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Abstract 

Cancer treatment faces many hurdles and resistance is one among them. Anti-cancer treatment strategies are evolv-
ing due to innate and acquired resistance capacity, governed by genetic, epigenetic, proteomic, metabolic, or micro-
environmental cues that ultimately enable selected cancer cells to survive and progress under unfavorable conditions. 
Although the mechanism of drug resistance is being widely studied to generate new target-based drugs with better 
potency than existing ones. However, due to the broader flexibility in acquired drug resistance, advanced therapeu-
tic options with better efficacy need to be explored. Combination therapy is an alternative with a better success 
rate though the risk of amplified side effects is commonplace. Moreover, recent groundbreaking precision immune 
therapy is one of the ways to overcome drug resistance and has revolutionized anticancer therapy to a greater extent 
with the only limitation of being individual-specific and needs further attention. This review will focus on the chal-
lenges and strategies opted by cancer cells to withstand the current therapies at the molecular level and also high-
lights the emerging therapeutic options -like immunological, and stem cell-based options that may prove to have 
better potential to challenge the existing problem of therapy resistance.
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Introduction
Presently one of the challenging aspects of anti-cancer 
treatment is drug resistance where cancer  cells become 
forbearing to the treatment thus worsening the condi-
tions of patients [1, 2]. Although, various cancer types 
are initially sensitive to pharmacological agents, over the 
time they acquire resistance and attain more aggressive 
nature [3, 4]. Advances made in discovering targeted 

therapies in recent years led to the approval of various 
impactful anti-cancer agents, nonetheless, resistance still 
owes a big hindrance to their success besides account-
ing for their life-threatening side effects [5, 6]. Cancer 
cells show evolving behavior of recurrence, dormancy, 
and drug resistance even after using conventional treat-
ments (surgery, chemotherapy, etc.) mostly contributed 
by vicious cancer stem cells (CSCs) [7, 8]. Advanced and 
more potent chemotherapeutic drugs have been able to 
succeed the previously available anticancer drugs individ-
ually or chronologically or in combination with prevail-
ing treatments [9]. Moreover altered chemotherapeutic 
dose intensity tactics like intermittent administration or 
higher doses along with supplements and growth factors 
to suppress the side effects on bone marrow have proved 
to be effective in preventing the regrowth of tumor [10–
12]. Regardless of this, cancer drug resistance remains to 
be a major hurdle in medical oncology, therefore under-
standing the resistance mechanisms (innate as well as 
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acquired) and developing next-generation targeted thera-
pies is crucial for medical need [13, 14].

A complex interplay between intrinsic (innate) and 
extrinsic (acquired) factors of the cancer cell contributes 
to cancer resistance towards various therapies. Intrinsic 
factors include pre-existing genetic mutations, tumor 
heterogeneity, and activation of intracellular defense 
pathways, that confer resistance by activating various 
oncogenic pathways, altering drug targets, desensitiza-
tion towards therapies, enhancing DNA repair mecha-
nisms, as well as activation of survival pathways, thereby 
potentiating cancer cells to evade the cytotoxic effects of 
treatments [15]. While extrinsic factors mainly include 
tumor microenvironment (TME) components that 
actively participate in cancer cell ability to evade the 
cytotoxic effects of various anticancer therapeutics[16, 
17]. The various TME components include the altered 
extracellular matrix (ECM), tumor-associated stromal 
cells, growth factors, extracellular vesicles (EVs), immune 
cells, etc. Tumor-associated rigid and condensed ECM 
affects the drug response by reducing drug transport and 
sequestering drugs through direct binding with it  thus 
represents a significant mechanism of drug resistance in 
many solid tumors [18, 19]. Cancer-associated fibroblasts 
(CAFs) are another TME component that plays signifi-
cant roles in tumor growth, metastasis and cancer therapy 
resistance by secreting various growth factors like Hepat-
ocyte growth factor (HGF) and Epidermal growth fac-
tor (EGF); cytokines such as stromal cell-derived factor 
1 (SDF-1) and interleukin-6 (IL-6) [20, 21]. Extracellular 
vesicles (EVs) of drug-resistant cancer cells can seques-
ter and transport drugs to ECM. Moreover, EVs may be 
transferred from drug-resistant cancer cell to drug-sen-
sitive counterparts and thus plays a role in the horizontal 
transfer of drug resistance in cancer cells by delivering 
specialized cargo which includes drug resistance-related 
proteins (P-gp, ABCG2, ABCA3, etc.), nucleic acids (mt 
DNA, mRNAs, miRNAs), onco-metabolites, antiapop-
totic proteins [22, 23]. Targeting drug-resistant cancer 
cell-intrinsic and tumor microenvironment components, 
alone or in combination with anticancer therapies may 
prove to be a better approach in enhancing the efficacy of 
cancer treatments and improving patient outcomes. The 
details mechanism of the extrinsic and intrinsic factors 
implicated in drug resistance and the strategies to inhibit 
them are discussed in the below sections.

With the advancement in the study of drug-resistance, 
massive efforts on the development of successful thera-
pies against various factors including RTKs, androgen, 
HER2 receptors and so on has lead to improved thera-
peutic options to a greater extent [24–31]. However 
progressive approaches of using precision immunologi-
cal therapies were proven to be more successful in the 

recognition and destruction of cancer cells with more 
tolerability and better remission. Widely used Anti-
CTLA and anti-PD-1/PD-L1 therapy remarkably show 
antitumor activity by dysfunctioning the negative regula-
tors of the anticancer adaptive immune system, though 
the minimum chance of resistance and its limitations to 
a certain subset of cancer remains the concern [32–36]. 
Cancer cells follow the Darwinian selection pressure rule 
to achieve drug-resistant traits at genomic, epigenomic 
and proteomic levels for the survival of their fittest [37–
39]. With the advent of high throughput assays, the link 
between tumor heterogeneity and drug resistance came 
into existence which suggests that under selective drug 
pressure, few tumor cells divide and form a subpopula-
tion of cells that may achieve features that enable them 
to become non-responsive to a particular drug over time 
[40–43]. Contrasting features of cancer cells and drug-
resistant cells are represented in Fig. 1.

In this review, we will discuss the spectrum of selec-
tive mechanisms displayed by cancerous cells to resist 
treatment, which is clinically the more difficult problem. 
We attempted to interconnect the multidrug-resistant 
pathways in various cancer types and acquire insights 
into these difficult aspects to support the development 
of next-generation cancer therapies such as more potent 
medicines and immuno therapies. Furthermore, this 
review tries to identify common themes and approaches 
that have been used successfully to target emerging 
resistance mechanisms.

Tumor heterogeneity is a decisive factor for drug 
resistance
The biology of normal cell transformation into cancer 
cells has been explained at the genetic/epigenetic and 
proteomic levels. However, reasons (usually random) for 
cancer initiation, development, and progression are not 
fixed and rather can be considered as unified perplexing 
dysregulation of crucial cellular processes [44, 45]. Can-
cer cells are always under stress and are continuously 
evolving, trying to adjust to the changing environment 
resulting in the emergence of a heterogenous population 
of cancer cells in the tumor that differ from each other 
at the molecular level. Moreover, their level of response 
to anti-cancer drugs also varies to a greater extent. 
Tumor heterogeneity is categorized into either intertu-
moral (heterogeneity between patients due to varying 
germline, somatic and environmental factors) or intratu-
moral (heterogeneity within patients due to uneven dis-
tribution of genetically diverse tumor subpopulations). 
The advent, advancement, and access to the genomic 
landscape (particularly, oncogenic drivers) of aggressive 
cancers like non-small-cell lung cancer (NSCLC), has 
updated the clinical strategies towards the personalized 
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or genotype-channeled approach with better outcomes 
[46, 47]. Despite the initial positive response, cancer 
cells develop resistance to targeted therapy in the long 
run of treatment indicating that cancer is very dynamic 
at the molecular level. Various studies have shown that 
intratumoral heterogeneity plays a crucial role in driv-
ing the advancement of cancer and drug resistance [48, 
49]. Numerous factors are responsible for intratumoral 
heterogeneity, the most important is genomic variability 
caused by mutagen exposure like UV radiations, chemi-
cals, chemotherapy, or dysregulation of signaling pro-
cesses that maintain DNA repair, and redox balance of 
cells [42, 50–53]. The advanced high-throughput assays 
of large-scale genome sequencing enable us to highlight 
various genetic signatures associated with genetic insta-
bility and variability. For example, lung cancer caused 
by smoking was shown to be enriched with C → A trans-
version at the genomic level [54, 55]. Different studies 
have shown that cancer progression is dependent on the 
abrupt mutation rate in certain cell types which upsets 
the balance between oncogenes and tumor suppressor 
genes thus promoting genetic diversity [56–58]. Another 
factor that participates in tumor heterogeneity is clonal 
evolution which follows the Darwinian selection hypoth-
esis [59–61]. According to this hypothesis, continuous 

division and chromosomal instability lead to a random 
chromosomal loss in various tumor regions that result in 
mutational heterogeneity with the outcome of the rise of 
evolving competitive sub-clones and Cancer stem cells 
(CSCs) and vice versa [62–64]. These clones formed so 
far expand either sequentially or by a branched approach 
and generate more genetic diversity in either way which is 
further selected under evolutionary pressure with better 
growth, resistance, and survival advantage [65]. Recent 
high throughput assays exercises like single-cell RNA 
sequencing and mutation characterization enable us to 
investigate and identify the evolutionary dynamics that 
occur in the particular tumor cell population in the same 
or different patients and have a flagging role in individu-
alized therapy [66–69]. These diverse genomic changes 
contribute to acquiring beneficial properties like drug 
resistance and tumor recurrence in these selected can-
cer cells [68]. Tumor evolution contributes to the emer-
gence of a multi-drug resistant (MDR) subpopulation of 
cells with varying treatment responses to the drugs than 
that of the primary tumor cells [70]. Chemotherapeutic 
pressure on the other hand plays an important role in 
the formation of more evolved resistant sub-clones with 
poorer outcomes [49, 70]. Recent studies have shown that 
co-existing tumor heterogeneity and immune landscape 

