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Abstract 

Beyond the encouraging results and broad clinical applicability of immune checkpoint (ICP) inhibitors in cancer 
therapy, ICP‑based immunotherapies in the context of autoimmune disease, particularly multiple sclerosis (MS), 
have garnered considerable attention and hold great potential for developing effective therapeutic strategies. 
Given the well‑established immunoregulatory role of ICPs in maintaining a balance between stimulatory and inhibi‑
tory signaling pathways to promote immune tolerance to self‑antigens, a dysregulated expression pattern of ICPs 
has been observed in a significant proportion of patients with MS and its animal model called experimental auto‑
immune encephalomyelitis (EAE), which is associated with autoreactivity towards myelin and neurodegeneration. 
Consequently, there is a rationale for developing immunotherapeutic strategies to induce inhibitory ICPs while sup‑
pressing stimulatory ICPs, including engineering immune cells to overexpress ligands for inhibitory ICP receptors, 
such as program death‑1 (PD‑1), or designing fusion proteins, namely abatacept, to bind and inhibit the co‑stimu‑
latory pathways involved in overactivated T‑cell mediated autoimmunity, and other strategies that will be discussed 
in‑depth in the current review.
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Introduction
Multiple Sclerosis (MS) is a heterogenous chronic neu-
rodegenerative disease defined by autoreactive immune 
invasion, peripherally mediated inflammation, and per-
sistent central nervous system (CNS)-compartmental-
ized inflammation, which leads to demyelination and 
increasing disability [1]. Case reports from the 15th and 
16th centuries, usually in the form of diaries, attest to the 
disease’s long history. In 1868, neurologist Jean-Martin 
Charcot was the first to precisely characterize the fea-
tures of MS, with Charcot’s Triad referring to three sig-
nificant MS symptoms, including nystagmus, intention 
tremor, and scanning speech. Extensive research and 
modern epidemiological data collection have been car-
ried out since the 1940s [2]. MS affects approximately 2.8 
million people worldwide, with women expected to have 
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it twice as often as men on a global scale; however, the 
gender ratio in certain countries reaches 4:1 [3]. Even in 
formerly low-prevalence areas, MS incidence and preva-
lence are still on the rise, and it has been demonstrated 
that this trend is positively correlated with the growing 
female-to-male ratio [4]. MS’s clinical manifestations and 
course vary; in most cases, recurrent episodes of neu-
rological impairments that often recover within days or 
weeks define the disease’s early stages, known as relaps-
ing-remitting MS (RRMS). Over time, it can be followed 
by secondary progressive MS (SPMS), which is char-
acterized by the development of permanent neurologi-
cal impairments and disability progression induced by 
neurodegeneration-associated microglia activation and 
disease deterioration. Then, there’s primary progressive 
MS (PPMS), which begins and progresses gradually but 
is more hazardous, accounting for a lower proportion of 
MS patients [5, 6].

Breakthroughs in the management of vascular comor-
bidities, as well as a robust armamentarium of disease-
modifying treatments (DMTs), have increased the 
chances of MS patients reaching stable disease and sur-
vival [7, 8]. Although immunotherapies that target the 
disease’s inflammation have contributed to dramatic mit-
igation in CNS lesion formation and relapse rate, these 
treatments are largely insufficient to avert the formation 
of permanent disability caused by axonal and neuronal 
damage and loss, especially during the disease’s progres-
sive phase, suggesting an imperative need for further 
research into efficient immunomodulatory therapies [9].

The development of demyelinating plaques in the 
white and grey matters of the brain and spinal cord is the 
pathological hallmark of MS. MS etiopathogenesis is pre-
dominantly driven by dysregulated Th1 and Th17 medi-
ated autoreactive responses elicited by environmental 
pathogens or other stimuli harboring antigenic sequences 
similar to those found in myelin in genetically susceptible 
individuals, culminating in molecular mimicry and cross-
reactivity with myelin, followed by immune cell infiltra-
tion and  localized inflammatory CNS damage [10]. As 
major regulators of immune tolerance, immune check-
points (ICPs) play a fundamental role in maintaining the 
amplitude and duration of T-cell responses by regulating 
the equilibrium of costimulatory and co-inhibitory sign-
aling pathways.

Given the above, strategies to target ICPs, whether to 
induce inhibitory ICPs or block stimulatory ICPs, have 
gained interest in investigations of various autoimmune 
diseases, notably MS or its animal model known as 
experimental autoimmune encephalomyelitis (EAE), with 
promising outcomes. The purpose of this review is to dis-
cuss the findings on the pathological implications of both 
inhibitory and stimulatory ICPs, as well as the efficacy 

and perspectives of ICP-based immunotherapy in the 
treatment of MS.

Inhibitory immune checkpoints in MS
PD‑1
The inhibitory ICP receptor programmed cell death 1 
(PD-1) is expressed on activated T cells in infections, 
malignancies, and autoimmune diseases. Its ligands 
include PD-L1, which is found on both hematopoietic 
and non-hematopoietic cells, and PD-L2, which is exclu-
sively expressed on antigen-presenting cells (APCs) and 
can be induced by inflammatory signals [11, 12]. Lym-
phatic vessels in the meninges have been discovered to 
provide a drainage pathway for PD-L1+ immune cells 
from the cervical nodes to the brain [13].

Single-nucleotide polymorphisms (SNPs) have been 
under the spotlight by scientists for several years now. 
Some studies have indicated an association between 
SNPs in PDCD1 and MS [14, 15]. In this respect, PD-1 
expression on T cells from patients with different types 
of MS was analyzed, and it was revealed that a polymor-
phism of an intronic +7146G/A of PD-1 didn’t affect 
MS susceptibility, but there was a notable aggravation of 
ongoing MS. After assessing the function of the protein 
encoded by the mutated gene, it was demonstrated that 
T cells expressing this polymorphism of PD-1 secreted a 
lower amount of IFN-γ. As well, mutations in the Runt-
related transcription factor 1 (RUNX-1) binding site 
in the PD-1 gene resulted in defective PD-1-mediated 
inhibition of IFN-c production in MS patients [14]. In 
contrast, a case-control study of Iranian MS patients 
and healthy controls evaluating the frequency of differ-
ent genotypes and alleles of PD-1.3 (+7146 G/A) dem-
onstrated that the control group had a higher frequency 
of allele A and genotype AA [16]. Nonetheless, another 
study on an Iranian population found no significant link 
between PD-1.3 SNPs and MS risk [17]. Another case-
control study on a Polish population suggested that PD-1 
polymorphisms seem to be more disease-modifying than 
a risk factor for MS. They found the exclusive presence 
of a specific PD-1 haplotype containing the PD-1.3 A 
variant (PD-1.3A/PD-1.5T/PD-1.9C) in patients with 
a non-severe outcome. Furthermore, PD-1.5T alleles 
were associated with early signs of the disease, promot-
ing pyramidal signs while protecting against diplopia. 
Similarly, diplopia development was observed to be more 
prevalent in patients  harboring the PD-1.3G/PD-1.5C/
PD-1.9C haplotype, but it was the reverse in patients har-
boring the GTC haplotype [15].

Analysis of peripheral blood mononuclear cells 
(PBMCs) from MS patients revealed a downregulated 
expression profile of PD-1 and PD-L1 mRNA that was 
substantially correlated with disease progression and 
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the expanded disability status scale (EDSS) score. How-
ever, no remarkable difference was detected in the PD-L2 
mRNA levels between MS patients and healthy controls 
[18, 19]. Likewise, MS patients were shown to have dra-
matically higher PD-1 expression in  CD4+CD25bright 
FoxP3-exon2+ Treg cells compared to healthy con-
trols,  contributing to the dysfunction and exhaus-
tion of these cells [20]. Furthermore, ex vivo functional 
assessments of Th17 and Th1 clones from MS patients 
revealed that Th17 cells are less susceptible to suppres-
sion and have a higher proliferative capacity, which could 
be attributed to increased expression of co-stimulatory 
molecules, namely PD-1, in Th17 cells compared to Th1 
cells [20]. It was also discovered that the proportion of T 
follicular helper (Tfh) cells, PD-1+ Tfh cells, and PD-1+ 
inducible costimulator (ICOS)+ Tfh cells increased in 
the cerebrospinal fluid (CSF) of MS patients, with  PD1+ 
Tfh cells showing a positive correlation with the number 
of CSF plasma cells and disease progression [21]. Addi-
tionally, research has demonstrated that the frequency of 
 CD3+  CD8+ T cells in MS patients is significantly lower 
than in healthy controls; however, these cells were shown 
to overexpress PD-1 in correlation with Epstein-Barr 
virus (EBV) load, suggesting a pathogenic implication 
of EBV in MS development and exacerbation [22]. Con-
sistent with these findings, studies on  CD8+  CD57+ T 
cells in MS patients, which act as effector cytotoxic cells 
against EBV-infected cells, revealed that PD-1 expres-
sion impairs degranulation and cytotoxicity in these 
cells, compromising the immune control of EBV during 
the remission phase and contributing to disease exac-
erbation [23]. Conversely, the decreased frequency of 
PD-1+ cells might indicate a distinct distribution and/
or deficient generation of memory T cells, as has been 
postulated to underpin the defective control of EBV by 
 CD8+ T cells in MS [24].  CD8+ PD-1+ T cells constitute 
a significant proportion of T cells found in MS lesions, as 
well as clusters of CSF  CD8+ T cells correlated with MS, 
with the latter being more frequent in the CNS than in 
peripheral blood [25–28]. Although inflammatory condi-
tions induce  PD-L1 expression in microglia, astrocytes, 
and infiltrating mononuclear cells [29], pathological stud-
ies on post-mortem brain tissues confirmed that more 
than half of infiltrating  CD8+ T cells lack PD-1 expres-
sion and are thus insensitive to PD-L1/L2, pointing to 
a potential therapeutic implication of PD-1 augmenta-
tion for MS patients [30]. On the other hand, analysis of 
human brain endothelial cells found that these cells are 
positive for PD-L2 in both MS and healthy individuals, 
with MS patients having roughly half the expression of 
healthy controls, which contributes to defective regula-
tion of T cell transmigration to the brain [31]. Further, 
several researchers have suggested that the expression 

