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Abstract 

The extracellular matrix (ECM) is a crucial component of the stem cell microenvironment, or stem-cell niches, 
and contributes to the regulation of cell behavior and fate. Accumulating evidence indicates that different types 
of stem cells possess a large variety of molecules responsible for interactions with the ECM, mediating specific 
epigenetic rearrangements and corresponding changes in transcriptome profile. Signals from the ECM are crucial 
at all stages of ontogenesis, including embryonic and postnatal development, as well as tissue renewal and repair. 
The ECM could regulate stem cell transition from a quiescent state to readiness to perceive the signals of differen-
tiation induction (competence) and the transition between different stages of differentiation (commitment). Cur-
rently, to unveil the complex networks of cellular signaling from the ECM, multiple approaches including screening 
methods, the analysis of the cell matrixome, and the creation of predictive networks of protein–protein interactions 
based on experimental data are used. In this review, we consider the existing evidence regarded the contribution 
of ECM-induced intracellular signaling pathways into the regulation of stem cell differentiation focusing on mesen-
chymal stem/stromal cells (MSCs) as well-studied type of postnatal stem cells totally depended on signals from ECM. 
Furthermore, we propose a system biology-based approach for the prediction of ECM-mediated signal transduction 
pathways in target cells.
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Introduction
Tissue structure homeostasis, function, and renewal 
depend on cellular composition. Generally, terminally 
differentiated cells define the structure and normal 

function of tissue and organs, while the adult stem and 
progenitor cells determine renewal and regeneration 
potential [1–3]. Stem cell stability is based on the sustain-
able work of cell signaling pathways, which is controlled 
by intracellular (non-coding RNAs and transcription 
factors) and extracellular (growth factors, morphogens, 
environmental cues) factors [4, 5]. Changes to microen-
vironment conditions cause the transition of stem cells 
from a quiescent to an activated state, which initiates 
proliferation and differentiation [6, 7]. The combination 
of external microenvironmental factors that support the 
functioning of stem cells has been labelled a “stem cell 
niche” [8]. An integral component of the niche is the 
extracellular matrix (ECM), which provides most of the 
clues from the microenvironment, i.e., physical charac-
teristics, the conduction of specific signals from struc-
tural components, and the anchorage of components 
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to the ECM, e.g., soluble factors (growth factors and 
morphogens) and matrix-bound vesicles [9]. Thus, the 
ECM stimulates various intracellular signaling cascades 
required to maintain the homeostasis of stem cell niches 
[10]. Herefore, interpreting the research results obtained 
from cells isolated from their microenvironmental con-
text is complex.

Stem cell niches contain cells that regulate the main-
tenance of stem cells homeostasis and fate through the 
secretion of various niche components. Almost in all tis-
sues and organs mesenchymal stem/stromal cells (MSC) 
play this role being the critical regulators of stem cell 
niche functioning [11–15]. MSC can secrete a variety of 
niche ECM components, paracrine factors, and bioac-
tive molecules within extracellular vesicles in response 
to changes in the microenvironment (e.g., injury). In 
addition, under activating stimuli, multipotent stem cell 
subpopulation of MSC is capable of self-renewal of their 
own pool as well as differentiation, leading to modifica-
tion of the microenvironment by replenishing deficient 
components or recruiting other supporting cells to the 
niche [16, 17]. According to one of the minimal criteria 
to define multipotent MSC are capable of adipogenic, 
chondrogenic and osteogenic differentiation in  vitro 
[17]. Until recently, scientists used the term "mesenchy-
mal stem cells" to discuss these cells, but it was consid-
ered incorrect due to the collected data proving that the 

main physiological function of MSC is not exclusively the 
presence of stem cells [18]. Therefore, the current recom-
mended name is “mesenchymal stromal cells”, and the 
presence of multipotent stem cells in MSCs should be 
carefully evaluated using appropriate tests [17]. None-
theless, all MSC are heavily reliant on the ECM clues, so 
we focus on these cells to analyze the diversity of ECM-
induced signal pathways in postnatal stem cells.

The interaction of cells with the microenvironment, 
in particular with the components of the ECM, is medi-
ated by specific receptors, leading to the activation 
of various signaling cascades within the cell and, as a 
consequence, to changes in its behavior. Looking at the 
identification of the main receptors and participants in 
ECM signaling cascades from a historical point of view 
can help to summarize the knowledge on this issue 
in the field of matrix biology (Table  1). Even though 
many receptors and key participants of their signal-
ing cascades have been known for a long time, there 
are many gaps among the other participants of these 
cascades, as well as in the case of changing microenvi-
ronment and the nature of their network interactions, 
and for a specific type of cell. This tendency highlights 
the importance of the analytical reviews covering the 
mechanisms of ECM-mediated regulation of cell func-
tion, here in particular the stem cell differentiation. In 
parallel with investigation of the ECM, the signaling 

