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Abstract 

The transient receptor potential melastatin subfamily member 2 (TRPM2), a thermo and reactive oxygen species (ROS) 
sensitive  Ca2+‑permeable cation channel has a vital role in surviving the cell as well as defending the adaptability of 
various cell groups during and after oxidative stress. It shows higher expression in several cancers involving breast, 
pancreatic, prostate, melanoma, leukemia, and neuroblastoma, indicating it raises the survivability of cancerous cells. 
In various cancers including gastric cancers, and neuroblastoma, TRPM2 is known to conserve viability, and several 
underlying mechanisms of action have been proposed. Transcription factors are thought to activate TRPM2 channels, 
which is essential for cell proliferation and survival. In normal physiological conditions with an optimal expression 
of TRPM2, mitochondrial ROS is produced in optimal amounts while regulation of antioxidant expression is carried 
on. Depletion of TRPM2 overexpression or activity has been shown to improve ischemia–reperfusion injury in organ 
levels, reduce tumor growth and/or viability of various malignant cancers like breast, gastric, pancreatic, prostate, 
head and neck cancers, melanoma, neuroblastoma, T‑cell and acute myelogenous leukemia. This updated and com‑
prehensive review also analyzes the mechanisms by which TRPM2‑mediated  Ca2+ signaling can regulate the growth 
and survival of different types of cancer cells. Based on the discussion of the available data, it can be concluded that 
TRPM2 may be a unique therapeutic target in the treatment of several types of cancer.
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Introduction
The transient receptor potential melastatin 2 (TRPM2) 
channel, under the transient receptor potential (TRP) 
ion channel superfamily, is engaged in a range of physi-
ological and pathophysiological processes in a variety of 
cells. Genomic study of Drosophila first recognized the 
trp gene through visual transduction mutation [1, 2]. 
TRPM2, a decade’s sought-after ion channel, also for-
merly called TRPC7 and LTRPC-2, a nucleotide-sensing 
TRP channel enables the influx of  Ca2+ and  Na+ and 
increases the cytosolic  Ca2+ concentration,  [Ca2+]cyt. 
It also works as a lysosomal  Ca2+ release channel [3] 
involving, under certain situations, cell death. TRPM2 
channel is expressed in liver cells [4], blood cells, immu-
nocytes, pancreatic cells, microglia [5–7] and brain cells 
[8]. In addition, extracellular application of oxidants e.g., 
 H2O2 [9–12], tert-butyl hydroperoxide and dithionite, 
second messenger arachidonic acid [10], intracellular 
ADP-ribose (ADPR) [11], and oxidative stress e.g.,  H2O2 
[9–12], nicotinamide adenine dinucleotide (NAD) [6] can 
act as an activator of TRPM2 channel gating. The physi-
ological role of TRPM2 is very less understood. TRPM2 
channels may be involved in insulin secretion [3, 10, 
13–17]; it also may facilitate portions of the responses to 
tumor necrosis factor alpha  (TNF-α), in the cells of the 
immune system [18], cell motility, cell death [19]. Miller 
[20] showed that it is related to the amyloid-beta pro-
tein toxicity, in the brain. However, the molecular basis 
of the contribution of the TRPM2 channel to these cel-
lular and pathophysiological processes remains unclear. 
As the TRPM2 channel undergoes ROS-mediated activa-
tion, and the oxidation process is involved in a variety of 
diseases and clinical problems, the TRPM2 channel may 
be a possible therapeutic target for those disease states. 
This review aims to focus on recent findings in TRPM2 
 Ca2+ permeable channel in IR injury and cancers, and its 
activation mechanism by ROS in different cell types and 
its associated implications.

Review methodology
This updated review analyzed the pharmacologi-
cal studies that included the mechanisms of how oxida-
tive stress modulates TRPM2, Ca2+ signaling mediated 
by TRPM2, regulation mechanisms in ischemia and 
in  various types of cancer. For this purpose, searches 
were performed in specialized databases such as Web 
of Science, Pubmed/MedLine, ScienceDirect, and TRIP 
Database using the following MeSH terms: “Humans”, 
“Oxidative Stress”, “TRPM Cation Channels/physiol-
ogy”, “Calcium/metabolism”, “Cell Survival”, “Humans”, 
“Molecular Targeted Therapy”,”Oxidative Stress”, “TRPM 
Cation Channels/genetics”, “TRPM Cation Channels/

metabolism”, “Transcriptional Activation”, “Neoplasms/
genetics”. The most relevant data were summarized in a 
table and a figure.