Fig. 1 Cancer cell and drug-resistant cancer cell response to an anti-cancer drug. Chemotherapeutic drugs are effective on cancer cells as they 
enter into the cells and activate various anti-cancer pathways, leading to DNA damage and cell death. In resistant cells, cancer cells modulate drugs 
or produce a barrier to them which collectively resulted in decreasing their effectivity on cancer cells. Figure created with ChemBioDraw Ultra 14.0
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analysis in a cohort of patients with HBV-associated 
human hepatocellular carcinoma (HCC) inhibits the 
T-cell infiltration and thus regulates the intratumoral 
immune suppressive microenvironment [71]. The find-
ing is crucial to design effectual immune therapies that 
can be given individually or in combination with exist-
ing chemotherapies to sensitize the resistant cancer cells 
with better outcomes. Thus tumor heterogeneity and var-
ied immune landscape are big hurdles to understanding 
the resistance and more emphasis on this difficult issue 
can give a better future direction to the cancer therapy.

Genetic and epigenetic alteration as an adaptive 
response to chemotherapy that majorly influences 
the drug resistance
The study of hereditary phenotypic variations without 
change in the DNA sequence is referred to as "epigenet-
ics" and was initially introduced by Conrad Waddington 
(1940), who linked this term with gene and gene products 
[72]. Epigenetic variations are mostly caused by modifica-
tions in gene expression and function by  histone modi-
fications (acetylation, phosphorylation, ubiquitination, 
sumoylation, methylation) and DNA methylation [73]. 
Numerous investigations have demonstrated the impor-
tance of epigenetic modifications in drug-tolerant per-
sister (DTP) cells and their role in the increased tolerance 
to higher drug pressure [74, 75]. Additionally, it has also 
been suggested that altering the epigenetic landscapes by 
DNA methylation (histone/non-histone changes) aids in 
the maintenance and survival of CSCs which have been 
shown to exhibit resistance features at the individual 
level [76]. So focusing on the epigenetic changes con-
cerning the acquired resistant feature can be significant 
to find more potent targets with better efficacy. Numer-
ous cancer hallmarks, including cellular proliferation, 
infiltration, metastases, and therapy response, have been 
linked to specific patterns of DNA methylation (DNAm) 
[77, 78]. Studies have shown that hyper and hypo-DNAm 
by DNMTs (DNA Methyltransferases) result  in tran-
scriptional silence of tumor-suppressive genes and tran-
scriptional activation of proto-oncogenes respectively 
[78]. Further, it has been shown that hyper-methylation 
of the miR-129-5p CpG island induces miR-129-5p sup-
pression, promoting chemo-resistance in gastric carci-
noma cells [79]. The 5-azacytidine (5-AzaC; DNA methyl 
transferase inhibitor) treatment significantly decreased 
the chemo-resistance to cisplatin, 5-FU, and vincristine 
in  gastric carcinoma  MDR cell line SGC7901/VCR via 
restoring the activity of miR-129-5p by reducing their 
gene methylation status [79]. Hypo-methylation at pro-
moter regions of various genes may likewise be used by 
tumors to develop resistance to chemotherapy. For exam-
ple, it was found in the MCF-7 cell line, the promoter 

region of GSTp, MDR1,uPA , and  O(6)-methylguanine 
DNA methyltransferase (MGMT) are significantly meth-
ylated but in drug-resistant MCF-7 cells, these promot-
ers were hypo-methylated and had a significant role in 
resistance. MDR1 gene’s hypo-methylation was linked to 
drug efflux protein (P-glycoprotein; P-gp) overexpression 
which in turn is responsible for resistance to doxorubicin 
(DOX) [80–83].

Furthermore, the level of DNA methylation is also 
crucial in regulating the fate of cells in many malignan-
cies. At the transcriptional and post-translational levels, 
various anti- and pro-apoptotic signaling components 
are epigenetically controlled that affects apoptosis sensi-
tivity or resistance. Apoptosis resistance develops when 
anti-apoptotic proteins like Bcl-2, Bcl-xl, IAPs, etc., and 
pro-apoptotic molecules like Bid, Bax, Bim, PUMA, and 
Noxa are expressed or activated oppositely respectively 
[84]. Baharudin and coworkers (2017) conducted DNAm 
sequencing on 5 recurrent and 43 non-recurrent colorec-
tal carcinomas (CRC) patients undergoing 5-fluorouracil 
(5-FU) chemotherapy [85]. They found that the recurrent 
CRC group showed 4,787 differential methylated genes 
with 3,112 hypermethylated and 1,675 hypomethylated 
compared to the non-recurrence group. The hypermeth-
ylated genes were linked to the MAPK signaling pathway 
which is involved in the regulation of apoptosis and ther-
apeutic resistance towards 5-FU in them [85]. The study 
also found that the administration of 5- AzaC adminis-
tration improved 5-FU responsiveness in CRC SW480 
cell lines [85]. These findings revealed that DNA methyla-
tion plays an important role in the development of thera-
peutic resistance, and targeting it in carcinoma patients 
would be an open option for a therapeutic approach. 
Histones are DNA-binding proteins and their binding 
affinity decides the DNA transcription. The binding affin-
ity of Histone is dependent on epigenetic modifications 
of lysine or arginine residue catalyzed by histone lysine 
methyltransferase (KMTs) and protein arginine methyl 
transferase (PRMTs) both having a strong role in thera-
peutic resistance [86]. The most frequent KMT is G9a, 
which catalyzes the H3K9me1/2methylation a reversible 
silencing gene modification. Liu and coworkers ( 2017) 
showed a correlation between G9a expression in head 
and neck carcinoma patients with the anti-cancer drug 
response. The immunohistochemical analysis further 
revealed that patients overexpressing G9a were less sen-
sitive to cisplatin than patients with lower expression of 
G9a [87]. Moreover, G9a has been shown to activate the 
GCLC (glutamate-cysteine ligase catalytic subunit) which 
increases cellular antioxidant glutathione (GSH), which 
protects against DNA damage by cisplatin and thus sup-
ports therapeutic resistance [53, 87]. Likewise, PRMTs-
mediated modifications are also shown to be responsible 
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for drug resistance in ovarian carcinoma towards cispl-
atin [88]. Chromatin and associated proteins were most 
affected by the PRMT1 modification, which resulted in 
genotoxic stress. It has been established that PRMT1 is 
recruited by DNA-PK (DNA-dependent protein kinase) 
to chromatin where it catalyzes the methylation of H4R3 
and contributes to the stimulation of genes involved in 
the senescence-associated secretory phenotype (SASP), 
in turn increases tumor cells’ resistance to cisplatin by 
shielding them from DNA damage [88].

CSCs play a key role in developing drug resistance 
and tumor relapse
Cancer stem cells (CSCs) are evolving cells that can self-
renew and differentiate into other types of cancer cells. 
CSCs are identified by their surface markers as  CD34+/
CD38- in leukemia,  CD44+/CD24- in breast cancer, etc. 
John Dick (1997) was the first to isolate leukemia stem 
cells in acute myeloid leukemia (AML) patients [89, 90]. 
CSCs are known to play a role in tumor heterogene-
ity, metastasis, resistance, dormancy, and tumor relapse 
[21, 91–93]. Numerous pathways are involved in CSCs’ 
self-renewal as well as chemoresistance like Notch, Wnt, 
TGF-β, and Hedgehog, targeting them has proven to be 
a promising therapeutic approach to overcome resist-
ance. Various reports demonstrated that the expression 
of Notch1 plays a central role in increasing trastuzumab 
resistance in BT474, SK-BR3, and MCF-7 cells, and its 
inhibition (genetic or pharmacological) sensitizes these 
cells to trastuzumab [94–96]. Recently, Wang et al. (2022) 
reported that in prostate cancer stem-like cells, inhibition 
of the Notch-1 pathway by PF-03084014 (  γ-secretase 
inhibitor) increases the anti-cancer activity of docetaxel 
by reducing cell growth, sphere formation and inducing 
apoptosis [97, 98]. Furthermore, CSCs exhibit critical 
features of embryonic stem cells (ESCs) in terms of tran-
scriptional factor expression (SOX2, OCT4, NANOG, 
MYC, KLF4, SALL4, and FOXM1) and signaling path-
ways (like Wnt/β-catenin, Hedgehog, Hippo, Notch, and 

TGF-β) [99–101]. Studies reported that CSCs invariably 
hijack the pluripotent or oncofetal drivers like OCT4, 
SOX2, KLF4, MYC, SALL4, FOXM1, Wnt/β-catenin, 
Hedgehog, Hippo, TGF-β of ESCs [99]. For example, the 
oncofetal circulating CSCs marker “Lin28B” is associated 
with the recurrence of hepatocellular carcinoma and acts 
as an ideal therapeutic target [102]. Targeting oncofe-
tal stem cell markers are epitome therapeutic targets as 
they are not expressed in normal stem cells and can be 
exploited in various cancer types with better outcomes 
[103].

