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GDF-11 downregulates placental 
human chorionic gonadotropin expression 
by activating SMAD2/3 signaling
Ze Wu1†, Lingling Zhang1†, Yuanyuan Jia1, Beibei Bi1, Lanlan Fang1 and Jung‑Chien Cheng1* 

Abstract 

Background The production of human chorionic gonadotropin (hCG) by the placental trophoblast cells is essential 
for maintaining a normal pregnancy. Aberrant hCG levels are associated with reproductive disorders. The protein 
of hCG is a dimer consisting of an α subunit and a β subunit. The β subunit is encoded by the CGB gene and is unique 
to hCG. Growth differentiation factor‑11 (GDF‑11), a member of the transforming growth factor‑β (TGF‑β) superfam‑
ily, is expressed in the human placenta and can stimulate trophoblast cell invasion. However, whether the expression 
of CGB and the production of hCG are regulated by GDF‑11 remains undetermined.

Methods Two human choriocarcinoma cell lines, BeWo and JEG‑3, and primary cultures of human cytotrophoblast 
(CTB) cells were used as experimental models. The effects of GDF‑11 on CGB expression and hCG production, as well 
as the underlying mechanisms, were explored by a series of in vitro experiments.

Results Our results show that treatment of GDF‑11 downregulates the expression of CGB and the production 
of hCG in both BeWo and JEG‑3 cells as well as in primary CTB cells. Using a pharmacological inhibitor and siRNA‑
mediated approach, we reveal that both ALK4 and ALK5 are required for the GDF‑11‑induced downregulation 
of CGB expression. In addition, treatment of GDF‑11 activates SMAD2/3 but not SMAD1/5/8 signaling pathways. 
Moreover, both SMAD2 and SMAD3 are involved in the GDF‑11‑downregulated CGB expression. ELISA results 
show that the GDF‑11‑suppressed hCG production requires the ALK4/5‑mediated activation of SMAD2/3 signaling 
pathways.

Conclusions This study not only discovers the biological function of GDF‑11 in the human placenta but also pro‑
vides important insights into the regulation of the expression of hCG.
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Introduction
The mammalian placenta is a unique organ that is essen-
tial for establishing normal pregnancy. Chorionic villi 
represent the structural and functional unit of the human 
placenta and are composed of two cell layers. The outer 
layer is comprised of large multinucleated syncytio-
trophoblast (STB) cells that are formed by the fusion of 
underlying cytotrophoblast (CTB) cells [1]. The syncytio-
trophoblast layer is the placental barrier between mater-
nal and fetal blood that allows the exchange of nutrients 
and gases and also acts as critical endocrine tissue. The 
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syncytiotrophoblast cells can secret several steroid and 
peptide hormones. Among them, human chorionic 
gonadotropin (hCG) is responsible for maintaining the 
production of progesterone by binding to the luteiniz-
ing hormone (LH) receptor on the corpus luteum in the 
first trimester of pregnancy [2, 3]. In addition, hCG also 
regulates different physiological functions of extravillous 
trophoblasts, myometrial smooth muscle cells, endome-
trium cells, and vascular endothelial cells during preg-
nancy [4].

The hCG is a dimer consisting of an α subunit and a 
β subunit. The β subunit is encoded by the CGB gene 
and is unique to hCG. The α subunit is identical to that 
of LH, follicle-stimulating hormone, and thyroid-stim-
ulating hormone. Dysregulation of hCG production has 
been associated with various pregnancy-related dis-
orders, such as miscarriages [5] and preeclampsia [6]. 
Therefore, the synthesis and secretion of hCG need to be 
finely regulated. The human choriocarcinoma cell lines, 
BeWo and JEG-3, can secret hCG and are used as cell 
models for studying the regulation of trophoblast hCG 
synthesis and production [7]. Using BeWo cells, previous 
studies have revealed that several transcription factors 
and histone modifications are involved in CGB expres-
sion [8–11]. The human leukocyte antigen G promotes 
CGB expression and hCG production in both BeWo and 
JEG-3 cells by activating the ERK1/2 signaling [12]. Our 
previous study shows that treatment with amphiregulin 
(AREG), an epidermal growth factor receptor (EGFR) 
ligand, stimulates CGB expression and hCG production 
in BeWo cells by inducing ERK1/2-mediated expression 
of the inhibitor of DNA-binding protein-3 [13].