Table 1 General discovery dates for ECM signaling molecules

Time of discovery Discovered phenomena References

1942 The discovery of glycosphingolipids was by the German scientist Ernst Klenk after their isolation from brain tissue [19]

1980 CD44 was first described as a surface molecule of lymphocytes, platelets, and granulocytes. Currently, it is a recep-
tor primarily for hyaluronic acid, but also for lipoproteins and proteoglycans of the ECM, growth factors, cytokines, 
and matrix metalloproteinases (MMP)

[20, 21]

1983, 1989 Syndecans were first identified in 1983; a few years later they were named using the Greek term syndein, meaning “to 
bind together”, which emphasized their importance for cellular adhesion to the ECM

[22, 23]

1985, 1993, 1997 The receptor discoidin-1, a lectin, involved in the adhesion, aggregation, and tightly regulated migration of cellular 
slime mold (Dictyostelium discoideum) was discovered. Subsequently, receptor tyrosine kinases with a domain to dis-
coidin homologous were discovered. Investigation of these proteins resulted in the discovery of discoidin domain 
receptor tyrosine kinase 1 and 2 (DDR1, DDR2)

[24–27]

1985 Transient receptor potential (TRP) channels were found first in Drosophila as rhodopsin-triggered phospholipase C 
(PLC). Later, TRP channels were found in fungi and animals, where they act as mechanosensitive ion channels

[28–30]

1986 Integrins, major receptors that interact with the ECM, were discovered. They were named to represent their partici-
pation in the transmembrane glycoprotein complex, that provides conjunction between ECM and the cell actin 
cytoskeleton

[31]

1989, 1990, 1992 Paxillin, a phosphotyrosine-containing protein, was identified. Furthermore, its role in cell adhesion to the ECM 
proteins was studied in detail

[32–34]

1996, 2009 Integrin-linked kinase (ILK) was observed as a protein that associates with cytoplasmic tail integrin β1 subunits. 
However, it was later determined that ILK has a pseudoactive kinase domain and forms the center of protein–protein 
interactions

[35, 36]

1999 Since its discovery, talin has been considered the only mediator of integrin activation [37]

2000, 2004, 2009 Subsequently, it was found to be essential for integrin activation and signal transduction of kindlins [38–40]

2010 Other mechanosensitive ion channels, e.g., Piezo, was described in 2010. Their activation under mechanical forces 
was reported for several cell types

[41, 42]
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cascades of postnatal stem cells remain an impor-
tant issue for cell and matrix biology and regenerative 
medicine. In this review, we focus on analyzing the data 
obtained from MSC in  vitro and in  vivo for a better 
understanding of the regeneration processes relevant 
to native postnatal stem cells. Accumulating ECM sign-
aling observations, we suggest a system biology-based 
approach for examining the predicted networks of such 
signal transduction pathways on the example of DDR1-
initiated signaling in MSC.

ECM receptor signaling pathways during MSC 
differentiation
Many ECM components were found in stem-cell 
niches, including collagens, laminins, fibronectin, and 
proteoglycans [43], and also paracrine factors affect-
ing the interaction of stem cells with the ECM [44]. The 
ECM supports the appropriate position of cells within 
their microenvironment and regulates such properties 
as proliferation, polarization, migration, and differen-
tiation [45]. Several studies have demonstrated that the 
ECM directs the differentiation of stem cells into spe-
cialized cells of the organ from which it was isolated. 
This data confirms that the ECM has tissue specificity 
for maintaining a certain niche [46].

It is presumed that the tissue specificity of the ECM is 
provided due to differences in the cellular composition 
of tissue types. Nevertheless, it is known that cells with 
similar phenotypes and functions isolated from differ-
ent tissue types differ in the expression profile of ECM 
proteins. Thus, a comparative proteomic analysis of the 
ECM, secreted by MSC from bone marrow or adipose 
tissue, showed the presence of unique sets of proteins 
produced by each cell type. This allows us to assume 
that ECM tissue specificity is established at histo- and 
organogenesis stages and subsequently maintained 
throughout life [47]. The composition of ECM compo-
nents, which are distinguished not only among different 
tissues and organs but also within niches, was con-
firmed for niches of the intestinal crypt, hematopoietic 
niche, and limb [48, 49]. Such diversity among ECM 
components within the niche provides a further indica-
tion for stem cell outcomes. Each component supports 
important functions, from keeping the stem cell in the 
quiescent state to asymmetric division, migration along 
to ECM components or soluble factors, and the termi-
nation of differentiation [50–52]. These functions are 
mediated by the activation of a specific signal cascade. 
The interaction of participants in the cell signaling 
pathways, including MSC, with the microenvironment 
is carried out using special molecules, the most impor-
tant of them are discussed below.