pattern of PD-1/PD-L1 differs depending on the disease 
state. In this way, the frequency of PD-1+  CD4+ T cells, 
PD-1+  CD8+ T cells, PD-L1+ interleukin (IL)-10+  CD14+ 
cells, and PD-L1+ IL-10+  CD19+ cells in MS patients 
were found to be notably higher in the remitting phase 
compared to the relapsing phase [32]. Also, the frequency 
of circulating Tfh cells  (CD3+CD4+CXCR5+PD-1+) in 
relapsing RRMS patients was shown to be increased in 
comparison to  remitting RRMS and healthy controls 
[33]. PD-L1 overexpression in APCs was also demon-
strated to reduce autoreactive T cell immunity in EAE 
mice, and PD-L1 deficient EAE models displayed sig-
nificantly worse symptoms. These were accompanied by 
significant increases in tumor necrosis factor (TNF)-α, 
IL-17, and IFN-α production [34–36], all of which trig-
ger severe inflammatory responses that are critical in the 
pathophysiology of MS and EAE [37]. Additionally, it has 
been outlined that during the acute phase of EAE, ele-
vated expression of PD-L1 in the CNS results from over-
expression on resident microglia and infiltrating myeloid 
PD-L1+ major histocompatibility complex (MHC) 
class  IIhigh APC, contributing to suppression of IFN-γ 
responses of activated Th1 cells rather than Th17 cells, 
whereas PD-L2 is mostly present on a subset of infiltrat-
ing myeloid DC and macrophages [38]. On the other 
hand, PD-L1 expression is higher in MS plaques than in 
non-pathological CNS tissues. It was consistently shown 
to be abundantly  expressed in inflammatory regions of 
white matter in MS patients, and it was believed to be 
expressed on activated microglia/macrophages [39].

Several studies have investigated the microRNA 
(miRNA/miR)-mediated regulation of PD-1/PD-L1 in 
MS and EAE. miRNAs are endogenous non-coding 
RNAs that are involved in the post-translational regula-
tion  of gene expression by inhibiting or degrading their 
corresponding messenger RNA (mRNA), the aberrant 
expression profile of which has been evidenced in pleth-
ora of autoimmune diseases and malignancies [40–42]. 
Among the dysregulated miRNAs found in MS and EAE, 
upregulation of miR-16, miR-142-3p, and miR-155 have 
been shown to facilitate the downregulation of PDCD1 
as a target gene [43, 44], and blocking both miRNAs and 
PDCD1 can affect each other’s expression. In this respect, 
miR-155 depletion in mice was found to be protective 
against EAE, even though, PD-1 blockade restored its 
susceptibility to EAE [45]. Similarly, diminished expres-
sion of miR-1, miR-20a, miR-28, miR-95, miR-146a, miR-
335, and miR-625 in PBMCs of pregnant MS patients was 
discovered to upregulate their targets PD-L1 and PD-L2, 
potentially contributing to a lower recurrence rate of MS 
in the pregnant population [46].

Exacerbation of disease and increased neurological 
severity have been documented in EAE mice following 
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PD-1 blockade [34]. PD-1 interaction with PD-L1, unlike 
PD-L2, can protect against EAE, as demonstrated by the 
observation that PD-1-/- and PD-L1-/- mice had more 
severe EAE than wild type and PD-L2-/- mice, and PD-1-

/- and PD-L1-/- cells exhibited higher production  of the 
proinflammatory cytokines IFN-γ, TNF, IL-6, and IL-17 
[36]. PD-1 blockade in EAE was also shown to activate 
antigen-specific T cells and their inflammatory cytokine 
production [34]. Similarly, PD-1 depletion in lympho-
cytes derived from MS patients during the acute phase 
was associated with a proliferative effect on  CD4+ and 
 CD8+ T cells; nevertheless, these consequences were not 
evidenced while PD-L1 on the APCs was suppressed, 
suggesting that PD-1 has a more  prominent role than 
PD-L1 in inducing lymphocyte apoptosis and enhancing 
lymphocyte proliferation in MS [47].

PD-1/PD-L1 was also proposed to underpin the mech-
anism of estrogen (E2) protection against EAE since the 
lack of PD-1 on B cells in E2-implanted mice was found to 
enhance activated  CD4+ T cell frequency while decreas-
ing the frequency of Bregs [48]. Nevertheless, it exhibits 
a protective role against EAE through PD-L1 upregula-
tion on B cells and regulatory T cells [49, 50]. Despite 
this, PD-L1 suppression in another study had no signifi-
cant effect on the onset and severity of EAE [51]. Addi-
tionally, E2 has been shown to elevate intracellular PD-1 
expression in  FoxP3+ Tregs while significantly decreasing 
IL-17 production in the periphery of EAE-induced mice 
[52]. Although PD-1 knockout was coupled with nor-
mal Foxp3 expression in Tregs, suppressive activity was 
markedly impaired, showing that PD-1 expression plays a 
vital role in E2-mediated Treg immunosuppression [53]. 
E2 also plays a key role in immunosuppression in EAE 
mice through the PD-L1 upregulation of monocytes and 
macrophages in the periphery and CNS [54]. As well, it 
increases PD-L1 expression on DCs, which additionally 
enhances the formation of tolerant DCs and dampens 
the development of EAE [55]. Furthermore, several cur-
rently used DMTs, including Fingolimod [56], Siponimod 
[57], and IFN-β [28] were demonstrated to induce PD-1 
expression on Tfh, Treg, and  CD8+ T cells, respectively.

Given the pathogenic implications of PD-1/PD-L1 sup-
pression in the development of MS and EAE, multiple 
investigations  have been conducted  to boost this path-
way as a therapeutic strategy (Table  1). In this respect, 
Hirata et  al. transfected embryonic stem cell-derived 
DCs with PD-L1 and administered them intraperito-
neally, enabling them to establish immune tolerance and 
reduce the severity of myelin oligodendrocyte glyco-
protein (MOG)-induced EAE [58]. Consistently, Chang 
et  al. utilized 5-aza-2′-deoxycytidine (5-aza) to induce 
promoter hypomethylation of PD-L1 in DCs, which 
culminated in suppressed  CD4+ T cell activation and 

thereby inhibited EAE progression [59]. Similar to this, 
estriol (E3) treatment of DCs (E3 DCs) could upregu-
late the expression of inhibitory costimulatory mark-
ers, particularly, PD-L1/L2, creating tolerogenic DCs. 
E3 DCs were then administered to EAE mice before the 
disease was actively induced, and this exerted protective 
effects by reducing the production of proinflammatory 
cytokines IL-12, IL-23, and IL-6 and increasing anti-
inflammatory cytokines IL-10 and transforming growth 
factor beta (TGF-β) [55]. Additionally, it was discovered 
that 1,25(OH)2D3 treatment of DCs to create tolero-
genic DCs (VD3-DCs) upregulated PD-L1 on these 
cells; thus, the transfer of these cells enhanced PD-1 
expression of spleen and lymph node T cells and alle-
viated the clinical symptoms of EAE [60]. Nonetheless, 
another study found that intracerebral administration of 
PD-L1-knocked-out DCs was coupled with the recruit-
ment of regulatory  CD8+ T cells to the CNS, resulting 
in EAE amelioration [61]. Likewise, the adoptive trans-
fer of a novel subtype of Treg cells with high expression 
of PD-L1 was shown to suppress the EAE in close cor-
relation with PD-L1 expression [62]. Similar findings 
were observed when Breg cells with abundant expression 
of PD-L1 were adoptively delivered to the EAE mouse 
model, which led to the diminished release of the inflam-
matory cytokines IFN-γ and IL-17 [63]. Moreover, IL-12 
treatment stimulates the production of the Th1 cytokine 
IFN-γ, which drives upregulation of PD-L1/L2 expres-
sion at both mRNA and protein levels on  CD11b+ APCs 
and, ultimately, contributes to the inhibition of EAE [64]. 
Besides that, MIS416, a novel immunomodulatory acti-
vator of nucleotide-binding oligomerization domain-
containing protein 2 (NOD-2) and Toll-like receptor 9 
(TLR9) signaling, was shown to reduce immune infiltra-
tion into the CNS and alleviate EAE severity via a variety 
of mechanisms, including raising the frequency of red 
pulp macrophages and inducing IFN-γ-mediated PD-L1 
upregulation on these cells, while promoting the home-
ostatic tracking of PDL-1-expressing myeloid subsets 
into the CNS [65]. Augmentation of PD-1, PD-L1, and 
PD-L2 expression in the spinal cord was also demon-
strated in EAE mice treated with Astragalus polysaccha-
rides (APS), an active extract derived from Astragalus 
membranous, which was coupled with EAE remission 
[66]. Further, Herold et al. suggested that early delivery 
of PD-L1 Ig fusion protein for five consecutive days was 
linked to a long-lasting amelioration  in the severity of 
the disease by inhibiting the development of Th17 cells 
and the related transcription factor retinoic acid-related 
orphan receptor (ROR)-γt as well as interferon-regula-
tory factor 4 (IRF4) [67].

