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Abstract 

Atherosclerosis is an underlying pathology of many vascular diseases as a result of cellular, structural and molecular 
dysfunctions within the sub-endothelial space. This review deals with the events involved in the formation, growth 
and remodeling of plaque, including the cell recruitment, cell polarization, and cell fat droplets. It also describes cross 
talking between endothelial cells, macrophages, and vascular smooth muscle cells, as well as the cellular pathways 
involved in plaque development in the plaque microenvironment. Finally, it describes the plaque structural compo-
nents and the role of factors involved in the rupture and erosion of plaques in the vessel.
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Introduction
Atherosclerosis process develops due to many cellular 
and molecular events in the vessel. It is well known that 
during the progression of this process, the macrophages 
and vascular smooth muscle cells (VSMCs) polarize and 
together with extracellular matrix (ECM) components 
contribute to develop the primary core of atherosclerotic 
plaque in media. Furthermore, recruiting blood cells into 
sub-endothelial space and the remodeling plaque relate 
to microenvironment events. This review explains the 
principles of molecular and cellular events in the ath-
erosclerosis process and signaling pathways involved 

in cellular polarization and cross talking in vessel sub-
endothelial space.

Recruiting blood cells into sub‑endothelial space 
increases via diapedesis during atherosclerosis 
process
Diapedesis is a process by which leukocytes pass 
through the vascular endothelium into the sub-
endothelial space. It may occur in the paracellular or 
transcellular forms, known as inter- and intracellu-
lar ways, and includes cellular adhesion, movement, 
and migration [1]. Many studies reported the roles of 
some genes in the paracellular and transcellular ways 
of diapedesis. The PECAM1 and CAV1 gene families 
are reported to transfer leukocytes through the vessel 
wall [2] so that the downregulation of PECAM1 causes 
to the accumulation of leukocytes within the basement 
membrane [3, 4]. Some genes are also reported in the 
leukocyte trafficking pathway [2, 5, 6]. These genes may 
be regulated by non-coding RNAs, including miRNAs 
[7]. The adhesion molecules through their receptors, 
in addition to being involved in cell–cell interactions, 
can transduce the bidirectional signals between the 
endothelial cells and leukocytes causing to vascular 
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permeability [8–12]. Moreover, chemokines through 
the CXCR1 and CXCR2 receptors activate the inte-
grins and adhesion molecules via G and beta-arrestin 
proteins [13, 14]. Duffy antigen receptor for chemokine 
(DARC), known for binding to CXC family, is respon-
sible for delivering the chemokines by the endothelial 
cells. Furthermore, IL6 causes to express the adhe-
sion molecules and some chemokines, such as CCL2 
through GP130 in neutrophils [14]. The blood cells also 
migrate via other receptor/ligand complexes during 
diapedesis process. The N-formyl-methionyl-leucyl-
phenylalanine (FMLP) binds to formyl-peptide recep-
tor (FPR) and causes cell migration [14]. The expression 
of CD99 on endothelial cells is required for neutrophil 
trans-endothelial migration [15]. Furthermore, the neu-
trophils and macrophages are involved in the inflam-
matory responses via FC (free cholesterol) receptor [10, 
16]. Adenosine also increases neutrophil chemotaxis 
and phagocytosis, albeit at low concentrations, through 
the adenosine receptor subtypes [17]. RAP1, RAP2 and 
Rho Family can regulate endothelial permeability and 
leukocyte trans-endothelial migration [18]. The cellu-
lar permeability also increases by TNF-α through tight 
junctions (TJ), adherent junctions (AJ) and actin fila-
ments. It is also increased by the histamine and brad-
ykinin through VE-cadherin-related pathways [18]. 
Adhesive leukocyte signals through GEF-small Rho 
GTPase axis quickly affect cell–cell connections. The 
effect of Rho, together with radial stress fiber, leads to 
the increased vascular permeability. The Rho-cross 
talked pathways also mediate actomyosin contraction 
led to cellular migration [12]. Furthermore, the P-Rex/
Rac signaling pathway increases vascular permeabil-
ity by producing ROS compounds [12]. The CD99 also 
facilitates the movement of leukocytes through TRPC6 
calcium channels and adhesion molecules such as 
ICAM1, VCAM1 and PECAM1 on the endothelial cells 
[11, 19, 20].

The leukocytes are the first line of blood cells in vas-
cular permeability via the chemokine-followed inflam-
matory events [8, 21–23]. Some diseases associated with 
chronic inflammation, such as lupus and psoriasis are 
highly exposed to cardiovascular diseases [24]. When 
the inflammation begins, in the first stage, endothelial 
cells absorb leukocytes [8] so that the cellular rolling 
occurs by adhesive reactions. During adhesion, cellular 
morphology is changed: first round, then flat, and finally 
rounded [8]. Furthermore, the recruitment of leukocytes 
by activating memory T cells is followed by inflamma-
tory cytokines [23]. Moreover, chemical adsorbents 
when attach to their ligands, lead to the movement of 
leukocytes, a process that is called chemotaxis [25, 26]. 
The complementary components C3a and C5a can be 

involved in absorbing inflammatory cells [26, 27]. Other 
factors such as N-formyl peptides [28], VWF, and WPB 
[29] may cause vascular inflammation. It is well known 
that during inflammation, APO-A1 changes in HDL par-
ticles so that its decrease is associated with an increase in 
VWF [29]. Also, cellular connections on endothelial cells 
change the permeability in response to a series of com-
pounds. For example, a set of pro-inflammatory stimuli 
such as thrombin and histamine increase permeability 
while sphingosine 1-phosphate and angiopoietin-1 which 
act as anti-inflammatory agents, reduce cellular perme-
ability [18]. In vitro, the FMLF bacterial peptide binds to 
FPRs and causes neutrophil migration and polarization 
[9, 30]. Adenosine is also known an inflammatory modu-
lator, so the adenosynthetic system is suggested as a ther-
apeutic target [31].