RPM2 channel: a brief overview
Structure and properties
The pharmacology and structural studies of TRPM2 
remain less developed. It belongs to the TRPM subfam-
ily, which takes part of the TRPM-homology section 
(around 700 amino acids) within the N-terminus. The 
human TRPM2 gene, situated in chromosome 21q22.3, 
comprises 32 exons and spans about 90 kb [21]. The TRP 
protein has six putative transmembranes forming the 
sensor domain by helices S1-S4 [22] along with a pore 
area within the fifth and sixth transmembrane; besides 
it gathers in homo- or hetero-tetramers form channels 
[23]. As it undergoes tetramerization, the putative S5 
and S6 segments of the TRPM2 channel can form a cen-
tral ion-conducting pore. The bacterial KcsA potassium 
channel has a similar type of ion channel pore structure 
[24]. The C-terminal end of TRPM2 has a 39% sequence 
similarity to NUDT9 (Nudix (nucleoside diphosphate 
linked moiety X-type motif 9). Between the NUDT9 
domain (comprising some 300 amino acids) and the 
Nudix box is the catalytic domain containing 22 amino 
acids. Eisfeld and Luckhoff [25] suggest that the NUDT9 
domain, probably, may provide long-term binding of 
ADPR which can be important for channel gating. Kuhn 
and Luckhoff [26] reported that one particular amino 
acid (Asn-1326) can play a critical role in the binding 
area for ADPR (adenosine diphosphate (ADP)–ribose) 
gating of TRPM2. In addition, cytoplasmic N-terminally 
located TRPM homology regions may be involved for 
the oligomerization of channels or in regulating trans-
port to the plasma membrane [22]. Although TRPM2 
and TRPM8 channels are structurally 42% alike [27], 
they are highly different in their biological activities. The 
single-channel characteristics of TRPM2 are distinctive 
as the channel shows extensive opening times [28, 29]. 
Like TRPM6/7, TRPM2 is also familiar as a ‘coenzyme’ 
due to its double actions in the ion channel as well as 
the C-terminal enzyme domain [30, 31]. However, the 
proteolytic action of TRPM2’s Nudix box assumes to be 
tremendously small or the role of the TRPM2 channel is 
abolished [25].

Physiological functions of TRPM2
The physiological role of TRPM2, although it is expressed 
in various tissues and first identified in 1998, is not very 
well understood. However, some propositions are avail-
able regarding the physiological function of the TRPM2 
channel. It might be involved in insulin secretion [13]; 
it may arbitrate parts of the reactions to TNF-α, within 
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immune cells [32]. In addition,  H2O2-induced TRPM2 
channels contribute to alloxan-induced diabetes melli-
tus [33]. It is also proposed that within the brain it may 
cause toxicity of amyloid-beta which is a protein related 
to Alzheimer’s disease [20]. In addition, the chan-
nel may be also involved in cell motility and cell death 
[19]. A recent study revealed that mice having TRPM2- 
deficiency were tremendously prone to infection with 
Listeria monocytogenes (Lm), showing an ineffective 
intrinsic immune response. Therefore, to survive and 
control the bacterial burden of Lm infection, TRPM2 
may play a crucial role [34].