Growth differentiation factor-11 (GDF-11), also known 
as bone morphogenetic protein-11 (BMP-11), belongs 
to the transforming growth factor-β (TGF-β) superfam-
ily and is expressed during embryogenesis [14, 15]. In 
humans, GDF-11 is expressed in nearly all major tis-
sues and organs, with the highest levels of that in the 

spleen, kidney, and brain [16–18]. However, to date, the 
physiological function of GDF-11 in female reproduc-
tive function is limited. We have reported that GDF-11 
is expressed in the human ovary and can downregulate 
the expression of the steroidogenic acute regulatory pro-
tein in ovarian granulosa cells [19]. Using immunohisto-
chemical analysis, the expression of GDF-11 protein is 
detected in the human placenta [20]. Our recent study 
demonstrates that GDF-11 stimulates human extravillous 
trophoblast cell invasion by upregulating the expression 
of matrix metalloproteinase-2 [21]. However, whether 
GDF-11 affects CGB expression and hCG production 
remains undetermined. Therefore, the present study was 
designed to explore the effect and related underlying 
molecular mechanisms of GDF-11 on CGB expression 
and hCG production in human trophoblast cells.

Materials and methods
Antibodies and reagents
All antibodies used in this study are summarized in 
Table  1. The recombinant human GDF-11 and BMP-4 
were obtained from R&D systems. The SB431542 was 
obtained from Sigma. GDF-11 and BMP-4 were solubi-
lized in phosphate-buffered saline (PBS). SB431542 was 
dissolved in dimethyl sulfoxide (DMSO).

Cell culture of human choriocarcinomas cell lines
The human choriocarcinoma cell lines, BeWo and JEG-
3, were obtained from American Type Culture Collec-
tion through an official distributor in China (Beijing 
Zhongyuan Limited). Cells were cultured in a humidi-
fied atmosphere containing 5%  CO2 and 95% air at 37 °C 
in Dulbecco’s Modified Eagle Medium/nutrient mixture 
F-12 Ham medium (DMEM/F-12; Gibco) supplemented 
with 10% FBS (HyClone), 100 U/mL of penicillin, and 
100 μg/mL of streptomycin sulfate (Boster).

Table 1 The information of antibodies

Name of antibody Manufacturer and catalog # Molecular weight Dilution used

CGB Proteintech (11615–1‑AP) 18 kDa 3000x

Phospho‑SMAD1/5/8 Cell Signaling Technology (13820) 60 kDa 1000x

Phospho‑SMAD2 Cell Signaling Technology (3108) 60 kDa 1000x

Phospho‑SMAD3 Cell Signaling Technology (9520) 52 kDa 1000x

SMAD1 Cell Signaling Technology (6944) 60 kDa 1000x

SMAD2 Cell Signaling Technology (3103) 60 kDa 1000x

SMAD3 Cell Signaling Technology (9523) 52 kDa 1000x

SMAD4 Cell Signaling Technology (38454) 70 kDa 1000x

α‑Tubulin Santa Cruz (sc‑23948) 55 kDa 5000x
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Primary cytotrophoblast (CTB) cell isolation and culture
The study received institutional approval and was carried 
out in accordance with the guidelines from the Zheng-
zhou University Research Ethics Board. Primary human 
CTB cells were isolated from first-trimester placentas 
as previously described [22]. Briefly, chorionic villi were 
finely minced and digested for 1 h at 37°C with an enzyme 
cocktail containing 1  mg/mL type IV protease, 0.5  mg/
mL type IV collagenase, and 50 µg/mL DNAse I (Sigma). 
An equal volume of DMEM/F-12 culture media con-
taining 10% FBS was added to stop the enzyme activity. 
Tissue digests were then filtered through a 40 µM sieve 
(BD Biosciences), centrifuged at 1200 rpm for 3 min, and 
seeded in a culture dish. After 24 h culture, attached via-
ble cells were collected by trypsinization, and CTB cells 
were isolated using the EasySep™ Human EpCAM Posi-
tive Selection Kit (STEMCELL Technologies) [23]. Cells 
were cultured in a humidified atmosphere containing 5% 
 CO2 and 95% air at 37°C in DMEM/F-12 supplemented 
with 10% FBS, 100 U/mL of penicillin, and 100 μg/mL of 
streptomycin sulfate.

