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Abstract 

Regulated cell death (RCD) is a regulable cell death that involves well-organized signaling cascades and molecular 
mechanisms. RCD is implicated in fundamental processes such as organ production and tissue remodeling, removing 
superfluous structures or cells, and regulating cell numbers. Previous studies have not been able to reveal the com-
plete mechanisms, and novel methods of RCD are constantly being proposed. Two metal ions, iron (Fe) and copper 
(Cu) are essential factors leading to RCDs that not only induce ferroptosis and cuproptosis, respectively but also lead 
to cell impairment and eventually diverse cell death. This review summarizes the direct and indirect mechanisms 
by which Fe and Cu impede cell growth and the various forms of RCD mediated by these two metals. Moreover, we 
aimed to delineate the interrelationships between these RCDs with the distinct pathways of ferroptosis and cupropto-
sis, shedding light on the complex and intricate mechanisms that govern cellular survival and death. Finally, the pros-
pects outlined in this review suggest a novel approach for investigating cell death, which may involve integrating 
current therapeutic strategies and offer a promising solution to overcome drug resistance in certain diseases.
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Background
In multicellular organisms, the process of generating new 
cells and removing damaged or unwanted cells maintains 
a dynamic balance during the development and mainte-
nance of homeostasis. Thus, cell death is essential for life. 
In 1972, Kerr et al. first proposed a new term ‘apoptosis’ 
and described its morphological features, which has been 
a classic pattern of programmed cell death [1]. Since the 
pioneering work of Kerr, the research on cell death has 

been raising the curtain. At present, the Nomenclature 
Committee on Cell Death (NCCD) classifies cell death 
into accidental cell death (ACD) and regulated cell death 
(RCD) [2]. In recent decades, the field of cell research 
has focused on RCD and found diverse ways of death to 
face different cell stresses, including apoptosis, necrosis, 
necroptosis, pyroptosis, parthanatos, entotic cell death, 
NETotic cell death, autophagy-dependent cell death, fer-
roptosis and cuproptosis [2, 3].

To date, several studies have linked iron (Fe) and cop-
per (Cu) with multiple forms of RCD. Newly discovered 
RCDs, ferroptosis and cuproptosis are dependent on 
these two transition metal ions respectively, which dis-
tinguish them from other RCDs [4, 5]. Ferroptosis is an 
iron-dependent form of death induced by iron accumu-
lation and excessive lipid peroxidation [6, 7]. Cuprop-
tosis is a copper-dependent death in which cells die 
from copper direct binding to lipoylated component of 
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the tricarboxylic acid (TCA) cycle and aggregating the 
enzyme, resulting in proteotoxic stress and further induc-
ing cell death [5]. Except for ferroptosis and cuproptosis, 
iron and copper have also been reported to be inducers of 
known RCDs, including apoptosis, autophagy, necropto-
sis and pyroptosis, with different pathways.

To determine the effects of Fe and Cu on RCDs, we 
summarized almost all possible modes of iron and cop-
per to impart significant cell damage and elaborated the 
mechanisms of iron- and copper-mediated diverse RCDs, 
including ferroptosis, cuproptosis, apoptosis, autophagy, 
necroptosis and pyroptosis (Fig. 1). In addition, we built 
relational models of ferroptosis and cuproptosis with 
other RCDs. Beyond this, we also listed the strategy tar-
geting iron and copper for diverse diseases.

Iron and copper are both essential trace elements 
for the human body
Iron and copper belong to the first series of transition 
metals, which also includes chromium (Cr), manganese 
(Mn), cobalt (Co), nickel (Ni) and zinc (Zn). Iron and 
copper have similar characteristics, are both essential 
nutrients, are involved in fundamental biological pro-
cesses and play a crucial role in health and disease [8, 9]. 
In living matter, iron and copper are able to easily inter-
convert between their reduced (Fe 2+, Cu 1+) and oxidized 
(Fe 3+, Cu 2+) states to perform numerous biological 
functions, including redox reactions, electron transport, 
oxygen transport and energy metabolism [10–12].

Iron and copper can also influence the functions of 
proteins upon binding to these proteins. On the one 
hand, Fe and Cu must be bound and protected within 
the active sites of proteins [9]. For example, transferrin 
is bound to iron, facilitating the transport of iron in the 
bloodstream and supplying iron for tissues by binding to 
the transferrin receptor [13]. In addition, HAH1/ATOX1, 
as chaperones, bind and release Cu directly to their tar-
get proteins ATP7A and ATP7B to prevent the presence 
of free Cu ions [14]. On the other hand, they also drive 
catalytic reactions and work as vital cofactors in protein 
functions. For example, the activity of tyrosinase is cop-
per-dependent because

The structure of the tyrosinase active site consists of 
a dual-core copper center and histidine residues [15]. 
Tyrosinase plays an important role in controlling the for-
mation of melanin in melanosomes and preventing albi-
nism, vitiligo, melanoma and Parkinson’s disease with 
assistance from copper [15]. Iron is similarly required in 
numerous essential proteins, such as hemoglobin, myo-
globin, enzymes of the electron transport chain, iron-
containing enzymes, iron storage proteins, ferritin and 
hemosiderin [16]. Copper is required for the function of 
several proteins, including superoxide dismutase, ascor-
bate oxidase, lysyl oxidase, ceruloplasmin, cytochrome c 
oxidase, tyrosinase, dopamine-β-hydroxylase and respir-
atory chain-related enzymes [17, 18].

In addition, their relationship is close. Copper may 
positively influence the transport of iron. Systemic cop-
per deficiency blocks iron transport and accumulates 

Fig. 1 Overview of modes of iron and copper to impart significant cell damage and types of RCDs are mediated by iron and copper
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in tissues, ultimately generating cellular iron deficiency 
[17]. Conversely, iron may antagonize copper metabo-
lism. High-dose iron supplementation resulted in copper 
depletion [19].

It should be mentioned that everything has both 
sides. Iron and copper are beneficial to life in moderate 
amounts, but excesses or deficiencies of these metal ions 
are harmful. On the one hand, when there is too much 
iron in the body, excess iron forms a labile iron pool, 
confers cell toxicity, and affects cell damage, which can 
lead to cancer, hematological diseases, brain injury and 
other chronic and commonly encountered diseases [20]. 
In addition, iron overload is a characteristic of ferroptosis 
that is a form of regulated cell death, leading to the accu-
mulation of lethal levels of lipid hydroperoxides [6]. On 
the other hand, a shortcoming of iron is that it inhibits 
hemoglobin synthesis [21]. Long-term iron inadequacy 
also causes iron deficiency anemia with tissue damage 
named Paterson-Kelly or Plummer-Vinson syndrome, 
which occurs mostly with chronic iron deficiency ane-
mia in middle-aged female patients [22]. Equally, insuf-
ficient or redundant copper is detrimental to the growth 
of organisms. The excess load of copper can enhance cell 
toxicity and oxidative stress and damage cell growth. Wil-
son disease is an autosomal dominant disorder character-
ized by excessive copper in tissues [23]. In the liver, too 
much copper also causes hepatic dysfunction, even driv-
ing fulminant hepatitis [24]. Insufficient copper is also 
harmful to cardiac function [23]. In addition, the lack of 
copper alters lipid metabolism and causes severe hyper-
triglyceridemia [25].