As indicated in the above, the neutrophils, leukocytes, 
and T cells migrate through activated arterial walls, 
which is a prerequisite step due to the infection or dam-
age [32]. The entry of cells into the inflamed locations 
occurs in several stages including the weak adhesion, 
rolling, and crawling between endothelial cells and leu-
kocytes [8, 33] (Fig.  1). The leukocyte adhesion cascade 
is sequentially performed by selectin and integrin on the 
cell surfaces [32]. In addition to the endothelium, leuko-
cytes must pass through the pericyte layer, the basement 
membrane of blood vessels. The neutrophils, however, do 
not pass through pericyte bodies but through pericyte 
gaps [32]. In this way, IL1β increases the expression of 
several genes, including VCAM1, CX3CL1, MCP1 and 
IL6 in pericytes [34]. Furthermore, the CXCL8 secre-
tion from pericytes by IL1β, LPS and TNF-α progressed 
the transport of neutrophils [32]. Moreover, pericytes 
express MHC2 when stimulated with cytokines, which 
increase phagocytosis capability of neutrophils [32]. The 
polar shape that cells take on is necessary to cross the 
endothelial barrier. The areas where leukocytes leave the 
vessel, are called low expression regions (LERs), have low 
extracellular matrix proteins such as laminin 8, laminin 
10, collagen IV and nidogen [32]. The strong adhesion is 
mediated by a set of adhesion molecules in the immuno-
globulin superfamily, including leukocyte integrins that 
bind to endothelial ligands such as ICAM1 and VCAM1. 
β2 Integrin is also essential for the transcellular move-
ment of leukocytes. LFA1 and MAC1 are expressed by 
neutrophils and cause to adhere tightly and control cell 
crawling [32, 33]. It is also well known that during migra-
tion, actin filaments are responsible for the polymeriza-
tion of the main edge of the cell, but actomyosin prevents 
protrusion in the lateral membrane [8]. When leukocytes 
begin the transmigration process, the appearance of the 
leukocytes is rounder than their predecessor (crawling) 
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just before they leave. Glycocalyx, at the apical surface 
of endothelial cells, immobilizes chemokines to promote 
integrin-induced adhesion [21]. Platelets may be one of 
the modulators of inflammatory reactions in atheroscle-
rosis via binding to endothelium by integrin and ICAM1 
[35]. As indicated in these studies, the endothelial func-
tion is impaired, the diapedesis is disrupted and blood 
cell outflow occurs excessively in the atherosclerosis 
process. These blood cells including monocytes can be 

polarized into macrophages and develop the atheroscle-
rosis process in vessel sub-endothelial space.

Macrophage polarization affects the atherosclerosis 
process
The monocytes polarize to different macrophages in ves-
sel sub-endothelial space. Some agents involved in the 
macrophage polarization, characteristics and their roles 
in the development of atherosclerosis are explained in 
the following. Atherosclerotic plaques contain mostly 

Fig. 1 Leukocyte paracellular and transcellular diapedesis ways. The roles of adhesion molecules on Capture (1), Rolling (2), Adhesion (3) and 
Crawling (4) of leukocytes. Some genes involved in transcellular (5.A) and paracellular (5.B) ways. BioRender.com
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M1 and M2 macrophages. The microenvironment sur-
rounding macrophages can acquire different phenotypes. 
For example, interferon γ and LPS activate the M1 mac-
rophage [36]. M0 macrophages can be converted to M1 
and M2 macrophages by LPS/IFN-γ and IL4/IL-13 [37]. 
The subgroups of M2 macrophages are known as M2b, 
M2c, M2a and M2d [38–40]. M0 is polarized by IL4/
IL13, LPS/IL1β and, IL10/TGF-β for the generations of 
M2a, M2b and, M2c macrophages, respectively [41]. 
M0 macrophage is also polarized into M3 macrophages 
through TGF [42] (Fig. 2). M4 macrophages feature both 
M1 and M2 macrophages, and are induced by CXCL4 
[38]. In inflammatory conditions, macrophages form M1, 
while polarization to M2 occurs under anti-inflammatory 
conditions [43]. M1 macrophages are abundant in areas 
prone to shoulder rupture, but M2 macrophages are 
found in the areas such as adventitia [36, 44]. M4 mac-
rophages express proinflammatory chemokines such as 
TNF-α, IL6, MMP7 and MMP12. Furthermore, M4 mac-
rophages have HLA–DR less than M1/M2 macrophages 
[45] (Fig. 3).

In atherosclerotic lesions, the macrophages scavenge 
ox-LDL particles and can convert into foam cells. In this 
state, the macrophages produce large amounts of ROS so 
that these compounds decrease M2 macrophage polari-
zation [46, 47]. The polarization of macrophages towards 
M2 by mir-27a also occurred [7]. The atherosclerotic 
plaque stability is associated to calcification and the 
kind of polarized macrophages in ruptured areas. The 
M2 macrophage is reported to eliminate inflammation 
while the M1 is involved in the progression of plaque, so 
it is proposed that the M2 macrophages play an impor-
tant role in the prevention of inflammation by secreting 
IL-10 [36]. M1 macrophages are seen in primary ath-
erosclerotic lesions, while M2 macrophages are more in 
advanced lesions. M4 macrophages can also be seen in 
atherosclerotic lesions and cause the instability of fibrous 
cap in the plaque [45].

