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Abstract 

Gliomas are the most common brain tumors characterized by complicated heterogeneity. The genetic, molecular, 
and histological pathology of gliomas is characterized by high neuro‑inflammation. The inflammatory microenviron‑
ment in the central nervous system (CNS) has been closely linked with inflammasomes that control the inflammatory 
response and coordinate innate host defenses. Dysregulation of the inflammasome causes an abnormal inflammatory 
response, leading to carcinogenesis in glioma. Because of the clinical importance of the various physiological proper‑
ties of the inflammasome in glioma, the inflammasome has been suggested as a promising treatment target for gli‑
oma management. Here, we summarize the current knowledge on the contribution of the inflammasomes in glioma 
and therapeutic insights.
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Introduction
Glioma is the most prevalent intracranial brain tumor 
(comprising 81% of malignant brain tumors) that is 
thought to be driven by neuroglial or progenitor cells [1]. 
Although optimal standard treatments based on the bio-
logical or clinical background of glioma have been devel-
oped, the prognosis has not drastically improved due to 
the complicated heterogeneity and aggressive microen-
vironment of the glioma [2]. Stagnant survival statistics 

and increased malignancy demonstrate the urgent need 
for continued research to develop more effective thera-
pies for glioma [1].

The tumor microenvironment (TME) created by inter-
actions between malignant and non-transformed cells 
acts as a host supporting the expansion and invasion of 
tumors, promoting neoplastic transformation, protect-
ing the tumor from host immunity, and providing niches 
for dormant metastases to flourish [3, 4]. Among the 
highly heterogeneous elements of the TME, an aggres-
sive inflammatory process is one of the vital elements 
leading to dismal treatment results of glioma and glio-
blastoma [5]. Malignant progression of glioma relates to 
a neuroinflammatory response, deemed as a hallmark 
of tumor growth, invasion, angiogenesis, and metasta-
sis [6]. A neuroinflammation-enriched TME developed 
through the production of pro-inflammatory cytokines, 
chemokines, and growth factors facilitates an immune-
suppressive response and aids in the survival capacity of 
glioma cells [7, 8]. The clinical significance of treatment 
of chronic inflammation in the central nervous system 
(CNS) shows therapeutic potential for gliomas at the 
molecular level [9].
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The association between neuroinflammation and the 
inflammasome (multiprotein complex) involved in the 
innate immune system is an emerging research topic in 
glioma [10, 11]. Mounting evidence for an inflamma-
some-mediated inflammatory response describes the 
erroneous functions of the innate immune system in gli-
oma TME [12]. Generation of proinflammatory cytokine 
by inflammasome activation can promote glioma pro-
gression [12]. Because the inflammasome has clear bio-
logical implications in glioma, clinical studies on its 
identity are essential. In this review, we discuss the lat-
est insights into the function and molecular mechanism 
of inflammasomes in glioma, suggesting a therapeutic 
approach on a molecular level.

Pathology of glioma
The common symptoms of glioma include seizure, cog-
nitive disorder, aphasia, motor paresis, and headache 
[13]. Physical diagnosis of patients with glioma, includ-
ing those with glioblastoma, the most aggressive form of 
glioma, is based on detecting the pathological origin and 
specific subtype of cancer via neurosurgical procedures 
and molecular and histological examinations [14]. Based 
on the diagnosis using computed tomography or mag-
netic resonance imaging assessments, treatment deci-
sions involving surgical resection, radiotherapy, and TMZ 
chemotherapy are suitably established [14]. In 2021, the 
fifth edition of the World Health Organization (WHO) 
classification of CNS was published, which contains gen-
eral changes, including the taxonomy and nomenclature 
of glioma [15]. The novel stratification of glioma with 
1p/19q co-deletion based on fluorescence in situ hybridi-
zation (FISH) analysis and IDH mutant or wildtype 
based on IHC analysis became more sophisticated with 
additional diagnostic evaluation indices such as loss of 
ATRX expression or  TERT  promoter mutations, the 
presence of TP53 or histone H3 mutations, EGFR ampli-
fication, and  CDKN2A/B  alterations [16]. Based on the 
newly developed criteria, numerous biological classifi-
cations and treatment strategies are being proposed [15, 
16]. These advances have resulted in an improved under-
standing of the molecular pathogenesis of glioma with 
somatic mutations, hyperinflammatory responses, meta-
bolic dysfunction, immunoediting, and cell plasticity.

Large-scale efforts have been made to identify the 
major genetic and epigenetic alterations in glioma [17]. 
The data from The Cancer Genome Atlas (TCGA) and 
Chinese Glioma Genome Atlas (CGGA) project has 
aided in understanding the molecular landscape of gli-
oma, allowing the establishment of several subtypes 
and genomic characteristics [18, 19]. In line with previ-
ous reports, the status in IDH1/2, 1p/19q, TP53, CIC, 
PTEN, EGFR, MGMT, TERT, ATRX, and Ras/MAPK 

and extrachromosomal DNA were used as pathological 
indications of glioma [20–22]. These approaches further 
subdivided the glioma molecular subtypes into neural, 
proneural, classical, and mesenchymal types [15, 23].

Until recently, histological examination was one of the 
“gold standards” for diagnosing glioma [24]. Gliomas are 
generally graded using WHO grades 1–4 based on malig-
nancy signatures, including the degree of mitotic activ-
ity, atypia, microvascular proliferation, pseudopalisading 
necrosis, and specific hallmarks [15]. Although this histo-
logical classification has developed over the years, it has 
some limitations, such as interobserver variability and 
apprehensive subject quality during in vitro examinations 
[25]. Thus, to improve our understanding of histologi-
cal information, molecular features and clinical opinions 
should be considered together [26].