Overall, the PD-1/PD-L1 pathway shows promise 
as a therapeutic target for MS, but further research is 
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necessary to fully comprehend its pathological implica-
tions and develop safe and effective clinical approaches. 
This entails determining the optimal administra-
tion method and dosage for PD-1/PD-L1 modulators, 
evaluating potential side effects, and understanding 
how the pathway interacts with other immunomodu-
latory pathways. Conducting clinical trials is essential 

to establishing the safety and efficacy of PD-1/PD-L1 
pathway modulators in MS patients. Despite the chal-
lenges involved, leveraging PD-1/PD-L1 pathway mod-
ulation as an MS treatment holds significant potential 
benefits and could result in a more precise and efficient 
therapeutic approach with fewer adverse effects com-
pared to current treatments. Ongoing research in this 

Table 1 Immune checkpoint‑based immunotherapies in EAE models

Abbreviations: Ab Antibody, Breg Regulatory B cell, CNS Central nervous system, CTLA-4 Cytotoxic T-lymphocyte-associated protein 4, DCs Dendritic cells, dNP2-
ctCTLA-4 Cell-penetrating peptide-conjugated cytoplasmic domain of CTLA-4, EAE Experimental autoimmune encephalomyelitis, Foxp3 Forkhead box P3, ICP Immune 
checkpoint, IFN Interferon, IL Interleukin, IRF4 Interferon regulatory factor 4, MBP Myelin basic protein, MOG Myelin oligodendrocyte glycoprotein, PD-1 Programmed 
cell death protein 1, PD-L1 Programmed death-ligand 1, ROR-γt Retinoic acid-related orphan receptor gamma t, Th T helper, Treg Regulatory T cell, VCAM-1 Vascular cell 
adhesion molecule 1

Target ICP Intervention Outcome Reference

PD‑1 PD‑L1high DC Gene‑modified DC: It reduced T‑cell response to MOG, cell infiltration into the spinal cord, and EAE 
severity.
5‑aza‑treated DC: It inhibited  CD4+ T cell proliferation and cytokine secretion, inflammatory cell 
infiltration, CNS demyelination, and EAE progression.
E3‑treated DC: It protected against developing EAE through immune deviation to a Th2 response.
1,25(OH)2D3‑treated DC: It enhanced PD‑1 expression of spleen and lymph node T cells and allevi‑
ated the clinical symptoms of EAE.

[55, 58–60]

PD‑L1‑knocked out DC The treatment enhanced the recruitment of regulatory  CD8+ T cells to the CNS and EAE ameliora‑
tion.

[61]

PD‑L1 high Treg cell The treatment inhibited EAE in a FoxA1‑and PD‑L1‑dependent manner. [62]

PD‑L1 high Breg cell The treatment protected against the development and severity of MOG‑induced EAE and dimin‑
ished the release of inflammatory cytokines IFN‑γ and IL‑17.

[63]

IL‑12 The treatment inhibited EAE by upregulating PD‑L1 on  CD11b+ APCs via an IFN‑γ‑dependent 
manner.

[64]

MIS416 The treatment prevented EAE via IFN‑γ‑dependent expansion of PD‑L1‑expressing peripheral 
myeloid cells.

[65]

PD‑L1 Ig fusion protein The treatment led to long‑lasting amelioration in the severity of EAE by inhibiting the develop‑
ment of Th17 cells and the ROR‑γt as well as IRF4.

[67]

CTLA‑4 CTLA‑4‑Fc The treatment resulted in significant recovery after an acute episode, EAE relapses, and full clinical 
remission while having no notable impact on the rate of EAE relapse.
The treatment also protected against EAE through anti‑inflammatory effects and prevented demy‑
elination or axonal loss.

[68, 69]

dNP2‑ctCTLA‑4 The treatment led to decreased Th1 and Th17 cell infiltration to the CNS and demyelination.
The treatment also led to EAE remission with long‑term control and prevention of relapse 
through expansion of Foxp3+ Tregs, Foxp3 expression during Th1 or Th17 cell differentiation, 
and CTLA‑4 expression.

[70, 71]

B7‑1 Ig The treatment ameliorated EAE through the development of naïve MBP‑specific Th precursor cells 
via the Th2 pathway.

[72]

CD40 Anti‑CD40L Ab The treatment at either the peak of acute EAE or during remission inhibited clinical disease 
progression and CNS inflammation by suppressing Th1 differentiation and effector function, IFN‑γ 
release, myelin peptide‑specific delayed‑type hypersensitivity responses, as well as inducing 
encephalitogenic effector cells.
The treatment also mitigated EAE severity by regulating IL‑10‑ and IL‑35‑producing  Foxp3+ Treg 
cells.

[73, 74]

KGYY 6 The treatment prevented the progression of the disease and alleviated symptoms through binding 
to Th40 and memory T cells and upregulating the expression of CD69 and IL‑10 in the  CD4+ T cell 
compartment.

[75]

CD137 Agonistic anti‑CD137 Ab The treatment reduced EAE incidence and severity through suppression of IFN‑γ‑releasing  CD8+ T 
cells, Th17 cells, and related pathogenic IL‑17 release while raising  Foxp3+  CD4+ Treg cell frequency 
in an IFN‑γ‑independent manner. Even though, this was only effective when administered dur‑
ing the disease induction phase.

[76, 77]

CD137L knockout The treatment protected against demyelination and the development of EAE by restricting 
encephalitogenic T cell activation and inflammatory cytokine release, as well as their trafficking 
into the CNS by downregulating VCAM‑1.

[78]
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field is critical for the development of safe and effective 
PD-1/PD-L1 pathway modulators for MS treatment.

VISTA
V domain-containing Ig suppressor of T-cell activation 
(VISTA), a member of the B7 family, is a one-of-a-kind 
inhibitory ICP broadly expressed on  CD4+ T cells,  CD8+ 
T cells, neutrophils, DCs, and monocytes [79]. It has two 
ligands: P-selectin glycoprotein ligand 1 (PSGL-1) and 
V-set and Ig domain-containing 3 (VSIG3), the latter of 
which is expressed exclusively on neurons and glial cells 
in the brain and on Sertoli cells in the testis [80], and 
its interaction with VISTA inhibits the release of IFN-γ, 
IL-2, and IL-17 cytokines [81]. VISTA, as a co-inhibitory 
ligand expressed on APCs, can suppress T cells while 
also acting as a co-inhibitory receptor on  CD4+ T cells, 
suggesting that an aberrant expression profile of VISTA 
results in the induction of over-activated T cell immu-
nity [82]. In VISTA-deficient mouse models, the increase 
of downstream chemokines induced by IFN-γ, such as 
interferon-gamma-induced protein 10 (IP-10) and mono-
cyte chemoattractant protein-1 (MCP-1) supports the 
inhibitory implications of VISTA in Th-1 polarization 
[83]. Also, the analysis of T cell compartments in VISTA 
knockout mice using transcriptome and epigenetic tech-
niques indicated that VISTA is a critical factor in the 
maintenance of naïve T cell quiescence. T cell tolerance is 
therefore regulated before activation, whereas other ICPs 
such as CTLA-4 and PD-1 act after T cell activation. 
Thus, VISTA is considered a pioneer and a novel thera-
peutic target since it is the first known ICP to act in the 
initial stages of T cell activation [84]. In this way, VISTA 
suppression in aged mice led to spontaneous stimula-
tion of  CD8+ and  CD4+ T cells and loss of tolerance [83], 
implying the significance of VISTA in autoimmunity, as 
its knockdown in autoimmune diseases, including sys-
temic lupus erythematosus, was found to exacerbate the 
disease [85]. Similarly, inflammation and tissue dam-
age in EAE deteriorate as a consequence of infiltrating T 
cells’ increased activation triggered by VISTA downregu-
lation on microglia cells in lesions [86].

Studies on EAE models have shown that VISTA knock-
out mice are more susceptible to EAE by increasing the 
amount of IFN-γ and IL-17A-producing  CD4+ T cells in 
the CNS [83, 87]. In line with these findings, Borggrewe 
et  al.  found that VISTA is expressed differentially in 
microglia during inflammation and neurodegeneration, 
establishing the first evidence of VISTA activity in micro-
glia during CNS pathology. They isolated microglia from 
EAE mice to investigate the changes in microglial VISTA 
expression during CNS inflammation. In comparison to 
nonimmunized mice, VISTA expression was significantly 
lower in all stages of EAE, including scores 1, 4, and 

remission, in the forebrain, spinal cord, and hindbrain 
microglia. Furthermore, VISTA expression was shown 
to be dramatically reduced in chronic MS lesions due to 
high activation of microglial cells, while it was abundantly 
expressed in microglia cells in the normal-appearing 
white matter, where they were not active [88]. Chronic 
MS lesions were shown to have dysregulated macrophage 
and lymphocyte activity, as well as extensive immune cell 
infiltration [89], which may facilitate the downregulation 
of VISTA expression, leading to greater infiltration [90]. 
So, according to the association between VISTA expres-
sion pattern and immune infiltration in the periphery of 
MS, it’s reasonable to infer that VISTA expression in acti-
vated microglia in CNS pathologies may be influenced 
by external variables. Besides, decreased VISTA levels 
in microglia may hamper phagocytosis, which is a criti-
cal mechanism for eliminating cellular debris early in the 
disease [91]. Further functional evaluations of microglial 
VISTA in MS lesions revealed that VISTA has a differen-
tial expression in various stages of MS lesions, with the 
lowest expression during inflammation, and its knockout 
can stimulate morphological and transcriptional altera-
tions toward an immune-activated and proliferative pro-
file with amoeboid morphology and overexpression of 
genes involved in TNF and IFN signaling as well as the 
cell cycle. Besides, microglial VISTA was found to be 
implicated in the induction of a regulatory and homeo-
static microglia phenotype that intactly uptakes myelin 
[92], which would otherwise contribute to oligodendro-
cyte damage through antigen presentation to infiltrating 
T cells [93].

