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Abstract 

Background Mesenchymal stem cells (MSCs) therapies are emerging as a promising approach to therapeutic regen-
eration. Therapeutic persistence and reduced functional stem cells following cell delivery remain critical hurdles for 
clinical investigation due to the senescence of freshly isolated cells and extensive in-vitro passage.

Methods Cultured adipose-derived stem cells (ASCs) were derived from subcutaneous white adipose tissue isolated 
from mice fed a normal diet. We performed senescence-associated-β-galactosidase (SA-β-gal) staining, real-time PCR, 
and Westernblot to evaluate the levels related to cellular senescence markers.

Results The mRNA expression levels of senescence markers were significantly increased in the later passage of ASCs. 
We show that light activation reduced the expression of senescent genes, and SA-β-Gal in all cells at passages. Moreo-
ver, the light-activated ASCs-derived exosomes decrease the expression of senescence, and SA-β-Gal in the later 
passage cells. We further investigated the photoreceptive effect of Opsin3 (Opn3) in light-activated ASCs. Deletion of 
Opn3 abolished the differences of light activation in reduced expression of senescent genes, increased Ca 2+ influx, 
and cAMP levels.

Conclusions ASCs can undergo cellular senescence in-vitro passage. Photomodulation might be better preserved 
over senescence and Opn3-dependent activation in aged ASCs. Light-activated ASCs-derived exosomes could be 
served as e a new protective paradigm for cellular senescence in-vitro passage.
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Introduction
Accumulating evidence has indicated the therapeutic 
value of mesenchymal stem cells (MSCs) in regenerative 
medicine. For in-vitro culture, MSCs must be expanded 
over replicative, multiple population doublings to obtain 
an available and sufficient number of cells for administra-
tion [1, 2]. Previous studies have primarily shown the dif-
ferent conditions of population doublings from the initial 
MSCs passage to senescence, which is linked to loss of 
the replication and differentiation capability [3–7].

Cellular senescence occurs due to multiple factors 
such as in vitro cell aging, telomere attrition, irradiation, 
oncogene activation, oxidative damage, and mitochon-
drial dysfunction. Several aging-related experimental 
therapeutic approaches, such as senolytics, antioxidants, 
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and exercise, have delayed the onset of cellular senes-
cence [8, 9].

Understanding the molecular mechanism involved 
in the aging-associated deterioration of stem cell func-
tion is crucial in developing effective new therapeutic 
methods. Photomodulation involves sending specific 
light packets that can be absorbed by photoreceptors 
or molecules associated with the mitochondria of cells. 
Numerous studies have demonstrated the advantages 
of photomodulation as a promising physical approach 
in various pathologies, particularly for cell and tissue 
regeneration. In our recent in  vitro ASCs culture study, 
light treatment was found to significantly increased cell 
proliferation compared to non-light treatment [10]. In 
this study, we tested the hypothesis that photomodula-
tion could alleviate cellular senescence in ASCs in vitro. 
The results suggest that photomodulation may serve as a 
preventive measure against cellular senescence during in-
vitro passage of ASCs.

Materials and methods
Animals
6–8  weeks old C57BL/6  J mice were obtained from the 
Chongqing Medical University, Chongqing, China. All 
protocols for animal use were reviewed and approved by 
the Animal Care Committee of Southwest Medical Uni-
versity in accordance with Institutional Animal Care and 
Use Committee guidelines.

Mice with floxed Opn3 allele and mice expressing Cre 
recombinase driven by adiponectin (adipoq-Cre) were 
obtained from Cyagen Biosciences (Suzhou, China). 
Opn3 fl/fl was mated with adipoq-Cre after being back-
crossed for 10 generations into the C57BL/6  J back-
ground.  Opn3fl/fl mice were mated with Opn3 fl/fl 
adipoq-Cre( ±) to generate Adioopn3 -/- mice. Cre-neg-
ative littermates were used as WT controls.