TRPM2 is one of several  Ca2+ entry channels in 
mammalian cells.  Ca2+ plays a very essential role as an 
intracellular messenger. It is a second messenger and 
an important regulator of cellular metabolism [35–39] 
(Fig.  1). Cytoplasmic  Ca2+ regulates certain key cel-
lular systems. More than one hundred neurotransmit-
ters and hormones, which work on their corresponding 
receptors and receptor channels transmit their signals 
by changing intracellular calcium concentration. In 
cells,  Ca2+ does work from minutes to hours to guide 
gene transcription and cell proliferation.  Ca2+ passes via 
TRPM2 triggered by ROS and may prompt chemokine 

assembly in monocytes which consequently may exac-
erbate inflammatory neutrophil penetration [40]. In 
cancers or other disease conditions, the expression of 
TRPM2 ion channels along with others is significantly 
altered causing impaired intracellular calcium homeo-
stasis. While normal intracellular calcium concentra-
tion/homeostasis is essential for cellular metabolisms, 
altered calcium homeostasis may play a critical role in 
the development and progression of many detrimen-
tal diseases [41]. The plasma membrane of mammalian 
cells possesses different types of  Ca2+ entry channels 
that control the downhill diffusion of  Ca2+ entry into 
cells [42].

Types of calcium channels according to their gating 
mechanisms:

1) Voltage-dependent like N, L, T, P, and Q types of cal-
cium channels;

2) Mechanically-gate activated like Stretch activated, 
non-selective calcium channels;

3) Ligand-gated activated like:

i) External ligands such as neurotransmitters (nico-
tine acetylcholine receptor)

Fig. 1 Schematic representation of cellular calcium homeostasis and cellular location of TRPM2 channels. Abbreviations: Transient receptor 
potential melastatin 2 (TRPM2), Adenosine Diphosphate (ADP), phosphates (Pi), Adenosine triphosphate (ATP)
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ii) Intracellular ligands such as IP3,  Ca2+, ATP  (IP3 
receptor or store-operated channels [43].

After depletion of  Ca2+from the key store of  Ca2+ 
(endoplasmic reticulum) of mammalian cells, a special 
plasma membrane  Ca2+ channel, the CRAC channel is 
triggered to adjust gradually the extent of calcium in the 
endoplasmic reticulum. CRAC  (Ca2+  release activated 
 Ca2+) channel are the best characterized SOCE channels 
(store-operated  Ca2+  entry channels) with well-studied 
electrophysiological properties [44]. The putative loca-
tion of TRPM2 has been indicated in Fig. 1.

Mechanism of activation of TRPM2 channel
Activation mechanism of TRPM2 channel by oxidative stress
Oxidative stress is generally mediated by extreme disclo-
sure of cells to reactive oxygen or nitrogen species, gener-
ated by the ischemic attack, radioactivity, seizure, shock, 
etc. Experience with oxidative stress prompts apoptotic-
like late death of neurons as well as decay in cell cultur-
ing, facilitated through increased  Ca2+, malfunction of 
mitochondria as well as stimulation of poly[adenosine 
diphosphate ribose (ADPR)] polymerase (PARP) because 
of DNA injury [45, 46]. On this matter, one possibly vital 
calcium influx way can be the stimulation of  Na+ and 
 Ca2+ penetrable TRP channels. The cell damage pro-
duced by ischemia followed by reperfusion is mainly for 
superoxide anions [47]. These superoxide anions will 
produce  H2O2 which helps further produce ADPR in 
the nucleus.  H2O2 and superoxide anions are potential 
members of ROS [10]. ROS, one class of molecules and 
ions has the potential for the destruction of cells. They 
have extremely reactive features and are, generally, pro-
duced from aerobic metabolism through the mitochon-
drial electron transport chain resulting from exposure 
to extracellular mediators and cases, like ionizing emis-
sion, cytotoxic medicines, ischemia–reperfusion injury, 
and hypoxia-reoxygenation [48–50]. Nicotinamide 
adenine dinucleotide  (NAD+) can support the TRPM2 
opening over ROS stimulus [51]. Presumably, the trans-
formation from  NAD+ to ADP-ribose can trigger this 
opening [11, 52]. But surprisingly, NAD was not active 
in TRPM2 transduced HEK-293 cells [53]. It has been 
suggested that, in the case of cardiomyocytes, stimula-
tion of the TRPM2 channel, as well as poly(ADP-ribose) 
polymerase, is expected to be engaged in oxidative stress-
prompted cell death [54]. In cancer, the production of 
ROS by mitochondria promotes cellular oncogenesis by 
shaping signaling pathways and specific transcription 
factors [55]. TRPM2 maintains the bioenergy of cancer 
cells by maintaining mitochondrial activity and increased 
ROS production [38, 56]. TRPM2 inhibition decreases 
ROS production by modulating Nrf2, decreasing NADH 