Borggrewe et  al. also observed the downregulation of 
VISTA expression in endothelial cells in chronic MS 
lesions. Endothelium involvement in MS pathology com-
prises the chemotaxis of immune cells to the CNS [94] 
and their antigen presentation of CNS constituents to 
antigen-specific lymphocytes [95–97]. Lymphocyte acti-
vation and transmigration into the CNS can consequently 
be promoted due to reduced expression of VISTA on the 
endothelium [88]. As well, according to Derakhshani 
et  al., investigations on PBMCs of RRMS patients dem-
onstrated a significant downregulation of VISTA mRNA 
expression, and further single-cell RNA sequencing anal-
ysis of various cell populations confirmed a decreasing 
trend in the expression pattern of VISTA in monocytes, 
DCs, and naïve B-cells of untreated RRMS patients com-
pared to healthy controls [98].

VISTA is one of the most recently found immunother-
apy targets, and while our understanding of its biology 
in the CNS is limited, it is conceivable to develop novel 
therapeutic approaches for CNS diseases such as MS 
by either increasing or reducing its activity [86]. Immu-
noenhancing anti-VISTA antibodies  (antagonists)  and 
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immunosuppressive anti-VISTA antibodies (agonists) are 
the two main strategies to silence or boost VISTA sign-
aling, respectively, with the administration of the latter 
accompanied by decreased severity of inflammation in 
EAE, while VISTA antibodies exacerbated the disease 
[86, 87, 99]. Hence, agonistic antibodies targeting VISTA 
may be an effective therapy for MS [86]. Nonetheless, 
research on the therapeutic effects of currently used 
drugs for MS treatment, including IFNβ-1α, glatiramer 
acetate (GA), and dimethyl fumarate (DMF) has been 
shown to interfere with the VISTA expression, as the 
VISTA mRNA was found to be upregulated in PBMCs 
of the treated patients compared to their treatment naïve 
counterparts [98].

Collectively, the expression of VISTA has been con-
sistently observed to be downregulated in MS and EAE, 
exhibiting distinct patterns across different stages of the 
disease. Despite the limited research investigating the 
precise involvement of VISTA in the pathogenesis of 
MS and EAE, emerging evidence indicates a promising 
potential for augmenting VISTA expression as a viable 
therapeutic target. Nevertheless, further rigorous exami-
nation through preclinical and clinical studies is impera-
tive to validate these findings, thereby establishing the 
conclusive role of enhancing VISTA expression as an effi-
cacious therapeutic strategy for MS patients.

LAG‑3
Lymphocyte-activation gene 3 (LAG-3) is an essential 
ICP that has been implicated in cancer, infectious disease, 
and autoimmunity. However, much remains unknown 
about its mechanism of action. LAG-3 is a member of the 
immunoglobulin superfamily and the product of a gene 
duplication event [100]. LAG-3 presumably inhibits the 
activation of the host cell and enhances immune response 
suppression [101]. It is mostly investigated in Tregs and 
conventional T-cells, though it is also expressed in natu-
ral killer (NK) cells, neurons, B-cells, and plasmacytoid 
dendritic cells (pDCs) [102–105].

Clinicopathological studies have shown a significant 
correlation between LAG-3 expression, MS susceptibil-
ity, and the disease course of MS. It has been shown that 
SNPs in LAG-3 confer a moderate risk for MS develop-
ment [106]. Likewise, rs1922452 of the  LAG-3  gene in 
Jordanian MS patients was found to be correlated with 
MS comorbidity [107]. However, another SNP genotyp-
ing study on two large sample sets of Swedish MS patients 
and healthy controls failed to establish any association 
between the LAG-3 gene and MS [108]. Besides, LAG-3 
mRNA expression in PBMCs derived from MS patients 
was found to be significantly greater than their control 
counterparts at baseline and during the disease course, 
and it serves as an adverse prognostic factor [109]. 

Similarly, Jones et  al. discovered a global dysregulation 
of LAG-3 expression on  CD4+ and  CD8+ T  cells from 
RRMS patients due to reduced LAG-3 transcription, 
which induced enhanced T cell proliferation and persis-
tence as well as lower expression of apoptosis markers 
and resistance to cell death. Their findings emphasized 
the significance of a LAG-3 agonist in the treatment of 
autoimmunity [110]. On the other hand, studies on EAE 
models have shown that LAG-3 deficiency in  CD4+ 
 FoxP3+ Tregs in the CNS enhances IFN-γ and granzyme 
B production, which, in contrast to Tregs’ protective role 
in maintaining immune tolerance, shifts them toward a 
contributor to MS pathogenesis [111].

Although the precise role of LAG-3 in EAE and MS 
pathology remains elusive, available evidence indicates 
its contribution to disease susceptibility and progression. 
Further investigation is necessary to fully understand 
the underlying mechanisms involved and to explore the 
potential of LAG-3 as a therapeutic target for MS.

TIM‑3
The receptor for T-cell immunoglobulin and mucin-
containing protein-3 (TIM-3) is expressed on DCs, 
macrophages, T cells, and NK cells. It contributes to the 
development and maintenance of immune tolerance by 
inducing T-cell apoptosis or by innate immune cell sup-
pression [112, 113]. At least four ligands have been dis-
covered for this ICP: carcinoembryonic antigen-related 
cell adhesion molecule 1 (Ceacam-1) [114], high mobil-
ity group protein B1 (HMGB1) [115], Galectin-9 (Gal-9), 
and Phosphatidyl serine [116]. It’s proven that blocking 
TIM-3 on NK cells enhances IFN-γ production [117].

Several studies have shown a correlation between 
TIM-3 SNPs and MS susceptibility [118–120]. For 
example, a case-control study of the Iranian popula-
tion discovered a significant link between TIM-3 SNPs 
and MS susceptibility, with -574 and -1516 C>A SNPs 
in the promoter region of the TIM-3 gene posing a risk 
for MS development, while A/C genotypes for the -574 
and -1516 loci of the TIM-3 gene were significantly 
lower in MS patients [118]. Another study on  CD4+ T 
cell clones derived from MS patients’ CSF revealed that 
these cells released more IFN-γ  than control subjects, 
exhibited  downregulated expression of T-bet and TIM-
3, and when polarized under Th1 conditions that evoke 
T-bet and TIM-3 expression, clones from control sub-
jects upregulated TIM-3 at much higher rates than T cell 
clones from MS patients [121]. Similarly, investigations 
on  CD4+ T cells from MS patients and control subjects 
revealed a significant functional implication  for TIM-3 
expression in  CD4+ T cell IFN-γ  production; however, 
unlike in control subjects, monoclonal antibody (mAb)-
mediated TIM-3 blockade did not result in increased 
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IFN-γ  production in  CD4+ T cells from MS patients. 
Interestingly, when MS patients were given GA or IFN-β, 
the defective immunoregulation of TIM-3 was reversed, 
and the increase in IFN-γ production of  CD4+ T cells in 
both groups of control and MS patients was comparable, 
suggesting that TIM-3 regulation is a therapeutic mecha-
nism of these drugs [122]. GA has also been discovered 
to bind the integrin macrophage-1 antigen (CD11b/
CD18) and upregulate TIM-3 mRNA in PBMCs, leading 
to promoted phagocytosis of monocytes in MS patients 
[123]. Furthermore, TIM-3- and Gal-9-blocking antibod-
ies were shown to mitigate apoptotic cell death of myelin 
basic protein (MBP)-specific T lymphocytes while boost-
ing IFN-γ  and IL-17 expression in benign MS, RRMS, 
and healthy control groups, though not in the PPMS 
group, demonstrating the importance of TIM-3 expres-
sion pattern in determining the clinical phenotype of the 
disease [124]. The same scientists obtained similar results 
by examining the relationship between the CEACAM-1/
TIM-3 pathway and the clinical type of MS patients [125]. 
However, in contrast to these findings, an ex vivo analysis 
of Th1 and Th2 cells, as well as mononuclear cells from 
the CSF of MS patients, revealed a differential expression 
pattern of TIM molecules. Specifically, Th1 cells over-
expressed TIM-3, which is associated with higher IFN-γ 
and TNF-α expression, while Th2 cells overexpressed 
TIM-1, which is associated with lower IFN-γ and TNF-α 
expression. This differential expression pattern was found 
to be associated with the clinical state of the disease 
[126]. Despite these discrepancies, multiple studies sup-
port TIM-3’s undeniable role in Th1 response down-reg-
ulation, suggesting its significance in suppressing effector 
Th1 cells during normal immune responses and inducing 
peripheral tolerance [127–129].