Reverse transcription quantitative real‑time PCR (RT‑qPCR)
Total RNA was extracted with TRIzol (Invitrogen) 
according to the manufacturer’s instructions. RNA (1 μg) 
was reverse-transcribed into first-strand cDNA with the 
iScript Reverse Transcription Kit (Bio-Rad Laboratories). 
Each 20 μL qPCR reaction contained 1X SYBR Green 
PCR Master Mix (Applied Biosystems), 60 ng of cDNA, 
and 250  nM of each specific primer. The primers used 
were CGB, 5’-GTG TGC ATC ACC GTC AAC AC-3’ 
(sense) and 5’-GGT AGT TGC ACA CCA CCT GA-3’ 
(antisense); ALK4, 5’-TCT CTC CAC CTC AGG GTC 
TG-3’ (sense) and 5’-GCC ATA CTT CCC CAA ACC 
GA-3’ (antisense); ALK5, 5’-GTT AAG GCC AAA TAT 
CCC AAA CA-3’ (sense) and 5’-ATA ATT TTA GCC 
ATT ACT CTC AAG G-3’ (antisense); SMAD2, 5’-CCG 
AAA TGC CAC GGT AGA AA-3’ (sense) and 5’-GGG 
CTC TGC ACA AAG ATT GC-3’ (antisense); SMAD3, 
5’-CCC CAG CAC ATA ATA ACT TGG-3’ (sense) and 
5’-AGG AGA TGG AGC ACC AGA AG-3’ (antisense); 
and GAPDH, 5’-GAG TCA ACG GAT TTG GTC GT-3’ 
(sense) and 5’-GAC AAG CTT CCC GTT CTC AG-3’ 
(antisense). RT-qPCR was performed using an Applied 
Biosystems QuantStudio 12  K Flex Real-Time PCR sys-
tem equipped with a 96-well optical reaction plate. The 
specificity of each assay was validated by melting curve 
analysis and by agarose gel electrophoresis of the PCR 
products. All of the RT-qPCR experiments were run in 
triplicate, and a mean value was used to determine the 
mRNA levels. RNase-free water and mRNA without RT 
were used as negative controls. Relative quantification of 

the mRNA levels was performed using the comparative 
Ct method with GAPDH as the reference gene and using 
the formula  2–∆∆Ct.

Western blot
Cells were lysed in cell lysis buffer (Cell Signaling Tech-
nology) supplemented with a protease inhibitor cock-
tail (Sigma). The protein concentration was analyzed by 
the BCA protein assay kit (Pierce, Thermo Scientific). 
Equal amounts of protein were separated by SDS poly-
acrylamide gel electrophoresis and transferred onto 
PVDF membranes. After 1  h blocking with 5% non-fat 
dry milk in Tris-buffered saline (TBS), the membranes 
were incubated overnight at 4  °C with primary antibod-
ies diluted in 5% non-fat milk/TBS. Following primary 
antibody incubation, the membranes were incubated 
with appropriate HRP-conjugated secondary antibodies. 
Immunoreactive bands were detected using an enhanced 
chemiluminescent substrate (Bio-Rad Laboratories) and 
imaged with a ChemiDoc MP Imager (Bio-Rad Labora-
tories). Band intensities were quantified using the Scion 
Image software.