Modes of iron and copper to impart significant cell 
damage
Iron and copper have many of the same or different 
modes that stimulate a range of indirect negative effects, 
provoking cell impairment and eventually cell death 
[17]. Then, we introduce these modes and the specific 
mechanisms.

Common pathways of iron and copper
Oxidative stress
Oxidative stress is a state of oxidation-antioxidant 
imbalance and generates large amounts of reactive 

oxygen species (ROS). Moderate ROS levels assist in 
the control of cell proliferation and differentiation, but 
high concentrations of ROS are harmful to normal and 
cancer cells [26, 27]. When iron and copper are exces-
sive, they may directly and indirectly contribute to ROS 
production and are detrimental to the cells [28]. More-
over, ROS induced by copper and iron can cause DNA 
double-strand breaks, cell cycle arrest, mitochondrial 
dysfunction, lipid peroxidation and protein modifica-
tion, which may ultimately mediate diverse types of cell 
death [29–31] (Table 1).

The first mechanism by which Fe and Cu induce oxi-
dative stress is through the Fenton reaction [32, 33, 37]. 
Through the Fenton reaction,  Fe2+ and  Cu+ transform 
hydrogen peroxide into hydroxyl radicals (OH⋅). OH⋅ is 
one of the most reactive species found in nature and is 
extremely toxic.

Cu−based Fenton reaction  Cu+ +  H2O2 →  Cu2+ + 
 OH− + OH⋅
Fe−based Fenton reaction  Fe2+ +  H2O2 →  Fe3+ + 
 OH− + OH⋅

The second way of inducing oxidative stress is the con-
sumption of antioxidants. There are two kinds of anti-
oxidants. One class of them is low-molecular-weight 
antioxidants, including glutathione (GSH), ascorbic acid 
(vitamin C), alpha-tocopherol (vitamin E), carotenoids, 
flavonoids, and other antioxidants that are capable of 
chelating metal ions to inhibit their catalytic activity and 
reduce ROS [31]. The other is antioxidant enzymes, such 
as superoxide dismutase (SOD), glutathione peroxidase 
(GPX), thioredoxin and catalase [31].

Evidence of copper and iron leading to antioxidant 
deficiency can be clearly seen in the case of GSH. GSH 
plays a critical role in removing ROS and is a sub-
strate for multiple enzymes that remove ROS. Copper 
and iron can catalyze GSH oxidation, which oxidizes 
reduced GSH to oxidized glutathione disulfide (GSSG) 
to reduce the concentration of GSH [38]. The depletion 
of GSH makes cells more sensitive to harmful stimuli, 
strengthens the cytotoxicity of ROS species, and makes 
metals more catalytic, resulting in cell death [39, 40].

Table 1 Iron and copper have same modes to damage cells

Specific manners Negative effects

Oxidative stress Fenton reaction [32, 33] DNA damage, cell cycle arrest, mitochondrial dysfunction, lipid 
peroxidation and protein modificationConsumption of GSH [34]

Proteasome inhibition Copper and iron complexes bind to the 20S proteasome 
subunits and inhibit the activation of proteasome [35, 36]

Proliferation inhibition, cell cycle arrest, differentiation inhibition 
and apoptosis
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Proteasome inhibition
Some studies have revealed that transition metal ions, 
including Cu, Fe, Aurum (Au) and Manganese (Mn), can 
inhibit the proteasome [35, 41, 42]. The proteasome is a 
26S complex consisting of a 20S proteolytic core and two 
terminal 19S regulatory caps. The proteasome complex 
is responsible for the selective proteolytic processing of 
proteins in eukaryotic cells that regulate proliferation, the 
cell cycle, differentiation, signal transduction and apop-
tosis [43]. Iron and copper complexes can bind to the 20S 
proteasome subunits by noncovalent interactions and 
inhibit the activation of proteasome [35, 44]. In addition, 
iron and copper induce proteasome inhibition that pro-
motes the intrinsic pathway of apoptosis via cytochrome 
c transfer to the cytoplasm and activation of the caspase 
cascade [36, 45] (Table 1).

Exclusive pathways to iron or copper
Iron has a separate function driving lipid peroxidation, 
while copper has separate functions, including breaking 
DNA directly, protein ubiquitination and driving protein 
lipoylation and aggregation (Table 2).

Cu induces DNA damage directly
Copper could influence DNA indirectly through ROS. 
Meanwhile, copper could also act on DNA directly in 
another way.

Copper could bind to DNA to form a bis-(1,10-phenan-
throline) copper(II) complex, which may be inserted into 
the minor groove in the DNA. This DNA–copper com-
plex is oxidized in the presence of an activator, especially 
hydrogen peroxide. Then, hydrogen bonds of the DNA–
copper complex are hydrolyzed, and DNA is cleaved [46, 
56]. Another study found that [Cu(N9-ABS)(phen)2] 
could also insert into DNA strands and cause bond 
hydrolysis with the help of ascorbate [47]. Meanwhile, 
if two phenanthroline ligands of copper(II) complexes 
could link by a serinol bridge at the 3 or 2 positions, their 

DNA bonding ability and nuclease activity will increase 
[48, 49]. Notably, a high affinity for DNA and cytotoxic-
ity of the copper(II) complex appear in a variety of cells, 
including human gastric cancer BGC-823, leukemia cell 
line HL-60, prostate cancer PC-3 M-1E8, hepatoma cells 
Bel-7402, mammary tumor MDA-MB-435, and cervical 
cancer HeLa [50, 51].

Iron complexes that could bind and damage DNA were 
undetected. Instead, iron even assists DNA synthesis 
and repair and works as a cofactor of multiple enzymes, 
including multiple DNA repair enzymes (helicases, 
nucleases, glycosylases, and demethylases) and ribonu-
cleotide reductase [57].

Copper induces protein ubiquitination
In addition to regulating the proteasome, copper also has 
another way to impact protein degradation. Recent work 
detected that Cu+ promoted multiple proteins ubiquit-
ination and degradation by positive allosteric activation 
of the E2 conjugating enzyme clade UBE2D1–UBE2D4 
[52]. Several lines of evidence suggest that protein ubiq-
uitination is one of the causes of cell death. Almagro 
identified that the ubiquitination and phosphorylation of 
RIP1 are coordinated and interdependent, which irritates 
necroptotic signaling and cell death [58]. Hence, copper 
could promote cell death via protein degradation.