Conventional therapies have been found to give rise to 
CSCs which later play a role in tumor relapse and ther-
apy resistance as shown by various in-vitro and in-vivo 
studies [104]. For example, radiation therapy-induced 
glioblastoma CSCs  (CD133+ /Prominin-1) formation 
supports radioresistance by activating DNA checkpoints 
and repair pathways. Thus glioblastoma radiosensitiza-
tion was increased with the co-treatment of checkpoint 
or kinase inhibitors (Chk1 and Chk2) and radiotherapy 
[105]. Additionally, it was found that using a human-
ized monoclonal anti-VEGF antibody (Bevacizumab) 
was initially effective in decreasing tumor formation in 
Glioblastoma multiform (GBM) [106–108]. But due to 
the formation of resistant lineage and VEGF-VEGFR2-
Neuropilin-1 autocrine signaling dominance over time, 
the clinical benefit lasted for a short period and later 
resulted in tumor relapse [107, 109]. Experimental inves-
tigations of urothelial bladder cancer (UBC), cisplatin, 
and gemcitabine-resistant cells (T24 and 5637) showed 
increased expression of CSCs compared to their chemo-
sensitive counterparts via miR34a/GOLPH3 axis [110, 
111]. Table 1 highlights the clinical trails targeting CSCs 
to overcome treatment resistance. Thus accumulating 
investigations insights us that existing CSCs pose a major 
hurdle in the currently available treatment strategies to 
restrict tumor relapse thus pushing our special focus on 
exploring novel CSCs targeted therapy.

Table 1 Clinical trials using novel drugs that target CSCs

Drug Name Experimental study Type of Cancer Clinical Phase Reference

Sonidegib (LDE225) LDE225 has the potential to disrupt CSC niches and over-
come docetaxel resistance

TNBC 1b [112]

RO4929097 CSC-mediated antiandrogen resistance, tamoxifen resist-
ance, and radiation resistance are reversed

Recurrent Malignant Glioma 1 [113]

PF-03084014 Counteracting docetaxel resistance in CSC Desmoid Fibromatosis 1 [114]

PRI-724 It could overcome cisplatin resistance in CSCs and reduce 
the expression of SOX2 and CD44

Hepatitis C Virus-related Cirrhosis 1 [115]

Vismodegib
(GDC-0449)

It has the potential to overcome radiation, carboplatin/erlo-
tinib resistance as well as stemness

Multiple basal-cell carcinomas (MIKIE) 2 [116]
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Dysregulated developmental Cues that regulate CSCs 
contribution to chemoresistance
Solid link between chemotherapy resistance with CSCs 
is not well explored but they evade the cytotoxic effect 
of the drug efficiently. However, some evidence suggests 
that CSCs amplified epigenetic changes, drug transport-
ers, dormancy, and EMT-MET transitions that have a 
definite role to play in developing resistance [117, 118]. 
Dormancy is a key feature of CSCs that assist a small 
population of cells to survive under cytotoxic treatments 
that are known to be responsible for tumor relapse in the 
long run [119]. Additionally, reports suggest that CSCs 
exhibit higher expression of membrane ABC transport-
ers, which expel drugs out of the cell and thus support 
resistance and tumor relapse [120]. For example in tri-
ple-negative breast  cancer (TNBC) CSCs, overexpres-
sion of ABCG2 has been linked with chemoresistance 
[121]. Additionally, Sissung TM et.al (2010) reported 
that expression of ABCG2 provides resistance to 5-FU, 
and doxorubicin in various cancer cell types by expelling 
drugs outside and thus protecting them from apoptosis 
[122–125]. CSC markers have been reported to promote 
multi-drug resistance by modulating drug efflux pumps. 
For example, CSC marker p-CD44 (Ser-291) prevents 
FBXO21 (Ubiquitin E3-ligase) mediated proteasomal 
degradation of P-gp on breast and ovarian cancer cells 
and thus remains active in expelling drugs from the cells 
and prevents its cytotoxic effects [126]. Moreover, recent 
high throughput studies have demonstrated that CSCs 
mostly reside in the region of low pH, fewer nutrients, 
and the hypoxic niche of tumors which evolve cells to 
progress in stressful conditions [127]. Hypoxia-mediated 
gene induction promotes CSC drug resistance by upregu-
lating the expression of various types of ABC transport-
ers such as MRP1 which is a downstream target gene of 
the HIF-1α axis [128]. Due to poor vasculature, drug dis-
tribution to cells residing in the hypoxic region is insuf-
ficient  that provides them the advantage to survive and 
evolve with time to withstand the cytotoxic effect of the 
drug [129]. Moreover, the hypoxia-mediated acidic envi-
ronment around the tumor acts as a physiological and 
chemical barrier against certain drugs [130, 131]. The 
above description provides us insights into how CSCs 
utilize the different processes and environmental factors 
to proliferate and survive under unfavorable conditions.

Cell survival and cellular functions under nutrient dep-
rivation, hypoxia, or in drug resistance, depend on an 
evolutionary conserved physiological process known as 
autophagy [53, 132–134]. Interestingly cancer and CSCs 
exploit this catabolic process to support tumorigenesis, 
maintain pluripotency, tumor progression, and relapse 
[135, 136]. For example,  CD44+CD117+ ovarian CSCs 
showed increased basal autophagy compared to their 

non-stem cell counterpart, thus inhibiting autophagy 
by CRISPR/Cas9 ATG5 knockout making these CSCs 
chemosensitive [137]. Autophagy is known to reduce 
the chemotherapy-mediated oxidative stress in nor-
mal, cancer and CSCs thus protecting them from cell 
death [53, 138, 139]. Similarly, in cancer stem cells and 
normal stem cells, the marker enzyme aldehyde dehy-
drogenase (ALDH) oxidizes intracellular aldehydes and 
shields them from harmful consequences of reactive oxy-
gen species (ROS) [140]. A surprising study has shown 
that the ALDH isoform (ALDH1A3) is responsible for 
lower doses of Temozolomide resistance in glioblastoma. 
Higher doses of Temozolomide were shown to induce 
direct physical interaction of ALDH1A3 with autophagy 
adaptor protein p62 thus leading to their degradation 
and reducing the resistance [141]. Yeo et al. (2016) dem-
onstrated the tumorigenic dependence and stemness of 
 ALDH+ and  CD29hiCD61+ breast cancer stem cells on 
autophagy which act through EGFR/STAT 3 and TGF-β/
Smad signaling respectively [142]. Similar findings in 
TNBC CSCs showed that stemness  (CD44+/CD24 Low) 
maintaining and microenvironment-modulating cytokine 
IL-6 secretion is regulated by autophagy through JAK/
STAT pathway. This highlights the importance of the IL-
6-JAK-STAT3 pathway axis in CSCs development thus 
promoting drug (chemo/immune therapy) resistance in 
them [143–145]. Thus using IL-6 inhibitors like Tocili-
zumab (humanized IL-6R antibody) overcomes docetaxel 
resistance in TNBC CSCs by restricting the autocrine 
action of IL-1 on IL-6 induction [146].

CSCs control the host immune system and mediate drug 
resistance
Usually, traditional therapies kill cancer cells but cannot 
eliminate the small population of tumor cells known as 
CSCs or tumor-initiating cells (TIC), though they can be 
recognized and eliminated by the host immune system 
to a greater extent. However tumor microenvironment 
intervene the immune offense of tumor elimination and 
promotes immune suppression thus shifting equilibrium 
and later escape of CSCs [147, 148]. In various cancers 
like glioblastoma, lung, breast, etc., M1 (classically acti-
vated or pro-inflammatory) macrophages are attracted by 
chemotaxis (towards cytokines released by CSCs) to the 
tumor site where they get converted to M2 (alternatively 
activated or anti-inflammatory or tumor-associated) 
macrophages, secreting TGF-β, IL-10, IL-23, and argin-
ase 1 that creates immune-suppressive tumor microenvi-
ronment for tumor growth [149–152].