and NADPH production, thus causing cancer cell death 
[57]. Recent studies have also shown that TRPM2 pre-
serves cell viability in the case of other non-tumor cells, 
protecting them from ischemia–reperfusion injury [58, 
59]. According to recent studies it is evident that TRPM2 
plays a fundamental role for cardiac myocyte bioenerget-
ics, limits oxidative stress, preserves mitochondrial func-
tion and protects the heart (as well as other tissues) from 
I/R insult. On the other hand, acting through similar 
mechanisms, TRPM2 is an important player for reducing 
tumour growth and the survival of cancer cells, also pro-
tecting cells from the toxicity of some anticancer drugs 
(i.e. doxorubicin) [60]. Therefore, by reducing mitochon-
drial dysfunctions, decreasing free radicals production, 
TRPM2 channels can protect cardiomyocytes and the 
heart from I/R injuries [59]. Glutamine consumption 
is substantially increased in many types of cancer com-
pared to other amino acids, representing a characteristic 
of malignancy. Glutaminolysis is an alternative energy 
source for cancer cells and it is a key nutrient for several 
metabolic processes leading to: ATP generation, redox 
homeostasis, intracellular antioxidant stock maintenance, 
and macromolecular synthesis. Regulation of glutami-
nolysis is determined by oncogenic signals [61]. Recent 
studies have shown that TRPM2 inhibition decreases 
glutamine production, thus decreasing antioxidant cofac-
tors and the antioxidant response, increasing cancer cell 
death and reducing tumor growth [7, 57].

In neuronal cells, TRPM2 channels can be associated 
with neuronal destruction triggered by means of oxi-
dants, amyloid β-peptide along with tumor necrosis ele-
ment alpha. Activation of the TRPM2 channel can be 
influenced by different types of endogenous factors or 
proteins. The opening of the TRPM2 channel in response 
to oxidative stress may depend upon the stimulation of 
DNA restoration enzyme poly (ADP-ribose) polymerase 
[12]. They also hypothesized that PARP enzyme action 
may be a crucial element of the pathway relating to oxi-
dative stress with TRPM2 instigation. Zhang, Tong et al. 
[62] reported that TRPM2 can be quickly tyrosine phos-
phorylated after the stimulation with  H2O2 or TNF-α and 
phosphorylation is of paramount importance for the acti-
vation of the channel; the protein tyrosine phosphatase 
– L1 (PTPL1) also is associated with the modulation of 
TRPM2 activation. TRPM2 can be a target for dephos-
phorylation and inactivation by PTPL1. The molecular 
mechanism that may influence tyrosine phosphoryla-
tion of TRPM2 is not clearly understood yet. Presumably, 
the pathway may include phosphorylation of tyrosine in 
the NUDT9-H domain of TRPM2, phosphorylation of 
calmodulin-binding sites, or phosphorylation of sites that 
may influence the tertiary structure of TRPM2. Superox-
ide anions and  H2O2 may trigger cellular death through 
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various mechanisms.  H2O2, probably, does not activate 
MAPK signaling and superoxide anions-induced apop-
tosis is dependent on JNK activity.  H2O2 and/or other 
ROS can release  Ca2+ from the intracellular  Ca2+ pools 
and activate suppressors of cytokine signaling (SOCs). 
Also, during oxidative stress,  H2O2 may enter the cytosol 
by an unidentified mechanism. Using the Fenton reac-
tion, altogether  H2O2 and  Fe3+ can generate hydroxyl 
radical (OH–) within the cytosol of cells. TRPM2, also, 
maybe straightly stimulated by  H2O2 and OH– radicals 
[63]. Interestingly, in HEK293/hTRPM2 cells, the TRPM2 
channels have been revealed to be engaged in  H2O2- acti-
vated cell death in  Ca2+ independent mechanism [64].