Copper induces protein aggregation
Studies have indicated that Cu(II) is effective at aggregat-
ing proteins [53]. Meanwhile, Fe(III) does not have this 
capability [59].

It has been presented previously that aggregating pro-
teins are not critical for Cu cytotoxicity. In vitro, Cu(II) 
caused bovine albumin (BSA) to aggregate in a time- and 
concentration-dependent manner. It is possible that this 
aggregation is the result of covalently cross-linked mul-
timers because Cu(II) is able to oxidize –SH groups in dif-
ferent molecules. In addition, Cu(II) plays an important 

Table 2 Iron and copper have separate functions leading to cell death

Specific manners Negative effects

Fe Cu

DNA damage None reported Cu complexes bind to DNA and hydrolyze 
hydrogen bonds [46–51]

DNA breaks

Protein ubiquitination None reported Cu+ binding allosterically activates E2D2 
[52]

Proteins ubiquitination and degradation

Protein aggregation None reported Cu drives protein lipoylation or –SH 
groups oxidization induced protein aggre-
gation [5, 53, 54]

Cuproptosis

Lipid peroxidation Overloaded iron drives Fenton 
reaction producing excess PLOOH 
[6, 55]

None reported Ferroptosis
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role in the nonamyloid aggregation of HγD crystallin in 
cataract disease. Copper ions alter the conformation of 
hexagonal D-crystallin, causing light-scattering aggre-
gates with high molecular weights. Surprisingly, the 
interaction of Cu ions with HγD crystallin also promotes 
protein folding [53]. In other diseases, such as Alzhei-
mer’s disease, copper can also cause protein aggregation 
[54].

Nonetheless, Tsvetkov et al. found that Cu drives pro-
tein lipoylation and aggregation, resulting in proteotoxic 
stress and further inducing cell death [5]. This illustrates 
an important point that protein aggregation is a probable 
reason leading to cell death.

Iron leads to lipid peroxidation
In ferroptosis, overloaded iron(II) produces a large num-
ber of ROS via Fenton reaction, promotes the production 
of lipid ROS, and then promotes ferroptosis [6]. Specifi-
cally, oxidized PL-PUFAs were oxidized again by ROS 
into PLOOH, which is involved in the occurrence of fer-
roptosis [55].

Iron and copper induce multiple forms of cell death
Iron and copper mediate many forms of cell death. One 
or both metals could induce ferroptosis, cuproptosis, 
apoptosis, autophagy, necroptosis and pyroptosis in dif-
ferent ways (Table 3).

Ferroptosis is induced by iron and copper
Iron and copper are able to induce ferroptosis [5, 6]. Fer-
roptosis was named a decade ago by the Stockwell lab and 
is a ROS-dependent RCD driven by iron accumulation 
and lipid peroxidation [6, 82]. Core steps of ferroptosis 
are reduction of iron, Fenton reaction, lipid peroxidation 
and deficiency of GSH (Fig. 2).

Iron‑mediated ferroptosis

I. Reduction of iron Compared to  Fe3+, free  Fe2+ ions 
show higher toxicity to induce ferroptosis.  Fe3+-

The transferrin (TF) complex binds with the membrane 
protein TFRC (transferrin receptor) and is imported 
into cells through endocytosis [83]. In endosomes, 
 Fe3+ is reduced to  Fe2+ by STEAP3 (STEAP3 metal-
loreductase), and then  Fe2+ is released into the cyto-
sol through divalent metal transporter 1 (DMT1) [84]. 
Excess iron is mainly stored in ferritin or exported out-
side of the cell through membrane iron transporter 1 
(FPN1). Only a small group of  Fe2+ forms the labile iron 
pool (LIP), which plays a significant role in ferroptosis 
[85]. In addition, ferritinophagy also provides iron by 

degrading ferritin. Sometimes, ferritinophagy can trigger 
autophagy-dependent ferroptosis [86].

II. Fenton reaction Generally, cells manage iron through 
absorption, output, utilization, and storage [87]. When 
intracellular iron is overloaded, on the one hand, highly 
oxidizing Fe2+ from LIP easily undergoes the Fenton 
reaction, produces hydroxyl radicals, provokes oxidative 
stress, causes superabundant ROS, and causes ferroptosis 
[88]. On the other hand, the cofactor Fe2+ facilitates the 
activity of a wide range of metabolic enzymes, promotes 
the production of lipid ROS, and ultimately promotes 
ferroptosis [84].

III. Lipid peroxidation Polyunsaturated fatty acids 
(PUFAs), such as adrenoyl (ADA) and arachidonoyl (AA), 
are the easiest lipids to oxidize in ferroptosis [89]. With 
the catalysis of ACSL4, PUFAs produce corresponding 
hydroperoxy derivatives. Next, LPCAT3 esterifies PUFA-
COA into phosphatidylethanolamines (PL-PUFAs), 
which are primarily present in the endoplasmic reticu-
lum. Subsequently, ALOX15 directly oxidizes PL-PUFA 
into PLOOH. PLOOH is lethal for cells as a peroxi-
dized lipid that is reduced in GPX4 reduction‒oxidation 
(REDOX) reaction. GPX4 converts GSH into oxidized 
glutathione (GSSG) and reduces cytotoxic lipid peroxides 
(L-OOH) to the corresponding alcohols (L-OH). GPX4 
can be used as an inhibitor of ferroptosis [55].

IV. GSH deficiency System  Xc− is a membrane trans-
port protein and consists of SLC7A11 and SLC3A2. Sys-
tem  Xc− transports glutamate outside and cystine inside 
cells at a ratio of 1:1 [90]. Cystine turns to cysteine, and 
then cysteine, glutamic acid and cysteine compose the 
antioxidant glutathione (GSH). GSH is a substrate for 
multiple enzymes that remove ROS and is also a neces-
sary cofactor of GPX4. GPX4 can simultaneously con-
vert reduced GSH into oxidized GSH, and this process 
provides motive forces to reduce lipid peroxidation [91]. 
Hence, when GSH is deficient, ROS are not eliminated, 
and GPX4 is unable to reduce lipid peroxidation.