Integrins
The main class of ECM receptors is integrins, heterodi-
meric proteins comprising α and β subunits. There are 18 
determined α-subunits and 8 β-subunits in humans, and 
these are responsible for recognizing ECM proteins and 
their physical properties (e.g., stiffness and stretching), 
and for intercellular communications. Some reviews can 
provide more detailed information on modern represen-
tations of the structure of integrins [53–55].

Integrins realize bi-directional signaling. The high-
affinity interaction between integrins and their ECM 
ligands activates the “outside-in” signaling pathway. Then, 
focal adhesion kinase (FAK) and Src-mediated phos-
phorylation of the integrin adhesion complex (IAC) and 
cytoskeletal components initiate intracellular molecu-
lar reorganization and phosphorylation events among 
many adapters [56]. Crosstalk between FAK and Src 
kinases provides signaling pathways induced by mechani-
cal forces and RTK signaling, leading to control of stem 
cell fate transitions [57]. For example, initiation of FAK/
Src/Rac1-mediated myosin IIA recruitment into FAs 
increased the osteogenic commitment of human bone 
marrow MSC [58]. On other occasions, intracellular 
signals interact with the cytoplasmic tails of integrins, 
which leads to conformational changes in the extracel-
lular ligand binding domain. This mechanism fine-tunes 
the control of ligand affinity [56, 59].

Integrins are considered crucial receptors for stem cell 
functioning. Various integrins are widely represented on 
the surface of different types of stem cells [60]. Subunit 
β1 is often associated with stem cell phenotype because, 
for several tissue-specific stem cells, this integrin sup-
ports the homing to stem-cell niche [61, 62], the main-
tenance of stemness [63], and the quantity of stem/
progenitor cells in tissue [64].

There is no exception in the case of MSC. It has been 
shown that integrins α2β1 or α11β1 provide adequate 
interaction of human bone marrow MSC with type I col-
lagen, which ensures cell survival and osteogenic differ-
entiation by activating the protein kinase B (PKB/Akt) 
survival pathway [65]. Similar results were obtained in 
the study of integrin α5 activated signaling cascades in 
human bone marrow MSC during osteoblast differen-
tiation. In this case, osteogenic differentiation of human 
bone marrow MSC was mediated by activation of FAK/
ERK1/2 MAPKs and PI3K signaling pathways [66, 67]. 
Knockdown of α2 integrin in human bone marrow MSC 
during osteogenic differentiation on stiffer matrices was 
downregulated by ROCK, FAK and ERK1/2 axis [68]. 
Involvement of integrin α2 in human bone marrow MSC 
osteogenesis through activation of the p38 MAPK path-
way was also demonstrated [69]. Results of another study 
showed that integrins in rat bone marrow MSC activate 



Page 4 of 20Novoseletskaya et al. Cell Communication and Signaling          (2023) 21:244 

FAK-GSK3β phosphorylation, which prevents β-catenin 
degradation and nuclear translocation to bind to the 
wnt1 promoter [70]. In addition, silencing of the β1 subu-
nit reduces both osteogenic and chondrogenic differen-
tiation of human bone marrow MSC [71].

Discoidin domain receptors
Discoidin domain receptors (DDRs) (DDR1 and DDR2) 
are collagen-binding receptors in mammals [72]. Several 
articles have described the structure and existing iso-
forms of DDRs [73–76]. DDRs are transmembrane pro-
teins with receptor tyrosine kinase (RTK) activity [74, 
76]. They are an unusual subfamily of RTKs. In compari-
son with typical RTKs, DDRs bind a large ligand–colla-
gen, which stimulates autophosphorylation over several 
hours and forms dimers in the absence of a ligand [77]. 
The detection of microenvironment stability is included 
in DDR functions, as ectodomain shedding mediated by 
matrix metalloproteinases regulates the level of DDRs on 
the cell surface [73, 78, 79].

Additionally, DDR1 demonstrated regulation of colla-
gen transcription by translocating to the cell It appears 
that DDRs regulate the directed differentiation of pro-
genitor cells. The depletion of DDR1 expression in 
human adipose-derived MSC suppresses chondrogenic 
differentiation by decreasing the chondrogenic genes 
and cartilaginous matrix deposition [80]. Furthermore, 
DDR1 regulates the terminal differentiation of human 
articular chondrocytes [81]. DDR2, as a collagen recep-
tor, plays a crucial role in regulating bone development. 
DDR2 knockout in limb bud chondroprogenitors inhib-
ited chondrogenic and osteogenic differentiation [82]. 
Moreover, DDR2 was found as one of the potential mark-
ers of osteoblastic progenitors derived from periosteum 
[83]. The expression of DDR2 and integrin α11β1 was 
increased when human bone marrow MSC were cultured 
on a substrate with type 1 collagen. It was found that the 
expression of integrin α11β1 prevailed during chondro-
genic differentiation, while the expression of DDR2 was 
also significantly higher during osteogenic differentiation 
[84].