The polarization of macrophages towards M1 mac-
rophage is done by Th1 (T helper 1), TNF-α and GM-
CSF [48]. However, M1 macrophages have low IL10 
values, but IL6 and IL1β produced by these macrophages 

Fig. 2 Polarization of monocyte to M3 macrophage. BioRender.com

Fig. 3 Polarization of monocyte to M4 macrophage. BioRender.com
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are responsible for the progression of inflammation [48]. 
Furthermore, TLR ligands (LPS) and other cytokines, 
such as IFN-γ are involved in the formation of M1 mac-
rophages. CXCL4 cytokine leads to the polarization of 
monocytes to M4 macrophages [40, 45]. By treating M1 
macrophages with IL4, or using IL13, the polarization 
can be converted to reveal anti-inflammatory pheno-
types [49]. When damage occurs, M1 macrophages begin 
to produce a variety of inflammatory molecules such as 
TNF-α, inducible nitric oxidase synthase (iNOS) and 
IL-12 [49]. LncRNA-COX2 is contributed to the elevation 
of iNOS, IL12 and TNF-α, which are more pronounced 
in M1 macrophages [40]. M1 and M2 macrophages have 
different arginine metabolism; M1 macrophages, primar-
ily through iNOS use arginine to produce nitric oxide, 
while M2 macrophages convert arginine to ornithine and 
urea through arginase [50]. M2 macrophages can induce 
macroscopic calcium deposition by VSMC maturation 
and osteoblastic differentiation, called macrocalcifica-
tion, which is associated with chronic inflammation [36]. 
M2 macrophages have low levels of IL12 and IL23, how-
ever, they have high IL10 values. IL10, M-CSF and Th-2 
cytokines stimulate the generation of M2 macrophages 
[49, 50]. M2 macrophages produce anti-inflammatory 
cytokines including IL4, IL5, IL10, IL13 and TGF-β [48, 
49]. STAT1 mediates M1 macrophage activation, while 
STAT6 mediates M2 macrophage activation [49]. STAT1 
and STAT6 can inhibit each other; that is, when STAT6 is 
activated, it suppresses STAT1-dependent transcription 
and vice versa [49]. IL4 can activate STAT6 and the cell 
phenotype moves towards M2 [28, 47]. However, STAT3 
induces M2c Macrophage by IL-10 [40]. MCP-1 (mono-
cyte chemotactic protein-1) is also reported as influen-
tial factors on macrophage polarization.[7] M2b markers 
include IL10, CCL1, LIGHT, CD86, SPHK1, TNF-α, and 
IL6. To identify M2b, however, the IL10 marker is not 
suitable and other markers should be checked because all 
these M2 macrophages secrete IL10 abundantly. LncRNA 
GAS5 suppresses the CCL1 gene. The CCL1 is essential 
for the polarity of M2b macrophages [40]. Also, miR-223 
is considered to contribute for M2 polarization [40]. Both 
M1 and M2b macrophages contain CD86, so this marker 
cannot distinguish M1 from M2b macrophages. How-
ever, it is useful to recognize M2b from other subclasses 
of M2 macrophages. TNF-α is also secreted by both M1 
and M2b macrophages [40].

The macrophage polarization relates mainly to the 
activation of some pathways such as PI3K/AKT, NF-KB, 
STAT1/STAT6 and MAPK/ERK [50]. Adiponectin 
decreases the expression of some cytokines via the inhi-
bition of NF-KB so that it directs M2 macrophages via 
AMPK and PPARα pathways. Adiponectin may also 
increase the secretion of other cytokines, such as TNF-α, 

IL6, and IL12. However, there were some controver-
sies on the role of adiponectin as a pro-inflammatory or 
anti-inflammatory factor [50]. MAPKs are involved in 
the polarization of M2b macrophages through the acti-
vation of ERK1/2, p38, and JNK. MBL, mannose-binding 
lectin, inhibits the signaling pathways related to MAPK 
and NF-KB, resulting in the decrease of polarity of M2b 
macrophages. Moreover, the polarization of M2b mac-
rophages can be done by PI3k pathway [40] (Fig. 4). On 
the other hand, the polarization of M1 macrophages 
can be done by NOD-Like receptor related pathways 
[51]. The P65 and P50 subunits of NF-κB can create pro-
inflammatory and anti-inflammatory phenotypes in mac-
rophages. When the NF-κB P65 subunit is activated, it 
promotes the polarization of M1 macrophages (Fig.  5). 
The M2b macrophage is polarized by the activation of 
P50 subunit. NF-κB and IRF are activated by ALD-DNA 
(activated lymphocyte-derived DNA), which are involved 
in the polarization of macrophages towards M2b phe-
notype [40]. M1 phenotype also occurs with INF-γ, 
which acts through the STAT1 pathway. The PI3K/
AKT signaling pathway is activated by IL4 and its effect 
on the formation of macrophage phenotypes depends 
on its isoforms. The P110γ isoform causes the M1while 
the P110αβγ isoform makes M2 phenotype. AKT2 and 
AKT1 pathways are also involved in the M1 and M2 
phenotypes, respectively. It also reported that the mac-
rophage anti-inflammatory phenotype produced by IL4 is 
involved with MAPK/ERK signaling pathway [50].