For several decades, the cellular origin of glioma has 
been a hot topic of interest in tumorigenesis in the CNS 
[27]. Numerous scholars postulate that gliomas originate 
from neural stem cell (NSC) lineages such as neurons, 
oligodendrocyte precursor cells (OPCs), oligodendro-
cytes, and astrocytes [27, 28]. OPCs expressing NG2, 
OLIG2, A2B5, and PDGFRα are the most abundant cells 
in CNS, and the proliferation of adult OPCs may play a 
pathological role in glioma development via responses 
to bFGF and PDGF-AA [29–31]. Astrocytes were identi-
fied as the causative cells of gliomas in the 1980s [32], and 
features such as mutated epidermal growth factor recep-
tor (EGFR) and activation of H-RAS, considered repre-
sentative signatures of gliomas, were revealed in a mouse 
model [33–35]. It has been verified in animal models that 
other cells, such as glial restricted progenitor cell (GRPC) 
and astrocyte precursor cell (APC), are cells of glioma 
origin [36].

The TME throws the physiological phenotype into dis-
order by closely interacting with diverse elements [37]. 
This is no different in glioma; in fact, the TME in glioma 
has a complex heterogeneity that is difficult to under-
stand [38, 39]. Large-scale studies conducted to under-
stand the TME and reduce interindividual variability 
have provided a fragmented genetic status of cells [40, 
41]. Aggressive genetic and phenotypic profiles of glioma 
with proliferative, invasive, and immune-suppressive sig-
natures contribute to the formation of a malignant signal-
ing axis via the acceleration of an autocrine or paracrine 
loop [42–44]. These common features of gliomas repre-
sent a fundamental baseline for standard treatment and 
follow-up management [45, 46]. In recent years, single-
cell RNA sequencing (scRNA-seq) has allowed the study 
of the biological properties of individuals with unprec-
edented resolution [47–49]. Single-cell landscapes, sup-
plemented with bulk RNA-seq and histological staining 
results, have provided insights into the TME, including 
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details regarding the functions of specific cells and mol-
ecules [47, 50]. To date, the progress has closely revealed 
pathological characteristics of specific molecular sub-
types, cell types, and molecules within gliomas [15, 51]. 
In particular, the mesenchymal signature of glioma (also 
called mesenchymal subtype) exhibits a high inflamma-
tory response, potential cellular plasticity, BBB instabil-
ity, and immune infiltration, and myeloid lineage cells, 
including microglia and macrophages, may play a role in 
increasing the malignancy of the tumor microenviron-
ment [52–54]. In addition, positionally resolved multi-
omics with spatial transcriptomic analysis may help 
decipher the tumoral development process and bidirec-
tional cell-to-cell interdependence in the TME of gliomas 
[55, 56]. Dissecting the composition and functional het-
erogeneity of the TME of tumor cells and infiltrating cells 
would extend our understanding of glioma and allow us 
to improve the therapeutic efficacy for good prognosis of 
patients.

Neuroinflammation in glioma
Classically, the CNS was supposed to be an “immune 
privileged” site following the rejection of transferred for-
eign tissue into the brain [57]. This is due to a specialized 
microenvironment including the BBB, inner blood-ret-
inal barrier, low MHC expression, draining lymphatic 
insufficiency, specialized antigen-presenting cells, and 
plentiful anti-inflammatory modulators to protect nor-
mal neurons from aggressive immune responses [58, 59]. 
Although the characteristics of the natural status of the 
CNS are necessary for the maintenance of the environ-
mental composition and proper function, these can be 
fatal in CNS diseases [60]. Importantly, studies for CNS 
disease, including glioma have focused on the pathogenic 
alteration of inflammatory response in the TME [61].

Neuroinflammation is closely linked to the vascular 
barrier. BBB is a selectively permeable barrier secured 
by endothelial cells linked to each other by tight junc-
tions, a pericyte-embedded layer, and an astrocyte 
end-feet anchor [60, 62]. In the glioma, endogenous or 
exogenous pathogenic stimuli cause devastating neuro-
inflammation, altering the BBB cell layer characteristics 
and permeability of blood vessels [10, 63, 64]. A com-
promised BBB by an enhanced inflammatory response is 
influenced by diverse elements, including TNF-α, IL-1β, 
TGF-β, HIF-1α, VEGF, and metalloproteinase induced 
by inflamed immune cells [65–67]. Although BBB break-
down by neuroinflammation supports the progression 
of glioma in an autocrine and paracrine manner, with 
respect to immunotherapy, it is paradoxically that it 
allows for easy infiltration of peripheral immune cells to 
the CNS [68, 69].

Inflammatory response mediators form an important 
checkpoint in glioma. At the cellular level, myeloid cells 
(~ 60% of immune cells in glioma) are the most common 
immune cell type in glioma [10]. Representatively, pro-
liferative and pro-inflammatory microglial cells (called 
brain resident myeloid cells) have a significantly positive 
correlation with glioblastoma progression [70]. Interest-
ingly, microglia and macrophages can be polarized into 
two different phenotypes (M1: pro-inflammatory role, 
M2 type: anti-inflammatory role), and the M1/M2 ratio 
significantly affects the neuroinflammatory microenvi-
ronment [71]. These cells release inflammatory cytokines 
and chemokines such as IL-1β, TNF-α, IL-6, IL-12, IL-23, 
CCL2, CCL3, CCL4, CCL5, CXCL10, and CCL12, caus-
ing neuroinflammatory disorders [72]. Furthermore, gli-
oma-associated microglia/macrophages (GAMs), which 
account for approximately 30% of the surgically resected 
glioma mass, play a key role in neuroinflammation [10]. 
GAMs not only produce immunosuppressive cytokines 
and tumor growth factors favorable for tumor growth but 
promote glioma progression by indiscriminate induction 
of inflammatory cytokines [73, 74]. In this regard, thera-
peutic strategies targeting specific molecules expressed 
primarily in these cells have been described consider-
ably [75]. In contrast, a chronic inflammatory response in 
glioma and glioblastoma promotes the accumulation and 
activation of MDSCs, which inhibits anti-tumor immu-
nity [76]. These cells are recruited by SDF-1, CCL2, and 
CXCL2 and then proliferate in response to IL-6, VEGF, 
GM-CSF, and PGE2 released by the glioma cells, fur-
ther compromising the inflammatory microenvironment 
[77–79]. Astrocytes, known to be the most closely related 
to neuroinflammation among cells not of the myeloid 
lineage, originally orchestrate neuronal development by 
secreting synaptogenic molecules and pruning excess 
synapses [80–82]. Among diverse astrocyte populations, 
reactive astrocytes (upregulated GFAP astrocyte) exhibit 
neurotoxic activity in various neurodegenerative diseases 
and promote inflammatory signaling pathways, includ-
ing JAK/STAT3, calcineurin, NF-κB, and MAPK path-
ways [83, 84]. Taken together, the pathological processes 
of these cells, mediating an inflammatory response or 
induced by inflammation, may enhance the proliferation, 
invasion, chemoresistance, and immune protection of 
tumor cells in glioma.