Cu induces ferroptosis
In general, Fe is the ferroptosis-inducing factor. Interest-
ingly, a study found that Cu also induced ferroptosis [81]. 
Gao et  al. demonstrated that elesclomol‐induced cop-
per chelation promotes ferroptosis of colorectal cancer 
cells. On the one hand, the copper chelator elesclomol 
alone promotes the degradation of copper‐transport-
ing ATPase 1 (ATP7A), which is responsible for copper 
efflux. The degradation of ATP7A increases the amount 
of copper in cells. Excessive copper retention induces the 
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Fenton reaction, produces many ROS and triggers ferrop-
tosis [92]. On the other hand, ATP7A protects SLC7A11 
from degradation, whereas elesclomol‐mediated loss of 
ATP7A causes SLC7A11 downregulation and a lack of 
sufficient cystine in cells. GPX is unable to inhibit oxida-
tive stress and further induce ferroptosis [81]. Apart from 
that, Qian et  al. discovered that  Cu2+ directly binds to 
the C107 and C148 cysteine residues of the GPX4 pro-
tein, which induces GPX4 protein aggregation. Then, the 
aggregates are recognized by the autophagic receptor 
TAX1BP1 (Tax1 binding protein 1) and degraded by the 
autophagy pathway. Subsequently, ferroptosis occurs in 
response to autophagy [72].

Cuproptosis is induced by copper
Tsvetkov et  al. discovered a new form of RCD termed 
cuproptosis [5]. They revealed that an excess of Cu binds 
to the TCA cycle enzyme dihydrolipoamide S-acetyl-
transferase (DLAT), drives lipoylation and aggregation 
of the enzyme, results in proteotoxic stress and further 
induces cell death [5] (Fig.  3). Prior to this, previous 
studies found that Cu can interact with proteins and 
cause aggregation, but the reaction is not critical for Cu 

cytotoxicity [53, 54]. In addition, this death type does not 
correlate with reactive oxygen species production. There-
fore, this innovative paper had been published, which 
caused a sensation.

The process of copper‑mediated cuproptosis

I. The accumulation of copper The copper transporters 
SLC31A1 (CTR1), ATP7A and ATP7B are responsible 
for regulating the level of copper in cells [93]. SLC31A1 
transports copper into cells, and ATP7A and ATP7B 
transport copper out of cells. In Tsvetkov’s study, upregu-
lated SLC31A1 and downregulated ATP7A/B increase 
copper levels and trigger copper–induced cell death.

In addition, there are useful tools that can bind to copper 
ions and help them enter cells, named copper ionophores 
[94]. These ionophores may increase intracellular cop-
per toxicity. Consistent with regulation of copper trans-
porters, Tsvetkov observed potent copper ionophore 
elesclomol increases copper accumulation and causes 
cuproptosis.

Fig. 2 Iron and copper lead to ferroptosis. Iron induces ferroptosis through iron reduction, the Fenton reaction, lipid peroxidation and GSH 
deficiency. Elesclomol‐induced copper also triggers the Fenton reaction, produces many ROS and triggers ferroptosis. The red arrow indicates Cu, 
and the blue arrow indicates Fe
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GSH binding to copper is an important way to reduce 
copper accumulation. Tsvetkov et al. also found that the 
GSH synthase inhibitor BSO induced cuproptosis.

II. TCA cycle The TCA cycle can control cell fate and 
function, serving as an important route for oxidative 
phosphorylation and regulating redox, biosynthetic and 
bioenergetic balance [95]. Tsvetkov et  al. found that 
copper might not attack respiratory electron transport 
chains or adenosine triphosphate (ATP) synthesis but 
rather tricarboxylic acid (TCA) cycle components.

Lipoylation is a posttranslational modification in which 
lipoic acid is attached to proteins. This modification is 

unique to the pyruvate dehydrogenase complex (PDC) in 
the TCA cycle [96]. In mitochondria, PDC catalyzes the 
conversion of pyruvate to acetyl coenzyme A. PDC con-
tains 4 multimeric metabolic enzymes, and one of them 
is dihydrolipoamide S-acetyltransferase (DLAT).

III. FDX1 promotes lipoylation of DLAT FDX1 is a mito-
chondrial reductase that reduces Cu2+ to its cuprous 
and more toxic form, Cu1+. In addition, FDX1 binds and 
is inhibited by elesclomol [97]. However, in Tsvetkov’s 
study, FDX1 is a newly-discovered upstream regulator 
of protein lipoylation. Excessive copper binds to DLAT 
lipoylated by FDX1, which causes aberrant oligomeriza-
tion of DLAT and the formation of DLAT foci. Increased 

Fig. 3 Process of cuproptosis. Copper induces cuproptosis through copper accumulation and the TCA cycle, and FDX1 promotes lipoylation 
of DLAT. Excessive copper led to loss of Fe-S cluster proteins under the regulation of FDX1. The red arrow indicates Cu, and the blue arrow indicates 
Fe
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levels of insoluble DLAT induce TCA cycle disturbance 
and cellular proteotoxic stress, which ultimately results in 
cell death.

The association of iron with cuproptosis
Although ferroptosis inhibitors do not inhibit copper-
induced cell death in cells, excessive copper leads to a 
loss of Fe-S cluster proteins under the regulation of FDX1 

[5]  (Fig.  3). These observations are consistent with pre-
vious findings showing that the inhibition of Fe-S cluster 
formation significantly reduced mitochondrial lipoyla-
tion [98]. Nevertheless, the role of Fe-S in cuproptosis 
remains to be elucidated.

In addition, GSH is a known copper and iron chelate 
that can reduce metal ion toxicity. GSH serves as the 
principal substrate for GPX4 and acts as a suppressor 
of ferroptosis. The induction of cuproptosis by the GSH 

Fig. 4 Iron and copper induce diverse types of cell death. A Iron and copper trigger external and internal apoptosis. In the internal pathway, 
they lead to mitochondrial dysfunction, regulate BCL−2 family proteins, and release cytochrome c through ROS and proteasome inhibition. 
Cytochrome c is dependent on BCL−2 family proteins that bind and activate apoptotic protease-activating factor 1 (APAF-1) as well 
as procaspase 9, forming an apoptosome. B Iron and copper lead to autophagy. Ferritin is degraded by autolysosomes, leading to abnormal 
iron accumulation and eventually triggering cell death. Copper binds to ULK1 and ULK2 directly, relieving ULK1/ULK2 inhibition and promoting 
autophagy. Copper also binds to GPX1 to induce autophagy. C Iron overload accelerates ROS accumulation and the RIPK1/RIPK3/MLKL pathway, 
opens the mitochondrial permeability transition pore (mPTP), eliminates mitochondrial membrane potential, and releases cytochrome c 
outside mitochondria and DAMPs to the extracellular space, resulting in definitive necroptosis. D Iron stimulates the production of ROS, which 
induces pyroptosis via the classical caspase-1-mediated pyroptotic pathway and caspase-3-dependent pathway. In the first pathway, iron-elevated 
ROS cause the oxidation and oligomerization of Tom20, which recruits Bax and facilitates cytochrome c release into the cytosol. Then, cytochrome 
c activates caspase-9, which activates caspase-3. Finally, caspase-3 aggravates GSDME cleavage and triggers pyroptosis. In the second pathway, 
iron accelerates ROS accumulation, which activates the NLRP3/ASC/Caspase1 complex and hence induces pyroptosis. Copper also stimulates 
the production of ROS, induces ER stress and triggers the classical Caspase-1-mediated pyroptotic pathway through the IRE1α-XBP1 axis. The red 
arrow indicates Cu, and the blue arrow indicates Fe
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synthase inhibitor BSO shows that GSH serves the same 
function in cuproptosis. These observations raise the 
possibility of crosstalk between Cu and Fe.