In summary, the current understanding of the patho-
logic implications of TIM-3 in MS pathogenesis is still 
emerging. Some studies have consistently demonstrated 
the downregulation of TIM-3 in MS patients, indicat-
ing its potential involvement in the disease. Therefore, 
developing therapeutic strategies to enhance TIM-3 
expression may represent a promising approach for MS 
treatment. Further preclinical and clinical studies are 
required to determine the most effective way of target-
ing TIM-3 and to evaluate the safety and efficacy of such 
approaches.

CTLA‑4
Cytotoxic T-lymphocyte antigen-4 (CTLA-4), a CD28 
homolog, is an ICP receptor mostly expressed on DCs 
and activated T-cells including memory and regulatory 
T cells [130]. Its two ligands are CD80 (B7-1) and CD86 
(B7-2). CTLA-4 is known to have an intracellular mecha-
nism where downstream signaling occurs by binding 

to its ligands, however, the extracellular mechanism of 
action has been the subject of further investigation [131, 
132]. According to immunological studies, CTLA-4 has 
an essential role in the induction of peripheral tolerance 
and inhibition of T cell function and proliferation when 
upregulated following T cell activation [133].

In the largest case series investigating clinical pheno-
types of CTLA-4 deficiency, neurological complications, 
including autoimmune encephalomyelitis or encepha-
litis, were reported in 28% of subjects [134]. Likewise, 
increased expression of CTLA-4 was considered protec-
tive in experimental allergic encephalomyelitis [135].

Studies on the correlations between CTLA-4 SNPs and 
MS susceptibility have yielded conflicting results, with 
the majority of them failing to demonstrate any correla-
tion [136–140]. For example, CTLA-4 A/G + 49 has been 
linked to MS susceptibility in several populations [141–
143], while no correlation has been identified in others 
[144, 145]. Likewise, a study by Palacios et al. discovered 
a decline in CTLA-4 isoforms expression associated 
with some alleles of SNP 658 in MS patients, but they 
inferred that the epigenetic alterations are mainly regu-
lated by the disease itself and the implication of CTLA-4 
in MS is roughly attributable to functional changes in 
its pathway [146]. Some researchers also analyzed the 
significance of CTLA-4 SNPs as a prognostic factor for 
MS progression and the clinical course of the disease. 
In this way, Karabon et  al. demonstrated that CTLA-4 
gene polymorphisms CT60A and Jo31T, which have a 
positive correlation with membrane and cytoplasmic 
CTLA-4 expression of  CD4+ T cells, enhanced the risk 
of paresthesia and pyramidal signs as the first manifesta-
tion of disease, as well as an earlier transition to SPMS in 
RRMS patients who were carriers of these alleles [147]. 
As well,  Mäurer et  al. found that PPMS patients were 
more likely to be carriers of the +49 G allele than patients 
with about onset of disease [148]; however, this increas-
ing trend of carriage for this allele in PPMS patients 
compared to RRMS patients was not shown to be signifi-
cant in another study by Heggarty et  al [143]. Further-
more, pathological analysis of MS lesions has identified 
an rs5742909/CTLA-4 polymorphism that is associated 
with diminished remyelination [149]. Consistently, next-
generation sequencing (NGS) analysis of a case of MS 
revealed that the patient was heterozygous for a poten-
tially pathogenic frameshift deletion variation in CLTA-4 
exon 1:c.81dup p.(leu28Serfs*32), which was associated 
with CNS inflammatory demyelination [150].

Several ex vivo analyses of CTLA-4 expression on 
 CD4+ T cells,  CD8+ T cells, monocytes, and PBMCs 
derived from treatment-naive MS patients and healthy 
counterparts did not reveal a significant difference 
between the two groups [109, 151, 152]. According to a 
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study by Mena et al., patients with a rapidly progressing 
disease were the only group with a significantly increased 
expression profile of CTLA-4 on  CD4+ and  CD8+ T cells 
[151]. Conversely, other studies found CTLA-4 down-
regulation in RRMS patients compared to healthy con-
trols [19, 153]. On the other hand,  it was shown that 
the proportion of CTLA-4+  CD4+ T cells in treatment-
naive RRMS and SPMS patients was substantially higher 
than that in healthy controls and that this difference was 
more pronounced in RRMS patients. Additionally, when 
 CD4+ T cells from study subjects were stimulated with 
anti-CD3+ rIL-2,  CD4+ T cells from SPMS patients were 
unable to induce normal surface CTLA-4 expression, and 
even among RRMS patients, its expression was decreased 
[154]. Similarly, CTLA-4 blockade in MBP-reactive T 
cells from MS patients and healthy controls during stim-
ulation resulted in a proliferative and enhanced cytokine 
response, whereas this effect was much lower in MS 
patients, inferring that CTLA-4’s regulatory function in 
MS patients might be compromised [152]. Also, a CSF 
analysis of PPMS and RRMS patients for the expression 
of CTLA-4 on memory  CD8+ T cells found substantial 
age-related variations in CTLA-4 expression pattern, 
with a tendency for it to decline in healthy controls while 
being entirely abrogated in MS patients. In contrast to 
elderly patients, this aberration was notably evidenced in 
young MS patients, especially in patients with PPMS, 
implying a trend of premature immune aging in the  CD8+ 
T cell compartment of young MS patients, with possible 
consequences for clinical outcomes [155].

In vivo, animal model investigations have shown con-
troversies regarding the protective or detrimental con-
sequences of CTLA-4 expression, with some studies 
demonstrating CTLA-4 deletion to protect against EAE 
induction [156–158] and others finding the reverse. In 
this way, Almolda et  al. reported a differential CTLA-4 
expression pattern during acute EAE, with CTLA-4+ 
cells being elevated in the recovery phase, regulating the 
termination of the immune response [159]. Mechanisti-
cally, activated microglia and macrophages in the CNS 
in the EAE mouse model have been demonstrated to be 
involved in 1,25(OH)2D3 synthesis and paracrine signal-
ing to CNS-infiltrating  CD4+ T cells, which upregulates 
CTLA-4 expression and protects against immune-medi-
ated neurological damage [160]. Thus, vitamin D 
insufficiency, a well-known contributor to immune dys-
regulation in autoimmune and infectious diseases [161], 
may disturb the vitamin D3-regulated ICP in the preven-
tion of MS. Similarly, several researchers investigated 
anti-CTLA-4 antibodies in EAE models and discovered 
that blocking CTLA-4 might aggravate inflammatory 
responses, autoreactivity, and clinical symptoms, as well 
as hinder the clinical remission of the disease [162–165]. 

Other researchers targeted CTLA-4 with a recombinant 
fusion protein constituted of the extracellular domain of 
human CTLA-4 bound to mouse IgG2a Fc (CTLA-4-Fc), 
which resulted in significant recovery after an acute epi-
sode, EAE relapses, and full clinical remission while hav-
ing no notable impact on the rate of EAE relapse [68]. 
CTLA-4-Fc was also suggested to have protective and 
anti-inflammatory effects against EAE, with CTLA-4-
Fc-treated animals showing essentially no demyelination 
or axonal loss as compared to their control counterparts 
[69]. Furthermore, conjugating  the blood-brain barrier 
(BBB) permeable peptide dNP2 with the cytoplasmic 
domain of CTLA-4 (dNP2-ctCTLA-4) allowed for effi-
cient delivery to EAE mice, resulting in decreased Th1 
and Th17 cells infiltration to the CNS and demyelination 
[70]. Another study on dNP2-ctCTLA-4 in EAE models 
found that it can expand  Foxp3+ Tregs, Foxp3 expres-
sion during Th1 or Th17 cell differentiation, and CTLA-4 
expression, resulting in EAE remission with long-term 
control and prevention of relapse [71].

Interestingly, inhibiting CTLA-4 ligands displayed dis-
tinct consequences, as the interplay of B7-1 and B7-2 
with their shared cognate receptors CD28 and CTLA-4 
modulates the commitment of precursors to a Th1 or Th2 
lineage, which influences the clinical outcomes. In this 
regard, anti-B7-1 Ig was shown to promote the develop-
ment of naïve MBP-specific Th precursor cells via the 
Th2 pathway, whereas anti-B7-2 Ig was shown to contrib-
ute to Th1 cell development. Thus, the anti-B7-1 Ig treat-
ment ameliorated EAE, while the anti-B7-2 Ig treatment 
resulted in clinical and histological deterioration of the 
disease [72].

Several investigations have also concentrated on the 
impact of current MS therapies on the CTLA-4 expres-
sion profile and function. In this way, Derakhshani et al. 
discovered that fingolimod, IFNβ-1α, and DMF could 
dramatically upregulate CTLA-4 expression in RRMS 
patients relative to treatment-naive patients, however, 
this effect was not observed in patients treated with 
GA [153]. Additionally, analysis of PBMCs from MS 
patients by Hallal-longo et al. demonstrated that patients 
treated with IFN-β had higher expression of intracellular 
CTLA-4, which culminated in diminished proliferative 
response to MBP and myelin and enhanced lympho-
cyte apoptosis [166]. Moreover, according to Sellebjerg 
et  al., IFN-β  treatment could elevate the frequency of 
CD25 high  CD4+ T cells with CTLA-4 surface expres-
sion [167]. However, in vitro IFN-α or IFN-β treatment of 
PBMCs from RRMS did not result in changes in CTLA-4 
mRNA expression [168]. According to a follow-up study 
by Espejo et al., there was no significant alteration of the 
T-lymphocyte proliferative response through the CD28/
CTLA-4 pathway, within 3 months post-treatment in 
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RRMS patients who received IFN-β. But after three 
months, it was shown that the CD80:CD28/CTLA-4 
pathway was hindered by increased production of IL-10, 
resulting in impeded production of CD80-induced IL-2, 
which plays a key role in lymphocyte expansion and the 
development of autoimmunity [169].

