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Abstract 

Serotonin (5-hydroxytryptamine, 5-HT) is a unique neurotransmitter which can regulate various biological processes 
by activating thirteen different receptors. These serotonin receptors are divided into seven different classes based 
on their structure and functions. Since these receptors co-express in various tissue and cell types and share the same 
ligand (5-HT), it has been a challenge for the researchers to define specific pathway and separate physiological role 
for each of these serotonin receptors. Though the evidence of operational diversity of these receptors is continuously 
emerging, much work remains to be done. 5-HTR1E is a member of 5-HT1 receptor family which belongs to G-protein 
coupled receptors (GPCRs). Even after three decades since its discovery, 5-HTR1E remains the least explored seroto-
nin receptor. Very high similarity with another family member (5-HTR1F) and its non-existence in mice or rats makes 
5-HTR1E a difficult target to study. Despite these challenges, recent findings on the role of 5-HTR1E in neuroprotection 
and diseases such as cancer, have excited many researchers to explore this receptor in detail. Here, we provide the first 
review of 5-HTR1E, since its discovery in 1989 to 2023. We highlight the structural and functional characteristics of this 
important serotonin receptor in detail and propose future directions in developing 5-HTR1E as a drug target.
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Introduction
Serotonin, a monoamine neurotransmitter first discov-
ered by Maurice Rapport [1, 2] has thirteen serotonin 
receptors known till date. Since the discovery of first ser-
otonin receptor in guinea pig [3], these serotonin recep-
tors have been identified in various animal species (see 
review [4]).The effects of serotonin (5-HT) are mediated 
by these receptors which has been further categorized 
into 6 distinct classes of G protein-coupled receptor 
(GPCRs) 5-HT1, 5-HT2, 5-HT4, 5-HT5, 5-HT6 and 
5-HT7 and a ligand gated ion channel, 5-HT3 [5, 6].

The 5-HT1 receptor family is the largest class of sero-
tonin receptor subtypes and belongs to GPCRs which are 
also known as 7 transmembrane (7TM) domain recep-
tors. This major group is subdivided into 5 receptor sub-
types named 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 
5-HT1F. 5-HT1 receptors were initially grouped because 
of their high affinity for 5-HT [7] but they also exhibited 
a high affinity for an agonist, 5-carboxamidotryptamine 
(5-CT), except for 5-HT1E and 5-HT1F [8, 9]. All 5-HT1 
receptor family members share high sequence homol-
ogy (between 40–60%) with each other (see review [9] 
and Table 1) and also couples with Gαi/Gαo proteins to 
inhibit adenylyl cyclase (AC) activity (see review [4]). 
These overlapping similarities among 5-HT1 members 
provide the good reasons for their affiliation to the same 
receptor class while they are involved in different biologi-
cal processes such as cell survival, neuronal regulation 
and neuroprotection [10–12] (ref. 10, review), CNS dis-
orders, pain, depression [13–16], migraine [17] (re. 17, 
review) and cancer [18, 19] (ref. 18, review).
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5-hydroxytryptamine receptor 1E (5-HTR1E) is the 
fourth member of the 5-HT1 receptor family which was 
identified about three decades ago. It is the only 5-HT1 
member which does not express in mice or rat [20] 
and due to high similarity with another family member 
(5-HTR1F, which was not discovered then) was not rec-
ognized correctly. 5-HTR1F which was identified much 
later has been studied well and its role in migraine is 
well studied [17, 21, 22] while 5-HTR1E after its initial 
discovery without specific functions, remained largely 
unknown. Reports published prior to 2021 were mainly 
about the signaling and distribution of 5-HTR1E, but no 
physiological role was found for this receptor. Recently, 
a few studies have been published that indicate a role of 
5-HTR1E in cell survival, neuroprotection, and cancer 
progression [11, 12, 19]. In addition to serotonin-induced 
classical pathways, 5-HTR1E can also function with a 
binding partner CPE/NFα1  protein to activate a non-
canonical signaling pathway which makes this receptor 
more interesting [12]. Taken together, these new find-
ings reveal the emerging roles of 5-HTR1E and are sum-
marized in this review. Here,  we cover the journey of 
5-HTR1E since its identification and highlight its biologi-
cal and pharmacological properties.