The macrophage population is originated from different 
cells and maintained by different agents in tissues. The 
conventional theory that each tissue macrophage origi-
nated from the bone marrow circulatory monocytes is 
changed by reporting that macrophages from embryonic 
progenitors may persist into maturity and self-maintain. 
In  a few  cases, tissue-resident macrophages are  com-
pletely  embryo-derived,  including  microglia  inside 
the brain, while others are continuously substituted from 
monocytes (LP) [52, 53]. Yet, most tissue-resident 
macrophages  show  a middle  state of affairs  and  can 
be  from  combined  origins [54]. Nevertheless, mono-
cytes additionally contribute to the resident macrophage 
population, on which the nearby environment may inflict 
tissue-specific  macrophage functions. Each  embry-
onic progenitor cell addition to monocytes can contrib-
ute  to all populations,  however,  monocytes  provide  an 
upward push  to MHCII + greater  effortlessly  than to 
CX3CR1 + MHCII cardiac macrophages  ensuing  in a 
change of the resident macrophage pool permanently. 
Commonly, it is showed that monocytes and embryonic 
progenitors change their phenotypes into MHCII + and 
CX3CR1-CMs rather than CX3CR1 + MHCII −  [55]. The 
cardiac macrophage (CM) pool is not stagnant, CMs of 
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embryonic foundation are consecutively misplaced with 
age during postnatal growth. Resident embryo-derived 
mononuclear phagocytes may be changed under inflam-
matory or challenging conditions such as clodronate and 
angiotensin II [55]. The microenvironment of organs can 
have an important role in the function of specific driven 
macrophage population. The tissue signals may define 
tissue-specific macrophages. In the resident mononu-
clear phagocyte of the peritoneum, for instance, vita-
min A through GATA6 leads to cell polarization [56]. 
Multiple cytokines were proven to have essential roles 
in cellular function. Macrophage-colony stimulating fac-
tor (M-CSF) is compulsory for development, survival, 
morphology, and function of macrophages. M-CSF sig-
nificantly adjusts the macrophage population. Another 
essential cytokine involved in the adjustment of tissue 
macrophage turnover is granulocyte–macrophage col-
ony-stimulating factor (GM-CSF). GM-CSF may induce 
the proliferation of mononuclear phagocytes and is 

necessary to keep the macrophages pool in a steady state 
[57]. IL-4 has shown an extra key role in the regulation 
of mononuclear phagocyte proliferation and has proven 
to intercede the accumulation of pleural mononuclear 
phagocytes [55, 58]. Remarkably, the decrease in the 
overall proliferation rate of cardiac macrophages with 
age is associated with the decrease in the embryo-derived 
cardiac macrophages (51). The progressive loss of the 
tissue self-renewal capacity can result in the enhanced 
invasion of mononuclear phagocytes with decreased 
proliferative capacity, which lead to a gradually changed 
in subset combination of the cardiac macrophage pool. 
This indicates that monocyte recruitment can happen 
in inflammation and stress conditions, which can dis-
charge the tissue population, and be a compensatory 
route to preserve macrophage homeostasis. Therefore, 
the ratio of ontogenetically differentiated macrophages to 
a tissue-resident pool can be dependent on their differ-
ent self-renewal ability and microenvironment condition. 

Fig. 4 Polarization of monocyte to M2 macrophage. Several signaling pathways contribute to polarize the different forms of M2 macrophage such 
as M2a, M2b and M2c. BioRender.com
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Furthermore, the macrophages shift towards foam cells 
during atherosclerosis process that is related to their 
polarization.

Lipid deposition changes in macrophages 
during atherosclerosis process
The low-density lipoprotein (LDL) values within the 
peripheral blood regulate by mononuclear phagocytes.
In according to some hypothesizes suggested in athero-
sclerosis process, the macrophages absorb excessively 
modified lipoproteins via several LDL scavenger recep-
tors (SR), such as SR-A1, CD36, and lectin-like ox-LDL 
receptor-1 (LOX-1) [59]. Macrophages also express cho-
lesterol transporters such as ABCA1, ABCG1, and SR-BI, 
which associate to reverse cholesterol transport (RCT) 
and are suggested as promising targets in cardiovascular 
disease [60]. In  atherosclerosis, pro-inflammatory con-
ditions increase the expression of scavenger receptors, 
particularly LOX-1, and decrease the expression of trans-
porters associated with RCT. The internalized lipids are 
transferred to late endosomes/lysosomes and degrade by 
lysosomal enzymes such as lysosomal acid lipase (LAL) 
so that its defect is related to dyslipidemia [61]. Free cho-
lesterol  is successively processed into cholesteryl ester 
in cytosol with the aid of acetyl-CoA acetyltransferase 
(ACAT1), a contributing factor to macrophage foam cell 

death [16, 62, 63]. The endoplasmic reticulum is a reposi-
tory for retaining recent cholesteryl esters. It can be pro-
cessed by neutral cholesterol ester hydrolase (nCEH), to 
produce free cholesterol that can be excreted through 
cholesterol transporters. Also, ACAT1 is overexpressed 
whereas nCEH expression is suppressed, so that it  leads 
to the free and esterified cholesterol depositions in mac-
rophages and finally the generation of foam cells [64] 
(Fig. 6). The lipid droplets (LDs) are storage particles in 
most cells. LDs are mainly located within the cytoplasm, 
however, the nucleus conjointly includes LDs in some 
cells [65]. These lipid particles are also mainly composed 
of a neutral lipid core (oily phase), which consists of tria-
cylglycerol (TG) and sterol esters. The organization and 
accommodation of neutral lipids in LDs are addition-
ally  necessary  for safeguarding  cells from lipotoxicity 
events, and the extra lipid prevention in cell membranes 
[66, 67]. LD facilitates the protein localization, which may 
include enzymes associated to LD metabolism, for exam-
ple, some enzymes of neutral lipid biosynthesis and lipol-
ysis pathways [67, 68]. In mammalian cells, LD biogenesis 
is related to the ER membrane phospholipids [69, 70]. It 
can be expedited through lipids that procreate an ade-
quate flexion together with lysophospholipids. The very 
last notch of LDs from the ER can be supported by lipids 
that produce a poor flexion, together with palmitic acid 