To completely understand the process of neuroin-
flammation in glioma, the molecular network must be 
approached as a means of understanding cell-to-cell 
communication [85]. The functional and phenotypic 
landscapes of the cytokines, chemokines, growth factors, 
cis or trans elements, and cytosolic nucleic acids involved 
in the inflammatory microenvironment have already 
been specifically described for CNS diseases [85]. These 
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molecules are not limited to the inflammatory response 
but show associations with various mechanisms such as 
metabolism, homeostasis, DNA repair, cell plasticity, and 
immunomodulation and form intra- or inter-links with 
these [86]. Therefore, discovery and validation of novel 
mechanisms in glioma, as well as identification of col-
laboration between them, will provide the foundation for 
a complete understanding of the inflammatory microen-
vironment in gliomas (Fig. 1).

Association of the inflammasome with glioma
Inflammasomes are intracellular multimeric protein 
complexes comprising a NOD-like receptor (NLR), adap-
tor apoptosis-associated speck-like protein (ASC), and 
pro-caspase-1, which were discovered in 2002 [87]. They 
elicit the innate immune response via caspase-1 cleav-
age and secretion of pro-inflammatory cytokines such as 
IL-1β and IL-18 against pathogenic microorganisms or 
danger signals [88]. Based on the general background of 

Fig. 1 Devastating roles of neuroinflammation in glioma. The inflammatory response in glioma can induce BBB dysregulation (green section). 
Aggressive neuroinflammation of the glioma immune microenvironment exhibits intricate heterogeneity (purple section). In view of metabolism 
dysregulation, neuroinflammation convert metabolic balance of glioma cells (blue section). Glioma with chronic inflammation exhibits significant 
resistance to chemo/immuno‑therapy (gray section)
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the inflammasome in various diseases, reports of asso-
ciations with glioma have been analyzed, and we have 
discussed the advances in the overall view of the inflam-
masome in glioma (Fig. 2).

As with other tumors or autoimmune diseases, vari-
ous inflammasomes, including NLRP3 and NLRC4, have 
been reported in glioma. Although attention has been 
paid to the differences in the composition and function of 
inflammasomes due to the spatial specificity of the CNS 
bearing the BBB, the inflammasomes are highly con-
served across tissues and cell types [12]. Assembly and 
activation of the inflammasome is a key function medi-
ated by the innate immune response, and recent advances 
have significantly contributed to understanding the mac-
romolecular identity of the inflammasome in glioma [12]. 
Representative upstream signals that induce the inflam-
masome are known to be pattern recognition receptors 
(PRRs) such as the Toll-like receptor (TLR) and RIG-
I-like receptor (RLR) families [89, 90]. Current reports 
have suggested the contribution of the PRRs acting in a 
paracrine fashion to the development and malignancy of 
glioma [91–94]. In particular, the TLR families, including 
TLR1, TLR2, TLR3, TLR4, TLR6, and TLR9, are highly 
expressed in the TME of glioma, both in vitro and in vivo, 
leading to neuroinflammation [93, 95–100]. Mount-
ing expression of TLRs in numerous cell types of glioma 
TME such as microglia, plasmacytoid DCs (pDCs), gli-
oma stem cell (GSCs), GAMs, and astrocytes accelerates 
the network of signaling events that result in de novo 
synthesis via transcriptional modulation or non-protein-
aceous signaling molecules [96, 101–107]. Upon PRR 
sensing of certain stimuli, the NF-κB signaling pathway 
is activated, which further induces NLR protein (known 
as inflammasome receptor protein) transcription, pro-
IL-1β and pro-IL-18 transcription, and the inflammatory 
response both locally and systemically through a positive 
feedback loop [101]. Importantly, these steps are defined 
as the priming step (also called the first step of inflam-
masome assembly and activation), which allows the 
maintenance of constitutively high levels of pro-inflam-
matory cytokines and inflammasome sub-molecules. The 
NF-κB pathway, a key element of the priming step of the 
inflammasome, plays a pathological role in gliomas [108]. 
Meanwhile, the recognition of PAMPs or danger signals 
by a unique PRR results in proper assembly and activa-
tion of inflammasomes (second step of inflammasome 
activation) [109]. Although there are fundamental differ-
ences between inflammasomes that depend on stimuli, 
generally, canonical inflammasomes serve as a scaffold to 
recruit adaptor proteins known as ASCs, which consist 
of two death-fold domains, a pyrin domain (PYD) and a 
caspase recruitment domain (CARD), and inactive zymo-
gen pro-caspase-1 [110]. Subsequent oligomerization of 

pro-caspase-1 induces their autoproteolytic cleavage into 
active caspase-1 [111]. Activated caspase-1 is a cysteine-
dependent protease that cleaves the precursor cytokines 
pro-IL-1β and pro-IL-18, generating the active forms 
of IL-1β and IL-18, respectively [111]. At present, the 
intermediate and final products formed during inflam-
masome assembly and activation have been identified 
as important growth- and motility-driving elements in 
gliomas [112, 113]. Although the mechanisms underlying 
the glioma inflammasome activation remain unclear, the 
recruitment and activation of the component molecules 
of the inflammasomes are associated with malignancy 
in gliomas [12]. For example, berberine treatment inhib-
its glioma growth by inactivating caspase-1-mediated 
inflammatory cytokines via ERK1/2 regulation [114]. In 
this regard, the pharmacological inhibition of the inflam-
masome receptor protein, adaptor protein, caspase-1, 
and pro-inflammatory cytokines may facilitate glioma 
management.