Identification of 5‑HTR1E
The introduction of radioligand binding studies in 1970’s 
became a key tool in identification of novel receptors. 
Since then, radiolabeled 5-HT or 5-CT has been widely 
used in pharmacological characterization of seroto-
nin receptors. In the absence of many DNA or protein 
sequencing techniques, nomenclature of serotonin recep-
tors also relied heavily on radioligand based identification 
of novel sites. Similarly, 5-HTR1E was also discovered 
using radio-labelled serotonin, [3H]-5-HT in human 

brain tissues [8]. In this study, the blocking agents for 
other 5-HT1 subtypes 5-HT1A, 5-HT1B,5-HT1C (now 
5-HT2C), which had been identified in 1988, showed a 
biphasic displacement curve to 5-CT [8]. High affinity 
sites for 5-CT were thought to represent the 5-HT1D 
receptor while low affinity sites with novel pharmacol-
ogy were assumed to be a new 5-HT1E (5-HTR1E) recep-
tor [8]. Later this radiolabeled 5-HT binding site (which 
was 5-CT-insensitive) was also found in guinea pig, rab-
bit, and dogs [8, 23, 24]. Since 5-HTR1F receptor which 
also have high affinity for 5-HT but 5-CT insensitive [22] 
was not discovered at that time, also contributed to the 
primary quantification of 5-HTR1E binding sites deter-
mined in above studies. Detailed analysis of overlapping 
5-HTR1E binding sites in subsequent studies determined 
that the initial discovery of 5-HTR1E was a mixture of 
other 5-HT receptors like 5-HTR1E and 5-HT6 [20, 25].

Cloning of 5‑HTR1E gene
Following the identification of 5-HTR1E in human brain 
tissues, a gene encoding a protein with 5-HT1 receptors 
pharmacology was cloned by Levy et  al., from a human 
lambda EMBL3 genomic library and referred as S31 [26]. 
By expressing in murine Ltk-cells they reported that 
S31 gene encodes a functional protein (did not refer as 
5-HTR1E) which can mediate a 5-HT induced decrease 
in forskolin-stimulated cAMP and has the same phar-
macological profile as the other 5-HT1 receptors. [26]. 
Within a month McAllister et  al., published another 
report where they used degenerated primers (referred 
as AC1) based on the conserved structure of GPCRs to 
isolate cDNA clones encoding putative GPCRs from a 
human hippocampal cDNA library. In this study degen-
erated primers devised from transmembrane regions 
III and VI of the 5HT1A receptor, substance K receptor, 

Table 1 Overall and transmembrane domains (TM) Sequence similarities (%) of 5-HTR1E with serotonin (5-HT) receptor subtypes. 
Receptor subtypes in bold are available for experimental structures. Reproduced with permission from Sharma et al., 2021 [12]

# Subtypes All TMs TM1 TM2 TM3 TM4 TM5 TM6 TM7

1 5-HTR1E 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

2 5-HT1A 38.90 52.91 23.81 62.50 52.38 38.89 78.26 61.90 52.63

3 5‑HT1B 46.58 65.28 47.62 70.83 76.19 61.11 60.87 66.67 73.68

4 5-HT1D 45.48 66.69 38.10 70.83 76.19 72.22 73.91 61.90 73.68

5 5-HT1F 56.44 73.77 38.10 87.50 76.19 77.78 86.96 76.19 73.68

6 5-HT2A 27.67 41.85 38.10 45.83 47.62 55.56 30.43 33.33 42.11

7 5‑HT2B 25.21 39.63 23.81 50.00 47.62 44.44 26.09 38.10 47.37

8 5‑HT2C 27.67 44.26 38.10 54.17 52.38 44.44 34.78 33.33 52.63

9 5-HT4 29.32 45.32 28.57 58.33 47.62 38.89 47.83 38.10 57.89

10 5-HT5A 29.59 45.36 23.81 58.33 38.10 44.44 47.83 52.38 52.63

11 5-HT6 25.75 38.49 28.57 33.33 47.62 27.78 26.09 42.86 63.16

12 5-HT7 33.15 52.48 33.33 54.17 52.38 61.11 60.87 47.62 57.89
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the α2-adrenergic, βl-adrenergic, and β-adrenergic 
receptors were used  to clone 5-HTR1E gene [27]. Soon 
after, another group isolated the same S31 gene from a 
human placental genomic library by using the oligonu-
cleotide probes derived from transmembrane regions 
of the cloned human 5-HT1Dβ (old name) receptor and 
ultimately confirmed that human S31 gene encodes the 
pharmacologically defined serotonin 5-HTR1E recep-
tor [28]. Both groups [26, 28] reported that 5-HTR1E 
shares high similarity with the 5-HT1Dα and 5-HT1Dβ 
(now 5-HT1B and 5-HT1D) receptors and it can inhibit 
adenyl cyclase function ultimately leading to reduction 
in cAMP levels. In the following years several reports 
claimed to have identified 5-HTR1E in mouse and rat 
[29, 30] but they were actually characterizing a putative 
receptor which was later identified as 5-HTR1F [22] as it 
wasn’t clear until Bai et al., confirmed the non-existence 
of 5-HTR1E gene in mouse or rat genome. This group 
first time reported the cloning of 5-HTR1E gene from a 
small laboratory animal, guinea pig, while attempts to 
clone this gene from mouse or rat failed [20].