Fig. 5 Polarization of monocyte to M1 macrophage. BioRender.com
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(PA) and diacylglycerols (DAGs). Certainly, it had been 
mentioned that PA generated by phospholipase D (PLD) 
was essential for LD establishment [71]. Moreover, RalA 
and PLD1 promoted lipid droplet growth [72]. FIT2, a 
transmembrane protein of the endoplasmic reticulum, 
also establishes LDs and particularly, the route of LD 
sprouting [73]. FIT2 can optimize the regional density of 
DAG on LD. DAG, which is manufactured by Pah1/Lipin, 
is needed for preliminary LD establishment. DAG may 
indicate the places of LD beginning from the endoplasmic 
reticulum. FIT2 might also manage the extent and trans-
bilayer spatial property of DAG, controlling the route of 
LD germination. In the lack of FIT2, DAG collects on the 
cytosolic side of pre-LDs, which could enhance the mon-
olayer tension and avert ordinary LD emergence into the 
cytosol [71]. Seipin, an inimitable protein, adjusts the cell 
lipid reservoirs [74]. Moreover, Seipin adjusts the posi-
tional biogenesis and dispensation of phospholipids on 

the endoplasmic reticulum [71, 75]. Some reports sug-
gested a constructional function for seipin on the ER-LD 
interaction. The ER-LD interaction may also comfort the 
conduction of proteins and lipids to make certain regu-
lators of LD growth, and can additionally simplify the 
cross-talks among ER-resident proteins and these on the 
LD floor. The ER-LD may be essential for the conduction 
of phospholipids to LD, resulting in the enlargement of 
LD [71, 76, 77]. In cancer cells, LDs are a place of PGE2 
(prostaglandin E2) biogenesis, a critical immunomodu-
lator eicosanoid, and are related to tumor progression 
routes. In myeloid-derived cells, LDs had been related to 
the polarization of TAM (tumor-associated macrophage), 
a modified form of MDSCs (myeloid-derived suppressor 
cells), and in dendritic cells, LDs which have excessive 
oxidized triacylglycerol forms include a specific kind of 
antigen disruption. Based on some reports, LDs serve as 
a place for esterified arachidonic acid and engage with 

Fig. 6 Formation of fat droplets in cell. The modified LDL particles are transferred by membrane receptors (1) into endosomes (2, 3). The primary 
structures including cholesteryl esters (CE) originated from lysosomes and cytosol (4) are produced on endoplasmic reticulum (5). Finally, fat 
droplets (6) are produced in cytosol. BioRender.com
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eicosanoid biogenesis enzymes such as cPLA2, cyclooxy-
genases and prostaglandin synthases [78].

Signaling routes entangled in lipid aggregation are 
widely recognized. CD36 has the important role in ath-
erosclerosis pathophysiology. CD36 is a particular recep-
tor to scavenge the ox-LDL particles, which cooperates 
in foam cell formation [79]. The interplay between CD36 
and ox-LDL elevates the phosphorylation of Src kinase, 
which prompts the Jun kinase (JNK 1 and 2) and also 
VAV scavenging of ox-LDL. A report suggested that 
the lipid accumulation in macrophages is upraised via 
two ways; Wnt5a, which is enabled  by Fz5 signaling 
pathway and through PPARγ, which is activated  by p38 
MAPK signaling pathway [80]. TLR2 turns on by CD36, 
co-expresses with Wnt5a, and cooperates in foam cell 
formation. TLR4 can also be involved in lipid repletion 
through PI3K/mTORC2 route, followed by the AKT 
phosphorylation [80, 81]. The mTOR signaling route is 
proven to be stimulated during foam cell formation. The 
stimulated endothelial NF-κB route raises macrophage 
function in atherosclerotic plaques. Further particularly, 
macrophage-produced foam cells can spatter TNF-α and 
different cytokines to utilize immune cells, cooperating 
with the formation of plaques and growing the danger 
of cardiovascular events [82]. Whilst extra naive lipids, 
which include fatty acids and sterols, collect within the 
ER. Some cellular pathways suggest to convert these 
lipids to greater inert neutral lipids. For example, the 
ACAT produces sterol esters, and DGAT produces TGs 
and different neutral lipids to be accommodated in LDs 
[67, 83]. Each disturbance in the lipid droplet synthesis 
pathway may cause to deposit the lipid in macrophages 
and be converted to the foam cells so that these cells may 
produce the initial core of atherosclerosis plaques.

Macrophages and VSMCs are involved in plaque 
remodeling during the development of atherosclerosis 
process
Atherosclerosis plagues are initially produced due to 
aggregate the foam cells, yellow xanthomas cells, in the 
intima proteoglycan layer. When necrosis occurs in 
foam cells, the necrotic nucleus develops and the con-
nective components substitute gradually with collagen-
rich materials in the primary core. Then, it develops by 
adding other cells such as VSMCs, macrophages and 
ECM compounds. Vulnerable plaques include a necrotic 
nucleus that occupies 30% of the plaque and a fibrous cap 
whose thickness is to be estimated as less than 65  µm. 
The fibrous cap is located between the vascular lumen 
and the necrotic nucleus [84] so that it may be related 
to angiotensin II and TGF-β released from VSMCs [85]. 
The apoptotic macrophages are found at the sites of 
plaque rupture. It is reported that these macrophages 

express the cytokines that over-proliferate VSMCs [86]. 
It is also known that matrix metalloproteinase-9 (MMP-
9) produced by macrophages causes plaque rupture [87]. 
Moreover, VSMCs and collagen are reported to be in 
fibrous cap [88] while little collagen but abundant free 
cholesterol are observed in the necrotic nucleus of the 
plaque. SP1, SP3 and AP1 transcription factors interact-
ing with the collagen promoter lead to the transcription 
of type I collagen in the cells [85]. The absence of colla-
gen is a sign of the loss of VSMCs that makes the plaque 
to be vulnerable [84]. One of the reasons for impaired 
collagen deposition can be the reduction of metallopro-
teinase [89]. The tensile strength of the fibrous cap is 
facilitated by collagen. When VSMCs are removed from 
the cap, it becomes thin, so that the ruptured cap has a 
small amount of collagen [87]. If VSMCs over-reproduce, 
it leads to the growth of plaque dependent on angiogenic 
factors [90, 91]. Type VIII collagen is in small amounts 
in normal arteries and produces by macrophages and 
VSMCs. It increases the migration and growth of VSMCs 
through the extracellular matrix. ApoE, located in HDL, 
suppresses the expression of type VIII collagen, so that its 
decrease is associated with an increase in type VIII col-
lagen [86]. HDL also reduces ox-LDL and TNF-α levels, 
and results in the reduction of endothelial cell apopto-
sis [92, 93]. The macrocalcification also increases plaque 
consistency, while microcalcification makes plaque vul-
nerable. The microcalcification is reported due to pro-
inflammatory events in M1 macrophages to make spotty 
calcification in the necrotic nucleus [36].