Attachment of ligand to G protein-linked receptors 
might result in ADPR production. Receptor stimulation 
also increases within the intracellular  Ca2+ concentra-
tion through  IP3- mediated  Ca2+ transportation from 
stores. The arrival of  Ca2+ into the cell by TRPM2 deliv-
ers a positive response augmentation of TRPM2 stimula-
tion. In a similar mechanism connected to that followed 
by  H2O2, the pro-diabetic medication alloxan, [25] leads 
to TRPM2 triggering. Moreover, the nitric oxide synthase 
(NOS) enzyme is stimulated by diacylglycerol (DAG) 
through arachidonic acid. Nitric oxide (NO) radicals can 
be derived from L-arginine through NOS. Furthermore, 
NO may trigger TRPM2 channels [63, 65]. By apply-
ing the activation mechanism, TRPM2 can be a poten-
tial candidate for gene therapy. For a detailed activation 
mechanism of TRPM2 during oxidative stress, readers 
are requested to read through some of the recent reviews 
indicated here [66–68]. It has been reported that in glio-
blastoma cells, cell death by  Ca2+ elevation after  H2O2 
usage could be facilitated by the insertion of TRPM2 into 
A172 cells [69].

ADPR role in regulation of the TRPM2 channel
The inhibitory function of a small unite variant of 
TRPM2 on its extended, pore-creating isoform has 
been stated for TRPM2 [70, 71]. An important regula-
tory mechanism has been reported through the par-
ticular stimulation of TRPM2 channels by intracellular 
ADP-ribose (ADPR). It has been recommended to be 
the prime gating mechanism of TRPM2 [71, 72]. TRPM2 
channel action is controlled by various cytosolic aspects, 
involving cyclic ADPR (cADPR), nicotinamide adenine 
dinucleotide phosphate (NAADP),  Ca2+, calmodulin 
(CaM) as well as adenosine monophosphate (AMP) [73]. 
In addition, currents of TRPM2 are disabled when intra-
cellular  Ca2+ content decreases under 100 nM compared 
to extracellular  Ca2+ content [73]. TRPM2 is triggered by 
the formation of ADPR in response to oxidative stress, 
which attaches to the C-terminus of TRPM2, leading to 
open the channel [74]. ADP-ribose polymers, the source 

of ADPR, are combined by poly-ADP–ribose polymerase 
(PARP) along with hydrolyzed through poly-ADP–ribose 
glycohydrolase. The breaking of NAD into nicotinamide 
and ADP-ribose may be catalyzed by PARP enzymes 
after binding to oxidatively-impaired DNA [75]. PARP-
reliant pathway leading to TRPM2 stimulation has been 
established by the usage of PARP inhibitors and these 
were capable to curb the  H2O2-induced TRPM2 trigger-
ing [12]. In addition to that nuclear pathway, ROS can 
stimulate a mitochondrial pathway which consequences 
the assembly of ADP–ribose in mitochondria as well as 
in the relief of ADP–ribose to the cytosol, wherever it 
plays as a second messenger contributing to TRPM2 gat-
ing [52]. After gating by ADP-ribose,  Ca2+ enters into the 
cells via TRPM2 which may have effective response aug-
mentation of TRPM2 stimulation. Additionally, the trig-
gering of TRPM2 through ADP-ribose is accelerated at 
elevated  [Ca2+]i indicating a positive feedback regulation 
of TRPM2 [76]. Other recent studies suggest that activa-
tion of TRPM2 may cause cell damage and it is expected 
to be engaged in various signaling pathways which may 
result in cell death responding to oxidative stress. Cyto-
solic  Ca2+ enhances TRPM2 gating or opening by ADPR. 
ADPR, probably the most potent physiological activa-
tor of TRPM2, and  Ca2+ in a concerted way may act as 
an important messenger system mediating  Ca2+ influx 
[77, 78]. After attaching the intracellular ADPR to the 
NUDT9-H domain at the C-terminal, the TRPM2 chan-
nel may be activated [72]. It has been reported that 
endogenous ADPR concentrations in leukocytes are 
substantially high for activating TRPM2 when increased 
intracellular  Ca2+ concentration,  [Ca2+]i is present, but 
perhaps not in resting  [Ca2+] [25].