To date, numerous receptor proteins of inflamma-
some assembly have been identified, including NLRP1, 
NLRP2, NLRP3, NLRC4, NLRP6, NLRP12, AIM2, 
IFI16, and pyrin [110]. As described above, these pro-
teins recruit adapter proteins and inactive caspase-1 to 
assemble an inflammasome platform. Importantly, two 
pathways called canonical and non-canonical pathways 
are involved in the subsequent inflammasome activa-
tion process [111]. Recent developments toward our 
understanding of the canonical pathway (the inflam-
masome-caspase-1-proinflammatory cytokine axis) of 
inflammasome activation in glioma have been expertly 
reviewed in depth [111]. However, the role of the non-
canonical inflammasome pathway in glioma is still 
unclear. In general, the non-canonical inflammasome 
pathway, which targets caspase-11 (in mice), caspase-4 
(in human) and caspase-5 (in human), can restore the 
activation of the canonical inflammasome pathway [115]. 
Direct sensing of LPS and gram-negative bacteria by cas-
pase-4 or caspase-5 induces cleavage and oligomeriza-
tion of caspase-4 or caspase-5 [115]. These active forms 
directly promote pyroptosis, called pro-inflammatory 
cell death, via cleavage of the pore-forming protein gas-
dermin D (GSDMD) [115]. The non-canonical inflamma-
some pathway, similar to the canonical inflammasome 
pathway, is intertwined with pathological functions in 
CNS diseases [116, 117]. However, the overall mecha-
nism of action of the non-canonical inflammasomes in 
glioma has not been presented, but the functions of the 
individual molecules associated with them have been 
investigated. In fact, 15 differentially expressed genes, 
including caspase-5, were upregulated in glioma tis-
sues (n = 667) compared with those in normal brain tis-
sues (n = 1152), suggesting a prognostic value for the 
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Fig. 2 Schematic representation showing that general structure, assembly and activating pathway (canonical and non‑canonical) 
for inflammasome in glioma. Potential therapeutic candidate agents for inflammasome targets were suggested in red marker
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pyroptosis-related gene signature in glioma [118]. Cox 
regression, Kaplan–Meier analysis, and IHC results 
showed that GSDMD might be a novel biomarker for the 
prognosis and TMZ sensitivity in glioma [119]. There is 
additional evidence from a computational analysis that 
GSDMD is significantly positively correlated with glioma 
malignancies [120].

Role of inflammasomes in glioma
NLRP3 inflammasome
Among the inflammasomes, the NLRP3 inflammasome 
is the most analyzed protein complex [121]. Generally, 
NLRP3 is induced by a signal through stimulation of 
TLRs, NLRs, and cytokine receptors in the myeloid cell 
lineage, which undergo a priming step (which is an initia-
tion activation) and are subsequently activated by NLRP3 
stimulators, including extracellular pathogens, ATP, 
RNA–DNA hybrids, ionic flux, mitochondrial dysfunc-
tion, reactive oxygen species (ROS), and lysosomal dam-
age, to mediate the innate immune response [121]. Since 
2014, the function of the NLRP3 inflammasome in glio-
mas has been closely investigated. Aggressive expression 
and activity of the NLRP3 inflammasome were observed 
in cells derived from glioma patients [113], suggesting 
that the NLRP3 inflammasome is a potential marker of 
glioma progression [113, 122]. Ever since the pathological 
function of NLRP3 in glioma was understood, its regu-
latory mechanisms and potential as a therapeutic target 
have been evaluated. Emerging evidence regarding the 
regulatory mechanism of the NLRP3 inflammasome has 
shown that NLRP3 can induce the EMT and PTEN/AKT 
signaling pathways and lead to glioma cell proliferation, 
apoptosis, and metastasis [123]. Alendronate (ALD: one 
of the nitrogen-containing bisphosphonates) treatment 
of glioma cell line causes augmented NLRP3 inflamma-
some activity, apoptosis, and mitochondrial damage, 
indicating that ALD is associated with impairment of the 
mevalonate pathway, which inhibits cholesterol synthesis 
and protein prenylation [124]. Another report has exhib-
ited that the NLRP3 inflammasome induces proliferation 
and invasion of glioma cells via regulation of IL-1β and 
NF-κB p65 signaling [125]. Importantly, a report on the 
upstream signaling pathway of the NLRP3 inflamma-
some in gliomas has been published, and activation of 
the ERK-dependent NF-κB has been shown to activate 
the NLRP3 inflammasome mediated by vimentin in EV-
71-infected glioma [126]. Considering these findings, the 
outline of the potential axis of the NLRP3 inflammasome 
involved in the induction and regulation of gliomas has 
been revealed.