CD44
CD44 is primarily a receptor for hyaluronic acid (HA) 
but can also bind to several ligands, such as ECM compo-
nents (fibronectin, laminin, osteopontin, HA), as well as 
some cytokines and growth factors [85]. CD44 represents 
a family of non-kinase transmembrane protein receptors. 
The structure and functions of various CD44 isoforms 
have previously been considered [85–87].

CD44 is a participant in multiple ECM-induced signal-
ing pathways [85, 87] being also a well-known stem cell 
marker because it is represented in many stem-cell niches 

[88–90]. The activation of certain signaling pathways 
through CD44 is conditioned from the molecular weight 
of HA. CD44 is responsible for the migration/homing 
and differentiation of stem cells [85, 91–93]. The Wnt-
induced/β-catenin signaling pathway is crucial for MSC 
commitment in osteogenic differentiation [94], and CD44 
has a complex role because it is one of the gene targets 
and regulators of Wnt activation [85]. Moreover, CD44 is 
a key regulator of chondrogenic differentiation of human 
adipose-derived stem cells and human amniotic MSC 
via ERK1/2 signaling [95–97]. When the HA molecular 
weight is higher than CD44 human adipose-derived MSC 
form clusters, which stimulates chondrogenesis via ERK/
SOX-9 pathway [95]. Moreover, CD44 inhibits apopto-
sis and enhances cell survival by ERK signaling in mouse 
bone marrow derived MSC and human chodrocytes [92, 
98].

Proteoglycans
Proteoglycans are ubiquitous components of the cellular 
microenvironment, which includes several families. They 
also act as membrane-bound receptors. These molecules 
include heparan sulfate proteoglycans (HSPGs), compris-
ing two distinct families: syndecans (4 members) and 
glypicans (6 members) [99, 100]. Numerous articles give 
detailed descriptions of the structure and functioning of 
HSPGs [99, 101–106].

Syndecans
There is abundant evidence that syndecans activate dif-
ferent signaling pathways. Studies show that syndecans 
have no kinase activity, but other kinases can phospho-
rylate their intracellular domains [105]. The interaction 
of syndecans with different signaling pathways became 
obvious during shedding processes. The results of these 
processes showed that the representation of syndecans 
on the cell surface reduced, and many growth factors lost 
their possible binding sites on the heparan sulfate chains 
and showed a decreased affinity to their receptors [73].

SDC-1 knockdown in mice leads to the inhibition 
of canonical Wnt signaling because of deficient levels 
of β-catenin [107]. Temporary knockdown of SDC-1 
by RNA interference in primary human MSC cultures 
revealed a pro-adipogenic phenotype with enhanced 
osteoblast maturation. These findings implicate SDC-1 
as a facilitator of balance during early induction of adipo-
blast and osteoblast lineage differentiation [108]. Over-
expression of SDC-2 in mice decreased osteoblastic and 
osteoclastic precursors in bone marrow, as well as Wnt/
β-catenin signaling in osteoblasts [109]. SDC-3 increased 
the canonical Wnt signaling that controls murine osteo-
blast maturation in vivo [110].
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Glypicans
Glypicans are globular glycosylphophatidylinositol 
(GPI) anchored proteins [99, 111]. Typically, glypi-
cans have an N-terminal cysteine-rich domain similar 
to that of Frizzled receptors and mediate Wnt bind-
ing [101]. Glypicans, like syndecans, are affected by 
shedding. Particularly, Notum lipase cleaves glypicans 
and inhibits Wnt signaling [112]. GPC3 lacking muta-
tion in mouse embryos reduced Wnt/JNK signaling 
[113]. GPC6 inhibited the activity of the Wnt signaling 
pathway in GPC6-null mice [114]. A hedgehog signal-
ing pathway in mouse GPC3 null embryos was hyper-
activated [115]). It was observed that dysregulation of 
glypican in human bone marrow MSC isolated from 
tissues of osteoarthritis patients decreased the protein 
level of NOTUM (extracellular negative regulator of the 
WNT/β-catenin signaling pathway) during osteogenic 
differentiation [116].

Glycosphingolipids
Glycosphingolipids (GSLs) are amphiphilic membrane 
lipids of the eucaryotic plasma membrane consisting 
of glycan chains that are covalently linked to the sphin-
golipid backbone [117, 118]. GSL-associated glycans 
range from one and to more than 20 sugar residues, with 
11 different monosaccharide types being used in verte-
brates [119].