The roles of VSMCs in the formation and development 
atherosclerotic plaques are related to their phenotypes 
to be able to proliferate and migrate. The epithelioid 
VSMCs, a synthetic phenotype, have a cubic appearance, 
are present in small amounts in the arteries, and involve 
in the development of plaque. Another important VSMC 
phenotype in plaques is known as VSMC-derived foam 
cells made due to the accumulation of lipids in their 
cytosol [93]. These cells have the high amounts of rough 
endoplasmic reticulum and Golgi apparatus, and their 
microfilaments are scattered [87]. Their motility com-
prises four tandem steps: i, polarizing the cell. ii, spread-
ing the lamellipodia at the edge of cell. iii, connecting 
the cell iv, and eventually contracting of the cell [93]. If 
VSMCs go into apoptosis, the plaque rupture occurs [94]. 
During cell phenotype changes, some signaling pathways 
are modified. Serine/threonine kinase is important in 
the cardiovascular system and its absence decreases the 
migration of VSMC cells. Furthermore, the proliferation 
and migration of VSMCs are inhibited by regulatory mol-
ecules [95]. In addition, studies have shown that with the 
reduction of AKT, there was a reduction in the VSMC 
migration and instability of plaques [94]. However, the 
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phosphorylation of HCK protein increased the prolifera-
tion of VSMCs [79].

Addition to VSMCs, the phenotype of other cells such 
as macrophages affects the contents and stability of ath-
erosclerotic plaques. M1 Macrophage produces the 
pro-inflammatory cytokines such as IL-6, IL-1, IL-23, 
IL-1β, TNF-α, IL-12 and IL-18, and changes the plaque 
microenvironment [96–100]. It also causes angiogen-
esis, releases the reactive oxygen/nitrogen species, and 
stimulates the early stages of tissue repair, tumor resec-
tion, increased glycolysis and fatty acid synthesis [49, 96, 
97, 99, 101]. 40% of all macrophages in atherosclerosis 
plaques are M1, mostly seen in advanced atherosclerotic 
lesions and in the shoulder area of atherosclerotic plaques 
(prone to rupture). The number of M1 macrophages 
increases with the progression of plaque [36, 49, 96, 99]. 
On the other hand, M2 macrophage, an anti-inflam-
matory cell, expresses the high levels of IL-10, CD163, 
CD206 and FIZZ1 [97, 102–105]. M2 macrophages are 
involved in angiogenesis, tissue repair, wound healing, 
parasite inhibition, tumor progression, allergic inflamma-
tion, ossification, oxidation of fatty acids and reduction 
of glycolysis [49, 97, 99]. 20% of all macrophages in ath-
erosclerotic plaques are M2, mostly seen in the primary 
lesions of atherosclerosis and in the adventitia of athero-
sclerotic plaques [96, 99, 100]. Their numbers decrease 
with the progression of plaque and cause plaque instabil-
ity. M2 macrophages also change extracellular matrix in 
the final stages of the plaque healing process [36, 49, 106, 
107]. These reports suggested that the progression rate of 
atherosclerosis process is related to the concurrent func-
tions of cells in the plaque microenvironment.

Adverse cellular crosstalk causes to enlarge atherosclerosis 
plaque
The atherosclerosis plaque consists of fat deposits, cells 
(VSMCs, inflammatory cells, macrophages and endothe-
lial cells), ECM, cytokines, and chemokines [108–111]. 
The necrotic core is covered with a layer of type 1 col-
lagen-rich matrix that originates from smooth mus-
cle cells [87]. The changes of phenotype of endothelial 
cells, macrophages and VSMCs not only affect their cel-
lular functions but also cause some cell autocrine and 
paracrine effects to exacerbate the plaque microenvi-
ronment. When the laminar flow in the arteries is not 
continued and significant pressure is on the vessel wall, 
it disrupts endothelial function, led to changes in the 
cellular permeability of vessels, changes in the compo-
sitions of the extracellular matrix, and the entrance of 
low-density lipoprotein (LDL) particles [112–114]. The 
disrupted endothelial cells cause to recruit the mono-
cytes via the induced adhesion molecules on their mem-
brane levels [114] (Fig.  7). The LDL particles oxidize by 

myeloperoxidase derived from inflammatory cells and 
cause to express CD36, TLR4 and TLR6 receptors on 
macrophages. Foam cells facilitate the migration of vas-
cular smooth muscle cells (VSMCs) into the intima 
by secreting cytokines and matrix metallopeptidases 
(MMPs) [112, 114]. In intima, the macrophage cytokines 
such as IL6 and TNF-α change the phenotype of vascular 
smooth muscle cells from contractile to synthetic state 
causing the synthesis of collagen and elastin, which form 
the fibrous cap of plaque. Furthermore, these synthetic 
VSMCs can be located on a set of foam cells that their 
death due to necrosis causes to release and accumulate 
lipids. The accumulation of cellular debris and extracel-
lular fat due to dysfunctional “efferocytosis” (cleansing of 
dead cells) by macrophages results in the formation of a 
fat-rich pool called the necrotic nucleus of plaque [112, 
114]. In the sub-endothelium, excess cholesterol can also 
accumulate and cause the immune reactions due to oxi-
dative and enzymatic modifications, which eventually 
creates an inflamed environment for the abnormal func-
tion of cells [99].

