-term sleep 
deprivation in patients in a medically induced coma. In 
mechanically ventilated patients, REM sleep is absent 
(and markedly reduced in patients with noninvasive 
mechanical ventilation) [335–337]. REM sleep is asso-
ciated with an additional increase in  PaCO2 of 1–2 mm 
Hg [158], local increases in low-frequency oscillations 
and global decreases in high-frequency oscillations in 
the electroencephalography (EEG) spectrum [338].  CO2 
is the determining factor for changes in brain activity; 
inhaled  CO2 leads to an increase in low-frequency power 
in the EEG spectrum [184]. There is a close connection 
between ERK1/2 and  CO2 in the regulation of REM 
sleep; active ERK1/2-brain-derived neurotrophic fac-
tor (BDNF) signalling in the pedunculopontine tegmen-
tum promotes homeostatic control of REM sleep [339]. 
Neurotransmitters involved in the regulation of sleep, 
the circadian rhythm and treatments that prevent major 
depressive disorder activate the key transcription factor 
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cAMP response element-binding (CREB) via ERK1/2 sig-
nalling [159–161].

In mechanically ventilated patients,  CO2 supplemen-
tation is particularly beneficial because mechanical ven-
tilation decreases both  pO2 and  PaCO2 in the lungs. 
Inhalation of 1.5–2%  CO2 is required to maintain the 
target  EtCO2 of 4.7–4.9% in mechanically ventilated 
patients [340]. Interestingly, studies in model animals 
have indicated that the decrease in  pO2 and  PaCO2 that 
occurs in mechanically ventilated lungs can be inhibited 
by ERK1/2, p38 and JNK inhibitors [341].

Regulation of memory by MAPKs,  CO2 and mitochondria
The levels of cellular  CO2 produced via aerobic oxida-
tion of carbohydrates are higher than those produced via 
other ATP synthesis pathways. Therefore,  CO2 signal-
ling particularly affects organs that consume carbohy-
drates as their main sources of energy. Therefore,  CO2 is 
an important regulator of brain function, and as much as 
20% of all  CO2 in the body is generated in the brain, even 
though the brain represents approximately 2% of human 
body weight. Hypocapnia occurs in 74% of individu-
als post-COVID, and patients show neurological symp-
toms: fatigue, insomnia, depression and post-COVID 
brain fog [342]. Hypocapnia triggers known negative 
effects in various neurological diseases and conditions, 
such as severe traumatic brain injury, and ischaemic or 
haemorrhagic strokes. Moreover, hypocapnia negatively 
affects neonatal brain development, and the harmful 
effects can be reversed by inhaling 5%  CO2 [343].  CO2 
inhalation enhances the formation of memories and 
long-term memory [136–139]. The role of  CO2 in the 
regulation of memory has been indirectly discerned from 
numerous studies on CAs. CA inhibitors (e.g., aceta-
zolamide) impair [140], and administration of CA activa-
tors enhances [141, 142] memory and learning in model 
animals.

The positive effect of activated CAs on memoriza-
tion and learning is mediated through the activation 
of ERK1/2 in the cerebral cortex and hippocampus, 
among other brain structures, and ERK1/2 are key ele-
ments required for the formation, retrieval, consoli-
dation, reconsolidation, and persistence of memory 
[145–147]. Factors that increase cognitive abilities (e.g., 
amphetamine, methamphetamine, D-phenylalanine, 
phentermine, mephentermine, chlorphentermine and 
cocaine- and amphetamine-regulated transcript (CART), 
and neuropeptide) exert effects via ERK1/2 activation in 
the hippocampus [148–150] and potently activate CAs 
[141–144]. In contrast, memory-impairing drugs, such 
as hypnotic, amnestic and anaesthetic agents (e.g., butyl-
phthalide, ketamine, midazolam, pentobarbital, isoflu-
rane, propofol and scopolamine) reduce ERK1/2 activity 

in the brain [151, 152]. All naturally occurring mutations 
in the genes encoding ERK1/2 (MAPK1 and MAPK3) in 
humans, including mutation in noncoding regions of the 
genes, lead to cognitive impairment. Moreover, Erk2−/− 
mice showed a deficit in long-term memory [153].