Structural features of 5‑HTR1E
The human S31 gene is located on human chromo-
some 6q14-q15 and does not have any intron, while the 
5-HTR1E protein is 365 amino acids long [26, 27, 31] and 
shows a band of ~ 45 kDa on SDS-PAGE [12, 32]. Based 
on the sequence identity with other receptors and its 
hydrophobic profile 5-HTR1E was predicted to have 7 
transmembrane helices which is a trademark of GPCRs 
[26, 28]. In comparison with other 5-HT1 family mem-
bers, human 5-HTR1E receptor has highest homol-
ogy with the 5-HTR1F (57.7%) followed by 5-HTR1B 
(46.58%), and 5-HTR1D (45.58%) receptors at amino acid 
level (Table 1).

The guinea pig 5-HTR1E receptor is also 365 amino 
acid long which shares 88% (nucleic acid) and 95% 
(amino acid) homology with the human receptor [20]. 
The other species where 5-HTR1E has been cloned is 
chicken and the 371 amino acids long protein also shares 
a high degree of sequence identity (83%) with humans 
[33]. The 5-HTR1E gene does not show any polymor-
phisms amongst humans [34].

5‑HTR1E distribution
To date, only a few studies have been conducted on the 
expression and distribution of 5-HTR1E.

The expression of 5-HTR1E was first detected in 
human frontal cortex using autoradiographic studies 
[35] and then in the hippocampus of human post mor-
tem brain homogenates [36]. It should be noted that 
these results might have been confounded by the label-
ling of 5-HT1F receptors. Bruinvels et  al., also reported 

5-HTR1E receptor mRNA in human and monkey brain 
sections using in  situ hybridization technique, and high 
expression of 5-HTR1E was observed in human fron-
tal cortex, putamen and globus pallidus [37]. qRT-PCR 
mRNA expression analysis in guinea pig showed that 
5-HTR1E was present in brain with the highest expres-
sion in the hippocampus, followed by the olfactory bulb, 
while lower levels were detected in the cortex, thalamus, 
pons, hypothalamus, midbrain, striatum, and cerebellum. 
No expression of 5-HTR1E mRNA was found in liver, 
spleen, kidney, heart, lung, muscle, aorta, vena cava, and 
small intestine of the guinea pig [20]. Radioligand bind-
ing studies using [3H]5-HT in guinea pig hippocampal 
tissues also confirmed the high expression of 5-HTR1E 
in hippocampus and cortex tissues [32]. Later, this same 
group performed a detailed immunohistochemical analy-
sis using 5-HTR1E specific antibodies and reported the 
specific localization of 5-HTR1E protein in guinea pig 
brain. The expression of 5-HTR1E was highest in olfac-
tory glomeruli which was suggestive that 5-HTR1E might 
have a role in regulation of smell. In addition to the olfac-
tory bulb, hippocampus and cerebral arteries were the 
only tissues with significant 5-HTR1E receptor expres-
sion. For 5-HTR1E distribution summary in brain, see 
Table 2. In hippocampus dentate gyrus (DG) has the most 
robust expression of 5-HTR1E while CA1, CA2 and CA3 
showed low level of staining [25]. Recently, Sharma et al., 
reported the 5-HTR1E expression analysis in human hip-
pocampal neurons where 5-HTR1E co-localizes with its 
interacting partner NF-α1/CPE. Immunohistochemical 
and immunofluorescence studies done on postmortem 
human brain sections showed that 5-HTR1E is localized 
in the perikarya of pyramidal neurons of CA1, CA2 and 
CA3 and within the granule cell layer of DG [12]. Since 
NF-α1/CPE is involved in memory and learning [38], 
a role of 5-HTR1E can be assumed in the regulation of 
these hippocampal functions via interaction with NF-α1/
CPE. Brain cortex is involved in a wide range of neuro-
logical functions, including sensory and motor activities, 
vision, hearing, taste etc. [39] (book chapter) and almost 
all the studies listed in Table 2 report significant expres-
sion of 5-HTR1E in cortex tissues which  suggests that 
HTR1E could be involved in some of these cortical func-
tions. Since no experimental data is available regarding 
the role of 5-HTR1E in brain functions, such proposals 
will require further investigation.