CSCs’ intrinsic immunosuppressive system releases 
cytokines such as IL-10, IL-4, IL-6, MIC-1, CCL2, 
CSF1, CSF2, HGF, MIF, CX3CL1, CSF2, PGE2, SDF-1, 
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Periostin (POSTN), CCL2, LOX, CCL3, CCL5, VEGF-
A, NTS exosomes and IL-8 that collectively plays a piv-
otal role in recruitment, polarization and ultimately M1/
M2 macrophage conversation [153, 154]. M2 in turn 
maintains CSCs features by releasing signaling mol-
ecules like CCL2, CCL5, CCL7, CCL8, CCL17, CXCL1, 
CXCL7, PTN, HMGB1, TGF-β, IGF, IL (10, 1β, 6, 8, 18, 
35), etc. and thus support resistance and relapse of tumor 
[154]. For instance, in hepatocellular carcinoma (HCC), 
 CD133+ cells promote the M2 polarisation of TAMs by 
the release of IL-8 which in turn is responsible for the 
therapeutic resistance [155, 156].

CSCs-activated TAMs also inhibit T-cell cytotoxic-
ity by overexpressing cancer immune checkpoint recep-
tors such as programmed death ligand protein1 (PD-L1), 
and (CD80/CD86)   that   interact with programmed cell 
death protein-1 (PD-1) and cytotoxic T-lymphocyte-
associated protein-4 (CTLA-4) on the surface of  CD8+T 
cells respectively, impairing the immune response and 
support anti-tumor immune resistance [157–159]. Addi-
tionally, HCC CSCs hijack TAM SIPRα-CD47’s “Don’t 
eat me” signaling pathway to evade immune surveil-
lance and prevent them from being phagocytosed by 
macrophages [160]. Surprisingly, blocking overexpres-
sion of the CD47 receptor in gefitinib resistant EGFR 
mutated NSCLC with a monoclonal antibody improved 
the phagocyte clearance of these cells [161]. This study 
supports the use of targeted monoclonal antibodies to 
neutralize CD47 as a promising immunotherapeutic 
approach for resistant  EGFR-mutant NSCLCs. CSCs 
can control, antigen-presenting dendritic cells (DC: T 
& B-cell memory development) tolerance and prevent 
them from activating T cells [162–165]. Additionally, 
CSCs produce immunosuppressive cytokines (like IL-4, 
IL-10, TGF-β, etc.), and co-inhibitory molecules (like 
IDO1, PD-L1, and B7-H3) that attract immunosuppres-
sive DCs to suppress the anti-tumor immune system and 
activate/recruit immune suppressing Tregs [159, 166]. 
In glioblastoma, it was shown that CSCs promote Treg 
cell infiltration, reduce cytotoxic T-cell activation, and 
induce T-cell apoptosis by soluble Galectin-3 and B7-H1 
signaling molecules [159]. It has been reported that 
CSC increases the production of G-CSF (Granulocyte 
colony-stimulating factor) which in turn recruits MDSC 
(Myeloid-derived suppressor cells) to the tumor site via 
mTOR signaling pathway and the amount of infiltrating 
MDSC is positively co-related to CSC existence in can-
cer patients [156]. MDSC produces immunosuppressive 
cytokines such as IL 10, TGF-β, etc., increases PD-L1, 
and prostaglandin E2 (PGE2) expression, and recruits 
Tregs which collectively suppresses the T-cell  (CD8+), 
maintains stemness (like in ovarian CSCs), and drug 
resistance[167–169], as shown in Fig. 2. In hepatocellular 

carcinoma, the hypoxia-mediated CSCs attract MDSCs 
to the tumor site through ENTPD2/CD39 L1 signaling 
and halt the PD1 treatment, and the reduction of MDSC 
sensitizes these cells to 5-FU [170, 171]. Recently intro-
duced CAR T cell (chimeric antigen receptor T cell) is an 
altered host white blood cell therapy, that has revolution-
ized anti-cancer immune therapy to cross the barrier of 
specificity and non-responders to standard therapy and 
was first tried on acute lymphoblastic leukemia (ALL) 
patients with better remission [172–174]. However, due 
to the constant threat of developing cytokine release syn-
drome (CRS) and early relapse of antigen-positive leu-
kemia (loss of active CAR  T cell-mediated surveillance) 
or later relapse (loss of antigen) of the tumor, limited 
the range of specific CAR T cells [175]. However recent 
cotreatment of CAR  T cells with immunomodulators 
(immune check point inhibitors like PDL1-PD1 block-
age) has shown to be promising in terms of the depth 
and durability of the treatment clinically [176–179]. The 
above description insights us into the importance of the 
‘CSC-TME-immune’ triangular (Fig.  2) signaling inter-
action in tumor expansion and therapy resistance and 
its clinical significance. A comprehensive representation 
of immune and CSC in drug resistance linkage has been 
shown in Fig. 2.

Dynamic EMT programs and drug resistance are 
mutually linked to each other
Various studies have shown the emerging role of the 
Epithelial-to-mesenchymal transition (EMT) program 
in tumor relapse, regulation of CSC phenotype, therapy 
hindrance, and anoikis resistance thus is clinically a rele-
vant model to be targeted [117, 132, 180]. EMT is a highly 
conserved complex cellular program that transforms epi-
thelial cells to attain a range of mesenchymal or CSCs 
features like increased cell mobility and upregulated drug 
efflux pumps. EMT transition usually happens under 
the influence of hypoxia, cytokines, or by activation of 
TGF-β, Notch, hedgehog, and Wnt pathways [181, 182]. 
A spectrum of reports suggests that EMT signaling path-
ways act as a driving force in cancer metastasis and drug 
resistance [132, 183, 184]. Snail, TWIST, ZEB, N-cad-
herin, and fibronectin are the signatures of EMT each 
having a definite role in drug resistance. EMT-activator 
ZEB1 (zinc finger E-box binding homeobox 1) represses 
the expression of epithelial phenotype-promoting genes 
like miR-200, and miR-203 thus promoting stemness 
and subsequently resistance to chemotherapy [185–187]. 
ZEB1 and miR200 play a double negative feedback loop 
and repress each other’s function. Various groups have 
exploited this process and increased the miR200 in can-
cer cells artificially which induced partial chemosensitiv-
ity towards drugs [188–190]. So inhibiting ZEB1 at the 
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epigenetic level by using mocetinostat (Class 1 HDAC 
inhibitor) successfully restores miR200 and sensitizes 
pancreatic cancer cells towards chemotherapy [191].

Moreover, a cohort of large breast cancer samples has 
revealed that ZEB1overexpressing samples were less 
responsive to genotoxic epirubicin treatment. Upon dis-
secting the mechanism it was found that ZEB is actively 
activating ataxia-telangiectasia mutated (ATM) kinase 
at the transcriptional level by promoting the ZEB1/
p300/PCAF complex formation which resulted in the 
activation of homologous recombination DNA repair 
pathway [192]. EMT and the tumor cells microenviron-
ment (TME) are linked through the FBXW7-ZEB2 axis 
to promote colorectal CSC formation and chemoresist-
ance [40]. Moreover, through the FZD7/Wnt/β-catenin 
pathway, SOX8 facilitates EMT processes and supports 
chemo-resistance of Tongue squamous cell carcinoma 
(TSCC) [193]. Another EMT promoter TWIST1 stimula-
tion by Metadherin (MTDH) resulted in CSC character-
istics and drug resistance in MCF-7 cells [194]. Moreover, 
Mukherjee et  al. also demonstrated that in TNBC cells, 
the SOX2-ABCG2-TWIST1 pathway plays a significant 

role in regulating tumorigenicity and chemoresistance 
[195].

Role of pH gradient across organelles in drug 
resistance
Subcellular organelles, despite their role in compart-
mentalizing the sub-organelle components at optimum; 
have been also identified to play an essential role in drug 
resistance [196]. After drug administration, the drug usu-
ally enters the cells to reach its targets which are mainly 
present in cellular organelles such as mitochondria, lys-
osomes, nucleus, ER, GB, and peroxisome or in the cyto-
sol [197]. The functional features of these organelles, like 
membrane electrochemical gradient, drug transporter 
expression, protein compartmentalization, and intralu-
minal pH are uniquely different from one another. Vari-
ous cancer cells hijack these features for tumor growth, 
survival and drug resistance.