Small interfering RNA (siRNA) transfection
To knock down endogenous ALK4 (#L-004925–00-0010), 
ALK5 (#L-003929–00-0010), SMAD4 (#L-003902–00-
0010), SMAD2 (#L-003561–00-0010), or SMAD3 (#L-
020067–00-0010), cells were transfected with 50 nM (for 
BeWo and JEG-3) or 100  nM (for primary CTB) ON-
TARGETplus SMARTpool siRNA targeting specific gene 
(Dharmacon) using Lipofectamine RNAiMAX (Invitro-
gen). The ON-TARGETplus Non-targeting Control Pool 
siRNA (#D-001810–10-50) (Dharmacon) was used as the 
transfection control. Cells were transfected with control 
or specific siRNA for 48 h. The efficiency of siRNA-medi-
ated knockdown was determined by RT-qPCR or western 
blot.

Measurement of hCG
hCG levels in culture media were measured using an 
hCG ELISA kit according to the manufacturer’s instruc-
tions (Elabscience, #E-EL-H0175). Both inter-assay and 
intra-assay CV for hCG ELISA were < 10%. The analyti-
cal sensitivity of hCG ELISA was 4.69 mIU/mL. The hCG 
level in each culture medium was presented as an exact 
value and normalizing it to the total protein amount from 
the corresponding cell lysate (mIU/mL/µg protein).

Statistical analysis
The results are presented as the mean ± SEM of at least 
three independent experiments. All statistical analyses 
were analyzed by the PRISM software. Multiple compari-
sons were analyzed using a one-way ANOVA followed by 
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Tukey’s multiple comparison test. A significant difference 
was defined as p < 0.05.

Results
GDF‑11 downregulates CGB expression in BeWo and JEG‑3 
cells
It has been shown that in women of reproductive age, 
the serum level of GDF-11 can reach 40  ng/mL [24]. 
To examine the effect of GDF-11 on the CGB expres-
sion, BeWo cells were treated with 30  ng/mL human 
recombinant GDF-11 for 24 and 48  h. Western blot 
analysis showed that 24  h of GDF-11 treatment signifi-
cantly downregulated the protein levels of CGB in BeWo 
cells. A more profound suppressive effect of GDF-11 
on CGB protein levels was observed after 48 h of GDF-
11 treatment (Fig. 1A). Similarly, the inhibitory effect of 
GDF-11 on CGB protein levels was detected in another 
human choriocarcinoma cell line, JEG-3 (Fig. 1B). Since 
30  ng/mL GDF-11 treatment resulted in a significant 

suppressive effect on CGB expression, concentration-
dependent experiments were performed to examine 
the effects of lower concentrations of GDF-11 on CGB 
expression. As shown in Fig. 1C, while treatment of 1 ng/
mL GDF-11 had no significant effect, CGB protein lev-
els were significantly downregulated by exposure to 5, 
10, or 30 ng/mL GDF-11. In JEG-3 cells, similarly, treat-
ment with GDF-11 downregulated CGB protein levels in 
a concentration-dependent manner (Fig. 1D). Therefore, 
10 ng/mL GDF-11 was used in the following experiments.

GDF‑11 downregulates CGB expression through ALK4 
and ALK5
GDF-11 exhibits its biological function by binding to two 
activin type-II receptors, ActRIIA and ActRIIB, and three 
type-I receptors, activin receptor-like kinase 4 (ALK4), 
ALK5, and ALK7 [25]. In a cell-type-dependent man-
ner, GDF-11 regulates cellular function by using different 
ALKs. As the expression levels of ALK7 are very low in 