5‑HTR1E pharmacology
In the first identification report  on 5-HTR1E, [3H] 
labelled 5-HT was used for radioligand binding studies. 
Radiolabeled 5-HT displayed high affinity (Kd = 5.3 nM) 
and saturability  (Bmax = 83 fmol/mg) for 5-HTR1E 
receptor in human brain cortical tissues [8] (Table  3). 
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During the competition studies with nonradioactive 
drugs 5-CT and ergotamine did not display the affinity 
for 5-HTR1E binding site but the interaction between 
5-HTR1E and nonhydrolyzable derivatives of GTP, 
guanosine 5’-0-(3-thiotriphosphate) (GTPγS) and 
5’-guanylyl-imidodiphosphate [Gpp(NH)p] inhibited 
the binding between [3H] labelled 5-HT and 5-HTR1E 
(with the IC50 values of 16 and 172  nM, respectively) 
while adenosine 5’-0-(3-thiotriphosphate) (ATPγS) and 
5’-adenylyl-imidodiphosphate [App(NH)p] had no effect 
on this binding. Eventually, this high affinity for 5-HT 
and the interaction with a GTP-binding protein became 
the reason to designate 5-HTR1E as the fifth serotonin 
receptor keeping with the existing system of nomencla-
ture for 5-HT receptors [8]. While human brain corti-
cal tissues used for binding experiments were inclusive 
of 5-HTR1F (unidentified till then), another pharma-
cological evaluation of human 5-HTR1E was also done 
by using [3H]  labelled 5-HT but with the stable expres-
sion of 5-HTR1E in murine fibroblasts and determined 
the binding affinity between 5-HTR1E and serotonin 
(Kd = 9.7  nM). Saturation binding experiments in these 
5-HTR1E expressing membranes showed the  Bmax value 
(2.4  pmol/mg of protein) for [3H] labelled 5-HT while 
most of the other compounds tested had low affin-
ity for 5-HTR1E protein (Kd > 200  nM). The affinity 
of other ligands for 5-HTR1E (descending order) was 

5-HT > methysergide > ergotamine > 8-hydroxy-2-(di-n-
propylamino) tetralin > 5-carboxyamidotryptamne > ket-
anserin, while 5’-Guanylyl-imidodiphosphate was able to 
decrease [3H] 5-HT binding in a dose-dependent man-
ner [28] (Table 3). AC1 cDNA-encoded human 5-HTR1E 
receptor, transiently expressed in human embryonic 
kidney cell line (HEK293) also displayed high affinity 
(Kd = 15 nM) and saturability (15 to 40 pmol/mg of pro-
tein) when incubated with [3H] labelled serotonin. 5-CT 
showed low affinity (pKi = 5.15) compared with serotonin 
(pKi = 8.14) in competition with [3H] 5-HT which was 
consistent with the previous binding results of 5-HTR1E 
[27] (Table 3).

3H labelled 5-HT Binding studies with cloned human 
and guinea pig 5-HTR1E show that 5-HTR1E recep-
tor from both the species has similar pharmacological 
profile with Kd values of 5.6 and 6.1  nM respectively 
[20] (Table  3). In AV-12 cells, dose dependent 5-HT 
stimulation of [35S] GTPγS binding to the guinea pig 
5-HTR1E derived an EC50 value of 13.6 nM, very simi-
lar to that of the human 5- HTR1E receptor (13.7 nM). 
Guinea pig 5-HTR1E also showed activation with 
ergonovine, α-methyl-5-HT, 1-naphthylpiperazine, 
methysergide, tryptamine, and 1-(2,5-dimethoxy-
4-iodophenyl)-2-aminopropane (DOI) while methio-
thepin displayed antagonist activity [20] (Table  3). In 
another report on human 5-HTR1E, methiothepin was 

Table 2 5-HTR1E mRNA and protein distribution in various brain regions

Very High +  +  +  + , High +  +  + , Moderate +  + ,Low + 

(F) Frontal cortex (V) visual cortex. Ligand binding: serotonin ligand

Anatomical region Human 
5‑HTR1E 
Ligand 
binding
(Lowther 
et al., 1992) 
[36]

Human 
5‑HTR1E 
Ligand 
binding
(Miller et al., 
1992) [35]

Human 
5‑HTR1E 
in situ 
hybridization
(Bruinvels 
et al., 1994) 
[37]

Guinea pig 
5‑HTR1E 
PCR mRNA analysis
(Bai et al., 2004) [20]

Guinea pig 
5‑HTR1E 
Ligand 
binding
(Klein et al., 
2009) [32]

Monkey 
5‑HTR1E 
in situ 
hybridization
(Bruinvels 
et al., 1994) 
[37]

Chicken 5‑HTR1E 
PCR mRNA analysis
(Sun et al., 2021) [33]

Hippocampus  +  +  +  +  +  +  +  +  +  + 
Olfactory bulb  +  +  +  +  +  +  +  + 
Cortex  +  +  + (F)  +  +  + (F)  +  +  + (V)  +  +  +  +  + (F)  + (F)
Amygdala  +  +  +  +  +  +  +  + 
Hypothalamus  +  +  +  +  +  +  + 
Cerebellum  +  +  +  + 
Striatum  +  + 
Thalamus  +  +  + 
Brain stem  + 
Midbrain  +  + 
Pons  +  + 
Globus pallidus  +  +  +  +  + 
Caudate  +  +  +  +  +  +  +  +  +  +  + 
Putamen  +  +  +  +  +  +  +  +  +  +  +  +  +  + 
Pituitary  +  +  +  + 
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suggested to be a weak antagonist for serotonin bind-
ing site on 5-HTR1E as the effect was nonspecific since 
it was also able to inhibit forskolin stimulated cAMP 
in control BS-C-1 cells [40]. In NIH3T3 cells, 10  μM 
methiothepin was able to block the effect of BRL54443 
(5-HTR1E agonist) on transiently expressed human 
5-HTR1E [41] but in our experiments up to 30  μM 
methiothepin failed to antagonize the 5-HT mediated 
effects in human 5-HTR1E expressing HEK293 cells.