Effect of hypoxia/anoxia and reoxygenation on TRPM2 
channel
Several researchers proposed that oxidative stress is 
increased by revealing cells or tissues to hypoxia. Anoxic 
incubation of rat liver mitochondria showed decreased 
free  [Ca2+] in the mitochondrial matrix, probably, imply-
ing that during anoxia  Ca2+ may be released into the 
cytoplasm of the cells. The mitochondrial respiratory 
chains produce most ROS in cells [79]. The level of elec-
tron movement by respiratory chain complexes controls 
significantly the Mitochondrial ROS manufacturing. Cur-
rently, it has been proved that in hypoxic situations, the 
mitochondrial respiratory chain can produce nitric oxide 
(NO), which can give rise to additional reactive nitrogen 
species [80]. In acute insults e.g., hypoxic ischemia, it has 
been recommended that the subsequent cell fate together 
with necrosis, apoptosis, or survival rely on an intracellu-
lar “Ca2+ setpoint” [81]. In hypoxia, TRPM2 and TRPM7 
altogether have a crucial function in neuronic cell death 



Page 6 of 13Ali et al. Cell Communication and Signaling          (2023) 21:145 

[82] proposing that  Ca2+ entered into cells through 
TRPM2 or TRPM7 caused the toxicity; TRPM2 was 
modulated by intracellular free radicals and conducted 
toxic levels of  Ca2+ [47].

TRPM2 in ischemic reperfusion injury
Ischemic reperfusion mainly occurs in the organ when 
normal blood flow in that organ suddenly or slowly 
stops, and after some periods, blood flow is restored. 
Temporary interruption of blood flow causing organ 
ischemia is a common occurrence during various surgi-
cal procedures. Ischemic stroke is caused by interrup-
tion of cerebral blood flow due to an obstruction and 
the main risk factors for ischemic, hemorrhagic and 
transient stroke are due to the sedentary lifestyle that 
generates overweight, the chronic consumption of alco-
hol or narcotics (cocaine, methamphetamines). Patholo-
gies that favor the occurrence of transient ischemic, 
ischemic or hemorrhagic accidents are represented 
by heart diseases (heart failure, congenital heart mal-
formations, heart infections, heart rhythm disorders), 
obstructive sleep apnea syndrome [83]. Recent studies 
showed the involvement of TRPM2 in pathogenesis fac-
tors of ischemic stroke as follows: by reducing oxidative 
stress in cardiomyocytes, TRPM2 reduces inflammation 
and stimulates the remodeling of the atria; it models 
endothelial dysfunction by deregulating the influx of cal-
cium ions, mediates the damaging effects of ROS on the 
endothelium and favors hypertension; induces the death 
of pancreatic β cells that secrete insulin, thus promoting 
the development of diabetes; promotes the aggregation 
of platelets and favors the appearance of vascular throm-
bus [84–86]. In the case of hepatic ischemia–reperfusion 
(IR) injury, it may be considered a clinically important 
pathological disorder complicating liver surgery and 
transplantation. IR can be classified as warm IR injury as 
well as cold storing reperfusion injury. The hepatic surgi-
cal procedure, liver replacement, or certain kinds of liver 
injury can have clinical relevance with warm IR. Besides, 
at the time of organ preservation, cold storing reperfu-
sion injury can occur, before liver transplantation [87]. 
It has been considered that long periods of ischemia 
may cause a drop in intracellular ATP levels, slow down 
active transport, and cause membrane depolarization 
[88]. After re-establishing the flow of oxygen and blood, 
reperfusion increases the damage induced by ischemia 
[89, 90]. Cellular cytoplasmic and mitochondrial  Ca2+ 
concentrations have shown to be raised instantly fol-
lowing the onset of reperfusion [91]. Elevated stages 
of cytoplasmic  Ca2+ have involvement in cell injury as 
well as death by triggering a series of  Ca2+-dependent 
enzymes, also involving various proteases and phos-
pholipases. Concurrently mitochondrial  Ca2+ overfilling 