In addition to the previous work, studies to build basic 
knowledge on NLRP3 inflammasome-targeted thera-
peutic approaches in gliomas have been performed in 

parallel. Beta-hydroxybutyrate (BHB) inhibits the migra-
tion of glioma by suppressing NLRP3 inflammasome 
expression and activation [127]. WP1066, which inhibits 
the activation of STAT3 by directly targeting JAKs, also 
suppresses glioma cells via NLRP3 inflammasome inhibi-
tion independently of STAT3 inhibition [128]. Additional 
evidence suggests that NLRP3 inflammasome blockade 
therapy using IP-Se-06 (selenylated imidazo[1,2-a]pyri-
dine) induces anti-proliferation of glioma cells via inhi-
bition of p38 MAPK and p-p38, leading to inhibition of 
the NLRP3 inflammasome [129].  In addition, in-depth 
glioma studies were conducted on the effects and mecha-
nisms of the NLRP3 inflammasome in terms of cellular 
plasticity including M1 macrophage polarization and 
drug resistance [130, 131]. The simultaneous physiologi-
cal, etiological, and therapeutic approaches targeting the 
NLRP3 inflammasome in glioma have led to remarkable 
progress, and efforts are being made to fully understand 
the role of the NLRP3 inflammasome through a transla-
tional study based on previous studies.

NLRC4 inflammasome
The origins of NLRC4 inflammasome have been explored 
earlier along with that of NLRP3. Various approaches 
to investigate its structure and function have been 
attempted [132–135]. In general, the NLRC4 inflamma-
some is involved in innate immunity against pathogens 
such as bacterial flagellin and T3SS needle and rod pro-
tein [135]. While it is closely modulated by transcrip-
tional regulation, post-translational modification (PTM), 
specific phosphorylation, and ubiquitination, it promotes 
the pathogenesis of various autoimmune diseases and 
tumors due to its abnormally high expression and dys-
regulation [136–138].

The role of the NLRC4 inflammasome in gliomas was 
first described in 2019, and our findings identified that 
robust expression and activation of NLRC4 are asso-
ciated with glioma progression and prognosis [139]. 
Expression profiles of inflammasomes in glioma support 
the involvement of NLRC4 in gliomas, and based on this, 
more specific functional studies have been subsequently 
conducted [140]. Recently, progress has been made in 
studying the function and molecular association of the 
NLRC4 inflammasome in glioma. The NLRC4 expres-
sion shows a significantly positive correlation with Tim-3 
and Gal-9 expression. The Tim3-Gal-9 axis upregulates 
the expression and activation of the NLRC4 inflam-
masome to induce an inflammatory response in glioma 
[141]. Notably, inflammasomes are generally expressed 
in myeloid lineage cells, whereas NLRC4 inflammasome 
expression is observed in astrocytes and microglia of 
glioma, suggesting that astrocytes might mediate neu-
roinflammatory responses [139, 141]. The nature of the 
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NLRC4 inflammasomes in glioma remains unclear. They 
remain functionally controversial and are associated with 
the NLRP3 inflammasome in other diseases [142–144]. 
Hence, NLRC4 should not only be investigated closely in 
glioma but also for additional molecular links and mech-
anisms, including non-canonical pathways and molecular 
signaling pathways.

NLRP6 inflammasome
NLRP6, which shows robust expression in gliomas, also 
belongs to the NLR family, similar to NLRP3 and NLRC4 
[145]. Fewer reports of NLRP6 in glioma have been made 
compared to NLRP3 and NLRC4, but some progress 
has been made in recent years. In 2019, a clear structure 
of NLRP6 was elucidated using cryo-electron micros-
copy (cryo-EM) and crystallography, and the molecu-
lar mechanism underlying the assembly and activation 
of NLRP6 was elucidated, along with functional stud-
ies being undertaken in gliomas [146]. In terms of the 
function of the NLRP6 inflammasome, its function and 
associated molecules were slightly different depending 
on the organ in which it is expressed [147]. Importantly, 
the functions of the NLRP6 inflammasome in gliomas 
lead to a rather aggressive acceleration of carcinogenesis. 
NLRP6 transcriptionally induced by SP1 affects the sub-
sequent increase in NLRP6 inflammasome activation and 
further causes immune escape from  CD8+ T cells and 
radiation resistance of glioma cells [148]. In addition, the 
malignancy of gliomas has a positive correlation with the 
inflammatory response [61], and a significant decrease in 
the inflammatory response via the inhibition of NLRP6 
through miR-331-3p was observed in microglial cell lines 
[149].

NLRP6 expression is normally regulated by upstream 
microbial and metabolic stimuli [150]. Recently, peroxi-
some proliferator-activated receptor γ (PPAR-γ) and its 
agonist rosiglitazone (as known to be metabolic regula-
tor) came to be known as a representative positive regu-
lator of NLRP6 expression [151, 152]. These regulators 
exhibited amplified expression in a mesenchymal subtype 
known to have a poor prognosis among glioblastomas 
(grade 4 glioma) and were suggested to be potential ther-
apeutic target molecules [153]. So far, the roles of NLRP6 
in glioma have been unveiled, and a rough outline of its 
overall landscape has been obtained; however, numerous 
aspects remain to be solved, such as the role in specific 
major cell types and exosomes, including the regulatory 
signaling pathway.

NLRP12 inflammasome
The first description of NLRP12 involved its contribu-
tion to inflammasome activation in response to Yersinia 
Pestis infection, which Vladimer revealed in 2012 [154]. 

This finding promoted the functional studies of NLRP12 
that led to determining its function as an innate immune 
sensor and its role in other conditions, including bacte-
rial infection, autoimmune diseases, and tumors [155–
157]. Whether NLRP12 is an inhibitor or inducer of the 
inflammatory response is still controversial [158]. In 
glioma, the NLRP12 inflammasome is highly expressed. 
Differential expression profile analysis has shown its 
potential as a prognostic marker in glioblastoma [159]. 
Furthermore, inhibition of NLRP12 using siRNA in glio-
blastoma cell lines inhibited cell proliferation [159]. In 
contrast, in another study, NLRP12 was strongly acti-
vated in a glioma cell line in which the SSFA2 gene was 
silenced. The genes strongly related to NLRP12 were 
found through subsequent ingenuity pathway analysis 
(IPA) based on microarray data [160]. Thus, pro-inflam-
matory molecules and cell cycle molecules showed a 
positive correlation with NLRP12, but IL-2 cytokines 
showed a very strong negative correlation [160]. Based 
on the above findings, although the function of NLRP12 
as an innate immune sensor or an anti-inflammatory 
protein under various conditions is conflicting, direct or 
indirect evidence for its tumor-friendly characteristics in 
gliomas has been observed [161]. To fully understand the 
role of the NLPR12 inflammasome in glioma, the regula-
tory mechanism and additional functions must be inves-
tigated using various in vivo models.