The extracellular microenvironmental pH is 7.4 (basic) 
in normal tissue which is altered in the cancer microen-
vironment to 6.8 (acidic), favoring the activity of various 
metalloproteinases, activating several signal transduc-
tion pathways and acting as a chemical barrier for many 

Fig. 2 Role of CSC in drug resistance and relapse by altering its microenvironment and modifying the host immune system. CSCs are resistant 
to various therapies compared to cancer cells by activating various survival pathways and also changing their microenvironment like increasing 
autophagy as well as secreting various chemokines and cytokines which in turn cause drug resistance. Figure created with BioRender.com
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anticancer drugs that exuberate malignancy and tumor 
aggression [198–203]. Besides it has been found that 
malignant cells alter their cytosolic pH more towards 
basic (from 6.99–7.2 to 7.12–7.65) thus generating a 
proton gradient across the plasma membrane which is 
utilized for direct generation of ATP [204–206] Fig.  3. 
Moreover, this altered pH gradient favors aerobic glyco-
lysis instead of OXPHOS in cancer cells for fast energy 
generation and maintenance of the acidic microenviron-
ment by lactate production which is essential for tumo-
rigenesis and drug resistance [207]. Nuclear pH varies 
between 7.55–7.88 in normal cells and plays a significant 
role in DNA-histone and DNA–protein interaction thus 
influencing nuclear activity like DNA replication, epi-
genetic modifications, etc. [206, 208]. Since cancer cells 
proliferate indefinitely and have a higher epigenetic mod-
ification rate and thus become venerable to chemother-
apy. With less evidence, nuclear pH alteration can act as 
a hurdle for anti-cancer drug activity and pose resistance 
to them, thus can be a useful parameter to be exploited 
to sensitize cells to drugs [209, 210]. The most active pH 
is found in endolysosomes which varies from 6 in early 
to 4.5 in late endosomes [211–213]. Oncogenic transfor-
mation is shown to change in lysosomal volume and its 

subcellular location with less effect on pH change [214, 
215] Fig. 3. Endolysosomes are an important component 
of the intracellular catabolic process called autophagy 
which clears the extra, unknown, deformed, and unused 
biomolecules from the cells by breaking them into 
smaller building blocks or energy units for the cell [53, 
132–134]. Various reports suggest that endolysosome’s 
pH plays a pivotal role in drug resistance by accumulat-
ing and sequestering various chemotherapeutic drugs (a 
mostly weak base) that enter into them either by passive 
diffusion or through membrane-embedded P-gp pumps 
and are later expelled by exocytosis and thus generate 
chemoresistant cancer cells [216–219]. So the integrity of 
lysosomal membrane permeability (LMP) is necessary for 
cancer cells to be resistant and can be considered a thera-
peutically important subject. Various studies have shown 
that LMP inducers like chloroquine (CQ) can result in 
resistant cancer cell death by releasing sequestered drugs 
and proteasomes like cathepsin to act on the nucleus and 
induce apoptosis [220–222]. Moreover, CQ promotes the 
release of NO that efficiently inhibits P-gp activity and 
leads to the accumulation of chemotherapeutic drugs 
thus leading to death in the resistant hepatic carcinoma 
[223].

Fig. 3 pH change and cellular organelle’s role in drug resistance. Resistant Cancer cells change extracellular (ECM) as well as intracellular (cytosol, 
subcellular organelles) pH according to their requirement thus activating various pathways which cause metabolic, genetic, epigenetic rewiring 
to support their survival, metastasis, and drug resistance. Figure created with ChemBioDraw Ultra 14.0
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Mitochondria is another important organelle that gen-
erates ROS and ATP for the cell and plays a role in chem-
oresistance. A recent study has shown that cancer cells 
use mitochondrial ATP for ABC transporters activity 
which expels drugs out of cancer cells and is negatively 
regulated by methylation-controlled J protein (MCJ; 
endogenous negative regulator of ETC) [224–226]. In 
MDR NCI/ADR-RES ovarian and doxorubicin-resistant 
MCF-7 cells, MCJ deficiency was found to be responsi-
ble for maintaining the drug efflux pumps and supporting 
the resistance in them thus highlighting MCJ as a thera-
peutic candidate [227, 228]. Elisa et al. demonstrated that 
overexpression of UCP2 (uncoupler protein 2) in pancre-
atic cancer cells significantly decreases drug-mediated 
mitochondrial superoxide generation thus protecting 
them from apoptosis [229].

Studies show thatEndoplasmic reticulum (ER) plays a 
vital role in drug metabolism due to the presence of the 
drug-metabolizing enzyme “cytochrome P450”(CYPs). 
Lin. et  al. demonstrated that the expression of 
cytochrome P450 enzyme CYP1B1 was higher in taxol-
resistant A549 cells compared to its parental A549 
cells and inhibition of CYP1B1 by 4 hydroxy-emodin 
increased their sensitivity to Taxol [230]. The Golgi 
body (GB) functions as a post-translational trafficking 

hub and has a role in drug resistance as well. In glio-
blastoma resistance cells, GB overexpresses various 
MDRs and sequesters the drugs by their secretary sys-
tem which later exports drugs out of the cells, the pro-
cess is reversed by P-gp inhibitors such as S9788 and 
PSC833, which reverses drug resistance [196]. The per-
oxisome an oxidative stress reliever of cells also plays a 
role in resistance as in lymphoma towards vorinostat by 
reducing ROS generation and inhibition of peroxisome 
activity was shown to increase the drug sensitivity of 
these cells [231–233]. The nucleus is the control center 
of eukaryotic cells and previous studies reported the 
expression of various kinds of ABC transporters such 
as P-gp on the membrane of the nucleus and its role in 
resistance to various anti-cancer drugs like doxorubicin 
in various cancers such as glioblastoma multiform (LN-
299) [234–237]. An image representation of the orga-
nelle’s role in drug resistance is shown in Fig. 4.

Despite the importance of organelles in cellular func-
tion is indispensable, however, different cancer cells 
hijack their function by molecular rewiring and exploit-
ing them for their survival and drug resistance and thus 
can be considered as an extra therapeutic edge in the 
future.

Fig. 4 Cancer cells hijack cellular organelles for their benefit. Cancer cells respond to drugs by decreasing ROS production( by peroxisomes), 
increasing drug efflux pumps(on the membrane of organelles and cells), drug-metabolizing enzyme(ER-CYP) and sequestering drugs (by lysosome 
and Golgi). Figure created with BioRender.com
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Immune cells and tumor microenvironment protect 
cancer cells from anti‑cancer drugs
The tumor microenvironment (TME) is a complicated 
and evolving "rogue organ" made up of stroma, extracel-
lular matrix,  immune cells, nervous and lymphatic sys-
tems, as well as its blood supply [238]. Cellular crosstalk 
between cancer cells and the ECM is a significant com-
ponent of the TME which affects immune evasion and 
ECM remodeling that promotes tumor initiation, metas-
tasis, and treatment resistance [238–240]. Each micro-
environmental component, including cancer-associated 
fibroblasts (CAFs), immune cells, ECM components, 
exosomes, hypoxia, and acidic environment, plays a role 
in concert and contributes to the therapeutic resistance 
as described below.

i) CAFs (stromal cells): are activated fibroblasts, abun-
dantly associated with cancerous cells in the TME, 
a variety of oncogenic cues like growth factors, 
chemokines, exosomes, etc. contributed by CAFs 
allow cancer cells to undergo EMT, evade therapies 
and potentiate them for tumor relapse [241–244]. 
CAF responds to the chemotherapeutic  drug cispl-
atin used against esophageal squamous cell carci-
noma (ESCC), by secreting paracrine signaling mole-
cule plasminogen activator inhibitor 1 (PAI-1). PAI-1 

in turn stimulates the survival  of   AKT and MAPK 
pathways to protect ESCC from ROS-mediated DNA 
damage and cell death under chemotherapeutic drug 
treatment thus supporting resistance [245]. Moreo-
ver, CAF-secreted hepatocyte growth factor (HGF) 
or TGF-β1- stimulates downstream PI3K-AKT/
MAPK/ERK/STAT pathways, thus leading to anti-
EGFR, anti-BRAF chemoresistance in colon cancer, 
glioblastoma, melanoma, etc. [246–249].

ii) ECM: The ECM is another factor that is made up of 
fibrous proteins like collagen, elastin, proteoglycans, 
microelements, water, etc., and plays an active role 
in therapeutic resistance (Fig.  5) [250, 251]. Tumor 
ECM is substantially different in structure and com-
position and exhibits fibroblastic/myofibroblastic 
infiltration, followed by the considerable buildup 
of collagenous matrix or desmoplastic stroma, 
obstructing anti-cancer drug delivery to cancer cells 
[251, 252]. It was found that cisplatin-resistant ovar-
ian malignancy overexpresses COL11A1 (collagen 
type XI α1) which increases the chemoresistance 
by activating tumor-favoring AKT /PDK1 pathways 
[253, 254]. ECM drug-resistant signals are transmit-
ted mostly through membrane-bound cellular recep-
tors (like integrins) that lead to significant intracel-
lular rewiring  and thereafter evolve cancer cells for 

Fig. 5 Exosome-mediated drug resistance: Drug-resistant tumor cells can connect with drug-sensitive tumor cells through the exchange 
of exosomes. Exosomes can transport proteins (such as drug-efflux pumps) and other critical components involved in drug resistance. 
Mesenchymal stem cells (MSC)-derived exosomes stimulate calcium-dependent protein kinases and Ras/Raf/MEK/ERK kinase pathways which 
in turn activate multiple drug efflux pumps. Figure created with BioRender.com
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therapeutic resistance [255, 256]. It has been shown 
that  cancer cells TME/ECM lacking collagen or 
fibronectin or both were more sensitive towards cis-
platin than their counterparts [257]. In continuing 
with this, Oxaliplatin’s effectiveness against colon 
cancer cells was increased by suppressing the αv sub-
unit of integrin [258].