Pharmacological comparison of 5‑HTR1E with other 5‑HT1 
receptors
With 58% overall sequence homology with 5-HTR1E, 
5-HTR1F is the closest member of 5HT1 family and 
these Gαi coupled receptors share pharmacological prop-
erties and second messenger systems but low affinity of 
5-HTR1E for sumatriptan sets it apart from the 5-HTR1F 
[17, 42]. 5-HTR1F has several selective agonists like 
LY573144 (Lasmiditan), LY334370 and LY344864 and 

Table 3 Binding affinity of different compounds and drugs with 5-HTR1E receptor (Summarized from various studies)

(Leonhardt et al., 1989) [8] (McAllister et al., 1992) [27]

Compound Human cortex (pKi) Compound Transient expression 
(pKi)

Stable expression 
(pKi)

Human Frontal cortex, 
(pKi)

5-HT 3.5 ± 0.3 5-HT 8.14 ± 0.02 8.21 ± 0.08 8.23 ± 0.19

Ergotamine 155 ± 32 5-CT 5.15 ± 0.03 5.48 ± 0.05 5.67 ± 0.09

5-CT 910 ± 149 Methysergide 6.49 ± 0.04 6.66 ± 0.02 6.76 ± 0.09

DOB 556 ± 60 Sumatriptan 5.63 ± 0.02 5.68 ± 0.08 5.89 ± 0.05

TFMPP 570 ± 33 Metergoline 5.95 ± 0.03 6.11 ± 0.05 6.37 ± 0.11

8-OH-DPAT 826 ± 33 Methiothepin 6.68 ± 0.02 6.92 ± 0.16 5.81 + 0.09

Methysergide 59 ± 8 Ergotamine 6.24 ± 0.02 6.27 ± 0.09 6.10 ± 0.19

(Zgombick et al., 1992) [28] (Bai et al., 2004) [20]

Compound Human 5‑HTR1E (pKi) Hill coefficient Compound Guinea pig (pKi) Human (pKi)
5-HT 11 ± 1 0.92 ± 0.01 5-HT 8.252 ± 0.036 8.216 ± 0.041

Lysergol 43 ± 5 0.92 ± 0.13 a-Methyl-5-HT 7.129 ± 0.025 7.017 ± 0.096

Ergonovine 88 ± 8 0.87 ± 0.05 Tryptamine 6.573 ± 0.035 6.532 ± 0.045

Methylergonovine 89 ± 4 0.92 ± 0.04 5-Methoxytryptamine 6.379 ± 0.047 6.237 ± 0.026

αMe-5-HT 121 ± 13 0.84 ± 0.04 5-Fluorotryptamine 6.387 ± 0.016 6.301 ± 0.044

Methiothepin 194 ± 4 0.87 ± 0.03 Sumatriptan 5.742 ± 0.021 5.809 ± 0.030

1-Naphthylpiperazine 207 ± 69 1.11 ± 0.08 5-CT 5.500 ± 0.029 5.268 ± 0.029

Methysergide 228 ± 16 0.91 ± 0.07 1-Naphthylpiperazine 7.158 ± 0.040 7.010 ± 0.045