Culture of ASCs
Mouse adipose-derived stem cells (ASCs) were isolated 
from inguinal subcutaneous fat of C57BL/6 mice that 
were fed normal chow (NFD). The cells were cultured as 
described previously [10]. Briefly, subcutaneous adipose 
tissues were digested with collagenase type 1 (Sigma-
Aldrich, St. Louis, MO, USA) in PBS (Phosphate-buff-
ered saline) by incubation in a shaker at 37 °C for 30 min. 
Cells were suspended in complete medium made of 
DMEM/F12 (Dulbecco modified Eagle medium) medium 
supplemented with 10% fetal bovine serum (FBS) and 1% 
penicillin and streptomycin. Cells were cultured in 37 °C 
at 5% CO2 and 20%  O2 incubator. Flow cytometry is used 
to identify the ASCs with surface markers as described 
previously by us [10, 11]. Briefly, ASCs are positive CD29 
(BD Pharmingen), CD90 (BD Pharmingen), and CD105 

(Biolegend) in a normal conditional and light treatment. 
Additionally, ASC are negative for CD31 (Biolegend) and 
CD45.( Biolegend). ASCs at passage 3–10 were used in all 
the experiments.

Photomodulation
Cultured ASCs were transferred into a sterile syringe 
and subjected to light treatment for 30 min using a Cell-
Regena Device (HarmonyRegena CO., Ltd, China) [10, 
11]. The syringe was then placed into the device and 
rotationally activated by light-emitting diode (LED) light. 
This device integrates monochromatic lights of three dif-
ferent wavelengths, including 575–595  nm (5–20 mW), 
630–635 nm or 660–670 nm (10–100 mW) and/or 510–
540 nm (10–60 mW) of monochromatic light.

After light-treated for 30  min, ASCs were prepared 
for subculture every 10  days up to passage 9 and cul-
ture media were completely renewed every 3  days. A 
second set of cells was subjected to non-light treatment 
for 30 min as control group, which cultured ASCs were 
transferred into a sterile syringe without light treatment.

Exosome purification and characterization
Exosomes were isolated from cultured ASCs using 
an PS affinity MagCaptureTM Exosome Isolation Kit 
(Wako Life Sciences; Richmond, VA, USA). The cultured 
medium was collected and performed a preliminary cen-
trifugation 300 g for 10 min. The supernatant. was then 
subjected to centrifugation at 3000  g for 30  min, and 
then passed through a 0.22 μm filter, and transferred to 
an ultrafiltration concentration tube Vivaspi Turbo 15 for 
concentration. The concentration of exosomes were eval-
uated by Nano Sight NS3000.

Quantitative real‑time PCR
ASCs were collected and total RNA was extracted using 
TRIzol reagent (Invitrogen, Carlsbad, CA, USA). RNA 
samples were pre-treated with deoxyribonuclease I (Inv-
itrogen Life Technologies, Carlsbad, CA, USA), and a 
SuperScript kit (Invitrogen Life Technologies, Carlsbad, 
CA, USA) was used to synthesize cDNA according to the 
manufacturer’s recommendations. qRT-PCR was ana-
lyzed using miScript SYBR Green PCR Kits (Qiagen). 
Levels of cell cycle markers (p16, p21, and p53) mRNAs 
were determined by ABI PRISM 7700 cycler (Applied 
Biosystems, Foster City, CA). Each sample was analysed 
in duplicate with ribosomal 18S RNA as an internal con-
trol. Using telomeric primers, primers for the reference 
control gene (mouse 36B4 single copy gene), qPCR set-
tings were performed as previously described [12]. The 
relative telomere length was shown as a T/S ratio indica-
tive from the single copy gene. All fold changes in gene 
expression were determined using the 2 − ΔΔCT method. 
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The values are presented as the mean ± SEM. All primers 
are listed in Supplemental Table 1.