AIM2 inflammasome
Absent in melanoma 2 (AIM2), a pyrin and HIN domain-
containing (PYHIN) family member, is a representative 
inflammasome receptor protein that recognizes aberrant 
cytoplasmic double-strand DNA (dsDNA) [162, 163]. In 
the presence of a stimulus, AIM2 recruits the adaptor 
protein called ASC via interactions between PYDs [164–
166]. This assembly induces the activity of caspase-1 and 
induces apoptosis as well as maturation and secretion 
of inflammatory cytokines, leading to innate immune 
responses against dsDNA of bacterial, viral, parasitic, and 
self-origins [164, 167–170]. Although there have been 
considerable studies on the pathological function and 
mechanism of the AIM2 inflammasome in other tumors, 
reports in gliomas have been relatively unclear [171]. 
Some functional advances have been made from the 
viewpoint of CNS that the AIM2 inflammasome induced 
by macrophages or endothelial cells in the brain patho-
logically leads to brain injury and chronic post-stroke 
cognitive impairment [172]. Notably, since 2019, the 
existence and function of the AIM2 inflammasome in gli-
oma has been elucidated. AIM2 is extensively expressed 
in G2, G3, and G4 gliomas in TCGA database, networks 
with each inflammasome receptor, and epigenetic altera-
tion patterns [140]. From functional aspects, inhibition 
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of the AIM2 inflammasome increases the proliferation of 
gliomas and increases temozolomide resistance in vitro, 
a somewhat controversial function compared to its func-
tion in other diseases [173]. Another controversial func-
tion of AIM2 inflammasome in glioma was hinted at in 
the late phase of experimental autoimmune encephalo-
myelitis (EAE) and a mouse model of multiple sclerosis 
[174]. Indeed, activation of the AIM2 inflammasome 
in astrocytes during EAE did not alter the gene expres-
sion of apoptosis components and pro-inflammatory 
cytokines, suggesting distinct functional aspects for 
AIM2 in the CNS [174]. Meanwhile, alterations in 
the AIM2 inflammasome during tumor treating fields 
(TTFields) therapy, a non-invasive regional anti-mitotic 
treatment modality with minimal systemic toxicity, for 
glioblastoma were reported in a recent study [175]. The 
TTFields therapy induces AIM2 formation and activa-
tion in GSCs, leading to membrane-damaged cell death 
of GSCs [175]. These advances help us understand the 
role of the AIM2 inflammasome and suggest a direction 
for further study; however, it is necessary to understand 
the function and molecular connection of the AIM2 
inflammasome with glioma in more detail and evaluate 
its potential as a diagnostic, prognostic, and therapeutic 
target molecule.

Other inflammasomes and glioma
In addition to the previously mentioned inflammas-
omes, other inflammasome complexes in gliomas have 
been reported. The NLRP1 inflammasome is known to 
be positively associated with glioma in LGG and GBM, 
as demonstrated by in silico analysis. In terms of the 
function of the NLPR1 inflammasome in CNS disease, 
including glioma, the NLRP1 inflammasome in the hip-
pocampus is positively correlated with neuroinflamma-
tion and neurofibrillary formation in Alzheimer’s disease 
(AD) [176]. Furthermore, NLRP1 expression could affect 
immune cell infiltration in glioma, as observed through 
TIMER database analysis [177]. Interestingly, in glioma 
or melanoma, TMZ-induced upregulation of NLRP1 
and IL-1β is linked to the Notch1 signaling pathway 
and, subsequently, to the acquisition of drug resist-
ance, as revealed by MAPK inhibitors [178–182]. Some 
studies have focused on the presence and function of 
NLRP2 and NLRP7 in other tumors, but their presence 
in glioma is rare [183, 184]. In 2022, mutation profiling 
of these genes, including pyroptosis-associated genes, 
revealed the significant co-occurrences of mutations in 
glioma [185]. In particular, the NLRP2 inflammasome is 
expressed upon the stimulation of the damage-associated 
molecular pattern (DAMP) ATP in human astrocytes and 
is expected to play a potential role in glioma as it induces 
pro-inflammatory cytokine activation through NLRP2 

inflammasome activation by P2X7 receptor and pannexin 
1 channel [186]. In addition, studies have focused on sev-
eral inflammasomes, including hypomethylation of IFI16 
in glioma [187]. Although biological structures and func-
tions of inflammasomes have been conserved according 
to their various origins, the investigation of their identity 
in gliomas should be supplemented by further study.

Potential therapeutic strategies for inflammasomes in glioma
In a voluminous effort, promising therapeutic results in 
glioma have been shown in studies targeting inflamma-
some. Current research focuses on inhibiting inflam-
masome-associated proteins involved in the priming, 
assembly, and activation of the inflammasome. In this 
section, we discuss potential therapeutic strategies tar-
geting the inflammasome-associated molecules involved 
in each step of assembly and activation in glioma.