Oxymetazoline 419 ± 49 0.80 ± 0.08 DOI 5.535 ± 0.032 5.754 ± 0.043

5-MeO-OMT 528 ± 32 1.05 ± 0.10 8-OH-DPAT 5.516 ± 0.022 5.501 ± 0.012

Ergotamine 599 ± 39 1.02 ± 0.04 m-CPP 69 5.513 ± 0.088 5.424 ± 0.089

2-Me-5-HT 817 ± 203 0.86 ± 0.06 TFMPP 5.277 ± 0.079 5.342 ± 0.060

Yohimbine 1270 ± 233 0.93 ± 0.11 Ergonovine 7.249 ± 0.209 7.287 ± 0.155

Sumatriptan 2520 ± 135 0.92 ± 0.02 Methiothepin 6.780 ± 0.078 6.788 ± 0.046

Tryptamine 2559 ± 827 1.19 ± 0.18 Methysergide 6.520 ± 0.189 6.498 ± 0.154

DOI 2970 ± 592 0.89 ± 0.06 Metergoline 5.904 ± 0.013 5.777 ± 0.033

5-Me-OT 3151 ± 1041 1.02 ± 0.06 Rauwolscine 5.674 ± 0.111 5.427 ± 0.092

DPAT 3333 ± 310 0.99 ± 0.11 • Kd value of [3H] labelled 5-HT for 5-HTR1E in human cortex tissues was 5.3 nM. 
(Leonhardt et al., 1989) [8]
• Kd values in HEK 293 cells, either transiently or stably expressing 5-HTR1E, 
or from human frontal cortex for [3H]5-HT binding was 7.82 ± 0.02, 8.15 ± 0.09, 
and 8.17 respectively. (McAllister et al., 1992) [27]
• (Kd) of [3H]5-HT was 9.7 ± 1.5 Nm for cloned human 5-HTR1E. (Zgombick et al., 
1992) [28]
• Kd values for [3H] labeled 5-HT were 5.691 ± 0.617 and 6.188 ± 0.700 nM ± for 
the guinea pig and the human 5-HTR1E receptors, respectively. (Bai et al., 2004) 
[20]

Rauwoiscine 3434 ± 102 0. 85 ± 0.03

Spiperone 5051 ± 689 0. 93 ± 0.04

TFMPP 6293 ± 259 0.90 ± 0.07

5-CT 7875 ± 284 0.82 ± 0.03
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some of them are already in clinical trial for treatment 
of migraine [17, 43, 44]. On the other hand, BRL53444, a 
mix 5-HTR1E/F agonist is the only compound which can 
be used to study 5-HTR1E functions with confidence [11, 
12, 19, 25, 41, 45]. Another 5-HTl family member close 
to 5-HTR1E receptors is 5HT1D which is ~ 66% identical 
in the transmembrane domains regions but still shows 
very different pharmacological properties. Pharmaco-
logical comparison between 5-HTR1D and 5-HTR1E 
receptors indicates that sequences in the  6th and  7th 
transmembrane domains (TM) are responsible for the 
low affinity between 5-CT and 5-HTR1E. More detailed 
analysis revealed that the differences in two amino acids 
in  6th TM domain, Isoleucine 333 and Serine 334 in the 
5-HT1D receptor with Lysine 310 and Glutamate 311 in 
the 5-HTR1E receptor were mainly accountable for the 
differential affinities of some ligands or inhibitors [42].

Rat 5-HTR1B [46] and human 5-HTR1A [47] recep-
tors show high affinity for some β-adrenergic ligands like 
propranolol and pindolol and site-directed mutagen-
esis studies on these 5-HT1 receptor suggested that this 
pharmacological intersection between adrenergic and 
serotonin receptors is due to a conserved asparagine (N) 
residue in the seventh transmembrane domain of these 
receptors. Unlike these 5-HT1 receptors, 5-HTR1E has 
little affinity for β-adrenergic ligands due to the replace-
ment of this asparagine (N) residue with (threonine 
(T330) in its 7th transmembrane domain [48].

5‑HTR1E signaling pathways
Like the other 5-HT1 family members, 5-HTR1E is also 
a Gαi coupled receptor which is negatively linked to clas-
sical cAMP pathway and works via inhibition of adenyl 
cyclase [20, 25–28]. At first, Ltk-cells transfected with 
human 5-HTR1E and tested for adenylyl cyclase activ-
ity in the absence and presence of serotonin showed 
29% inhibition while in the same report, another cell line 
LS31/27.9 showed almost 35% forskolin-stimulated ade-
nylyl cyclase inhibition via 5-HTR1E [26]. Further stud-
ies in guinea pig brain tissues [25] and human 5-HTR1E 
overexpressing HEK293 cells [11, 12] showed inhibition 
of cAMP levels between 30–40% which was consistent 
with the previous reports. In addition to cAMP pathway, 
5-HTR1E can activate RAS-RAP, SRC and ERK signal-
ing in different cell types. Ras and Rap proteins which are 
small GTPases can mediate the proliferation of NIH3T3 
cells upon activation by 5-HRT1E receptor [41]. This 
RAS-RAP activation is Gαi dependent which could be 
blocked by pertussis toxin (PTX) but it is PKA-independ-
ent. Interestingly, Gαi dependent RAS-RAP activation 
was totally independent of Gβγ as the overexpression of 
Gβγ scavenger BarkCT [49] did not block the 5-HTR1E 
induced effect on Ras-Rap proteins [41] Fig. 1A.