Fe and Cu mediate apoptosis
Apoptosis is a classic RCD that can be induced by both 
external and internal factors. External apoptosis is initi-
ated by cell membrane proteins known as death receptors 
[99]. Intrinsic apoptosis is initiated by cellular stimuli, 
including oxidative stress and DNA damage. Then, the 
stimulation disrupts mitochondrial functions and causes 
intrinsic apoptosis finally. The two major types of apopto-
sis pathways are caused by caspase 8/caspase 10 and cas-
pase 9, which all activate caspase 3/caspase 7. Caspase3 
and caspase7 are responsible for cleaving downstream 
caspases to execute apoptosis [100].

There are a number of reports about Fe- and Cu-medi-
ated apoptosis  (Fig. 4A). In those studies, ROS emerged 
as the main culprit that induced internal apoptosis [61]. 
Proteasome inhibition is another convict of internal 
apoptosis [36, 44].

Iron and copper can trigger intrinsic apoptosis. In 
osteoblasts, iron overload induces intrinsic apoptosis via 
ROS. Tian et al. noted that excess iron effectively causes 
apoptosis in osteoblasts in  vitro. Iron overload leads to 
an increase in ROS that decreases and depolarizes MMP, 
increases Bax and cleaved caspase-3, and reduces Bcl-2. 
Changes in Bcl-2 and Bax expression also promote mito-
chondrial membrane permeability [61]. In addition, iron 
can bind to the 20S proteasome subunits and inhibit the 
activation of the proteasome, which induces the intrin-
sic pathway of apoptosis via cytochrome c transfer to the 
cytoplasm and activation of the caspase cascade [36, 45]. 
In Park’s study, ferric ammonium citrate (FAC)-induced 
iron overload led to mitochondrial fission relying on 
Drp1 (Ser637) dephosphorylation and induced further 
apoptotic death in neurons. In addition, phosphorylation 
of Drp1 (Ser637) is dependent on calcineurin, which also 
plays an important role in intrinsic apoptosis in neurons 
[62]. Iron nanoparticles and induced intrinsic apoptosis. 
In non-small cell lung cancer cells, combined with actein, 
iron oxide (Fe3O4) magnetic nanoparticles facilitate 
proapoptotic proteins caspase 3, Bax and Bad and inhibit 
antiapoptotic proteins Bcl2 and BclXL. These eventu-
ally cause cell apoptosis [63]. Jalili et  al. observed that 
with cold atmospheric plasma, iron nanoparticles caused 
growth of the BAX gene and a reduction in the BCL2 
gene in human breast cancer cells [64]. Neshastehriz 
et  al. found that iron oxide nanoparticles (gold-coated) 
could also contribute to apoptosis in human glioma cells 
[65].

Cu2+ can also modify the permeability of mitochon-
drial membranes, cause mitochondrial membrane 

depolarization, decrease mitochondrial membrane 
potential, reduce cytochrome c oxidase activity, and 
eventually induce intrinsic apoptosis [30, 60, 66, 101]. 
Copper induces proteasome inhibition that promotes 
the intrinsic pathway of apoptosis. In prostate and breast 
cancer cells, Pang et  al. observed that the diethyldithi-
ocarbamate (DDTC)-copper complex suppressed pro-
teasomal chemotrypsin-like activity, reduced various 
oncogenes, including androgen receptor (AR), estrogen 
receptor (ER) α and ERβ proteins, and finally induced 
apoptosis [36]. Rochford et al. targeted four developmen-
tal cytotoxic copper(II) complexes and found that Cu(II) 
complexes increase BAX, XIAP, caspase 9, caspase 3, 
BCL-2, and BAX and ultimately lead to apoptosis [66]. 
Shao et  al. revealed that Cu complexes activate Drp1, 
accelerate mitochondrial accumulation of p53, disturb 
MOMP, and release mitochondrial apoptotic proteins, 
resulting in eventual apoptosis [67].

Except for intrinsic apoptosis, Fe and Cu also induce 
external apoptosis. Dehydroabietic acid (DHC)-Fe(III) 
and DHC-Cu(II) trigger mitochondrial intrinsic and 
extrinsic apoptosis. These complexes activate caspase-9, 
increase Bax, reduce Bcl-2 (intrinsic pathway), and facili-
tate caspase-8/caspase-4 and Fas (extrinsic pathway) [44]. 
DHC- copper(II)  also causes damage to cellular DNA, 
protein, and lipids, even whole MCF-7 cells [44]. Fur-
thermore,  another complex of copper ([Cu(o-phthalate)
(1,10-phenanthroline)] (Cu-Ph)) could induce apoptosis 
via caspase 9 and caspase 8 [60].

Fe and Cu mediate autophagy
Several studies have documented that iron mediates 
autophagy  (Fig.  4B), a process named ferritinophagy. 
Ferritinophagy is the process of autophagic degradation 
of the iron-storage protein and production of free iron 
ions [69]. In most eukaryotic cells, ferritin is the major 
intracellular iron storage protein that is composed of 
FTH1 and FTL. Ferritin is degraded by ferritinophagy 
after binding to a cytosolic autophagy receptor, NCOA4 
[70]. The silencing of NCOA4 exerts an inhibitory effect 
on erastin-induced ferroptosis, while the overexpression 
of NCOA4 exerts a facilitatory effect on ferroptosis by 
promoting ferrite degradation [71]. Furthermore, genetic 
inhibition of ATG3, ATG5, ATG7, ATG13, or MAP1LC3 
prevents cancer cells and fibroblasts from undergoing 
ferritinophagy in  vitro in response to erastin treatment 
or cysteine depletion [102]. In summary, ferritinophagy 
results in abnormal iron accumulation and eventually 
induces ferroptotic death.

Cu complexes also lead to autophagy [68, 73, 74]. Qian 
et  al. discovered that Cu2+ binds to the GPX4 protein 
and induces GPX4 protein aggregation and TAX1BP1-
dependent autophagic degradation [72]. Tsang et  al. 
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found that copper could directly bind to ULK1 and 
ULK2, relieve ULK1/ULK2 inhibition and promote 
autophagy, while iron had no such outcome. In addi-
tion, genetic loss of the Cu transporter Ctr1 inhibits the 
interaction of copper and ULK1/2 [73]. Notably, whether 
the reduced or oxidized states of copper bind to ULK1/2 
was not stated. Some studies also discovered that cop-
per increased the expression of autophagy-related genes, 
such as LC3b/LC3a, p62, Atg3, Atg5 and BECN1 [68, 74].