Targeting the priming pathway of inflammasomes
The TLR family of proteins is the most upstream receptor 
for the priming, assembly, and activation of the canoni-
cal or non-canonical inflammasome pathways. Previ-
ous studies have reported that TLR4 is overexpressed in 
astrocytes, glioma cell lines, GBM tissues, and  CD133+ 
cancer stem cells [188–190]. Inhibition of TLR4 signaling 
with shRNA induces chemotherapy-mediated apoptosis 
of glioma  CD133+ cancer stem cells [191]. p65 nuclear 
translocation by non-canonical TLR4 signal/activation 
of DNA repair genes is positively correlated with the 
survival of U87MG glioma cells, suggesting that p65 is a 
potential therapeutic target for the inflammasome [192]. 
TLR2 also plays pathological roles in glioma, including 
immune evasion and the development and progression 
of glioma cells [99, 193]. Treatments targeting the expres-
sion or activation of TLR2 in GSCs within the glioma 
may be efficient strategies [107]. TRIF and MyD88, which 
are intracellular adaptor proteins of TLR, can also be tar-
geted with inflammasome therapy in glioma, leading to 
the destruction of the TLR and NF-κB loop to sustain 
an inflammatory response [194]. Aberrant activation of 
NF-κB, a downstream transcription factor of the TLR 
pathway, is a hallmark of glioma [195]. Inhibition of these 
signaling pathways results in significant programmed 
death of glioma cells, and these inhibitors can be used 
as therapeutic adjuvants to the TMZ standard chemo-
therapy for glioma [196]. Inhibitors of TLR and NF-κB, 
the key molecules in the inflammasome priming step, 
have been described earlier, but their efficacy in gliomas 
and the mode of action in the inflammasome axis are still 
unclear [197, 198]. In addition, indirect inflammasome 
inhibition by targeting multiple elements that regulate 
the priming step, including ROS, hypoxia, metabolites, 
lipid metabolites, and complement proteins, although 
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not well known in glioma, can be expected with novel 
therapeutic approaches [199]. For the clinical application 
of candidate drugs targeting these priming step-related 
molecules, additional in vitro and in vivo validations are 
essential.

Targeting the assembly and activation of the inflammasomes
A promising therapeutic strategy targeting receptor 
proteins that play an important role in assembling and 
activating inflammasomes was suggested earlier [200]. 
Representatively, numerous pharmacological inhibitors 
of the NLRP3 inflammasome have been described [201]. 
Indirect or direct inhibitors of NLRP3 involve Glyburide, 
JC124, FC11A-2, Parthenolide, VX765, BHB, MCC950, 
and Tranilast [201]. Although candidate agents targeting 
receptor proteins in gliomas are relatively unclear com-
pared to such agents in other diseases, some assessments 
have been performed. BHB, WP1066, and IP-Se-06 were 
found to directly inhibit glioma migration, proliferation, 
and viability by inhibiting the expression or activity of the 
NLRP3 inflammasome in glioma [127–129]. Addition-
ally, miR-331-3p, SP1 inhibitor, and PPAR-γ inhibitors 
can prevent the expression of NLRP6 in glioma [131, 148, 
149]. Inhibition of P2X7 and pannexin 1 also reduces 
the inflammatory response of gliomas by inhibiting the 
expression of the NLRP2 inflammasome [186, 202].

In a recent study, inhibition of TIM-3, an immune 
checkpoint molecule robustly expressed in glioma, was 
suggested as a therapeutic strategy to inhibit the NLRC4 
inflammasome in glioma cells [139, 203]. In fact, in silico 
and in vitro validation results regarding the Tim-3/Gal-9 
axis and the NLRC4 inflammasome showed a signifi-
cantly positive correlation according to the WHO glioma 
grade, and it was found that Tim-3 regulates the expres-
sion and activity of the NLRC4 inflammasome [141]. 
These results provide potential insights into the networks 
between various biological mechanisms and inflammas-
omes and implicate dual-acting therapeutic strategies 
involving target therapy for inflammasomes and other 
previously known mechanisms.

Notably, there is evidence suggesting that adaptor 
proteins of the inflammasome are potential therapeutic 
targets for glioma [204]. For example, PYCARD, known 
as apoptosis-associated speck-like protein containing a 
CARD (ASC), plays a role as an adaptor to bridge sensor 
proteins and effector molecules [88]. A CARD-associated 
risk score (CARS) was positively correlated with the poor 
prognosis of glioma patients who underwent standard 
therapy [205]. These advances using an inflammasome-
associated gene set allow predicting the therapeutic 
potency in glioma patients.

The role of berberine, a potential therapeutic agent tar-
geting caspase-1, an important hall marker of inflamma-
some activity, was investigated in a glioma cell line [114]. 
Berberine directly inhibits caspase-1 activation via the 
ERK1/2 signaling pathway in glioma cells, leading to inhi-
bition of the expression of pro-inflammatory cytokines 
such as IL-1β and IL-18 [114]. Anakinra, a recombinant 
IL-1 receptor agonist, is a representative drug targeting 
aggressive inflammation [206]. Anakinra inhibited the 
expression of IL-1β in tumor cells and PBMCs of GBM, 
inhibited the proliferation and migration of tumor cells, 
and reduced inflammatory signals [207].

Therapeutic aspects for the non‑canonical inflammasome 
pathway
Although fewer inhibitors of the non-canonical inflam-
masome-pathway-associated molecules have been 
identified compared with those for canonical inflammas-
ome-pathway-associated molecules, they exhibit biologi-
cal evidence as potential prognostic biomarkers [208]. 
The transcriptional level of GSDMD in gliomas increased 
according to the WHO grade, and it was verified as a 
prognostic marker through survival analysis, Cox-regres-
sion analysis, and histological staining [208]. Importantly, 
the expression pattern of GSDMD showed differences 
according to the status of IDH1/2 mutation and 1p19q 
co-deletion, indicating detailed molecular characteristics 
of gliomas and the biological link of the inflammasome 
[208]. Based on these advances, the potential character-
istics of the inflammasome according to the molecular 
and histological subtype of glioma can serve as a prom-
ising therapeutic candidate target for personalized ther-
apy. One limitation in the research on the non-canonical 
pathway is that caspase-4 and caspase-5, the key regula-
tors of the non-canonical inflammasome, have not yet 
been explored in gliomas; thus, functional studies on 
these are urgently required. Collectively, we summarized 
the potential therapeutic candidates for target molecules 
in the inflammasome axis (Table 1).