In SKOV-3 ovarian cancer cells 5-HTR1E knockdown 
significantly increased SRC phosphorylation in SKOV-3 
cells while in control cells serotonin inhibited pSRC 
in a dose-dependent manner. 5-HTR1E knock down 
also activated ERK phosphorylation which was revers-
ible with SRC or the MEK inhibitor and decreased 
the proliferation and colony formation functions of 
serotonin-5-HTR1E KO SKOV-3. Cell-cycle analysis 
in these cells demonstrated that the inhibition of SRC 
or MEK can arrest 5-HTR1E KO SKOV-3 cells in G1 
phase while overexpression of 5-HTR1E in OVCAR-5 
cells inhibited the SRC and ERK mediated prolifera-
tion to the similar level of SRC and ERK inhibitors. In 
addition to ERK pathway SRC also activated PI3/AKT 
pathway in 5-HTR1E KO SKOV-3 cells. These studies 
suggested that serotonin-5-HTR1E signaling regulates 
cell proliferation mainly through SRC-MEK-ERK path-
way in ovarian cancer cells [19] Fig. 1B. Further, Gene 
sets enrichment analysis (GSEA) analysis in 5-HTR1E 
knock out SKOV-3 cells showed that 5-HTR1E inhibi-
tion upregulates genes of epithelial mesenchymal tran-
sition (EMT), extracellular matrix organization and 
metabolic pathways. EMT play essential roles in the 
peritoneal dissemination of OC cells and 5-HTR1E 
silencing upregulated many genes involved in EMT-
driving transcriptional factors which ultimately 
increased the motility of 5-HTR1E knockout SKOV-3 
cells [19].

Studies in HEK293 cells have shown that human 
5-HTR1E interacts with neurotrophic factor α-1/car-
boxypeptidase E (NFα-1/CPE) extracellularly, and this 
interaction recruits β-arrestin1 to the extracellular 
domains of 5-HTR1E which eventually activates ERK-
BCL2 signaling pathway for neuroprotection and cell 
survival [12] Fig. 2. Serotonin was also able to activate 
ERK signaling in HEK293 cells via induction of human 
5-HTR1E receptor. PTX sensitive, Serotonin-5-HTR1E 
stimulated ERK activation was Gαi-PKA-PI3K depend-
ent while Gβγ and β-arrestin were not involved in this 
signaling pathway [11] which shows that 5-HTR1E can 
have differential coupling mechanism depending on the 
stimulation by a specific ligand Fig. 2. RNASeq studies 
in 5-HTR1E overexpressing HEK cells has shown that 
this serotonin receptor can also regulate the expres-
sion of various genes and pathway which are involved 
in important biological processes wound healing, gly-
coprotein metabolism, axon and mesenchymal devel-
opment RNA splicing, RNA metabolism and ribosome 
biogenesis [11]. Based on these published reports it is 
evident that 5-HTR1E participates in many signaling 
pathways depending on its ligand/binding partner in a 
specific cell and tissue type where it could play a differ-
ent role. 
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5‑HTR1E in cell survival and neuroprotection
Recently [12] reported that the extracellular interaction 
between NF-α1/CPE and 5-HTR1E promoted neuronal 
survival against oxidative and neurotoxic stress. In this 
study 5-HTR1E was able to protect HEK293 and human 
neuronal cells against  H2O2-induced cytotoxicity or glu-
tamate induced excitotoxicity with NF-α1/CPE pretreat-
ment. These protective effects were mediated by cell 
surface interaction where NF-α1/CPE interacted with 
the ECL1/ECL2 (ECL: extracellular loop) of 5-HTR1E via 
3 stable salt bridges comprised of K302-D86ECL1, D306-
K89ECL1, D275-R165ECL2 (Fig.  3A, B). In contrast, the 
serotonin binding site is in a pocket deep in the recep-
tor molecule (Fig. 3C). This interaction further activated 
a non-canonical signaling pathway where β-arrestin1 was 
recruited to the ICL2 and ICL3 (ICL: intracellular loop) 
of 5-HTR1E which further activated the ERK-CREB 
signaling pathway. This 5-HTR1E mediated signaling 
prevented the decrease in pro-survival protein BCL2 
against  H2O2 or glutamate induced stress and eventually 
led to neuroprotection and survival of these cells [12]. 

Colocalization of 5-HTR1E and NF-α1/CPE in the same 
pyramidal neurons in the CA1, CA2, and CA3 regions of 
the hippocampus also shows the possibility of functional 
interaction between NF-α1/CPE and 5-HTR1E in  vivo. 
Moreover, gene knockdown studies on neuroblastoma 
SHSY-5Y and glioma U118 cells showed that inhibition of 
5-HTR1E expression can reduce the growth of these cells 
by disrupting the expression of cell cycle related genes 
[11]. Collectively these results provide evidence that 
5-HTR1E receptor is critical for the survival of nervous 
system cells, and plays a critical role in neuroprotection.