Fig. 1 GDF‑11 downregulates CGB expression in BeWo and JEG‑3 cells. A and B BeWo (A) and JEG‑3 (B) cells were treated with 30 ng/mL GDF‑11 
(G11) for 24 h or every 24 h for 48 h. The protein levels of CGB were examined by western blot. C and D BeWo (C) and JEG‑3 (D) cells were treated 
with 1, 5, 10, and 30 ng/mL GDF‑11 every 24 h for 48 h. The protein levels of CGB were examined by western blot. The results are expressed 
as the mean ± SEM of at least three independent experiments. The values without a common letter are significantly different (p < 0.05)
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the placenta, we next examined whether ALK4 or ALK5 is 
involved in the GDF-11-induced downregulation of CGB 
expression [26]. To do this, a potent ALK4/5/7 inhibitor, 
SB431542, was used to block the function of ALK4 and 
ALK5 [27]. As shown in Fig. 2A, pretreatment of BeWo 
cells with SB431542 blocked the GDF-11-induced down-
regulation of CGB protein levels. Similarly, inhibition of 
ALK4 and ALK5 blocked the suppressive effect of GDF-
11 on CGB protein in JEG-3 cells (Fig.  2B). To further 
determine which ALK is involved in GDF-11-induced 
downregulation of CGB expression, the siRNA-mediated 
knockdown approach was applied to eliminate the func-
tion of ALK4 or ALK5 specifically. As shown in Fig. 2C, 
RT-qPCR results revealed that transfection of BeWo 
cells with ALK4 siRNA specifically downregulated the 
endogenous ALK4 mRNA levels without affecting the 
endogenous ALK5 mRNA levels. The specificity of ALK5 

siRNA was also observed. The suppressive effect of GDF-
11 on CGB mRNA levels was partially attenuated by the 
knockdown of ALK4. Knockdown of ALK5 blocked the 
GDF-11-downregulated CGB mRNA levels. Western blot 
analysis confirmed the results that while both ALK4 and 
ALK5 were required for the GDF-11-induced downregu-
lation of CGB protein levels, ALK5 was more involved in 
this process (Fig. 2D).

GDF‑11 downregulates CGB expression in primary human 
CTB cells
We are aware that choriocarcinoma cells may not fully 
represent the nature of human trophoblast cells. There-
fore, the primary cytotrophoblast cells isolated from 
placental villi were used to further confirm the inhibi-
tory effect of GDF-11 on CGB expression in human 
trophoblast cells. Under normal culture conditions, the 

Fig. 2 ALK4 and ALK5 are involved in the GDF‑11‑induced downregulation of CGB expression. A and B BeWo (A) and JEG‑3 (B) cells were 
pretreated with vehicle control (DMSO) or 10 µM SB431542 for 1 h, and then treated with 10 ng/mL GDF‑11 (G11) every 24 h for 48 h. The protein 
levels of CGB were examined by western blot. C and D BeWo cells were transfected with 50 nM control siRNA (si‑Ctrl), ALK4 siRNA (si‑ALK4), or ALK5 
siRNA (si‑ALK5) for 48 h, and then treated with 10 ng/mL GDF‑11 (G11) every 24 h for 48 h. The mRNA (C) levels of ALK4, ALK5, and CGB were 
examined by RT‑qPCR. The protein (D) levels of CGB were examined by western blot. The results are expressed as the mean ± SEM of at least three 
independent experiments. The values without a common letter are significantly different (p < 0.05)
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primary CTB cells will differentiate into multinucleated 
syncytiotrophoblast cells and express CGB [28]. Similar 
to the results obtained from BeWo and JEG-3 cells, treat-
ment with GDF-11 downregulated CGB protein levels 
in a concentration-dependent manner in primary CTB 
cells (Fig. 3A). In addition, the inhibitory effect of GDF-
11 on CGB protein levels was blocked by the SB431542 
(Fig. 3B).

GDF‑11 downregulates CGB expression by activating 
SMAD2/3 signaling pathways
Similar to other members of the TGF-β family, GDF-
11 regulates cellular functions by activating intracel-
lular SMAD2/3 or SMAD1/5/8 signaling pathways. 
Both SMAD2/3 and SMAD1/5/8 signaling pathways 
are activated in response to the GDF-11 treatment in 
human umbilical vein endothelial cells [29]. Therefore, 
we examined whether the same is true in BeWo cells. As 
shown in Fig. 4A, treatment with GDF-11 activated both 
SMAD2 and SMAD3 signaling pathways in BeWo cells. 
However, the activation of SMAD1/5/8 was not affected 
by the GDF-11 treatment. We used cell lysate obtained 
from BeWo cells treated with BMP-4 as a positive control 
for the activation of SMAD1/5/8 [21]. Loss of SMAD3 
expression has been reported in JEG-3 cells [30]. There-
fore, we confirmed the stimulatory effect of GDF-11 on 
SMAD2 in JEG-3 cells (Fig. 4B). As SMAD2/3 needs to 
form a complex with the common SMAD4 to regulate the 
expression of target genes, we knockdown the expression 
of SMAD4 to examine the requirement of SMAD2/3 in 
GDF-11-induced downregulation of CGB expression. As 
shown in Fig. 4C and D, knockdown of SMAD4 abolished 