Given the in vitro and in vivo evidence indicating the 
potential therapeutic implications of CTLA-4 targeting 
in MS, several clinical trials have been launched to evalu-
ate them in the clinical setting (Table 2). In an open-label, 
phase 1 clinical trial, 16 RRMS patients received a single 
dose of intravascular CTLA Ig (RG2077, a recombinant 
CTLA4-IgG4m), followed by an extension study in which 
4 additional patients received four doses of the therapy. 
The treatment was well tolerated, with just mild adverse 
effects, and the immunologic evaluation of the therapy 
after two months suggested a reduction in MBP prolifer-
ation and IFN-γ secretion by MBP-specific cells [170]. In 

another phase II placebo-controlled research, 65 RRMS 
patients were randomly allocated to receive abatacept 
(CTLA-4 Ig) or placebo for 24 weeks in a 2:1 ratio, then 
switched to the alternative therapy at 28 weeks and medi-
cated with their final dose of the study treatment at 52 
weeks. Although Abatacept was well tolerated, there were 
no substantial differences between the Abatacept and 
placebo groups in terms of the mean number of new gad-
olinium-enhancing (Gd+) MRI lesions, or other MRI and 
clinical parameters of the disease activity [171]. None-
theless, Abatacept administration was found to drasti-
cally lower the relative frequencies of  CD45RO+ Treg 
and Tfh cells in circulating  CD4+ T cells as well as cir-
culating plasmablasts as compared to placebo, while also 
suppressing their activity by downregulating activation 
markers CD38 and ICOS genes implicated in cell division 
and chromatin dynamics in these cells [172]. A case study 
was also conducted on a 14-year-old girl who presented 

Table 2 Clinical studies of immune checkpoint‑based immunotherapies in MS patients

Abbreviations: CD40L Cluster of differentiation 40 ligand, CTLA-4 Cytotoxic T-lymphocyte-associated protein 4, Gd Gadolinium, ICOS Inducible T-cell co-stimulator, IFN-γ 
Interferon-gamma, MBP Myelin basic protein, MRI Magnetic resonance imaging, RRMS Relapsing-remitting multiple sclerosis, Tfh T follicular helper, Treg Regulatory T 
cell

Study design Subjects Target ICP Intervention Outcome Reference

Phase 1, open‑label, clinical trial 16 RRMS CTLA‑4 RG2077 (recombinant CTLA4‑IgG4m) The treatment reduced MBP prolifera‑
tion and IFN‑γ secretion by MBP‑spe‑
cific cells with only mild side effects.

[170]

Phase II, randomized, clinical trial 65 RRMS CTLA‑4 Abatacept (CTLA‑4 Ig fusion protein) 
or Placebo

No substantial differences were 
observed between the Abata‑
cept and placebo groups in terms 
of the mean number of new Gd+ 
MRI lesions or other MRI and clinical 
parameters of disease activity.

[171]

Phase II, randomized, clinical trial 65 RRMS CTLA‑4 Abatacept (CTLA‑4 Ig fusion protein) 
or Placebo

Abatacept treatment drastically low‑
ered the relative frequencies of Treg 
and Tfh cells in circulating  CD4+ T cells, 
as well as circulating plasmablasts. 
compared to a placebo. It suppressed 
their activity by downregulating 
activation markers, such as CD38 
and ICOS genes, which are implicated 
in cell division and chromatin dynam‑
ics in these cells.

[172]

Case report 1 MS CTLA‑4 Abatacept (CTLA‑4 Ig fusion protein) After a two‑year period, significant 
improvements were noted in MRI 
findings, demonstrating the absence 
of any definitive abnormal enhancing 
lesion in the brain parenchyma. These 
positive changes were accompanied 
by improvements in clinical symp‑
toms.

[173]

Phase 1, open‑label, clinical trial 12 RRMS CD40L Toralizumab/IDEC‑131 (Humanized 
αCD40L)

The treatment resulted in an enhance‑
ment of the CD25+/CD3+ 
and CD25+/CD4+ ratios and a shift 
towards an anti‑inflammatory 
cytokine response.The treat‑
ment resulted in an enhancement 
of the CD25+/CD3+ and CD25+/CD4+ 
ratios and a shift towards an anti‑
inflammatory cytokine response.

[174]
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with MS, immunodeficiency, enteropathy, splenomegaly, 
lymphadenopathy, and lymphocytic infiltration of non-
lymphoid organs, as well as a confirmed heterozygous 
CTLA-4 mutation (c.208C>T, p.Arg70Trp). Abatacept 
was administered at a dose of 500 mg every four weeks 
(as indicated for weight range) and resulted in consider-
able improvements in MRI findings after two years, with 
no definite abnormal enhancing lesion in brain paren-
chyma observed in tandem with improvements in clini-
cal symptoms. Flow cytometry analysis of the therapy 
response after two years showed greater CTLA-4 expres-
sion but no significant change in the frequency of Treg 
cells [173]. These findings corroborated the significance 
of integrating genetic analysis in the routine workup of 
MS patients to provide ICP-targeting medicines in a tai-
lored manner.

Collectively, despite some controversies surrounding 
the pathological role of CTLA-4 in the context of EAE 
and MS, several preclinical studies utilizing EAE mouse 
models have shown promising results. These findings 
have prompted several randomized clinical trials, which 
have reported favorable outcomes in terms of cellular-
level and clinical measures, as well as improvements in 
MRI findings. However, to fully evaluate the efficacy and 
safety of targeting CTLA-4 as a therapeutic intervention 
for MS, further large-scale clinical trials are necessary. In 
addition, optimizing dosing and administration, as well 
as exploring potential synergies with other therapeutic 
strategies, may further enhance the therapeutic potential 
of targeting CTLA-4 in MS.

Stimulatory immune checkpoints in MS
CD40
The cluster of differentiation 40 (CD40) alongside its 
ligand, CD40L, are transmembrane proteins from the 
TNF receptor superfamily. They are crucial compo-
nents in the induction and maintenance of inflammatory 
response [175]. The interaction of CD40/CD40L between 
T cells and APCs induces bi-directional signaling, includ-
ing forward and reverse signals, that leads to activation 
and differentiation of T cells /B cells and APCs, respec-
tively. This dyad also regulates Th1 differentiation, cyto-
toxic T lymphocyte (CTL) activation, and memory CTL 
maintenance, establishing an amplification loop in the 
immune response [176]. Having said that, scientists have 
lately discovered its significance in neurological com-
plications. CD40-CD40L-mediated neuroinflammation 
enhances BBB permeability, exacerbates edema, neuronal 
and glial cell injury, and accelerates the development of 
occlusive microthrombi [177].

An  association has been discovered between certain 
CD40 SNPs and MS. In this way, two SNPs in the CD40 
gene, rs6074022, and rs1883832, were shown to have a 

strong correlation with vitamin D deficiency at disease 
onset in a survey of 218 Jordanian MS patients [107]. 
Nonetheless, they were unable to show a substantial 
association between these SNPs and MS [178]. Further 
research revealed that the rs1883832C>T SNP could 
significantly downregulate CD40 mRNA expression, 
with individuals carrying  CT and TT genotypes having 
lower levels of CD40 mRNA than those with CC [179]. 
The combined impact of the CD40 and CD40L polymor-
phisms on MS susceptibility and progression in a Polish 
population was also evaluated. It was discovered that 
individuals with the TT and CT genotypes at the CD40 
rs1883832 loci had a higher risk of developing MS than 
those with the CC genotype, with the risk being greater in 
TT individuals. Individuals with the CC genotype, on the 
other hand, had an average MS diagnosis 2 years earlier 
than those with the TT and CT genotypes and were more 
likely to acquire a secondary progressive course of the 
disease [180]. Moreover, according to genome-wide asso-
ciation screens (GWAS), SNP rs6074022 had the highest 
association with MS and was shown to have the strong-
est correlation with CD40 expression among the 30 SNPs 
genotyped from the CD40 genomic region [181]. In this 
regard, Sokolova et  al. demonstrated in a meta-analysis 
that the association between rs1883832 and MS is driven 
by linkage disequilibrium (LD), whereas rs6074022 is 
either a marker in greater LD with the functional varia-
tion or the functional variant itself [182]. Another study 
found that rs4810485*T is associated with reduced cell-
surface expression of CD40 in all B cell subtypes, lower 
total CD40 expression, and lower IL-10 levels, demon-
strating a robust genotype-phenotype correlation for 
CD40 across B cell differentiation [183]. Based on genetic 
polymorphisms of the CD40 locus, researchers discov-
ered a decline in CD40 expression on the surface of B 
cells and monocytes in remitting MS patients, independ-
ent of genotype, a tendency that was amplified in patients 
with the CT SNP [184].