The instability of plaques are also involved with various 
cellular events due to the mutual effects of proinflam-
matory, procoagulation and proteolytic molecules on 
the macrophages, smooth muscle cells, and endothelial 
cells [115]. Changing the cell phenotype, which has the 
proinflammatory and prothrombotic state, is called cell 
activation, to be a risk factor for plaque remodeling. For 
example, the activation of endothelial cells and the accu-
mulation of apoB-lipoproteins (Apo-B LPs) cause the 
movement of monocytes into the sub-endothelial space 
[116]. ECs are also activated by various physiological and 
pathological changes, including disturbed blood flow 
dynamics [117]. High one-way laminar shear stress (LSS), 
by positively regulating KLF2 transcription factor (Krüp-
pel-like factor 2), maintains vascular unity by creating 
an anti-inflammatory and anti-thrombotic phenotype. 
KLF2 also inhibits glucose entry into the cells, suppress-
ing glycolysis and mitochondrial respiration [118, 119]. 
While atherosclerotic susceptible areas are exposed 
to low LSS, ECs activate proinflammatory pathways, 
increasing glucose uptake, followed by increased glyco-
lysis via NF-κB/HIF1α pathway [120, 121]. The primary 
binding of monocytes with the activated ECs is through 
chemokines, adhesion molecules and their ligands. The 
selectin family especially P-selectin is expressed by ECs 
and binds to P-selectin glycoprotein ligand-1 (PSGL-1) 
on monocytes [122, 123]. The attachment of leukocytes 
with the endothelium is related to impaired endothelial 
nitric oxide synthase (eNOS). NO is a vasodilator, and its 
reduction leads to the upregulation of vascular cell adhe-
sion molecule 1 (VCAM-1), intercellular adhesion mol-
ecule 1 (ICAM-1) and E-selectin [123]. Furthermore, the 
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EC-leukocyte attachment may be improved through inte-
grin family and their ligands [123].

With the lipid consumption by macrophages, scaven-
ger receptors induced and involved in the fat uptake are 
commonly including; sweeper receptor type A (SR-A), 
CD36 as a member of the type B family, LDL receptor-
related protein 1 (LRP1) and lectin-like ox-LDL receptor 
1 (LOX1) [124–126]. In addition to conversion to foam 
cells, the macrophage secretions reduce collagen synthe-
sis by VSMCs, thereby thinning the fibrous plaque cap 
so that the plaque becomes unstable [122]. The unstable 
plaque disconnects from the ECs and moves through the 
artery. It, in turn, causes blockage in the lumen of suscep-
tible arteries, and thromboembolic events such as heart 
attack or stroke [122]. VSMCs have several phenotypes 
based on the compounds produced by macrophages 
and endothelial cells, including macrophage-like, con-
tractile, synthetic, myofibroblast-like and necroptotic 
phenotypes. The macrophage-like and myofibroblast-
like phenotypes have different functions on the vulner-
ability and stability of plaques. The macrophage-like cells 
increase the growth and disintegration of the necrotic 
core in plaque following the increased ox-LDL uptake 

and forming a very lipid-rich state. In contrast, the myofi-
broblast-like form by increasing the production of colla-
gen leads to an increase in the diameter of the fibrous cap 
and, consequently, the increase of plaque resistance to 
rupture under the influence of various factors, including 
mechanical tension making the plaque stronger. There-
fore, the VSMCs with the myofibroblast-like phenotype 
will play an important role in reducing the necrotic core 
(NC) size and thickening the fibrous cap of the plaque. It 
is proposed that in a stable plaque, the thickness of NC 
decreases up to 50% and in contrast, the thickness of the 
fibrous cap increases up to 4 times. The VSMC pheno-
types, in addition to their roles in plaque morphology 
as mentioned above, are also involved in the changes of 
the plaque microenvironment [95, 127]. Another criti-
cal role for VSMCs is related to their ability to express 
different receptors for fat uptake, which, following this 
uptake, form foam cells, like macrophages, and ulti-
mately increase the initial accumulation of fat in plaque 
[127–129]. VSMCs also play an essential role in the onset 
and progression of inflammation through the secretion 
of cytokines such as PDGF, TGF-β, IFN-γ and MCP-1 
so that by cascading reactions in other cells, they form 

Fig. 7 Atherosclerotic plaque formation and progression. A The plaque is developed during the different steps including the leukocyte diapedesis. 
B Differentiation and polarization. C VSMCs proliferation and migration and D plaque remodeling. BioRender.com
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fat streaks, followed by plaque progression [130, 131]. 
VSMCs are also involved in the expression of adhesion 
molecules, including VCAM-1 and ICAM-1. The adhe-
sion molecules increase the resistance of VSMC cells to 
apoptosis and abnormal proliferation progressing the 
number of cells present in the lesion in the early stages 
[130]. In more advanced settings, VSMC apoptosis may 
have adverse effects such as plaque prone to rupture via 
thinning of the fibrous cap, the increased necrotic core 
and loss of structural proteins [132]. In general, it has 
been shown that in advanced lesions, one of the impor-
tant factors for plaque stability and growth is abnormal 
proliferation by VSMCs in cooperation with matrix dep-
osition so they affect the fibrous cap [91]. These events 
ultimately lead to the formation of ruptured plaques [131, 
133]. In ruptured plaques, cigarette smoke and Polycyclic 
aromatic hydrocarbons lead to a pathological thrombotic 
environment by activating and accumulating platelets, 
increasing platelet volume and circulation, increasing 
plasma fibrinogen, increasing clot strength, stimulat-
ing coagulation cascade and disrupting fibrinolysis [133, 
134]. The studies, however, showed that the plaques form 
due to the cell dysfunctions in vessel sub-endothelial 
microenvironment but the fate and effect of plaques on 
the vessel microanatomy relate to their components.