the suppressive effect of GDF-11 on CGB protein levels 
in both BeWo and JEG-3 cells. Similarly, the inhibitory 
effect of GDF-11 on CGB protein levels in primary CTB 
cells was blocked by the knockdown of SMAD4 (Fig. 4E). 
Although in most contexts, the function of SMAD2 and 
SMAD3 are indistinguishable, these two signaling mol-
ecules can mediate distinct functions under some con-
ditions [31]. Therefore, we next defined the individual 
role of SMAD2 and SMAD3 in mediating the suppres-
sive effect of GDF-11 on CGB expression in BeWo cells. 
As shown in Fig. 5A, SMAD2 siRNA specifically down-
regulated the endogenous SMAD2 mRNA levels without 
affecting the endogenous SMAD3 mRNA levels and vice 
versa for SMAD3 siRNA. RT-qPCR results showed that 
the suppressive effect of GDF-11 on CGB mRNA levels 
was attenuated by the knockdown of SMAD2 or SMAD3. 
Western blot results confirmed the involvement of both 
SMAD2 and SMAD3 in the GDF-11-induced downregu-
lation of CGB protein levels (Fig. 5B).

GDF‑11 decreases hCG production by activating 
ALK4/5‑mediated SMAD2/3 signaling pathways
Given the suppressive effect of GDF-11 on CGB expres-
sion, we next examined whether the production of hCG 
is affected by GDF-11 treatment. ELISA was applied to 
measure the levels of hCG in the culture medium after 
the GDF-11 treatment. As shown in Fig.  6A and B, 
GDF-11 treatment significantly decreases the produc-
tion of hCG in both BeWo and JEG-3 cells. In addition, 
the inhibitory effect of GDF-11 on hCG production was 
blocked by the inhibition of ALK4/5. SB431542 also abol-
ished the inhibitory effect of GDF-11 on hCG production 

Fig. 3 GDF‑11 downregulates CGB expression in primary CTB cells. A Cells were treated with 1, 5, 10, and 30 ng/mL GDF‑11 for 48 h. The 
protein levels of CGB were examined by western blot. B Cells were pretreated with vehicle control (DMSO) or 10 µM SB431542 for 1 h, and then 
treated with 10 ng/mL GDF‑11 (G11) every 24 h for 48 h. The protein levels of CGB were examined by western blot. The results are expressed 
as the mean ± SEM of at least three independent experiments. The values without a common letter are significantly different (p < 0.05)
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in primary CTB cells (Fig. 6C). Moreover, siRNA-medi-
ated knockdown of SMAD4 also abolished the GDF-
11-inhibited hCG production in both BeWo and JEG-3 
cells as well as in primary CTB cells (Fig.  6D-F). Taken 
together, these results indicate that GDF-11 downregu-
lates CGB expression by activating ALK4/5-mediated 
SMAD2/3 signaling pathways, which contributes to the 
decrease in hCG production.

Discussion
There is no doubt that hCG plays a fundamental role 
in maintaining a normal pregnancy. The RNA of hCG 
can be detected as early as in the eight-cell stage of the 
embryo, and the hCG protein can be produced by blas-
tocyst before implantation [32–34]. After implantation, 

although hCG can be secreted by extravillous tropho-
blast (EVT) cells, STB cells remain a major source of 
hCG [35]. Serum levels of hCG are rapidly increased and 
reach maximal levels at 8–10 weeks gestation. In addition 
to the well-known physiological functions required for 
pregnancy, excess hCG has been shown to be teratogenic 
to fetal gonadal tissues [36]. Therefore, the levels of hCG 
during pregnancy must be tightly regulated. It has been 
reported that the synthesis of hCG can be controlled by 
a few locally produced hormones and growth factors in 
an autocrine/paracrine manner [37]. The choriocarci-
noma-derived cell lines, BeWo and JEG-3, are the com-
monly used cell models to study the synthesis of hCG. In 
the present study, using BeWo and JEG-3 cells, we dem-
onstrated that the expression of CGB and production 