Fe mediates necroptosis
Fe also triggers necroptosis  (Fig.  4C), with few papers 
reporting. Necroptosis, an alternative form of pro-
grammed necrosis, is executed by a complex composed 
of RIP1 and RIP3 and aggravates MLKL phosphorylation 
via inhibition of caspase-8. Tian et al. demonstrated that 
iron overload triggers the openness of the mitochondrial 
permeability transition pore (mPTP), the loss of mito-
chondrial membrane potential and ultimately necropto-
sis via induction of ROS accumulation and the RIPK1/
RIPK3/MLKL necroptotic pathway in osteoblastic cells 
[75]. There is still a lack of particular mechanistic find-
ings except for Tian’s study, which proposed that gallic 
acid could lead to diverse types of cell death, including 
apoptotic, ferroptotic and necroptotic pathways. These 
three types of cell death could be inhibited by the iron 
chelator DFO, which proved that necroptosis is iron-
dependent [103].

Fe and Cu mediate pyroptosis
Several pathways contribute to pyroptosis, including the 
Caspase-1 activation-mediated classical pyroptotic path-
way, Caspase-4/5/11-dependent nonclassical pyroptotic 
pathway, Caspase-8-dependent pyroptotic pathway and 
Caspase-3-dependent pyroptotic pathway [104].

It is now well established from several studies that 
iron is a crucial inducer of pyroptosis  (Fig.  4D). Zhou 
et al. illustrated that iron-elevated ROS can trigger Cas-
pase-3-dependent pyroptosis via the Tom20-Bax-cas-
pase3-GSDME pathway. In melanoma cells, ROS induce 
the oxidation and oligomerization of Tom20, which is 
located in the mitochondrial outer membrane, upon 
iron stimulation. Oxidized Tom20 recruits Bax to mito-
chondria, and then Bax accelerates cytochrome c release 
into the cytosol. This cytochrome c next activates cas-
pase-9, which activates caspase-3. This caspase-3 further 
cleaves GSDME and ultimately indicates the occurrence 
of pyroptotic death [77]. In addition, another study 
focused on iron-induced classic pyroptosis mediated by 
Caspase-1 activation. One study found that iron loading 
and the Fenton reaction significantly increase oxidative 
stress and pyroptosis. In hepatocytes and macrophages, 
iron overload aggravates oxidative stress and significantly 

increases the protein levels of ADAM17, ADAM10, 
CD163, ATG5 and especially Caspase1, which partially 
suggests that iron induces pyroptosis [78].

Copper can also induce pyroptosis by relying on ROS 
accumulation [105]. In hepatocytes, copper significantly 
increases the expression of pyroptosis-related genes at 
the mRNA level (Caspase-1, IL-1β, IL-18 and NLRP3) 
and at the protein level (Caspase-1) [79]. Conversely, 
excessive copper-induced pyroptosis is reversible with 
an ROS scavenger (NAC, N-acetylcysteine) and a caspase 
inhibitor (Z-YVAD-FMK) [79]. Similarly, Liao et al. found 
that Cu(II) exposure causes ER cavity expansion and ele-
vates pyroptosis-related genes, such as NLRP3, GRP78 
and Caspase-1, GSDMD, and IL1B, in the jejunum in vivo 
and in vitro. Importantly, 4-phenylbutyric acid (ER stress 
inhibitor) and MKC-3946 (IRE1α inhibitor) markedly 
suppress the ER stress-triggered IRE1α-XBP1 pathway, 
which alleviates Cu-induced pyroptosis [80].

The crosstalk of ferroptosis and cuproptosis 
with other forms of cell death
Several types of cell death, including apoptosis, 
autophagy, necroptosis, pyroptosis and cuproptosis, 
are related to ferroptosis. However, the cross between 
cuproptosis and other forms of RCD has not been 
reported.

Ferroptosis is associated with apoptosis. p53 partici-
pates in the regulation of both ferroptosis and apoptosis. 
P53 is an important regulator of apoptosis, and a large 
number of apoptotic factors are dependent on P53 acti-
vation to regulate apoptosis. In addition, p53 can trig-
ger apoptosis by provoking mitochondrial translocation 
and accelerating cytochrome c release directly [106]. p53 
also plays an important role in the regulation of ferrop-
tosis. P53 can promote ferroptosis by hindering system 
Xc- uptake of cystine by downregulating the expression 
of SLC7A11, thereby reducing the activity and antioxi-
dant capacity of GPX4 [107]. Further studies have found 
that the P53-SAT1-ALOX15 pathway is involved in the 
occurrence of ferroptosis. p53 can promote SAT1 gene 
regulation at the transcriptional level, which induces lipid 
peroxidation and ferroptosis. This reaction may depend 
on ALOX-15 because SAT1-induced ferroptosis is signif-
icantly abolished after PD146176 (a specific inhibitor of 
ALOX15) treatment [108, 109]. In addition, IFN-γ is also 
an inducing factor of apoptosis and ferroptosis in addi-
tion to p53. In various cancer cell lines, IFN-γ induces 
apoptosis by activating JAK/STAT1/caspase signaling 
[110–112]. In melanoma cells, IFN-γ also triggers apop-
tosis via the IRF3/ISG54/caspase 3 pathway [113]. After 
PD-1 treatment, tumor-infiltrating CD8+ T cells secreted 
IFN-γ in response to nivolumab, an anti-PD-L1 antibody. 
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In cancer cells, the released IFN-γ reduces the uptake of 
cysteine and the excretion of glutamate, which leads to 
lipid peroxidation and results in ferroptosis [114].

Other studies have shown that autophagy also plays a 
role in the occurrence of ferroptosis [107, 115]. Activa-
tion of autophagy can cause changes in ferritin. In the 
ATG5-ATG7-NCOA4 pathway, the process of ferritin-
associated autophagy that is mediated by NCOA4 can 
increase the content of unstable iron in cells, thus pro-
moting ferroptosis [71]. In addition, lipophagy, another 
form of autophagy, promotes ferroptosis through lipid 
droplet degradation, promoting lipid peroxidation. This 
evidence indicates that silencing of the lipid droplet cargo 
receptor RAB7A or ATG5 inhibits lipid peroxidation 
and ferroptosis [116, 117]. This contrasts with the over-
expression of TPD52, which increases lipid storage and 
inhibits ferroptosis [117, 118]. Therefore, lipophagy regu-
lates ferroptosis depending on the imbalance between 
lipid storage and degradation. In addition, an important 
autophagy protein, BECN1, inhibits the activity of system 
xc− and induces ferroptosis [119, 120].