Conclusions
The biological findings on how inflammasomes are acti-
vated in tumors have increased their clinical importance. 
Importantly, an understanding of the balance between 
beneficial and detrimental inflammasome in tumor cells 
is essential. In particular, inflammasome activity rein-
forces tumor progression and invasion in glioma. How-
ever, activation of not all inflammasome proteins can be 
considered harmful in glioma, and the therapeutic inhibi-
tion of this axis has to be balanced against its beneficial 
contribution.
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Table 1 Potential therapeutic candidates for inflammasome‑associated molecules in glioma

Molecule Targets Mechanism of action Reference

OPN‑305 TLR2 inhibit TLR2 mediated proinflammatory response [209]

T2.5 TLR2 inhibit TLR2 mediated proinflammatory response [210]

Candesartan TLR2/4 suppress Pam3CSK4 and LPS induced TLR2/4 activation [211]

TAK‑242/Resatorvid TLR4 inhibit TLR4 signaling pathway [212]

Valsartan TLR4 inhibit TLR4 signaling pathway [213]

Simvastatin TLR4 inhibit TLR4 activity [214]

Atorvastatin TLR4 inhibit TLR4 activity [215]

NI‑0101 TLR4 block TLR4 dimerization [216]

ST2825 MyD88 inhibit MyD88 dimerization [217]

Parthenolide NF‑κB downregulate the phosphorylation of NF‑κB [218]

Andrographolide NF‑κB inhibit TLR/NF‑κB signaling pathway [219]

P2X7R antagonist P2X7R block the P2X7R [220]

DPP9 NLRP1 block the UPA‑mediated formation of functional UPA‑CARD filament [221]

Oxysterol NLRP2 impair the activation of NLRP2 [222]

Glyburide NLRP3 inhibit NLRP3 inflammasome activation [223]

16,673–34‑0 NLRP3 inhibit NLRP3 inflammasome formation [201]

JC124 NLRP3 reduce NLRP3 expression [224]

Bay 11–7082 NLRP3 prevent NLRP3 inflammasome organization [225]

BHB NLRP3 inhibit NLRP3 activity [127]

WP1066 NLRP3 inhibit NLRP3 activity [128]

IP‑Se‑06 NLRP3 inhibit NLRP3 activity [129]

MCC950 NLRP3 block both canonical and non‑canonical NLRP3 inflammasome activation [226]

MNS NLRP3 suppress ATPase activity of NLRP3 [227]

CY‑09 NLRP3 block NLRP3 inflammasome activation [227]

Tranilast NLRP3 impair endogenous NLRP3‑ASC interaction [227]

OLT1177 NLRP3 inhibit both canonical and non‑canonical NLRP3 inflammasome activation [228]

Oridonin NLRP3 inhibit NLRP3 inflammasome activation [229]

β ‑hydroxybutyrate NLRP3 inhibit NLRP3 activation by disrupting NLRP3‑ASC oligomerization [230]

Genipin NLRP3 aNLRC4 inhibit NLRP3 and NLRC4 inflammasome activation via autophagy suppression [231]

BI8622 (HUWE1 inhibitor) NLRP3 NLRC4 AIM2 inhibit inflammasome activation [232]

C75, C77, C78 NLRC4 inhibit NLRC4 activity [233]

mir‑331‑3p NLRP6 inhibit NLRP6 expression [149]

ROS (AIP1 mediated) NLRP6 inhibit NLRP6 expression [234]

CRH NLRP6 inhibit NLRP6 expression [235]

mir‑372 NLRP12 inhibit NLRP12 expression [236]

IFI16‑β AIM2 inhibit dsDNA‑induced AIM2 inflammasome activation [237]

CRID3 AIM2 prevent AIM2‑dependent pyroptosis [220]

STING IFI16 ubiquitination and degradation of IFI16 [238]

Gö6976 (pUL97 inhibitor) IFI16 suppress IFI16 re‑localization [239]

MM01 ASC interferes with ASC speck formation [240]

FC11A‑2 caspase‑1 block the proximity‑induced autocleavage of procaspase‑1 [225]

Berberine caspase‑1 inhibit caspase‑1 activation [114]

Thalidomide caspase‑1 inhibit caspase‑1 activation [241]

VX740/Pralnacasan caspase‑1 inhibit caspase‑1 activation [242]

VX765/Belnacasan caspase‑1 inhibit caspase‑1 activation [243]

Ac‑YVAD‑CHO caspase‑1 inhibit caspase‑1 activation [244]

Z‑LEVD‑FMK caspase‑4 inhibit caspase‑4 expression [245]

Z‑WEHD‑FMK caspase‑5 inhibit caspase‑5 activation [246]

Disulfiram GSDMD inhibit GSDMD cleavage and GSDMD‑mediated pore formation [247]

Necrosulfonamide GSDMD inhibit GSDMD‑mediated pore formation [248]

Canakinumab IL‑1β block the biologic activity of IL‑1β [241]

Rilonacept IL‑1β block the biologic activity of IL‑1β [249]

Gevokizumab IL‑1β block the biologic activity of IL‑1β [250]

LY2189102 IL‑1β block the biologic activity of IL‑1β [251]

Anakinra IL‑1R and IL‑18 block the biologic activity of IL‑1β and IL‑18 [252]
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Previous studies on the role of inflammasomes in gli-
oma have provided fragmentary approaches and have 
not yet led to any clinical significance. However, further 
mechanistic insights into the role of the inflammasome 
in glioma will provide opportunities to develop thera-
pies for patients with other inflammatory CNS diseases. 
In addition, clarification of the association between the 
inflammasome and its underlying mechanisms in glioma 
may indicate a new direction for glioma diagnosis, prog-
nosis, and therapy.
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