Reverse transcription polymerase chain reaction (RT-
PCR) analysis of PBMCs from MS patients revealed 
considerable systemic upregulation of CD40 and CD40L 
mRNAs as compared to healthy controls [185], but not 
at the protein level, with no difference across clinical 
MS subgroups or disease stage [186]. Additionally, com-
pared to healthy controls, MS patients exhibited a con-
siderably higher number of  CD40+CD4+ T cells (Th40), 
which were mostly memory phenotypic cells acting as 
an intermediary between Th1 and Th17 phenotypes and 
producing IL-17 and IFN-γ with a considerable portion 
of them simultaneously [187]. Also, when monocytes 
were stimulated with lipopolysaccharide (LPS) in  vitro, 
it was shown that MS patients’ monocytes had consid-
erably greater levels of CD40 expression than healthy 
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controls,  suggesting  that MS patients’ monocytes are 
potentially more effective in co-stimulating T-cell activa-
tion than healthy controls [188]. In contrast to progres-
sive MS patients, an ex vivo study of B cells from RRMS 
patients also revealed a substantial upregulation of CD40 
[189]. In another study, however, B cells from RRMS and 
SPMS patients exhibited CD40 expression comparable to 
healthy donors [190]. According to mouse model stud-
ies, younger mice are protected from CNS autoimmune 
disease due to lower levels of MHC class II and CD40 
expression on APCs, which prevents them from devel-
oping encephalitogenic Th1- and Th17 effector T cells 
[191]. Similarly, latent infection with γ-herpesvirus 68 
(γHV-68), which is equivalent to human EBV, enhances 
CD40 expression on APCs, which results in a decline in 
Treg cells frequency and an increase in  CD8+ T cell acti-
vation and CNS infiltration, promoting susceptibility to 
EAE [192].

Disruption of BBB in MS subjects allows the attraction 
of inflammatory cells into the brain, which considerably 
deranges myelinated axons. Inflammatory lesions caused 
by MS were evidenced to be followed by disturbance 
of BBB, mediated by CD40 [193, 194]. Further patho-
logical studies of demyelinated MS plaques revealed the 
presence of microglia/macrophages and T lymphocytes 
expressing CD40 and CD40L, respectively [195]. Once 
T cells expressing CD40L enter CNS and activate CD40 
on microglia, cytokines, nitric oxide, and matrix metallo-
proteinases are released, resulting in demyelination [193]. 
B cells expressing CD40 have also been detected inside 
the inflammatory lesions of MS patients, suggesting that 
CD40-mediated antibody production by B cells may con-
tribute to MS pathogenesis [196].

Mechanistically, the immunological cascade in MS 
commences with  CD4+ T cell activation, which leads to 
increased CD40L expression on T cells and facilitates co-
stimulation of APCs via CD40, culminating in the pro-
duction of IL-12 and IL-18, which stimulates T cells to 
produce IFN-γ [197]. CD40 signals also promote B10 pro 
cell IL-10 competence, with IL-21 driving B10 cell prolif-
eration and effector cell formation, resulting in local IL-10 
synthesis that dampens antigen-specific T cell responses 
throughout cognate interactions without triggering 
immunosuppression [198]. IL-10 production by B-cells 
during MS relapses is modulated through the interplay 
between TLR4 and CD40 signaling, implying that CD40 
potentially contributes to  recovery from MS relapse if 
signaling takes place concurrently with TLR4 [199]. Fur-
thermore, it was demonstrated that DCs derived from 
both RRMS and SPMS patients have an upregulated 
expression profile of CD40 but induce different effects, 
with DCs from RRMS patients inducing higher levels 
of Th1 (IFN-γ, TNF-α) and Th2 (IL-4, IL-13) cytokines, 

whereas DCs from SPMS patients only induced a polar-
ized Th1 response [200]. The physiologic effect of CD40 
stimulation, on the other hand, is to increase brain-
derived neurotrophic factor (BDNF)  release and exhibit 
neuroprotective effects, which are lacking in MS patients 
despite rising CD40 expression in their monocytes, lead-
ing to deviated immunity in MS and persistent CNS neu-
ronal loss [201].

Several studies have been conducted to investigate the 
potential consequences of presently utilized DMTs in the 
regulation of CD40 in MS patients. In this way, it was 
demonstrated that IFN-β  treatment in RRMS patients 
could significantly upregulate the expression of CD40 
on monocytes compared to untreated patients, reinforc-
ing monocyte responsiveness in the release of neuropro-
tective factor BDNF via CD40 stimulation [202]. Thus, 
CD40 expression can be used to assess clinical response 
in patients receiving IFN-β therapy at early time points, 
with a lack of enhanced expression predicting thera-
peutic failure [203, 204]. Conversely, IFN-β  was shown 
to significantly suppress excessive CD40L expression 
in T cells of MS patients compared to their untreated 
counterparts, resulting in lower levels of  CD3+CD40L+ 
and  CD4+CD40L+ T cells in the treated  patients [205] 
Interestingly, DCs from RRMS patients treated with GA 
displayed considerably decreased CD40 expression com-
pared to their untreated counterparts, which is associ-
ated with relapse risk [206].

Blocking CD40 is believed to be effective in relieving 
EAE, making it an intriguing intervention [74, 207–210]. 
In this respect, anti-CD40 Ab or 8-oxo-dG in the EAE 
model were shown to positively regulate IL-10- and IL-
35-producing  Foxp3+ Treg cells that suppress activation 
and migration of mast cells in the brain via suppress-
ing  Ca2+ downstream signaling cascades and reducing 
the expression of CCL2/CCR2 and adhesion molecules, 
respectively, resulting in suppressed release of inflam-
matory cytokines. Anti-CD40-mediated enhanced Treg 
cell level also downregulates the Act1 in the mast cells 
activated by cytokines, notably IL-17, thus mitigating 
EAE severity [73]. Furthermore, the 6-amino-acid pep-
tide sequence KGYY 6 was a CD40-targeting peptide that 
Vaitaitis et  al. investigated using an EAE mouse model. 
It shares 83% homology with mice and contains three 
amino acids required for interaction with CD40 [211–
213]. It was discovered that KGYY 6 binds to Th40 and 
memory T cells, upregulating the expression of CD69 
and IL-10 in the  CD4+ T cell compartment. This ulti-
mately impedes the progression of the disease and allevi-
ates symptoms, both when pretreated and when treated 
after the first symptoms were noticed. However, pretreat-
ment with boosters had a greater impact than treatment 
administered individually [75]. Likewise, Toralizumab is 
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a humanized anti-CD40L mAb with murine-determin-
ing regions consisting of human gamma 1 heavy chains 
and human kappa light chains. It only binds to human 
CD40L on T cells, inhibiting CD40 signaling [174]. Fadul 
et  al. conducted a phase 1 clinical trial to evaluate the 
effect of Toralizumab/IDEC-131 on CD40 blockade. They 
enrolled 12 patients between the ages of 18 and 54 who 
had clinically definite diagnoses of RRMS, clinical relapse 
in the preceding year, and an EDSS of 0-3.5. The mAb 
was administered intravenously over one hour, followed 
by a two-hour monitoring period. The subjects were 
given four doses every other week. This mAb’s circulation 
half-time was approximately 12-13 days [174]. The pri-
mary cohort received a dose of 1 mg/kg, and if no severe 
toxicity was observed, the dose was raised in each succes-
sive cohort to 5, 10, and 15 mg/kg. The therapy was well-
tolerated and deemed safe, with only mild to moderate 
adverse effects reported during the study. An important 
finding was that none of the treated subjects experienced 
thromboembolic events, and the administration of this 
mAb did not exacerbate the disease [174]. One key con-
cern in blocking CD40L is the increased risk of infection; 
however, earlier trials using this antibody to treat other 
autoimmune diseases found no specific increased risk 
of infection with a clear relation to the drug [214–216]. 
According to Fadul et al., only two patients developed an 
infection and both were in the 15 mg/kg treatment group, 
with one developing herpes zoster that was treated with-
out sequelae [174].

Given the well-established pathological role of the dys-
regulated CD40/CD40L pathway in the development 
of neuroinflammation, the blocking of this pathway has 
garnered significant attention in preclinical and clinical 
studies on MS. Promising results have been reported, 
however, further research is still imperative to fully elu-
cidate the role of this pathway in the development of the 
disease, address the side effects that have been observed 
in clinical trials, enhance its therapeutic efficacy, and per-
form large-scale studies to evaluate its potential as a ther-
apeutic target for MS.

CD137
CD137 (4-1BB), a tumor necrosis factor superfamily 
(TNFSF) receptor, has been extensively researched, par-
ticularly in cancer immunotherapy. It is found on acti-
vated T cells, but its ligand, CD137L, is expressed on 
APCs. CD137/CD137L signaling activation drives clonal 
proliferation and differentiation of T cells  into IFN-γ-
producing  CD8+ T cells, and CD137 on T cells inter-
acts with CD137L on APCs, prompting monocytes and 
macrophages differentiation to secrete proinflammatory 
cytokines [217].