Numerous in vivo studies have reported that the com-
position of GSLs in the plasma membrane varies depend-
ing on the embryonic stage [117] Similar changes in GST 
expression can also be observed during stem cell differ-
entiation in  vitro. Thus, the GSLs composition of MSC 
dynamically changes according to the direction of line-
age differentiation: MSC express SSEA-3 (stage-specific 
embryonic antigen), SSEA-4 along with GD1a and GD2 
gangliosides, whereas the major GSLs of MSC-derived 
adipoblasts have GM3 and GD1a, MSC-derived chon-
drocytes have GM3 and GD3 [117, 120, 121]. A subpopu-
lation of SSEA3( +) cells was isolated from MSC [122]. 
These cells, known as multilineage-differentiating stress-
enduring (MUSE) cells, are endogenous and express 
pluripotency master genes and their capability to differ-
entiate into cells of the three embryonic layers was estab-
lished. At the same time MUSE are able to withstand 
stress and have an excellent ability to repair DNA dam-
age [122, 123]. Recently, SSEA-3 was shown to act as an 
FGF-2 co-receptor in MUSE cells isolated from human 
bone marrow MSC. Their interaction activates the FGF-2 
signaling cascade through PI3 kinase [122]. GM3 treat-
ment enhanced TGF-β signaling through SMAD 2/3 
during the chondrogenic differentiation of human syno-
vial-derived MSC [124].

Mechanosensitive ion channels
Mechanosensitive ion channels in mammals include 
transient receptor potential channels (TRP) and Piezo 
channels [125]. TRP channels comprise eight subfami-
lies, i.e., TRPA (ankyrin), TRPC (canonical), TRPM 
(melastatin), TRPML (mucolipin), TRPP (polycystin), 
TRPV (vanilloid), TRPN (Drosophila No mechanorecep-
tor potential C), and TRPY (yeast). Only the first six are 
found in mammals [126]. The structures of these chan-
nels have been described in detail in various works [127, 
128]. Piezo channels are nonselective cationic mecha-
nosensitive channels, which include two members, i.e., 
Piezo1 and Piezo2 channels [129]. Various scientific pub-
lications describe the structure and features of function-
ing Piezo channels [130–135].

In the various stem cell niches MSC are involved in the 
microenvironmental control process. TRPV4 modulates 
the formation of collagen fibrils by human bone marrow 
MSC. The inhibition of this channel in MSC disrupts 
aligned collagen matrix assemblies. In contrast, TRPV4 
activation promotes collagen deposition [136].

Tissue-specific Piezo2 isoforms are formed as a result 
of alternative splicing, where each isoform may have its 
own specific function. The diversity of splice isoforms 
is performed in the neuronal tissue and cells. Only one 
splice isoform is expressed in non-neuronal tissue [125]. 
Piezo1 regulates cross-talk between osteoblasts and oste-
oclasts in mice. In the osteoblastic cells, the expression 
of type II and IX collagens is controlled by Piezo1-YAP-
signaling axis. The deficiency of these collagen isoforms 
results in an increase in osteoclast differentiation and 
bone resorption in vivo [137]. Furthermore, mouse bone 
marrow MSC with Piezo-channel loss demonstrated 
the inhibition of osteoblast differentiation because of 
a reduction of YAP and β-catenin [138]. The effect of 
mechanosensitive channels on stem cell behavior is dis-
closed in more detail in reviews [139, 140].

Based on the studied scientific sources, we arrange a 
general table of known intracellular signaling pathways 
from ECM receptors in stem and committed progenitor 
cells with several examples of their realization in MSC 
(Table 2).

Potential therapeutic strategies targeting 
ECM‑induced signaling in postnatal stem cells 
for regenerative medicine
Among the promising regenerative medicine strategies 
involving ECM receptors, two main approaches can be 
distinguished: 1) blocking of receptors to ECM compo-
nents and their intracellular signaling pathway, and 2) 
activation of ECM receptors by functionalization of vari-
ous surfaces and materials with specific peptides or ECM 
components.
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It is well-known that integrins are involved in the tis-
sue regeneration processes. The role of MSC-expressed 
integrins for each tissue type remains a promising area 
of research. Thus, following an injury, MSC are recruited 
from surrounding tissue to the injury site in an integ-
rin-dependent manner [147]. Some recent studies have 
shown that the expression of certain integrins in MSC 
ensures the maintenance of the blood–brain barrier 
in  vivo models of traumatic brain injury or ischemic 
stroke [148, 149]. Integrins also play a vital role in wound 
healing. According to the results of several preclinical 
studies blocking the integrins αvβ5, αvβ3, α3β1 effectively 
decreased myofibroblast differentiation of human dermal 
fibroblasts in vitro and murine lung fibroblasts in vivo in 
association with TGFβ signaling [150–152]. Evaluation 
of therapeutic success of biomaterials which functional-
ized with integrin-targeting peptides has been recently 
reviewed [147, 153]. In this context, it has been repeat-
edly shown that human bone marrow MSC increase the 
expression of osteogenic markers if cultured on materials 
modified with RGD-peptide (adhesion site of fibronectin) 
[154, 155]. Similar results were obtained for human bone 
marrow MSCs in osteogenic differentiation using mate-
rials functionalized with collagen-based cell adhesion 
motifs: GFPGER (binding integrins α1 and α2), GFPGEN 
(binding integrin α1 only), GFOGER (a2b1 integrin) [69, 
156, 157]. Key features of integrin-binding peptides in 
combination with biomaterials and their strong poten-
tial as biomimetic tools for regenerative medicine are 
described in a recent review [158].