iii) Exosomes: Exosomes, also known as extracellular 
vesicles (EVs), which are produced by big multive-
sicular bodies (MVBs), facilitate cell-to-cell interac-
tion by transporting bioactive cargos, across cells and 
efflux of undesirable molecules in healthy cells [259]. 
They are important signaling intercessors, playing 
roles in tumor growth,  TME remodeling, metas-
tasis, angiogenesis, as well as treatment resistance 
[260, 261]. Various cancerous cells hijack EVs for 
anti-cancer drug efflux which in turn results in drug 
resistance as shown in Fig.  5 [262, 263]. Mesenchy-
mal stem cell (MSC) derived exosomes integrate into 
gastric tumor cells, enhancing CaM-Ks and  down-
stream Raf/MEK/ERK signaling cascades pathway 
activation, which increases the expression of MDR-
related proteins resulting in gastric carcinoma chem-
oresistance [264]. Ovarian cancer drug-resistant cells 
showed increased cisplatin exosomal export along 
with the recruitment of efflux  transporters ATP7A, 
ATP7B, and MRP2 (ABCB2) in neighboring cells to 
protect drug-mediated cell death [265].

iv) Hypoxia: The tumor’s aberrant vasculature and 
high oxygen demand result in hypoxia, and reduced 
availability of nutrients like glucose and vital amino 
acids [266, 267]. Oxygen deprivation stimulates 
hypoxia-inducible factor (HIF)-1α, which regulates 
many cell survival and angiogenic genes, that in turn 
favors cancer cells to withstand the cytotoxic effect 
of chemotherapeutic drugs [268, 269]. HIF-1α pro-
motes survival by two-way processes of either sup-
pressing pro-apoptotic proteins (TRAIL) or stimulat-
ing anti-apoptotic proteins, (like c-myc, etc.), under 
chemotherapeutic pressure like in temozolomide 
resistance in GBM [270–272].

v) Immune cells: The most prevalent immune cell types 
in TME are tumor-associated macrophages (TAMs) 
[273]. TAMs invasion into TME has been linked to 
poor prognosis and inadequate response to chemo-
therapeutic agents in cancer patients [274, 275]. 
TAMs are derived from circulatory  Ly6C+CCR2+ 
monocytes. TAMs have a high degree of variability in 
TME and can be classified into two subgroups: (1). 
classically stimulated pro-inflammatory M1 mac-
rophages exhibiting anticancer characteristics and 
(2). alternatively stimulated anti-inflammatory M2 
macrophages having tumor-supporting capabili-

ties [276]. The M2 phenotype plays a role in treat-
ment resistance and induces Th2 responses. In the 
cancer microenvironment, the polarization of mac-
rophages from M1 to M2 is prevalent [277]. Drug 
treatment stimulates TAMs to develop into immu-
nosuppressive M2-polarized macrophages which 
confer chemoresistance in various cancerous cells. 
It has been shown that ROS builds up in the gastric 
carcinoma cells after exposure to 5-FU activates HIF-
1α-(HMGB1) signaling, which recruits M2 TAMs, 
which generates GDF15 (growth differentiation fac-
tor 15), and enhances fatty acid β-oxidation thus 
increasing the chemoresistance in them [278]. To 
shield cancer cells from therapeutic action, TAMs 
also secrete a variety of soluble factors into TME, 
such as interleukins, chemokines, etc. High infil-
trations of tumor-associated neutrophils (TANs) 
within the TME have also been responsible for tumor 
growth as well as drug resistance [279–281]. T-regu-
latory cells (Tregs) are a type of immunosuppressive 
T-cells that are  CD4+CD25+ and are distinguished 
by the Foxp3 expression that is required for Treg for-
mation and differentiation. Elevated Treg invasion 
in the TME had been linked to worse prognosis as 
well as chemoresistance in glioblastoma, melanoma, 
colorectal, and renal cancer [282–284]. It has been 
shown that 5-FU therapy increased the expression 
of chemokine (CCL20)  in colorectal carcinoma cells 
(CRC) in  vivo by triggering FOXO1/CEBPB/NF-κB 
signaling, which aided in the migration of Tregs into 
TME.  Foxp3+ expression on Tregs is in turn linked 
to resistance-related genes such as ATP8A2, BCL2, 
VIM, and WNT1 which promote chemoresistance to 
5-FU in CRC [283].

Metabolic changes/regulations govern drug 
resistance in cancer cells
One of the features that distinguish cancer cells from 
normal cells is metabolic reprogramming. Cancer cells 
have more efficient anabolic pathways and the capacity 
to utilize carbon sources other than glucose [285, 286]. 
Changes in cellular metabolism not only assist in the 
development of tumors but also play a role in the resist-
ance of cancer cells to antitumor therapies including 
resetting lipid metabolism, glycolysis, polyamine synthe-
sis, and so on [287].

As already discussed above due to pH differences can-
cer cells sustain their high glycolytic rates for rapid ATP 
production to meet the high energy-demanding pro-
cesses like activation of glucose transporters (GLUTs) 
etc. [288, 289]. Active aerobic glycolysis produces lac-
tate as an end product which is expelled to ECM by 
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Monocarboxylate transporter 4  (MCT4) forming an 
acidic microenvironment that is necessary for tumor 
growth, metastasis, immunosuppression, vascularization, 
and therapeutic resistance [290]. Moreover, lapatinib-
resistant BT-474 breast cancer cells have shown to be 
dependent on enhanced glycolytic enzyme (Aldolase A) 
activity which reversibly forms glyceraldehyde 3-phos-
phate from fructose-1,6-bisphosphate, thus are suscepti-
ble to glycolysis inhibition [291]. Further reports suggest 
the resistance dependence of cancer cells on glycolytic 
intermediate and glucose transporter are therapeutically 
significant nodes in both preclinical and clinical settings 
[292]. In Gemcitabine-resistant pancreatic cells, gly-
colysis inhibition by using a 2-deoxy-D-glucose (2-DG) 
increased the cytotoxic effect of the drug by suppress-
ing CSC phenotypes in both in-vitro and in vivo [293]. In 
the stomach, ovarian, breast, hepatocellular, and cervix 
malignancies, one of the key glycolytic enzymes Hexoki-
nase-2 (HK2) is shown to increase drug (cisplatin) resist-
ance and support their survival [294]. In breast cancer, 
HK2 binds to a mitochondrial voltage-gated ion chan-
nel (VDAC) and blocks drug-induced intrinsic apoptosis 
[295]. The above evidence highlights that VDAC or gly-
colytic inhibitors are concomitant candidates for anti-
cancer therapy and co-targeting them could prove very 
effective clinically.

Moreover, ATP metabolism also has a profound role in 
the onco-immune or immunomodulatory system which 
in normal conditions maintains the body’s homeosta-
sis by maintaining the balance between immune-stim-
ulatory, immune suppression, and autoimmune disease 
defense. Cancer cells metabolize extracellular ATP into 
immunosuppressive extracellular adenosine (eADO) by 
transmembrane ectopeptidases CD39 (ectonucleoti-
dase triphosphate diphosphate-hydrolase 1) and mem-
brane-anchored CD73 (5’-nucleotidase) [296]. Although 
another noncanonical pathway also participates in the 
generation of adenosine which includes the activity of 
CD38  (NAD+ ectohydolase), CD203a (ectonucleotidase 
pyrophosphatase/phosphodiesterase family member1), 
tissue-specific (for example prostatic acid phosphatase) 
and tissue-nonspecific alkaline phosphatase (TNAPs) 
collectively making the TME immune suppressive 
[297]. Adenosine acts as a ligand for adenosine-specific 
receptors that are widely distributed in all types of cells 
including immune cells. Adenosine receptors (P1 type 
G-protein coupled receptors) are of four distinct types 
A1, A2A, A2B, and A3, and work by modulating the 
activity of adenylate cyclase enzyme thus affecting the 
intracellular cAMP levels [296]. Among these receptors, 
A2A and A2B receptor pathways activation by eADO are 
mainly involved in immunosuppression and, thus is pres-
ently considered as a main barrier to the immune therapy 

or tumor cells resistance to immune therapy. Adenosine 
pathway activation affects lymphocyte activation includ-
ing tumor-infiltrating immune cells, myeloid cells, and 
tumor-associated stromal cells, and tumor cells conse-
quently helping cancer cells to evade from anti-tumor 
immune cell response which results in therapy resist-
ance [297]. So targeting CD39, CD73, and adenosine 
receptors in the presence of immune checkpoint therapy 
(anti-PDL1/PD1; ANTI CTLA-4) can prove to be a novel 
immunotherapeutic strategy against immune-resistant 
cancer cells. For example, combined treatment of Poly-
oxotungstate-1 (POM1; CD39 inhibitor) and anti-PD1 
and CTLA-4 antibodies in B16-F10 (melanoma cells) 
transplanted mice model showed a remarkable reduction 
in tumor burden and increase in the survival of tumor-
bearing mice [298]. Although rodent data is very promis-
ing but the key issue of this finding is wheather this can 
be translated in humans.

