Correction: FGF19 increases mitochondrial biogenesis and fusion in chondrocytes via the AMPKα-p38/MAPK pathway

Shiyi Kan1, Caixia Pi1, Li Zhang1, Daimo Guo1, Zhixing Niu1, Yang Liu1, Mengmeng Duan1, Xiahua Pu1, Mingru Bai1, Chenchen Zhou1, Demao Zhang1 and Jing Xie1,2*

Correction: Cell Commun Signal 21, 55 (2023)
https://doi.org/10.1186/s12964-023-01069-5

Following the publication of the original article [1], the authors found an error on SEM images (normal control group) in Fig. 1a. Based on a rigorous attitude, here we have provided the corrected Fig. 1a. This corrected image (normal control) does not affect any conclusion of the article.

The original article [1] has been corrected.

Published online: 21 August 2023

Reference

*Correspondence:
Jing Xie
xiejing2012@scu.edu.cn
1 Lab of Bone and Joint Disease, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, Sichuan, China
2 National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
FGF19 induces a transient increase in mitochondrial number and an enhanced generation of ATP products. Representative TEM images showing the changes of mitochondrial number in chondrocytes induced by FGF19 at 200 ng/ml in the presence of KLβ (200 ng/ml). The images were chosen based on three independent experiments (n = 3). Orange arrows indicated individual mitochondrion.