Necroptosis and ferroptosis often co-occur in diverse 
diseases. In hemorrhagic stroke, ferroptotic (activating 
phospho-ERK1/2) and necroptotic cell death (increas-
ing RIP1 and RIP3 mRNA expression and activating 
phospho-RIP1) simultaneously occur [121]. Basit et  al. 
investigated whether inhibition of mitochondrial com-
plex I causes mitochondrial permeability transition pore 
opening and mitochondrial membrane potential depo-
larization, further increases mitophagy-dependent ROS, 
and finally results in ferroptotic and necroptotic cell 
death in melanoma cells [122]. HSP90 triggers necropto-
sis and ferroptosis by phosphorylating RIP1 and reducing 
GPX4 activation [76]. Beyond this, necroptosis occurs as 
a result of ferroptosis. It has been shown that ferropto-
sis causes an inflammatory response, leading to necrop-
totic cell death and perpetuating chronic kidney disease 
in nephrotoxic acute kidney injury models [123]. Iron 
overload, which contributes to ferroptosis, triggers mito-
chondrial permeability transition pore (MPTP) opening, 
phosphorylates RIP1 and induces necroptosis [75, 76].

Pyroptosis and ferroptosis often occur simultaneously 
in diverse diseases as well. In colorectal cancer, NFS1 
knockout combined with oxaliplatin causes PANoptosis 
(ferroptosis, pyroptosis, apoptosis and necroptosis) by 
increasing ROS [124]. Pyroptosis also acts cooperatively 
with ferroptosis. Yu et  al. illustrated that target genes 
related to ferroptosis and pyroptosis may improve the 
prognosis of head and neck squamous cell carcinoma 
[125]. In addition, scRNA-seq analysis proved that vitiligo 
may be induced by ferroptosis and pyroptosis in epider-
mal melanocytes [126]. In chronic heart failure, MLK3 
regulates NF-κB/NLRP3 signaling pathway-mediated 

inflammation and pyroptosis, while MLK3 mainly regu-
lates JNK/p53 signaling pathway-mediated oxidative 
stress and ferroptosis. These two forms of death cause 
myocardial fibrosis in the different stages of chronic heart 
failure [127]. Pyroptosis and ferroptosis have the same 
point, lipid peroxidation. Lipid peroxidation is a key fac-
tor in ferroptosis, which is also detected as rising sharply 
during cell membrane rupture in noncanonical pyropto-
sis. The occurrence of ferroptosis depends on excessive 
lipid peroxidation for its cytotoxicity, while pyroptosis 
does not [128].

Ferroptosis is also related to cuproptosis. It was 
recently revealed that the ferroptosis inducers sorafenib 
and erastin promote cuproptosis by enhancing copper-
dependent lipoylated protein aggregation in primary 
liver cancer cells [129]. In a lung cancer cell line, the 
expression of cuproptosis regulators was significantly 
altered after the knockdown of several ferroptosis regu-
lators (SL31A1, TFAM and ATF2) [130]. Specifically, the 
expression of SL31A1 is increased after the knockdown 
of PTEN, ATP7A is upregulated after the knockdown 
of TFAM, and LIPT1 is downregulated after the knock-
down of ATF2 [130]. In addition, very recent studies that 
analyzed public datasets discovered that ferroptosis- and 
cuproptosis-related genes have strong correlations and 
are significantly changed in multiple diseases [130–136]. 
For example, overlapping genes related to ferroptosis 
and cuproptosis (POR, SLC7A5, and STAT3) were sig-
nificantly correlated with sepsis-induced cardiomyopa-
thy [131]. Shen et al. established a CuFescore model, an 
unsupervised cluster for cuproptosis/ferroptosis regu-
lators, to predict the prognosis of lung cancer patients, 
which is strongly correlated with immune checkpoints 
and mutations [130]. These recommendations will be fur-
ther verified in future experiments.

Although none of the studies reviewed the cross 
between cuproptosis and apoptosis, autophagy, necrop-
tosis and pyroptosis, some clues offer the possibility. A 
review summarized the promotion effects on RCDs of 
tumor suppressor p53, including apoptosis, ferropto-
sis, parthanatos, programmed necrosis, and autophagic 
cell death. They stated that p53 might also play a role 
in cuproptosis because the gene regulates the biogen-
esis of iron-sulfur clusters and the copper chelator glu-
tathione, which are two critical components of the 
cuproptotic pathway [137]. Another clue is that the gene 
HMGB1 (high-mobility group box 1) is involved in both 
cuproptosis and autophagy. HMGB1 is a regulator of 
autophagy [138]. On the one hand, autophagy increases 
HMGB1 release; on the other hand, HMGB1 binds with 
autophagy-related proteins and triggers autophagy, 
such as BCN1, RAGE and HSP90AA1 [139, 140]. A 
recent study reported a novel metabolic mechanism of 
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cuproptosis in which cuproptosis-induced ATP depletion 
activates AMPK and downstream HMGB1 (high-mobil-
ity group box 1), releases HMGB1 into the extracellular 
space and ultimately leads to inflammation [141].

Iron and copper targeting strategies
Based on the importance of copper and iron in dis-
eases, a multitude of strategies have been developed to 
regulate intracellular copper and iron levels. One of the 
major roles of those agents is developing novel antican-
cer therapies. Iron and copper are vital for tumorigenesis 
and cancer progression. In particular, cancer cells have 
been shown to have higher iron requirements than nor-
mal cells, often referred to as ‘iron addiction’ [142]. Two 
polar opposite approaches have been taken for therapeu-
tic benefit: intracellular iron and copper deprivation or 
deliberate utilization of excess iron and copper in can-
cer cells to selectively deliver cytotoxic levels of ROS and 
induce cell death [143]. Both mechanisms act in cancer 
cells, suggesting that iron/copper depletion and iron/
copper supplementation may be viable approaches. The 
two therapeutic strategies are also applied to multiple 
diseases.

Iron and copper targeting strategies have been used 
extensively (Table  4). For example, some classic iron 
chelators have been widely  used in the treatment 
of  iron  overload  disorders, including deferasirox (DFX), 
deferiprone (DFP), deferitazole, desferoxamine (DFO) 
and triapine [144]. However, they have varying degrees of 
toxicity and limited therapeutic effects [145]. A possible 
counter to this may be through the use of iron and cop-
per binding protein-conjugated chemotherapeutic agents 
to increase the specificity of drug delivery [146–149]. 

Another emerging and precise anticancer strategy to reg-
ulate iron and copper levels is the use of nanomedicines. 
In addition, combination therapies of the above methods 
may be a better way to cure patients and help them evade 
the effects of iron and copper toxicity. For example, the 
natural compound curcumin acts as a copper transporter 
and has been used to kill cancer cells through intracel-
lular copper delivery [150, 151]. Using nanotechnologies, 
curcumin nanoparticle-vesicular delivery into cancer 
cells is more effective because of its higher aqueous solu-
bility and specificity [152].