Cancer cell drug Metabolism and resistance
Metabolism of drugs takes place through two differ-
ent consecutive phases named “phase I” and “phase II”. 
Cytochrome P450s (CYPs) are major Phase I enzymes 
while glutathione-S-transferases (GSTs), and UDP-glu-
curonosyltransferases (UGTs), are the major enzymes 
belonging to Phase II enzymes and have a role in effect-
ing anti-cancer drugs. The detailed mechanism of cancer 
cell metabolism in drug resistance is discussed below.

Many tumors have developed resistance against chem-
otherapy drugs, either through drug inactivation or by 
reducing action form. A major part of drug activation 
and inactivation takes place through the liver cytochrome 
P450 (CYPs) system [299, 300]. For example, the antican-
cer prodrug cyclophosphamide (translational inhibitor) 
used in a variety of human malignancies (breast, lym-
phoma) is first partially metabolized into active metab-
olite 4-hydroxy-cyclophosphamide (OHCP) by CYP 
isoforms [301]. OHCP forms an equilibrium with its 
tautomeric aldehyde “aldophosphamide” (ALDO), which 
is released and enters into other cancer/cells where it is 
enzymatically (3’-5’ phosphodiesterase) converted into 
DNA-RNA cross-linker phosphoramide mustard (PM) 
of clinical significance [302, 303]. It has been found that 
various resistant cancer cells (like Breast cancer etc.) 
have mutated CYP genes which reduces its drug-activat-
ing efficacy and leads to the breakdown or excretion of 
drugs without affecting cancer cells [299, 304]. So in such 
cases, CYP activation through gene therapy or using CYP 
mimetics can be very useful to restore the drug sensitiv-
ity of these cells.

Inside the body, the interactions between drugs and 
various types of proteins (like enzymes) activate drugs for 
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their action [305]. However, cancer cells exhibit resist-
ance to drugs by altering a catalytic site or structure of 
an enzyme which affects their interaction with drugs and 
thus culminates in their mode of action. For example, 
cytarabine (cytidine analog) resistant AML cells express 
mutated deoxycytidine kinase (cytarabine activator), 
reduce the activity of the drug and thus develop resist-
ance [306, 307]. Similarly, doxorubicin (active) resistance 
in prostate and breast cancer is mainly due to enzymatic 
transformation into doxorubicinol (inactive) by the over-
expressed enzyme Aldo–keto reductase, combination 
therapy is shown to be very effective in increasing thera-
peutic activity of DOX [308, 309].

Glutathione (GSH) which mainly catalyzes phase II of 
drug metabolism is a low molecular weight thiol mole-
cule synthesized in cells. GSH plays an essential role in 
shielding cells from the toxicity of xenobiotic electro-
philes, oxidative damage, and maintaining redox homeo-
stasis [53]. GSH is reported to inhibit cisplatin-mediated 
cytotoxicity and activate ABC transporter activity thus 
inducing resistance in many cancers (L1210 leukemia 
cells etc.) against cisplatin [310, 311]. This opens a new 
treatment window of targeting GSH (like buthionine-sul-
foximine) that might increase the sensitivity of resistant 
cancer cells toward cisplatin.

Drug target alteration
The efficacy of a drug is influenced by its molecular tar-
get and alteration in the target decreases the impact of 
the drug’s interaction with it. For example, Doxoru-
bicin specifically targets topoisomerase II and prevents 
DNA replication. Nevertheless, some cancer cells in 
retaliation express mutated topoisomerase II with less 
binding potential to doxorubicin and thus become less 
sensitive to it [312]. Moreover, In non-small cell lung 
cancer (NSCLC), a mutation in the EGFR kinase domain 
(T790M) renders it resistant to gefitinib[313, 314]. Thus 
the secondary level of tyrosine kinase inhibitors such as 
ponatinib has been shown to have promising outcomes 
in such cases.

Cancer cells show drug resistance either  by reduc-
ing uptake or enhancing the efflux of drugs or both 
through mutated receptors and transporters [315]. 
Membrane-bound transporters called organic anion-
transporting polypeptides (like OATP1B1, OATP1B3, 
and OATP1A2) can transport paclitaxel, methotrexate, 
flavopiridol, tyrosine kinase inhibitors, irinotecan, cis-
platin and plays a crucial role in the resistance in pol-
yps of the large intestine and colon cancer [316–319]. 
Moreover in hepatocellular carcinoma (HCC), chol-
angiocarcinoma (CGC), and Chronic myeloid leuke-
mia (CML) a lesser accumulation of anticancer drugs 

(like imatinib) seems to be mediated by a decrease in 
OATP1B1, OATP1B3, and OATP1A2 expression or 
their function [317, 320, 321]. Various studies have 
shown that organic cation transporter-1 (OCT1) is 
involved in the uptake of potent cationic anti-tumor 
drugs, such as Cisplatin, anthracyclines, and sorafenib 
and its activity is dysregulated in many cancers such 
as colon and liver cancer [322–325]. In addition, it 
has been demonstrated that imatinib uptake in CML 
is dependent on OCT1 expression and the degree of 
OCT1 expression is considered a useful biomarker for 
predicting the efficacy of imatinib-based therapy in 
leukemia patients [326]. The high-affinity copper trans-
porter (CTR1) has been recently shown to transport 
platinum drugs, emphasizing the crucial function of 
CTR1 in platinum-drug sensitivity in cancer chemo-
therapy [327, 328]. A promising phase I clinical trial 
using cotreatment of trientine (a copper chelator) and 
carboplatin has shown CTR1-mediated higher cisplatin 
uptake and better outcomes [329, 330].

Most studied drug efflux-related genes are members 
of the ABC (ATP-binding cassette) superfamily [331]. It 
has been shown that isoforms of ABC transporter-like 
ABCB, ABCC, and ABCG families, are overexpressed 
in tumor cells, and are involved in chemotherapy resist-
ance [331]. For example, higher expression of ABCB1 
results in resistance to widely used anti-cancer Aurora 
Kinase Inhibitor (GSK-1070916) in colon cancer cells 
[332]. ABCC2 is considered to play a significant role in 
the resistance of colon cancer to platinum derivatives 
since it can effectively export glutathione-cisplatin con-
jugates, and in colon cancer cells, expression of multi-
drug resistance protein (MRP2 or ABCC2) was found 
significantly higher following cisplatin treatment [333, 
334]. Nevertheless, non-ABC transporters are also 
reported to contribute to drug efflux and resistance. 
For instance, the copper-transporting P-type ATPases 
“Menkes and Wilson” proteins participate in clearing 
various intracellular drugs like cisplatin [335–337]. The 
major vault protein (MVP), or lung resistance-related 
protein (LRP), although not a pump, plays a similar role 
in transportation-mediated chemoresistance. MVP cre-
ates cytoplasmic nano-organelles called vaults that can 
enclose anticancer drugs like doxorubicin, and cisplatin 
(like in ovarian malignancies) and thereby lower their 
active intracellular concentrations thus mediate resist-
ance [338–340].

Autophagy and ER stress (UPR) are utilized 
by cancer cells to gain support for drug resistance
Autophagy is an intracellular catabolic process and is 
busy supporting cellular survival in various stressful con-
ditions, however, in extreme cases, it is responsible for 
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programmed cell death type 2 [133, 341]. In various types 
of cancer, autophagy can play a contrasting role in either 
supporting or inducing death and is context-dependent 
[342–347]. However, the role of autophagy in drug resist-
ance is an emerging topic and a deep understanding of 
this relationship can prove to be therapeutically very cru-
cial to curb various cancer types. Various studies have 
shown that autophagy plays a central role in drug resist-
ance by recycling biomolecules, degrading deformed 
proteins and organelles, and thus preventing DNA dam-
age [348–350]. Some reports have suggested that DNA 
damage response can also activate autophagy via ataxia 
telangiectasia mutated (ATM) and homologous recom-
bination (HR) repair pathway [351, 352]. It has been 
found that an anthracycline drug epirubicin-mediated 
autophagy upregulates P-gp proteins and downregulates 
the NF-κB signaling pathway thus hindering activation of 
apoptosis and promoting drug resistance [353]. Tamox-
ifen sensitivity was enhanced in resistant estrogen recep-
tor-positive breast cancer cells by autophagy inhibition, 
thus inducing cell death [354, 355]. In gastrointestinal 
stromal tumors, cotreatment of imatinib and autophagy 
inhibitors (like chloroquine) cause apoptosis [356, 357].
The endoplasmic reticulum (ER) is an essential subcellu-
lar structure that maintains cellular homeostasis and can 
be disrupted by a variety of pathological conditions  like 
cancer,  resulting in induction of  ER stress which if 
remains sustained can either kill cancer cells by induction 
of apoptosis and ferroptosis  or  help them to grow, sur-
vive and induce drug resistance if moderately activated 
[358]. ER stress induces UPR ,which is regulated by ino-
sitol-requiring enzyme-1 (IRE1α), activating transcrip-
tion factor 6 (ATF6),  protein kinase RNA-like ER kinase 
(PERK), and such signaling pathways have been found to 
be overexpressed in various human tumors like breast, 
brain, liver, lung and pancreatic cancer cells contributing 
to their survival and drug resistance [358]. Hepatocellu-
lar carcinoma (HCC) is a  deadly cancer worldwide and 
is commonly diagnosed in advanced stage and has high 
intrinsic drug resistance resulting in  limited therapeu-
tic  efficacy.  ER stress-mediated UPR  via  these  UPR 
signaling pathways   including  ATF6,  IRE1, and 
PERK, was found to play a crucial role in the induction 
of HCC chemoresistance  by overexpressing ABC trans-
porters such as MDR1, MDRP1, and MDRP2 [359, 360]. 
Moderate ER stress induction is correlated to the activa-
tion of the pro-survival  genes that  regulates  amino acid 
metabolism, ER chaperones, redox reaction, protein 
folding, and autophagy [361].     In some cases..of cancer 
like in HCC, it has been found that endoplasmic reticu-
lum stress-mediated activation of autophagy also plays 
a role in upregulating MRP1 that enhances intracellu-
lar drug or toxic heavy metal efflux thus protecting cells 