Plaque contents relate to its stability
The plaque stability relates to the density of cells, inter-
nal necrosis, angiogenesis, permeable endothelium and 
plaque bleeding. Intra-plaque hemorrhage, which occurs 
more frequently in fibroatheroma, is due to the enlarge-
ment of necrotic core. The size of necrotic core is essen-
tial for plaque stability, and its growth can decrease the 
fibrous cap and puts more tensile stress on the fibrous 
cap. A ruptured fibrous cap is also an important source 
of plaque bleeding. Neovascularization, which is accom-
panied by vasa vasorum, is permeable to plasma proteins 
and RBCs, and may leads to the plaque hemorrhage [87]. 
Hypoxic inducers and growth factors are the regulatory 
mechanisms of plaque angiogenesis. The gradual trans-
formation a lipid-rich plaque into a more fibrotic and 
calcific form stabilizes it [102, 106]. However, the balance 
between the fibrous cap and the necrotic core is essential 
for plaque stability [135]. The stable plaques have a thick 
fibrous cap, covered with inflammatory cells scattered on 
a small fat core, the rich in collagen, while the unstable 
plaques have a thin fibrous cap on a large fat nucleus [99, 
114, 136]. Decorin and biglycan proteoglycans provide 
tensile strength, thus stabilizing mature plaques [106, 
135, 137].

Plaque rupture occurs when the resistance of plaque 
disrupts by stress. It depends on some the plaque char-
acteristics, for example the amounts of collagen and 

thrombogenic fats [113]. Plaque rupture occurs more 
frequently in areas where the fibrous cap diameter is less 
than 65 µm, platelets are active, inflammatory and foam 
cells are more permeable [106]. M1 macrophages are 
abundant in areas prone to rupture the unstable plaques 
[96]. In the ruptured plaques, the smooth muscle cells 
and ECM are reduced, and platelet-rich blood clots are 
produced [135]. Proinflammatory cytokines reduce col-
lagen synthesis and destroy the biomechanical integrity 
of plaque fibrous cap by increasing the overexpression 
of collagenases in plaque microenvironment [138]. The 
cytokines also increase the expression of potent pro-
coagulant tissue factors in ruptured plaques and cause 
plaque thrombosis [139]. The ruptured plaques come 
in contact with collagen, lipids and smooth muscle cells 
so that the coagulation and thrombosis processes acti-
vate by platelets [114, 140]. Thrombus has a fibrin rich 
red feature [139]. In some cases, the plaque rupture 
and thrombosis occur spontaneously. The plaque rup-
ture may also increase due to stress and hemodynamic 
changes [135]. Most ruptures have no obvious clinical 
symptoms and only have thrombus on the vessel wall 
so that cause gradual narrowing of the coronary arter-
ies. Moreover, the ruptures are more occurred in men 
(76%) as compared to women (55%). It is more common 
in postmenopausal women [87]. A larger necrotic core 
increases the thrombogenic nature of plaque material 
and the risk of plaque rupture. On the other hand, thin 
cap fibroatheroma (TCFAs, intensification of mechanical 
stress on the plaque surface) accumulate in the vicinity of 
the main coronary arteries and increase the risk of plaque 
rupture [87]. In ruptured plaque, small dense low-density 
lipoprotein cholesterol and triglyceride-rich lipoproteins 
are increased [141], HDL cholesterol is low, and the ratio 
of total cholesterol to HDL cholesterol is higher than the 
eroded plaques [142]. To strengthen the fibrous cap of 
plaques and to reduce the risk of rupture, some lipid-low-
ering therapies are reported that reduce the inflamma-
tion and accumulation of fat in plaque [139]. Moreover, 
the stenosis severity is related to the number of ruptured 
plaques [87].

The plaque erosion occurs due to loss of antithrom-
botic events of the plaque surface, endothelial damage 
and excessive thrombosis in the absence of cap rupture. 
TLR2 is reported to alter the endothelial function and 
cause superficial erosion [106, 139]. Coronary vasospasm 
is one of the effective factors in the erosion pathophysi-
ology [142]. The plaque erosion exacerbates thickening 
fibroatheromas, the mechanism which is still unknown 
[87]. Some eroded plaques have a multi-layered structure 
[87]. Furthermore, they have a lot of VSMCs, ECM and 
a small accumulation of fat and foam cells [139]. Inflam-
matory cells usually do not penetrate within it [102, 
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106, 142].In eroded plaques, there is an abundance of 
type III collagen, versican, and hyaluronan. Hyaluronan 
can directly increase fibrin polymerization and VSMCs 
migration towards plaque [142].In eroded plaques, the 
internal and external lamina layers remain untouched. 
Lack of endothelial lining causes these plaques to be in 
direct contact with the intima. The eroded plaque lesions 
are rarely calcified [142]. In women under 50 years, more 
than 80% of thrombosis occurs due to plaque erosion, 
and the thrombi are white and platelet-rich [139, 142]. 
However, thrombosis is less likely to occur in the plaque 
erosion, but if it does happen, it is more fatal than throm-
bosis caused by the rupture. Moreover, thrombosis heals 
in ruptured plaques faster than in the eroded plaques 
[87, 142]. If plaque erosion be asymptomatic, it can cause 
plaque growth and gradual stenosis of the coronary 
artery. The eroded plaques are a cause of sudden cardiac 
death [143] (Fig. 8). In addition, intra-myocardial micro-
embolism is also more likely to happen in the eroded 
plaques [142].

In conclusion
Atherosclerosis is a multi-focal, slowly progressive pro-
cess. It occurs due to numerous pathological changes 
including the disrupted cell and molecular functions 
in vessel sub-endothelial space [144–146]. The ath-
erosclerotic plaques include cholesterol-rich core and 
fibrous cap. Furthermore, the acquired and innate 
immune agents cause to progress the plaque [147–149]. 
Narrowing of arteries caused by the erosion and rup-
ture of plaques slows down blood flow and results in 
fatal ischemia in the vessels [150–154]. Thus, knowing 
the molecular changes and the cellular events in sub-
endothelial microenvironment during the plaque growth 
can help to understand the stenosis in the vessels.
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