The role of DDRs in wound healing is still poorly 
understood. It is known that DDR2 regulated wound 
healing by activating p38 and ERK1/2 kinases and induc-
ing matrix metalloproteinase (MMP) expression [159]. 
Recent studies demonstrated the crucial role of DDR2 
in the regeneration of cranial bone [160]. For integrins, 
materials conjugated with specific collagen sequence 
peptides have been developed that stimulate DDR activa-
tion. For example, the GVMGFO peptide interacts with 
the DDR2 receptor, leading to DDR2 Y740 phosphoryla-
tion and stimulation of osteoblast differentiation [161]. 
A potentially novel approach in regenerative medicine 
is the use of extracellular vesicles or exosomes from the 
mouse adipose derived MSC secretome to restore ECM 
receptor expression. It has been shown that MSC-derived 
exosomes can accelerate cutaneous wound healing by 
suppressing miR-96-5p and restoring DDR2 expression 
[162].

Previously, it was shown that MSC encapsulated in 
HA-based hydrogels expressed more markers of car-
tilage tissue both in  vitro and in  vivo compared to 
control samples [163]. This was also confirmed by a 

study using antibody CD44 blockade, which led to the 
offset of this effect when MSC were cultured on HA 
hydrogels [164]. A recent study demonstrated the effi-
cacy of combined therapy on angiogenesis in ischemic 
diseases using HA with human umbilical cord blood-
derived endothelial colony-forming cells and human 
umbilical cord derived MSC [165].

Syndecans and glypicans regulated the normal regen-
eration of different tissues [166–169]. SDC-3 increased 
new bone formation in vivo [110]. SDC-4 is essential for 
regenerating damaged muscle in mouse model [170]. 
Exosomes derived from rat bone marrow MSC showed 
chondroprotective effects through the regulatory role 
of exosomal microRNA-9-5p (miR-9-5p) to inhibit 
syndecan-1 in a rat model of osteoarthritis [171]. At 
the same time, SDC3 deletion enhances the efficacy of 
murine bone marrow MSC treatment of inflammatory 
arthritis in vivo [172]. Among other materials alginate 
hydrogels containing integrin and syndecan binding 
peptides (cyclic RGD and AG73, respectively) were 
developed which exhibited higher human nucleus pul-
posus (NP) cell viability, biosynthetic activity, and NP-
specific protein expression than alginate alone [173].

Currently, there are not many publications on the use 
of MSC glycosphingolipids in the field of regenerative 
medicine. However, some data support the idea that 
glycosphingolipids could be a promising target for the 
treatment of various diseases [174, 175].

Mechanotransduction is also involved in regenerative 
processes. For example, the hematoma formed after a 
bone fracture is highly viscoelastic, and such viscoe-
lasticity is necessary to allow infiltration of MSCs and 
osteogenic stimulation of MSC in  vivo [176]. Cultiva-
tion of MSC in RGD-coupled alginate hydrogels leads 
to the activation of TRPV4 ion channels and then 
nuclear translocation of RUNX2 which drives osteo-
genic differentiation [177].

Biofunctionalization of tissue engineering materi-
als improves cellular interaction and tissue integra-
tion. Currently, a large number of functionalization 
methods of tissue engineering materials are known, 
ranging from single peptides and components of ECM, 
including enzymes responsible for its remodeling, to 
decellularization of tissues and whole organs, which is 
described in detail in the reviews [158, 178–180]. The 
success of the approach to obtain ECM secreted by a 
specific cell type, such as MSC, can be assessed based 
on recent studies in this area [181–183]. Furthermore, 
the use of ECM-derived materials for tissue repair tar-
geting the stem cell differentiation including MSC is 
also a promising approach that has been confirmed by 
several registered clinical trials [184–187].
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Predicting the ECM receptor networks 
for the signaling pathway using the system biology 
approaches
Several approaches of network biology are widely used 
to study the activation of contributing factors in intra-
cellular signaling cascades, which can subsequently find 
application in predictive medicine [187]. Nowadays, 
computational network modeling is used to determine 
niche-induced signaling pathways that identify stem cell 
outcome determinants [188]. Several network models 
that are used to help assess the effects of drugs on key 
signaling participants have been created for cancer cells 
[189]. The application of network biology approaches 
in the context of signaling pathways from the ECM led 
to the consideration of the integrin adhesome, which 
are responsible, together with integrins and integrin-
associated proteins, for stabilizing cell adhesion and sig-
nal transduction [190, 191]. In addition, the “consensus 
adhesome” was formulated based on 60 proteins, defined 
by merging mass spectrometry datasets obtained from 
three cancer cell lines, telomerase-immortalized human 
foreskin fibroblasts and mouse embryonic fibroblasts 
attached in fibronectin-coated dishes [192].