from apoptosis [362, 363]. Autophagy is shown to influ-
ence some crucial drug-resistant enzymes (detoxifying 
enzymes) like aldehyde dehydrogenase (ALD1A3) and 
thus arbitrate in acquired drug resistance in temozolo-
mide-treated human glioblastoma cells [141]. In human 
ovarian cells (Polycystic ovarian syndrome- PCOS) aber-
rant autophagy induction upon release of the high mobil-
ity group box 1(HMGB1) plays a role in achieving insulin 
resistance by downregulating IRS-1, AKT, and GLUT4 
translocation [364]. While in hepatocellular carcinoma 
cells, HMGB1 is shown to promote doxorubicin resist-
ance by inducing AMPK-autophagy and protecting them 
from programmed cell death type 1 [365]. Autophagy is 
found to play a cytoprotective role in TNF-TRAIL death-
resistant cells by sequestering, degrading, and dysfunc-
tioning of caspase 8 protecting cancer cells to undergo 
death [366–368]. However, there are ample reports that 
prolonged or sustained autophagy activation can result in 
programmed cell death type 2. For example, resveratrol 
(plant-derived phytoalexin) treatment triggers a strong 
signal for autophagy (p62 accumulation) through JNK 
activation leading to death in imatinib-resistant chronic 
myelogenic leukemia cells (CML) [369, 370]. In some 
cases, autophagy activation supresses drug resistance and 
induces therapeutic dependent or independent death. For 
example, co-treatment of ABT-88 (polymerase protein 
inhibitor) and temozolomide has been shown to sensitize 
temozolomide-resistant glioma cells by inducing double 
DNA strand breaks and coincidently coactivating lethal 
autophagy and apoptosis [371]. So autophagy in most 
cases opposes the anti-cancer drug action of culminating 
cells by apoptosis, thus acting as a defensive cellular path-
way and supporting drug resistance.

Targeting autophagy by using pharmacological inhibi-
tors or by gene silencing in the presence of anticancer 
drugs can increase therapeutic efficiency and reduce 
drug resistance which can prove beneficial to increase the 
patient’s survival.

Proteomic alteration in response to known 
chemotherapeutic drugs to achieve drug resistance 
(Fig. 6)
Various known anti-cancer drugs in the market are 
mostly used against various malignancies with the posi-
tive outcome however some of the cancer cells alter 
their protein expression or morphology to become irre-
sponsive and achieve resistance. Doxorubicin (DOX) 
is a well-known  anti-cancer anthracycline drug that 
has been demonstrated to overexpress (off-target) sign-
aling cascades PI3K/AKT, NF-κB and ERK/MAPK 
mainly responsible for its resistance by inhibiting apop-
totic  and autophagic death-related proteins- Bcl-2, cas-
pase-3/7/8/9, p62, and LC3-I/II in the uterine and breast 
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carcinoma [372–376]. Besides, doxorubicin resistance 
in numerous malignancies (like GC cells) has also been 
linked to the upregulation of dual specificity phosphatase 
4 (DUSP4), or MAPK phosphatase 2. The  cells became 
more sensitive to DOX when DUSP4 was knocked down 
[377]. Multidrug resistance transporters also contribute 
to DOX deprivation in cancers including bladder cancer, 
esophageal squamous cell carcinoma, or breast cancer, 
by overexpression of MRP2 (cMOAT or ABCC2) and are 
mainly responsible for its efflux [378–380]. TNBCs use 
different tactics against doxorubicin and defend them-
selves by upregulating the complement component sys-
tem/cascade (C1ra, C1s, C2, C3, C4a, C5, C7, C8a, C8b) 
and activating MDSCs thus becoming immune resistant 
[381].

Likewise, resistance to cisplatin  remains a barrier in 
the treatment of various cancers [382]. Upon entering the 
cell, it reacts with a range of molecules apart from DNA, 
such as sulfur-containing glutathione (GSH)/metallothio-
nein (MT) which trap cisplatin and then eliminate it from 
the cell[383]. Moreover, Zinc-finger factor 143 (ZNF143), 
Y-box binding protein-1 (YB-1), activating transcription 
factor 4 (ATF4), CCAAT-binding transcription factor 
2 (CTF2), DNA repair proteins (e.g., the product of the 
XRCC1 gene; YB1; etc.) and mitochondrial transcrip-
tion factor A (mtTFA) are a few transcription factors that 
have been linked to CDDP resistance [384–386]. Another 
well-known drug is paclitaxel (PTX), which belongs to 
the taxane class of anticancer agents that affect the nor-
mal stability of microtubules during cell division and is 

effective on various cancers like breast, ovarian, etc. 
Although tubulin is the primary target for PTX, it has 
additionally been discovered to attack the mitochondria 
and block the activity of the apoptotic inhibitor protein 
Bcl-2 (B-cell Leukemia 2) [387]. Like other antineo-
plastic drugs, PTX treatment can induce resistance by 
inducing overexpression of the motor protein MCAK 
(leads to tubulin depolymerization), affecting membrane 
lipids (fatty acid synthase, Lipin, etc.), modified cell cycle 
checkpoint proteins (BUB1, CCNB1, CENPE, CENPF), 
enhanced DNA damage repair pathway proteins (like 
hMSH2), elevated efflux proteins (MDR1, MDR3, etc.
[388–393].

Discussion
Drug resistance is a huge clinical challenge that allows 
uncontrolled cancer progression and tumor relapse lead-
ing to reduced patient survival. Cancer cells achieve drug 
resistance under therapeutic pressure by modulating 
the tumor microenvironment, altering drug targets, and 
rewiring genetic, epigenetic and metabolic processes that 
help them to grow and survive under such conditions 
[394]. So it is vital to understand the stepwise drug-resist-
ant mechanisms gained by different cancer cells to attain 
resistance towards particular chemotherapeutic drugs. 
Cancer cells within tumors are heterogeneous with many 
types of genetically altered cells like CSCs and behave 
differently to chemotherapeutic drugs [395]. Tumor het-
erogeneity has been shown to play a critical role in can-
cer drug resistance, by transforming a non-supportive, 

Fig. 6 Depicting the resistance mechanisms of the different drugs at the proteomic level. Figure created with BioRender.com



Page 17 of 26Khan et al. Cell Communication and Signaling          (2024) 22:109  

anti-tumorigenic environment into a supportive, pro-
tumorigenic environment [15, 16]. Moreover, some of 
the tumor cells can induce the reprogramming of stro-
mal cells and immune cells, inducing the secretion of 
diverse factors like cytokines, that enhance tumor pro-
gression and suppress cell death [396]. Besides, CSCs 
have emerged as key players in the intricate landscape 
of cancer drug resistance [397]. They acquire remarkable 
abilities to resist conventional treatments, driving disease 
recurrence and metastasis as has been detailed explained 
in Section-4.  "CSCs play a key role in developing drug 
resistance and tumor relapse". CSCs unique properties, 
such as self-renewal and differentiation potential, upreg-
ulated surface membrane immune inhibitory ligands 
and release of various chemo/cytokines collectively 
contribute to therapy resistance and pose significant 
challenges in achieving long-term remission [398, 399]. 
Therefore targeting CSCs opens possibilities for innova-
tive therapeutic strategies that can be used in combina-
tion with another chemotherapeutic drug that can hold 
promise in overcoming drug resistance and potentially 
improve patient outcomes. One of the prevailing mecha-
nisms of drug resistance that needs to be focused on, is 
the involvement in the expulsion of hydrophobic drugs, 
facilitated by ATP-dependent ABC transporters [400]. 
A well-studied member of the ABC transporter, P-gp, 
an integral membrane protein, is frequently upregu-
lated in diverse malignancies [400]. Specifically, gaining 
a comprehensive understanding of intricate mechanisms 
underlying multidrug resistance (MDR) in cancer cells is 
likely to play a pivotal role in the development of inno-
vative approaches to cancer therapy in the coming years. 
However, more work is needed to be done from root level 
using high throughput assays (single cell level) of differ-
ent sections of the same tumor samples to find a specific 
target/s for therapy or combination therapy as discussed 
above. Achieving this goal might address the evolving 
aggressive and resistant cancer cells leading to reduced 
severity and improving the survival of patients.
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