Immunoblotting
ASCs lysates were prepared, and equal amounts of pro-
tein were subjected to SDS-PAGE and transferred to 
polyvinylidene difluoride membranes by electroblotting. 
After blocking, the membranes were incubated with 
antibodies directed against Opn3 (Cell signaling), p16 
(Abcam), p21(Servicebio), and p53 (Abcam),. Secondary 
antibody was horseradish-peroxidase (HRP)-conjugated 
goat IgG raised against IgG (Santa Cruz Biotechnology). 
Blots were developed with ECL substrate (Pierce).

Senescence‑Associated‑β‑Galactosidase (SA‑β‑gal) Assay
The SA-β-gal activity was measured using Senescence 
Assay Kit (ST429, Beyotime) based on the manufacturer’s 
instructions. Briefly, cells were incubated in ONPG at 
room temperature for 12 h then stained with the Staining 
Mixture at 37  °C without  CO2 overnight. Subsequently, 
cells were observed and visualized under a light micro-
scope (Zeiss HAL 100). The values were normalized to 
total protein of cell lysates assessed with a bicinchoninic 
acid (BCA) protein assay (Pierce).

Intracellular  Ca2+ concentration
To evaluate the changes in intracellular calcium concen-
trations, a calcium-sensitive fluorescence indicator, Fluo-
8, AM (AAT Bioquest, Sunnyvale, CA, USA), was used 
to stain the cells according to the manufacturer’s instruc-
tions. Briefly, Cells were washed in serum- and phenol 
red-free DMEM containing 4 μM Fluo-8 AM plus 0.08% 
Pluronic F127 (AAT Bioquest, Sunnyvale, CA, USA) for 
20  min at 37  °C, 5%  CO2 to load the dye into the cells. 
25 mM Probenecid (AAT Bioquest, Sunnyvale, CA, USA) 
solution was used to reduce leakage of intracellular dye. 
The fluorescence of Fluo-8 AM was excited at the wave-
length of 490  nm and measured using a fluorescence 
microplate reader (Cytation 5, USA). Three independent 
experiments were averaged.

cAMP level
Under the condition of non-light treatment or light treat-
ment for 30 min, wild-type and Adipopn3-deficient ASCs 
were seeded into six-well platelets 3 ×  105 cells per well, 
grown for 24 h, then serum-starved overnight in DMEM 
containing 0.1% fatty acid-free bovine serum albumin, 
and stimulated with 5  nM S1P and/or 1  µM forskolin 
(Bio-Techne, Abingdon, UK, 1099/10) or were mock-
stimulated, for 10  min at 37  °C. The medium was aspi-
rated, and supernatant was collected by centrifugation at 
700 × g for 5 min. cAMP levels were measured using the 

general cAMP ELISA kit (Immuno clone Biosciences co., 
USA) according to the manufacturer’s instructions.

Statistical analysis
Data are presented as the mean ± SEM of triplicate 
experiments. Experimental groups were compared by the 
two-tailed Student’s t-test or.one-way analysis of variance 
(ANOVA). All analyses were performed with SPSS soft-
ware (version 24.0 for Windows; Armonk, NY, USA), and 
a level of P < 0.05 was defined as indicative of statistical 
significance.

Results and discussion
Light activation prevents the onset of senescence in ASCs
We evaluate the cellular senescence in-vitro passage of cul-
tured ASCs derived from the normal-fat diet C57BL/6  J 
mice. Following the schematic timeline in the experimen-
tal model (Fig. 1A), we observed that the in vitro increased 
passage number of ASCs led to significantly greater expres-
sion in the cell cycle gene p16 and p21 as well as p53 at pas-
sages 5, 7, and 9 (P5, P7, and P9) (Fig. 1B-D). Conversely, 
the levels of senescence genes were the same regardless of 
P3-P9 when ASCs were activated with light at P3. The lev-
els of p16, p21, and p53 expression were further evaluated 
by Westernblotting. As shown in Fig. 1E, the levels of p16, 
p21, and p53 were markedly increased in ASCs at P9 com-
pared with that at P3. In contrast, light-treated caused a sig-
nificant decrease at the levels of p16, p21, and p53 in ASCs 
at P9 compared with that non-light-treated P9.