Notably, the connections between ERK1/2 and mito-
chondria, which are sites of  CO2 production, are impor-
tant because endogenous  CO2 is a natural regulator of 
neuron function, and mitochondria are critical to neu-
ron function, including memory formation [344]. Local 
synaptic ATP production must be adjusted to meet high 
energy demand [345]. Mitochondrial mobility in neu-
rons is essential for the formation of memories, and dur-
ing learning, the number of mitochondria increases, but 
the size of mitochondria decreases. These mitochondrial 
changes promote the formation of multicontact synapses, 
which increases the information storage capacity of new 
synapses [346]. In contrast, in the neurons of the ageing 
brain, mitochondria become elongated as autophagy, 
fusion and fission of the mitochondria are disrupted 
[347].

The abovementioned processes are regulated by 
ERK1/2, which activate mitochondrial fission and inhibit 
fusion [185]. Cycles of fission and fusion help the mito-
chondrial network adapt to changing metabolic needs 
and are part of a fusion–fission–mitophagy quality 
control pathway enabling the removal of dysfunctional 
mitochondria. The large GTPase dynamin‐related pro-
tein 1 (DRP1) is recruited to sites of mitochondrial con-
striction, where it forms a higher-order ring structure 
that promotes fission via GTP‐dependent scission. The 
phosphorylation of DRP1 at Ser616 by ERK1/2 promotes 
mitochondrial translocation of DRP1 and subsequent 
mitochondrial fission/fragmentation [181, 186, 187]. 
ERK1/2 have been identified in mitochondria in several 
independent studies and are strongly regulated by essen-
tial mitochondrial products, i.e.,  CO2, ATP and  H2O2 
[348]. Moreover, ERK1/2 regulate mitochondrial bio-
genesis; in general, they induce mitochondrial biogenesis 
under control conditions and inhibit it under pathologi-
cal conditions [188, 189]. ERK1/2 are involved in the reg-
ulation of the transition from mitochondrial respiration 
to glycolysis [190], and it has been proposed that mito-
chondrial ERK1/2 provide information about mitochon-
drial energetic and redox status to the nuclear pathways 
[349].

Mitochondrial dysfunction is closely associated with 
a variety of neurological disorders and ultimately leads 
to neuronal apoptosis. Synaptic mitochondrial dysfunc-
tion occurs during ageing and correlates with age-related 
memory loss. Synaptic mitochondria are the primary 
targets of both amyloid-β [350, 351] and phosphoryl-
ated tau [352] toxicity, which contributes to synaptic and 
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memory impairment in Alzheimer’s disease. Restoration 
of mitochondrial function is being intensively developed 
as a therapeutic strategy for dementia and learning and 
memory problems [351, 353, 354].

Understanding the relationship between  CO2, ERK1/2 
and mitochondria may allow for deeper insight into 
memory mechanisms and the emergence of new thera-
peutic possibilities. Neurodegenerative disorders are 
inflammatory in nature and characterized by contradic-
tions in the functioning of ERK1/2; ERK1/2 are essential 
for the normal function of neurons, but their excessive 
activity leads to the development of inflammation. There-
fore, despite the positive effect of active ERK1/2 on 
cognition, increased ERK1/2 activity is evident in neu-
rodegenerative disorders. Thus, MAPK inhibition pro-
motes neuroprotection [1, 170–172]. However, complete 
inhibition of ERK1/2 induced by synthetic inhibitors can 
be problematic, since basal ERK1/2 activity is essential 
for neuronal survival and memory. Elevated  CO2 may be 
a universal therapeutic alternative that attenuates these 
drawbacks.  CO2, on the one hand, may stimulate insuffi-
ciently active ERK1/2 (e.g., in an ageing brain) but, on the 
other hand, inhibit overactive proinflammatory MAPKs.

In addition to the role of mitochondria in the mecha-
nisms underlying memory discussed here, the under-
standing of the effects of SARS-CoV-2 on mitochondria, 
including fusion, fission, mitophagy, metabolic repro-
gramming, and of the regulation of the immune response 
and apoptosis, has increased, and these effects are thor-
oughly discussed in numerous recent reviews [355–357].