5‑HTR1E in cancer
5-HTR1E gene and protein expression has been reported 
in various cancer cells and tissues [19, 50–53] (ref. 49, 
review) where it can regulate cell survival and prolif-
eration depending on signaling pathway and coupling 
with second messenger in a specific cell or tissue type. 
In ovarian cancer (OC) patients, significantly decreased 
expression of 5-HTR1E was correlated with poor clinical 
outcome and silencing of 5-HTR1E in SKOV3 OC cells 

Fig. 1 A summary of pathways affected by 5-HTR1E serotonin receptor activation. (A) Gαi-mediated RAS-Rap signaling pathway in serotonin (5-HT) 
induced 5-HTR1E overexpressing NIH3T3 mouse cells is shown on the left side. (B) 5-HTR1E-mediated signaling pathway which inhibit SRC/ERK/AKT 
signaling followed by proliferation in ovarian cancer cells is depicted on the right side. Created with BioRender.com
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promoted cell proliferation and epithelial mesenchy-
mal transition (EMT) via pSRC pathways. Furthermore, 
chronic stress induced OC growth and peritoneal dis-
semination was inhibited by specific 5-HTR1E agonist 
BRL54443 and SRC inhibitor which shows that 5-HTR1E 
works as a tumor suppressor in OC [19]. Based on the 
radioligand binding experiments in neuroblastoma sam-
ples from childrens, it was speculated that the 5-HTR1E 
could serve as possible markers for human neuroblas-
toma, as all 13 tumors examined in this report were 
positive for 5-HTR1E binding [52]. In neuroblastoma 
SHSY-5Y cells, 5-HTR1E knockdown inhibited pERK 
and pAKT pathways which led to the reduction in cell 
cycle and survival related genes such as cMYC, cyclin D1, 
Cyclin E and BCL2. Survival/proliferation of SHSY-5Y 
and glioma U118 cells was also inhibited after 5-HTR1E 
KO which is opposite to OC and could be attributed to 
differential coupling and signaling pathways in these 
cells [11]. These studies on 5-HTR1E in different cancer 
types indicate that it can regulate expression of many 

genes via various signaling pathways involved in tumor 
progression.

Conclusions and future directions
This review summarizes the published reports on the 
structural, pharmacological, and molecular characteris-
tics of 5-HTR1E. The existing data shows that 5-HTR1E 
receptor express in a wide variety of cell and tissue 
types where it can activate different signaling path-
ways like cAMP, ERK, AKT, SRC, RAS-RAP and regu-
late important biological functions. Also, in addition 
to the classical 5-HT1 family pathways, 5-HTR1E can 
also activate a non-canonical pathway, β-arrestin-ERK. 
It is evident that 5-HTR1E serotonin receptor plays a 
physiological role in neuronal stress and its expression 
is critical in ovarian and neuroblastoma cancers. Most 
of the published reports on 5-HTR1E are about cloning 
and identification, without any functional data. Only 
a few recent studies highlighted the functional role of 
5-HTR1E from which one can discuss the physiological 

Fig. 2 Regulation of cAMP and ERK signaling by 5-HTR1E receptor. (A) Upon activation with serotonin, 5-HTR1E receptor binds to Gαi protein 
and inhibit adenyl cyclase activity which reduces the levels of cAMP and CREB in HEK 293 cells. At the same time, it increases ERK phosphorylation 
via PKA/PI3-K mediated pathway and plays a role in survival or proliferation of glioma and neuroblastoma cells (B) Cell surface interaction 
between NF-α1/CPE and 5-HTR1E recruits β-arrestin to the intracellular domains of 5-HTR1E and activate pERK pathway which helps in BCL2 
mediated protection of HEK293 and human neurons against oxidative stress. Created with BioRender.com
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importance of this receptor. Absence of 5-HTR1E gene 
in small animals and unavailability of specific ago-
nist and antagonist makes it a difficult target to study. 
Future studies should focus on in  vivo experiments 
using various animal models such as guinea pig and 
primates to knock out 5-HTR1E and test the physio-
logical role of the receptor in neurological function and 
cancer. Since 5-HTR1E can be activated with more than 
one ligand, the development of small molecule agonists 
and antagonists specific for the serotonin or CPE/NFα1 
binding domains would be an important step to dissect 

the functions of 5-HTR1E in human neurons and can-
cer cells in vitro. Such studies can then be extended to 
in vivo animal models. This approach could potentially 
lead to the development of a drug targeting this recep-
tor for treatment of diseases such as cancer and neu-
rodegenerative disorders, through inhibiting tumor cell 
survival, or activating neuroprotection, respectively. 
Based on the available data, this review provides col-
lective evidence that 5-HTR1E is an important GPCR, 
with the potential of being a prognostic and therapeutic 
target in various diseases.

Fig. 3 Molecular modeling of extracellular interaction between NF-α1/CPE and 5-HTR1E (A) The side view of binding interface between CPE 
and 5-HTR1E resulted from ~ 1.5 μs MD simulations colored by subunits: CPE (pink), 5-HTR1E (green). (B) Specific amino acids involved in tight 
coupling between the NF-α1/CPE and the extracellular surface of 5-HTR1E, mostly involving the polar interactions between the pair proteins. (C) 
The orthosteric serotonin binding in 5-HTR1E. Reproduced with permission from Sharma et al., 2021 [12]
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