Subsequently, with the development of omics tech-
nology and the rapid evolution of big data analysis, dif-
ferent approaches and specialized databases have been 
created by the scientific community. This is also relevant 
to matrix biology. One such database comprising ECM 
component adhesomes and interactions is MatrixDB 
(http:// matri xdb. univ- lyon1. fr/) [193]. Another data-
base is MatrisomeDB, which integrates experimental 
proteomic data on the ECM composition of normal 
and diseased tissue types (https:// matri somedb. org/) 
[194]. Recent studies reported the creation of a data-
base (MatriNet) that will enable the study of structural 
changes in ECM network architectures as a function of 
their protein–protein interaction strengths across 20 dif-
ferent tumor types (www. matri net. org) [195].

For the construction of protein–protein interactions 
(PPIs), many investigators are using databases that aggre-
gate standard information from large resources (e.g., 
PDB, IntAct, BioGRID, HPRD). Examples of such PPI 
databases are STRING and Mint (http:// www. string- db. 
org) [196, 197]; STRING was used to create molecule 
interactions for syndecans and Piezo channels [104, 198].

In our review, prior to creating our PPI networks for 
ECM receptors, we checked preexisting networks of 
signaling pathways from ECM receptors in the KEGG 
PATHWAY Database (https:// www. kegg. jp/ kegg/ pathw 
ay. html). We revealed the signaling pathways for integ-
rins, CD44, and HSPG (Fig. 1).

General networks for ECM receptors included a small 
quantity of signaling molecules or signaling members, 

from receptors to growth factors, and demonstrated 
crosstalk between them. However, it gives rise to new dif-
ficulties in determining the function of ECM signaling 
pathway participants. Here, we decided to try using an 
approach for the definition of specific signaling pathways 
for individual ECM receptors.

First, we created PPI networks for integrin β1 and 
CD44 as one of the well-studied surface markers of stem 
cells and employed DDR1 as an example of a less-inves-
tigated receptor but potentially useful for application to 
mechanosensing. PPI networks were created using the 
STRING database with the following settings: network 
type – physical subnetworks; meaning of network edges 
– evidence; active interaction sources; experiments; 
minimum required interactions score – 0.4, 2 shell; maxi-
mum number of interactors to show – 150. In addition, 
Cytoscape was used for analysis and network visualiza-
tion (v.3.9.1; https:// cytos cape. org/) [199]. As mentioned 
above, the majority of data utilizing omics technology 
have to date been obtained from cancer cells and tissue. 
We verified how many signaling molecules would be 
excluded from our data for network construction if we 
used only data obtained from isolated human primary 
cells or human cell lines, excluding cancer cells or cell 
lines obtained from patients with disease, on the PPIs 
network for integrin β1 (Fig. 1 Supplement). As a result 
of this analysis, we found that only 13 of 23 members of 
different types of signal transduction pathways met in 
normal cell lines.

Next, we analyzed the contributing factors of the sign-
aling pathway for integrin β1, CD44, and DDR1 using 
ReactomeFIPlugIn in Cytoscape, which accessed the 
Reactome pathways stored in this database (https:// 
react ome. org/) [200]. We selected the signal transduc-
tion database to analyze our networks, and the obtained 
results are presented as Reactfoam (Fig.  2 Supplement) 
as an illustration of analysis results using a false discov-
ery rate (FDR) scalebar (p-value ranging from 0–0.05) 
according to not only the type of signaling pathways 
(Fig. 2) but also cellular function (Fig. 2_Supplement).

We reveal that the signaling pathway members of inte-
grin β1, CD44, and DDR1 are vital for nervous system 
development (Fig. 3).

In addition, we build a prediction network of PPIs for 
DDR1 pathway members in human adipose-derived 
MSC. For this step, we normalized the data of PPIs using 
RNAseq data describing the transcriptome of human adi-
pose-derived MSC obtained in our laboratory (Fig. 4).