MAPKs and  CO2 in cell survival and apoptosis
Lymphocytes are among the cells whose death contrib-
utes most to severe COVID-19, with T-cell apoptosis 
accounting for T lymphopenia in patients with severe 
COVID-19 [358]. Negative regulation of apoptosis by 
ERK1/2 has previously been shown to be required to 
ensure survival of T and B lymphocytes [182]. ERK1/2 
promote cell survival by activating prosurvival BCL-2 
proteins (BCL-2, BCL-xL and MCL1) and repressing 
prodeath protein (BAD, BIM, BMF and PUMA) activity, 
including the key mechanism underlying the phospho-
rylation of  BIMEL by ERK1/2, thereby preventing homo-
oligomerization of BAX, a proapoptotic member of the 
BCL-2 family responsible for the permeabilization of the 
mitochondrial outer membrane; loss of potential across 
the inner mitochondrial membrane and cytochrome c 
release [181, 183].

In response to a large cellular imbalance, e.g., caused 
by DNA damage or excessive inflammation, ERK1/2 
are hyperactivated and may exert a proapoptotic effect 
[4, 183]. However, in general, ERK1/2 promote cell sur-
vival and proliferation, whereas activation of JNK and 

p38 may induce apoptosis [359]. Since a slight increase 
in  CO2 concentration (from 5 to 8%) activates ERK1/2 
and inhibits p38 and JNK under control conditions [10], 
the question arises: Does such a slight increase in  CO2 
levels support the prosurvival activity of ERK1/2 while 
inhibiting apoptotic p38 and JNK? Indeed, the overlap-
ping functions of  CO2 and ERK1/2 include the regulation 
of apoptosis and longevity, and the lifespan of mammals 
positively correlates with blood  PaCO2 and  HCO3

− [5, 
167, 173, 174]. Moreover, human cells are unable to pro-
liferate without  CO2, and elevated  CO2 levels support cell 
proliferation [175, 176];  CO2 has been shown to exert an 
effect via ERK1/2 in a cell line derived from human small 
cell lung cancer [14]. Furthermore, hypercapnia induces 
the expression of anti-apoptotic BCL-2 and BCL-xL and 
inhibits autophagy in macrophages [178] and ischae-
mic penumbra astrocytes and neurons [167]. Similarly, 
CAs [179] and acidification [360], which shifts the  CO2/
HCO3

− equilibrium towards an increase in the level of 
 CO2, activate ERK1/2 and thus delay neutrophil apopto-
sis, improving neutrophil migration and wound healing. 
Therefore, the inhibition of CAIX resulted in a reduction 
in the level of active ERK1/2 and reduced neutrophil via-
bility and mitochondrial function [180]. An extreme case 
of the prosurvival effect of  CO2 involves the accelerated 
growth of the aquatic uniflagellate phycomycetes Blasto-
cladia ramosa and Blastocladia pringsheimii induced by 
an increase in  CO2 of 5–20% [177].

It is believed that at the time when life was formed, the 
Earth’s atmosphere and water reservoirs contained much 
more  CO2 than they contain today. To survive, primitive 
organisms needed to be adapted to the natural environ-
ment, i.e., to high concentrations of  CO2. The change to 
the oxidizing atmosphere was followed by endosymbio-
sis, allowing eukaryotes to maintain high levels of  CO2 by 
producing  CO2 inside the cells in mitochondria.

Typical mitochondrial respiration involving oxygen 
consumption is associated with  CO2 production dur-
ing the entry of pyruvate into the Krebs cycle and two 
stages of the Krebs cycle. Anaerobic energy production 
by organisms or cells consuming organic compounds is 
also associated with increased  CO2 levels. However, this 
production can be mediated by acidification, e.g., by the 
glycolytic production of lactate, which shifts the  CO2/
HCO3

− equilibrium towards an increased  CO2 concen-
tration. There are species of multicellular eukaryotes that 
tolerate periods of complete oxygen deprivation; e.g., 
the larvae of oriental fruit flies (Bactrocera dorsalis) can 
tolerate up to 24 h of anoxia without a significant reduc-
tion in survival [361]. In several species of fish adapted 
to life under completely oxygen-deprived conditions; for 
example, one of the clearest differences in crucian carp 
compared to aerobic species is the activity of pyruvate 
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decarboxylase, which produces  CO2 independent of the 
Krebs cycle [362, 363]. In addition, some turtles survive 
complete anoxic conditions, and upregulation of the pro-
survival proteins ERK1/2 and suppression of p38 and 
JNK underlie neuronal survival [364, 365].