Light activation also decrease in SA-β-galactosidase 
activity at P9 of ASCs (Fig.  1F, G). These findings dem-
onstrated that photomodulation effectively reduced the 
expression of the critical cellular senescence markers and 
SA–β-gal for the cellular senescence in-vitro passage. To 
investigate the cellular senescence associated with short 
telomeres, we evaluated the telomere lengths in  vitro 
passage culture (Fig.  1H). Telomeres were significantly 
shorter at P9 than P3 in non-light-treated group. How-
ever, we observed the light treatment exhibited a slight 
change in the telomere length. Future studies are neces-
sary to define the relationship more precisely between 
cellular senescence and telomeres.

We explore the effects of photomodulation on exo-
some secretion. ASCs at P3 were treated with light for 
30  min. The concentration of light-treated ASCs-Exos 
was approximately a fivefold increase in the number of 
exosomes secretion compared with non-light-treated 
ASCs-Exos (Fig.  1I). Aging ASCs were treated with 
ASCs-derived exosomes for 24 h. P9 treated with ASCs-
Exos showed a significant downregulation in the mRNA 
levels of p16, p21, and p53. Notably, the light-activated 
ASCs-Exos group presented marked lower levels than 
the non-light-activated ASCs-Exos group (Fig.  1J-L), 
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Fig. 1 Light activation prevents the onset of senescence in ASCs. A Schematic timeline of ASCs transplantation model. Light treatment was 
performed at passage 3 (P3). After light activation for 30 min, WT-ASCs were prepared for subculture every 10 days up to passage 9 and culture 
media were completely renewed every 3 days. A second set of cells was subjected to non-light activation for 30 min as control group. The 
expression of p16 (B), p21 (C), and p53 (D) was evaluated by qPCR from P3-P9 in ASCs from normal diet fed C57BL/6 J mice. Significance was 
calculated using an ordinary one-way ANOVA. Data shown as mean ± SEM for three independent experiments. E p16, p21, and p53 protein levels 
measured by Western blotting at P3 and P9 from non-light and light-treated ASCs. The graph corresponds to the adjacent blots and represents 
densitometric analyses of 3 individual samples. *P < 0.05, ****P < 0.001. Significance was analyzed using an ordinary one-way ANOVA. Data shown as 
mean ± SEM. F Representative images of SA-β-galactosidase-positive cells. G Senescence was evaluated in terms of SA-β-galactosidase activity and 
expressed as the ratio of cells protein (mg). Scale bar: 50 μm. H Telomere length shown as T/S ratio evaluated by qPCR. ****p < 0.001, compared to P3. 
I The relative concentration of exosomes from from ASCs with indicated treatments. J‑L Light-activated-ASCs-Exos presented a marked efficacy in 
the prevention of cellular senescence. 1 ×  108/mL of exosomes were added in the cultured ASCs for 24 h as indicated treatment. The expression of 
p16 (J), p21 (K), and p53 (L) was assessed by qPCR. n = 3–5 per group. Data shown as mean ± SEM. *P < 0.05; **P < 0.01; #P < 0.05; ##P < 0.01
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Fig. 2 Opn3 Is required for light activation-dependent regulation of cellular senescence. A Westernblotting analysis confirmed the Opn3 
expression in cultured WT- and  Opn3−/−-ASCs. B Densitometric analysis of Opn3 band. C‑E After light activation for 30 min, ASCs were prepared 
for subculture every 10 days up to passage 9 and culture media were completely renewed every 3 days. A second set of cells was subjected to 
non-light activation for 30 min as control group. The expression of p16 (C), p21 (D), and p53 (E) was evaluated by qPCR at P3 and P9 in either 
WT-ASCs or  Opn3−/−-ASCs. Significance was analyzed using an ordinary one-way ANOVA. Data shown as mean ± SEM for three independent 
experiments. F Intracellular calcium concentration was measured by using Fura fluorescence in ASCs as indicated treatment. Light activation was 
performed at passage 3 (P3). G Quantification of relative fluorescence intensity is shown. H Light activation show Opn3-dependent elevation 
of cAMP in ASCs ass indicated. Data shown as mean ± SEM for three independent experiments. *P < 0.05; ***P < 0.01; ****P < 0.01. I Schematic 
illustration of showing that light activation alleviates the cellular senescence in-vitro passage by involving increased Ca 2+ influx and cAMP levels in 
cultured ASCs