Fig. 4 SMAD2 and SMAD3 mediate the GDF‑11‑induced downregulation of CGB expression. A BeWo cells were treated with 10 ng/mL GDF‑11 
(G11) for 10, 30, or 60 min. The levels of phosphorylated and total forms of SMAD2 and SMAD3 were determined by western blot (upper panel). The 
levels of phosphorylated forms of SMAD1/5/8 and the total form of SMAD1 were determined by western blot (lower panel). Cell lysate obtained 
from BeWo cells treated with 10 ng/mL BMP‑4 (B4) for 60 min was used as a positive control. B JEG‑3 cells were treated with 10 ng/mL GDF‑11 (G11) 
for 10, 30, or 60 min. The levels of phosphorylated and total forms of SMAD2 were determined by western blot. C‑E BeWo (C), JEG‑3 (D), and primary 
CTB (E) cells were transfected with 50 nM (for BeWo and JEG‑3) or 100 nM (for primary CTB) control siRNA (si‑Ctrl) or SMAD4 siRNA (si‑SMAD4) 
for 48 h, and then treated with 10 ng/mL GDF‑11 (G11) every 24 h for 48 h. The protein levels of CGB and SMAD4 were examined by western blot. 
The results are expressed as the mean ± SEM of at least three independent experiments. The values without a common letter are significantly 
different (p < 0.05)
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of hCG were inhibited by the GDF-11. In addition, the 
inhibitory effect of GDF-11 was further confirmed in 
human primary CTB cells. Mechanistically, we revealed 
that the suppressive effect of GDF-11 on CGB expres-
sion and hCG production was mediated by ALK4/5-
SMAD2/3 signaling pathways.

Other groups and we have reported that EGFR ligands, 
EGF and AREG, can stimulate the expression of CGB 
expression and hCG production in human trophoblast 
cells [13, 38]. Many members of the TGF-β family are 
expressed in the human placenta and have important 
regulatory roles in placental development and disease 
[39]. Interestingly, different members of the TGF-β fam-
ily exert a distinct effect on the CGB expression in differ-
ent types of trophoblast cells. In the human immortalized 
EVT cell line, HTR-8/SVneo, the expression of CGB is 
upregulated in response to the TGF-β1 treatment [40]. In 
BeWo cells, the knockdown of transforming growth fac-
tor  beta-induced factor-1 attenuated the expression of 
CGB and hCG secretion [41]. These results indicate the 

stimulatory role of TGF-β1 in hCG expression and secre-
tion. In primary cultures of human placental cells, activin 
stimulates hCG secretion, while the secretion of hCG is 
inhibited by inhibin [42]. GDF-11 belongs to the GDF 
subfamily of the TGF-β superfamily. Our results showed 
that treatment with GDF-11 downregulated CGB expres-
sion and hCG production in both BeWo and JEG-3 cells. 
We were aware that BeWo and JEG-3 cells are derived 
from human choriocarcinoma, which can not fully rep-
resent the nature of normal human trophoblast cells. 
Therefore, in the present study, the inhibitory effect of 
GDF-11 on CGB expression and hCG production were 
further confirmed in primary human CTB cells.