Conclusions and future perspectives
Considering the previously published data presented 
here, it can be concluded that MAPKs play a central role 
in regulating cellular responses to changing  CO2 levels 
(Fig.  6). Detailed studies on the regulatory mechanisms 
MAPK activity by  CO2 suggest that reassessing the func-
tioning of MAPK signalling pathways while taking into 
account the level of  CO2, as each MAPK pathway may 
function differently under altered  CO2 levels, is needed. 
The effect of  CO2 on the activity of ERK1/2, JNKs and 
p38 MAPKs varies depending on its concentration. In 
addition, individual MAPKs function differently in dif-
ferent signalling pathways. Therefore, it can be expected 
that relatively narrow ranges of  CO2 concentrations will 
modify MAPK activity in the desired way under specific 
conditions. Therefore, the basis for future research and 
the first priority is to determine the effects of specific 
 CO2 concentrations on individual MAPK isoforms in 
detail; this research should include in vitro studies using 
recombinant MAPKs, to confirm the direct  CO2-sensing 
ability of MAPKs. We expect that these studies will accel-
erate  CO2 research because MAPKs are involved in many 
developmental processes and oncogenesis.

Advances in our understanding of  CO2 signalling 
have been relatively slow. The first genome-wide prot-
eomic, transcriptomic [366] and genetic [367] analyses 
of the yeast  CO2 response were reported only recently. 
These data support the hypotheses presented in this 
paper by showing that the MAPK pathway is critical 

for  CO2 sensing and  CO2 signalling in yeast. Hope for 
progress in  CO2 research is offered via the recent devel-
opment of selective fluorescent  CO2 molecular sensors, 
which are expected to lead to breakthrough insights 
into biochemical processes [368], and detection meth-
ods for carboxylation of the amine group in lysine resi-
dues [369].

MAPKs are signalling molecules connecting various 
aspects of the inflammatory response to viral infection, 
including SARS-CoV-2 infection, and comorbidity patho-
genesis. In addition,  CO2 appears to be a molecule that 
universally counteracts the MAPK-induced proinflam-
matory response, including in patients with severe course 
COVID-19 and complications leading to death. The ben-
efits of using elevated  CO2 levels in the treatment of vari-
ous diseases are reflected in numerous completed and 
ongoing clinical trials established to evaluated  CO2 use 
as a medication. Advances in research on the regulation 
of  CO2-MAPK may significantly increase the number of 
new therapeutic applications of  CO2 because a number of 
MAPK inhibitors have been approved as potent drugs for 
the treatment of numerous diseases, including cancers, 
and a significant number of these inhibitors are under 
evaluation in different stages of clinical trials. However, 
many MAPK inhibitors cannot be fully exploited at the 
most effective concentrations due to their toxicity and 
resistance mechanisms; for example, the activation of 
ERK5 can enable cells to bypass RAF-MEK1/2-ERK1/2 
inhibitors [370].  CO2, which is safe under controlled 
conditions [331, 371], may overcome these limitations 
because it inhibits various ERKs, JNKs and p38 MAPKs 
when administered in a precise concentration range. 
Other advantages involve the delivery of  CO2 to cells 
independent of membrane transporters and the possi-
bility of administering very high concentrations of  CO2 

Fig. 6 Cellular MAPK signalling pathways regulated by  CO2. Dashed lines represent secondary or concurrent signalling pathways. Multiple arrows 
indicate indirect regulation
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locally without causing systemic effects and only nominal 
effects on the cells surrounding the  CO2 application site.

In conclusion, understanding the molecular mecha-
nisms underlying  CO2-dependent regulation of MAPKs, 
including the opposing effects of elevated  CO2 on active 
and inactive ERK1/2, is essential to precisely guide the 
development of therapeutic  CO2 applications.
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