Conclusions
ECM-induced signaling pathways within the stem cells 
may define the functionality and homeostasis of the 
whole tissue. Trying to understand the complicated 

http://matrixdb.univ-lyon1.fr/
https://matrisomedb.org/
http://www.matrinet.org
http://www.string-db.org
http://www.string-db.org
https://www.kegg.jp/kegg/pathway.html
https://www.kegg.jp/kegg/pathway.html
https://cytoscape.org/
https://reactome.org/
https://reactome.org/
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Fig. 1 General networks of signaling pathways from ECM receptors obtained from the KEGG PATHWAY Database: A—integrins, B—CD44, and C—
HSPG
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molecular interactions between ECM and stem and pro-
genitor cells, scientists are developing new approaches 
based on a general view obtained from big data analy-
sis. The application of system biology methods for this 

purpose has been an observable current trend in matrix 
biology [201].

In this review, we discussed the results of recent stud-
ies covering the participation of cellular receptors to 
ECM components in the maintenance of postnatal 

Fig. 2 Illustration of contributing factors of the signaling pathway for integrin β1 (A), CD44 (B), and DDR1 (C), which generated using 
ReactomeFIPlugIn in Cytoscape. The obtained results are presented as part of Reactfoam according to the type of signaling pathways using a false 
discovery rate (FDR) scalebar (p-value ranging from 0–0.05)
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tissue homeostasis as well as tissue regeneration after 
various types of damage through the regulation of MSC 
functions. We also focused on summarizing the data 
of the currently known ECM-induced signaling cas-
cades in human stem and progenitor cells. However, 
literature analysis revealed that very few and only the 
most common participants of these signal pathways are 

investigating; moreover, they are involved in multiple 
cellular processes which makes them not suitable as a 
potential therapeutic target to modulate stem cell func-
tioning for the purposes of regenerative medicine. There-
fore, to detect more specific ECM-induced signaling 
pathways in stem and progenitor cells as well as to search 

Fig. 3 Illustration of contributing factors of the signaling pathway for integrin β1 (A), CD44 (B), and DDR1 (C), which generated using 
ReactomeFIPlugIn in Cytoscape. The obtained results are presented as part of Reactfoam according to the cellular function using a false discovery 
rate (FDR) scalebar (p-value ranging from 0–0.05)
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Fig. 4 Illustration of contributing factors of the signaling pathway for DDR1 in human adipose-derived MSC (A), (B), (C), which generated using 
ReactomeFIPlugIn in Cytoscape (B and C—enlarged parts of the image A). The obtained results are presented as part of Reactfoam according 
to the cellular function using a false discovery rate (FDR) scalebar (p-value ranging from 0–0.05)
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for novel targets for fine-tuning regeneration processes, 
we suggest using the approaches of systems biology.

Utilizing the established changes in the stem cell profile 
of ECM receptors (Step 1), it is possible to build predic-
tive networks of PPIs (Step 2). Such networks can be ana-
lyzed based on the well-known and available databases 
described in this review. After receiving the list of partici-
pants in the signaling cascade, a normalization step can 
be added to the data of the proteome or transcriptome 
of cells of interest to researchers (Step 3). Then, the cre-
ated network can be compared with a database of known 
signal pathways to select specific signaling pathways and 
processes accumulating the most of participants from the 
previously predicted network of PPIs (Step 4 and Step 5). 
The resulting theoretical model could be useful in design-
ing the further experimental research exploring the 
ECM-mediated regulation of stem and progenitor cells 
(Fig. 5).

This review is the first to detail the major types of ECM 
receptors in postnatal stem cells, using MSC as an exam-
ple, and to evaluate the involvement of ECM-induced 
signaling cascades in the process of MSC differentia-
tion. In addition, a detailed algorithm of action using 
state-of-the-art methods in the field of systems biology 
is proposed to explore the variability of ECM signaling 

pathways in different cells. It may help other researchers 
in the field to discover new targets for tissue and organ 
regeneration with the ability to fine-tune cellular mecha-
nisms rather than inhibiting members of cascades that 
are responsible for multiple processes and could poten-
tially lead to pathology or cell death (e.g., such as Src, 
Erk, Akt).

Shortly, we suppose that the suggested approach of 
generating the predictive networks of PPI could serve as 
a useful tool which is complementary or even partially 
replacing the omics experimental work. Combining the 
known data about ECM receptor on the specific target 
cells and desirable functional processes one could reveal 
novel expected or unexpected signal transduction path-
ways induced by ECM. Few examples are demonstrated 
in the review. Indeed, these results have limited value 
until experimental validation. However, the suggested 
algorithm could intensify the search of ECM-induced 
signaling pathways in stem and progenitor cells and 
shorten the time to the potential breakthroughs in the 
field.

Thus, following the current trends in the field of 
matrix biology, it could allow to identify new prom-
ising directions in the study of stem and committed 
cell behavior within their matrix microenvironment. 

Fig. 5 Summary illustration of review
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Importantly, these approaches expand the number of 
tools in regenerative medicine using to search for the 
mechanisms regulating tissue and organ renewal and 
repair.
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