Page 6 of 7Zhang et al. Cell Communication and Signaling          (2023) 21:146 

indicating that light-activated-ASCs-Exos exhibited sig-
nificant efficacy in the prevention of cellular senescence.

Opn3 Is required for light activation‑dependent regulation 
of cellular senescence
It is important to note that photomodulation exhibits a 
dominant efficacy in preventing cellular senescence. Opsins 
(Opn3 or encephalopsin) are a family of light-activated, ret-
inal-dependent, G protein-coupled receptors (GPCRs) that 
are identified in adipose tissues [13]. To study the functions 
of Opn3 expressed by ASCs during in-vitro passage of cul-
tured ASCs, we compared the senescent gene expression of 
ASCs isolated from WT and  Opn3−/− mice. Westernblot-
ting analysis confirmed that Opn3 expression was markedly 
decreased in  Opn3−/−-ASCs as compared with WT-ASCs 
(Fig.  2A-B). At the P3, compared to WT-ASCs, Opn3-
deficient ASCs showed significantly increased mRNA lev-
els of p16, p21, and p53 (Fig. 2C-E), suggesting that under 
physiological conditions, the dominant effect of basal Opn3 
expression by ASCs is anti-senescence. Moreover, we did 
not observe the inhibitory effects of light treatment at pas-
sage 3 in  Opn3−/−-ASCs. Similarly, the increased levels of 
mRNA p16, p21, and p53) were much greater at P9 than at 
P3, and light treatment had no effects on the expression in 
 Opn3−/−-ASCs. We showed that Opn3 is required for light-
dependent regulation of cellular senescence biomarkers, 
suggesting that light activation likely modifies ASCs-derived 
exosomes and might affect cellular senescence in an auto-
crine/paracrine manner.

Previous studies have shown that exosome release is regu-
lated by a calcium-dependent mechanism [14, 15]. We used 
Fura fluorescence to measure cytoplasmic calcium concen-
tration alteration in the cultured ASCs. Our data showed 
that light activation significantly increased the  Ca2+ con-
centration in WT-ASCs compared with the non-light-acti-
vated ASCs group. However, we did not find any changes 
in  Ca2+ concentration in  Opn3−/−-ASCs (Fig. 2F, G). These 
data indicated that photomodulation stimulates exosomes 
release of ASCs is associated with increased intracellu-
lar calcium concentration and Opn3-dependent manner. 
Future studies need to be conducted to look into the effect 
of photomodulation on ASCs-Exos and miRNA signaling 
and other proposed mechanisms.

Opsins are coupled with G proteins signal via a path-
way involving intracellular second messenger, adenosine 3′, 
5′-cyclic monophosphate (cAMP) [16]. Assessment of cAMP 
from ASCs lysates revealed that light activation showed sig-
nificantly elevated cAMP in WT-ASCs compared with the 
non-light-activated ASCs group. However, we did not find 
any changes in cAMP level from  Opn3−/−-ASCs in the 
absence or presence of light activation (Fig. 2H), supporting 
the hypothesis that Opn3 is required for a light-dependent 
regulation of cellular signaling and senescence.
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