We have shown that GDF-11 downregulates the 
expression of the steroidogenic acute regulatory protein 
in human granulosa cells by activating the ALK5-medi-
ated SMAD3 signaling pathway [19]. Our recent study 
in human placental trophoblast cells reveals that GDF-
11 stimulates cell invasion by upregulating matrix met-
alloproteinase-2 expression through ALK4/5-mediated 

Fig. 5 SMAD2 and SMAD3 are involved in the GDF‑11‑induced downregulation of CGB expression. A and B BeWo cells were transfected 
with 50 nM control siRNA (si‑Ctrl), SMAD2 siRNA (si‑SMAD2), or SMAD3 siRNA (si‑SMAD3) for 48 h, and then treated with 10 ng/mL GDF‑11 (G11) 
every 24 h for 48 h. The mRNA (A) and protein (B) levels of CGB, SMAD2, and SMAD3 were examined by RT‑qPCR and western blot, respectively. The 
results are expressed as the mean ± SEM of at least three independent experiments. The values without a common letter are significantly different 
(p < 0.05)
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SMAD2/3 signaling pathways [21]. These results indi-
cate that the utilization of ALK4 or ALK5 receptor and 
SMAD2 or SMAD3 intracellular signaling by GDF-11 is 
in a cell type-dependent manner. In the present study, 
using a siRNA-mediated knockdown approach, our 
results demonstrated that both ALK4 and ALK5 were 
required for the GDF-11-suppressive CGB expression 
in human choriocarcinoma cells. In addition, SMAD2 
and SMAD3 both were involved in the GDF-11-in-
duced downregulation of CGB expression. As known as 
BMP-11, in addition to SMAD2/3, GDF-11 can activate 
SMAD1/5/8 signaling pathways [29]. We showed that 
BMP-4 treatment induced SMAD1/5/8 activation, which 
indicated these signaling pathways are not impaired in 
BeWo cells. However, we did not observe the stimula-
tory effect of GDF-11 on the activation of SMAD1/5/8 
signaling pathways in BeWo cells. These results indicate 
that the cellular functions of GDF-11 in human cho-
riocarcinoma cells are mediated by the SMAD2/3 but 
not SMAD1/5/8 signaling pathways. Similar to other 
members of the TGF-β superfamily, GDF-11 activates 
canonical SMAD signaling pathways and non-canonical 
signaling pathways such as ERK1/2, JNK, and p38 MPAK 
[43]. It has been shown that the expression of CGB in 
human trophoblast cells can be regulated by ERK1/2 and 
p38 MPAK [44]. Whether these signaling pathways can 

be activated by GDF-11 and mediate the GDF-11-in-
duced downregulation of CGB expression in human 
trophoblast cells remain undetermined and warrant fur-
ther investigation.

Conclusions
In summary, in the present study, we provide evidence 
that the expression of CGB and production of hCG in 
human choriocarcinoma cells and primary CTB cells 
are downregulated in response to the treatment of GDF-
11. Our results reveal that both ALK4 and ALK5 are 
required for the GDF-11-induced downregulation of 
CGB expression and hCG production. In addition, GDF-
11 activates SMAD2/3 but not SMAD1/5/8 signaling 
pathways. Both SMAD2 and SMAD3 mediate the sup-
pressive effects of GDF-11 on the expression of CGB and 
production of hCG. Our study not only discovers the 
biological function of GDF-11 in the human placenta but 
also provides important insights into the regulation of 
the hCG production.

Abbreviations
ALK  Activin receptor‑like kinase
AREG  Amphiregulin
BMP  Bone morphogenetic protein
CTB  Cytotrophoblast cells
EGFR  Epidermal growth factor receptor

Fig. 6 ALK4/5‑mediated SMAD2/3 signaling pathways are required for the GDF‑11‑suppressed hCG production. A‑C BeWo (A), JEG‑3 (B), 
and primary CTB (C) cells were pretreated with vehicle control (DMSO) or 10 µM SB431542 for 1 h, and then treated with 10 ng/mL GDF‑11 (G11) 
every 24 h for 72 h. D‑F, BeWo (D), JEG‑3 (E), and primary CTB (F) cells were transfected with 50 nM (for BeWo and JEG‑3) or 100 nM (for primary 
CTB) control siRNA (si‑Ctrl) or SMAD4 siRNA (si‑SMAD4) for 48 h, and then treated with 10 ng/mL GDF‑11 (G11) every 24 h for 72 h. The levels of hCG 
in the culture media were examined by ELISA. The results are expressed as the mean ± SEM of at least three independent experiments. The values 
without a common letter are significantly different (p < 0.05)
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