Conclusions and future perspectives
Iron (Fe) and copper (Cu) are the first series of transition 
metals that are essential nutrients, are involved in fun-
damental biological processes and play a crucial role in 
health and disease. Moderate Fe and Cu are beneficial to 
life, but excesses or deficiencies are harmful. Therefore, 
Fe and Cu are sometimes toxic to cells. Iron and copper 
own or co-own modes that lead to cell impairment and 
eventually cell death.

In this review, we described some modes of iron and 
copper that may be deleterious to cell growth directly 
or indirectly. We found that iron and copper are able 
to impair cells through excessive ROS and proteasome 
inhibition. In addition, iron can drive lipid peroxidation, 
which leads to ferroptosis, while copper can bind and 
break DNA and bind and activate E2D2-inducing protein 
ubiquitination and degradation.

and drive protein lipoylation and aggregation, inducing 
cuproptosis as well.

Notably, it is important to tell the real reason for DNA 
damage: iron and copper influence ROS, evocating 

Table 4 Iron and Copper-targeting agents

Role Type Agent

Iron supplementation Iron ionophore Dithiocarbamates (DTCs), Thiosemicarbazones (TSCs), Hydroxyquinolines (HQs), 
Hydroxyflavones (HFs) [153] , Sulfasalazine [154],

Iron oxide nanoparticles Sorafenib [155], Withaferin A [156] ,FePt-NP2 [157], C′ dots [158], IKE nanoparticles 
[159], Artesunate [160]

Iron chaperones conjugated agents MPTC-63 [146], H-ferritin (HFn) [149]

Natural compounds Curcumin (Cur) [150, 151].

Iron depletion Iron chelators Dexrazoxane [161], Ciclopirox [162], DFX [163], DFP [164], Deferitazole [165], 
Dp44mT, DFO [166], Triapine [167], Super-polyphenols 6 and 10 [168],

Copper supplementation Copper ionophore 8-hydroxyquinoline [169] ,Elesclomol [170], Disulfiram [171], and NSC319726 [5] 
,Clioquinol

Copper nanoparticles DSF@PVP/Cu-HMPB [172], Copper-cysteamine nanoparticles [173]

Natural compounds Anthocyanidins [174]

Copper depletion Copper chelators Tetrathiomolybdate [175], Penicillamine [176], Trientine [177], ATN-224 [152], Trieth-
ylenetetramine [178], EDTA [179], Trientine dihydrochloride [180]

Natural antidotes Turmeric [181], Chalkophomycin [182]

Inhibitor of copper chaperones DCAC50 [147]
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DNA damage indirectly, or copper binds and breaks 
DNA directly. In addition, it is also noteworthy to judge 
whether protein ubiquitination induced by copper harms 
cells. Copper promotes target polyubiquitination and can 
thus regulate the degradation rate of many proteins that 
are also favorable for cell growth. For example, protein 
ubiquitination induced by copper is helpful in develop-
ment and head formation in Drosophila [52]. Cu+ can 
also promote p53 degradation by allosterically activating 
E2D2 and facilitate the growth of cancer cells [52, 183]. 
Furthermore, ubiquitination and the proteasome path-
way act in a synergistic fashion for protein degradation. 
However, copper, which promotes protein ubiquitination 
and proteasome inhibition, exerts opposite effects on the 
regulation of proteins. Therefore, these two characteris-
tics of Cu may be analyzed separately.

Iron and copper mediate diverse forms of cell death. 
Both Fe and Cu can induce extrinsic and intrinsic apop-
tosis, autophagy, ferroptosis and pyroptosis. Only iron is 
capable of inducing necroptosis, while copper is able to 
trigger cuproptosis. From the studies discussed thus far, 
copper has more functions to induce cell death, which 
acts on proteins compared to iron. We hypothesize that 
copper may also trigger necroptosis or ferroptosis by 
impacting protein structure and function, which may 
provide a new research direction.

Types of cell death may be related to one another, 
and iron- and copper-mediated cell death is likely to 
be interrelated as well. Ferroptosis, as an independent 
mode of cell death, is related to apoptosis, autophagy, 
necroptosis, pyroptosis and cuproptosis, which have 
been extensively reported. However, only very few find-
ings have offered clues regarding the cross between 
cuproptosis and other forms of RCD. There are several 
ways of cross talk between RCDs. First, causal relations 
between autophagy and ferroptosis, ferroptosis and 
necroptosis and ferroptosis and cuproptosis are pre-
sent. Two different types of autophagy, ferritinophagy 
and lipophagy, producing excessive free iron ions and 
fatty acids, respectively, result in ferroptosis. Ferroptosis 
contributes to the occurrence of necroptosis. Ferropto-
sis inducers and regulatory genes also contribute to the 
occurrence of cuproptosis. Second, there are some com-
mon points between apoptosis and ferroptosis, pyropto-
sis and ferroptosis and cuproptosis and multiple RCDs. 
IFN-γ works as both apoptosis- and ferroptosis-induc-
ing factors. Pyroptosis and ferroptosis have the same 
point, lipid peroxidation. p53 has promoting effects on 
RCDs, including apoptosis, ferroptosis, cuproptosis, and 
autophagic cell death. HMGB1 also plays an important 
role in cuproptosis and autophagy. Third, necroptosis, 
pyroptosis and ferroptosis, as well as ferroptosis and 
cuproptosis, often cooccur in diverse diseases. Fourth, 

pyroptosis also acts cooperatively with ferroptosis to lead 
to many diseases. The cross-talk between ferroptosis and 
cuproptosis with other cell death provides the possibil-
ity of joint application of existing treatment schemes and 
helps to solve drug resistance issues in some diseases, 
which may provide a new research direction.

Cell death has advantages and disadvantages for indi-
viduals. On the one hand, the low viability of normal cells 
compromises individual survival. On the other hand, 
tumor cell death is beneficial to life prolongation. In this 
study, we described iron- and copper-induced cell death. 
Saving normal cells alive or killing cancer cells by regulat-
ing iron- and copper-mediated cell death may be a smart 
approach. In addition, the pattern and relationships 
between ferroptosis and other forms of death involve-
ment in diseases determine the drugs that can be adopted 
to prevent uncontrolled cell death.

Does copper also contribute to necroptosis? What is 
the relationship between cuproptosis and different types 
of cell death? Is it synergy or antagonism? Whether simi-
larities and differences between copper and iron can help 
us explore the detailed mechanisms of cell death medi-
ated by them. Whether these various modes of cell death 
can be integrated into a complete regulatory network still 
requires further exploration.
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