CD137 mRNA level in blood  CD4+CD25+ Tregs was 
found to be significantly lower in MS patients compared 
to patients with other neurological diseases and healthy 
controls [218, 219]. Likewise,  CD137+ cells were detected 
in both the brain parenchyma and the brain blood vessels 
of post-mortem MS brain samples; active demyelinating 
lesions had the highest frequency of  CD137+ cells, and 
specifically,  CD137+ B lymphocytes were found accumu-
lating in leptomeningeal infiltrates. Alongside enhanced 
cellular proliferation, CD137 signaling into B cells stim-
ulates early TNF release and enhances IL-6 production, 
which are implicated in MS pathogenesis [220]. However, 
studies have not discovered  CD3+  CD137+ T cells in MS 
lesions other than those with diffuse white matter abnor-
malities, nor in active, mixed active/inactive, or inactive 
lesions [221].

Research has shown that CD137 signaling is impli-
cated in microglia activation, as CD137L-deficient 
mice exhibited much lower microglia activation in EAE 
[222]. Microglial activation triggers the phagocytosis of 
axonal myelin sheaths and the oligodendrocytes death, 
antigen presentation to T cells, and the production of 
proinflammatory cytokines in active lesions, which 
are the major pathogenic mechanisms underlying EAE 
and MS [223]. Consistently, in  vitro, co-culture dem-
onstrated that CD137L-activated microglia provoked 
apoptosis in oligodendrocytes via the generation of 
reactive oxygen species (ROS) [222]. Additionally, the 
identification of CD137-expressing apoptotic human 
Purkinje neurons in close contact with activated micro-
glia suggested that activation of microglia via CD137L/
CD137 signaling may potentially play a critical role in 
neuronal loss during MS [222].

Given the above considerations, CD137-enhancing ther-
apies have been investigated for the treatment of EAE and 
MS [224]. In this way, treatment of EAE mice with agonis-
tic anti-4-1BB dramatically reduced disease incidence and 
ameliorate the disease severity; however, adoptive transfer 
of T cells obtained from mice treated with  MOG35-55 was 
unable to avert EAE even after boosting their activity with 
anti-4-1BB, suggesting that anti-4-1BB therapy of EAE is 
only effective when administered during the disease induc-
tion phase [76]. Mechanistically, 4-1BB stimulation pro-
vokes the expansion of IFN-γ-releasing  CD8+ T,  resulting 
in indoleamine 2,3-dioxygenase (IDO)-dependent regula-
tion of autoimmune responses. Anti-4-1BB Abs were also 
shown to suppress Th17 cells and related pathogenic IL-17 
release while raising  Foxp3+  CD4+ Treg cell frequency in 
an IFN-γ-independent manner, leading to the alleviation 
of EAE symptoms [77] (Fig.  1). These findings suggest 
that anti-4-1BB Abs have an immunoregulatory role in 
maintaining the equilibrium between Th17 and Treg cells. 
Despite these promising results, delivery of anti-4-1BB Abs 
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to Gal-9 defective EAE mice failed to suppress the disease, 
revealing Gal-9 as a 4-1BB-associating protein and a piv-
otal regulator of anti-4-1BB immunotherapeutic activity. 
In this respect, by directly interacting with 4-1BB at a loca-
tion distinct from that of antibodies and the 4-1BBL, Gal-9 
was shown to enhance and stabilize  4-1BB aggregation, 
signaling, and activity in T cells, DCs, and NK cells [225]. 
In addition, researchers have investigated the therapeu-
tic potential of CD137L suppression in EAE. In this way, 
CD137L knockout in EAE mice was confirmed to protect 
the mice from demyelination and EAE development by 
restricting encephalitogenic T cell activation and inflam-
matory cytokine release, as well as their trafficking into the 

CNS by downregulating vascular cell adhesion molecule-1 
expression (VCAM-1) [78].

In summary, CD137/CD137L aberrations are implicated 
in EAE and MS pathogenesis. While preclinical studies 
have shown promise in using CD137-enhancing therapies 
to treat MS, further research is needed to fully translate 
these findings into clinical approaches for patients.

Soluble immune checkpoints in MS
What’s more, there are a series of soluble ICPs along-
side the ones located on the cell membrane, which are 
of utmost significance in immune regulation. sPD-1/
sPD-L1 is mostly a result of proteolytic cleavage of the 

Fig. 1 Summary of immune checkpoint‑based immunotherapies for MS/EAE. Abbreviations: Ab: Antibody; APC: Antigen presenting cell; CTLA‑4: 
Cytotoxic T‑lymphocyte‑associated protein 4; FOXP3: Forkhead Box P3; IFN‑γ: Interferon gamma; IL‑17: Interleukin 17; LAG‑3: Lymphocyte activation 
gene 3; MBP: Myelin basic protein; MHC II: Major histocompatibility complex class II; mTOR: Mechanistic target of rapamycin; NF‑κB: Nuclear factor 
kappa B; PD‑1: Programmed cell death protein 1; PI3K: Phosphoinositide 3‑kinase PSGL‑1: P‑selectin glycoprotein ligand 1; STAT3: Signal transducer 
and activator of transcription 3; TCR: T‑cell receptor; Th: T helper; TIM‑3: T‑cell immunoglobulin and mucin‑containing protein‑3; VISTA: V‑domain Ig 
suppressor of T cell activation
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PD-1/PD-L1 bound to the membrane [226]. The mecha-
nism by which sPD-1/sPD-L1 act in MS is not yet well 
understood. Studies found that sPD-1/sPD-L1 expression 
is upregulated in patients with autoimmune disease com-
pared to the control group while a downregulation was 
observed after treatment, which suggests that sPD-1 can 
resist the inhibitory effect of PD-1 on T-cells, indirectly 
promoting immune responses [227–231]. As well, It was 
discovered that sCTLA-4 concentrations were lower in 
MS patients compared to controls and that sCTLA-4 did 
not correlate with the EDSS score in patients with MS 
and neuromyelitis optica [232]. sCD40L is another solu-
ble protein that is mainly a product of activated platelet 
cleavage [233, 234]. Studies revealed that serum sCD40L 
was higher in MS subjects compared to control groups 
[235, 236]. Also, sCD40L was similarly increased in the 
CSF of MS patients in comparison with other neurologi-
cal diseases [194]. The interesting finding is that serum 
concentration of sCD40L was decreased following treat-
ment with natalizumab [237], GA [238], and IFN-β [239], 
which represents sCD40L as a biomarker for assessment 
of the efficacy of the therapies. Du and his team found 
out that the albumin index was positively correlated 
with serum sCD40L in MS, determining its role in BBB 
permeability [240]. The high serum concentration of 
sCD137, a product of differential splicing, was detected 
in autoimmune disease subjects including MS [241, 242]. 
An earlier study on MS subjects indicated that CD137 
expression on  CD4+CD25+ Tregs was decreased com-
pared to  CD4+CD25− T cells [218]. A decrease in the 
expression of CD137 on the cell membrane may result in 
lower levels of sCD137 secretion, implying that enhanc-
ing CD137 signaling could have a beneficial effect on 
sCD137 production in autoimmune diseases.

Collectively, soluble ICPs have been recognized as an 
important factor in the pathogenesis of MS, but the cur-
rent understanding of their precise pathological role in 
the disease is still preliminary. To fully appreciate their 
potential therapeutic opportunities, additional studies 
are needed.

Conclusion
MS pathogenesis is essentially based on over-activated 
immunity targeting autoantigens, which is triggered and 
mediated by genetic and environmental factors; thus, any 
evidence of dysfunctionality in immunoregulatory mech-
anisms in the way to overstimulate immune responses 
while suppressing inhibitory mechanisms may provide a 
comprehensive view of the disease’s etiopathogenesis and 
a rational therapeutic target to address. Among them, 
ICPs, which play a crucial immunoregulatory role in 
maintaining tolerance to self-antigens, have been shown 
to exhibit a variety of distinct SNPs and a dysregulated 

expression pattern in MS patients and EAE models. 
These differential expression patterns are not only con-
fined to MS patients and healthy controls but also varied 
with clinical phenotype and disease course, establishing 
ICPs as prospective diagnostic and prognostic indicators 
for MS.

Multiple immunotherapeutics have been developed to 
target ICPs in MS and EAE. In this approach, immune 
cells such as T cells, B cells, and DCs have been engi-
neered to overexpress ligands such as PD-L1 to prevent 
autoreactive immunity, with encouraging results in EAE 
models. Similarly, multiple Ig fusion proteins, including 
PD-L1 and CTLA-4 Ig fusion proteins, were developed to 
suppress co-stimulatory interactions, resulting in protec-
tion against MS/EAE and considerable disease ameliora-
tion. Furthermore, several methods, such as Ig-mediated 
targeting of stimulatory ICPs such as anti-CD40L Ab and 
anti-CD137 Ab, as well as CD40-targeting peptides such 
as KGYY6, have shown potential capacity  in reducing 
the incidence and severity of EAE. Given these findings, 
multiple clinical trials with strong evidence of improved 
immunological profile, as well as radiological and clinical 
parameters in MS patients have been undertaken. One 
significant challenge is adjusting the amplitude of co-
stimulation and co-inhibition to optimize efficacy while 
avoiding  negative consequences, which has previously 
been addressed in cancer immunotherapy, where excess 
co-stimulation was coupled with  autoimmune disease 
[243–245]. Thus, large-scale trials to optimize the clini-
cal efficacy of ICP-based immunotherapies and establish 
an optimal combinational treatment with currently used 
therapies, as well as incorporating novel gene-modifica-
tion strategies such as CRISPR/Cas9 to engineer immune 
cells with favorable ICP expression, are still needed.
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