elicits a change in CsA-sensitive mitochondrial perme-
ability transition pores (PTP) causing mitochondrial 
dysfunction and helping the formation of apoptosomes. 
In the liver, naturally occurring acidosis has been shown 
to delay the onset of necrotic cell death; but reperfu-
sion normalizes the intracellular pH and the defense of 
acidosis vanishes. It has been suggested that intracellu-
lar acidosis also inhibits TRPM2 (pKa 6.7) [92]. In some 
cancerous cell lines, some evidence also suggests that 
altered expression of TRPM2, including some other TRP 
proteins, may have roles in the progression of metastatic 
liver cancers and hepatocellular carcinoma [43]. Overall, 
this information provides sufficient evidence that intra-
cellular  Ca2+ and TRPM2 may play a significant role in 
pathological conditions of the liver and other cell types. 
Furthermore, pharmacological inhibitors or genetically 
depletion of TRPM2 channels demonstrated significant 
protective effects in kidney I/R injury [93], cardiac I/R 
injury [58], and neuronal I/R injury [94].

TRPM2 in different types of cancer
TRPM2 in neuroblastoma
Neuroblastoma is an embryonic tumor derived from 
the sympathetic nervous system that occurs at the level 
of special nerve cells called neuroblasts [95]. Normally, 
these immature nerve cells transform into functional 
mature cells. In the case of neuroblastoma, the neuro-
blasts do not mature normally, but turn into cancer cells 
[96, 97]. TRPM2 has been revealed to cause neuroblas-
toma proliferation which is a non-CNS tumor of child-
hood as well as chemotherapy sensitivity. The leading 
negative small splice variant TRPM2-S first inhibited 
TRPM2 in expression in the cells of neuroblastoma. The 
inhibited TRPM2 concluded a considerably amplified 
vulnerability to death of the cell, prompted through low 
content (50–100 μM) of  H2O2 [98] as well as doxorubicin 
[38, 71]. Mouse xenografts, using human neuroblastoma 
cells with expression of TRPM2-L or TRPM2-S proved 
the capability of TRPM2 to augment the progression 
of neuroblastoma tumors [71]. In neuroblastoma cells 
where TRPM2 was depleted, tumor development in xen-
ografts considerably declined as well as the sensitivity of 
doxorubicin increased.

TRPM2 in triple‑negative breast cancer
Triple-negative breast cancer is extremely threatening, 
having the worst consequence, among the three main 
molecular types of breast cancer. However, therapy also 
is unsuccessful in a considerable proportion of patients 
suffering from estrogen-receptor-positive breast cancer, 
the most common class of breast cancer. 2-aminoeth-
oxydiphenyl borate (2-APB) is known to act as a gen-
eral inhibitor of several plasma membranes along with 
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organellar ion channels involving TRPM2 [99]. TRPM2 
displayed a defensive action in human breast adenocar-
cinoma cell lines to minimize DNA destruction, where 
cell proliferation declined and DNA damage climbed 
up significantly through pharmacological cessation of 
TRPM2 including 2-APB or TRPM2 mRNA silenc-
ing [100]. In the case of both triple-negative as well as 
estrogen-receptor-positive breast cancer, the inhibition 
of TRPM2 caused the rise of DNA destruction and cyto-
toxicity, like neuroblastoma [101]. TRPM2 was situated 
within the nucleus of breast adenocarcinoma but not 
limited to that place; about 40–45% of TRPM2 was in the 
nucleus while the remaining part was in subcellular sec-
tions involving the cytoplasm. The mechanisms of action 
of TRPM2 within the nucleus were assumed to facilitate 
DNA restoration through nuclear TRPM2 or elevation of 
the influx of nuclear calcium which was required to be 
investigated again. ROS content was not observed; how-
ever, the elevated oxidative stress content noticed within 
TRPM2-depleted neuroblastoma cells recommends the 
possibility to be a probable mechanism for an explanation 
of elevated DNA damage in breast cancer after the inhi-
bition of TRPM2. On the other hand, within noncancer-
ous breast epithelial cells (MCF-10A), TRPM2 was not 
located in the nucleus or TRPM2 blockage was detected 
to have a role in proliferation. These findings recommend 
that pointing of TRPM2 might be a synergetic method 
to improve the medical care of chemotherapy-resistant 
patients with breast cancer, resembling that proposed 
in neuroblastoma. Other TRPM channels are known to 
have a function in the case of breast cancer multiplying, 
movement, and invasion involving TRPM7 and TRPM8 
[38, 102]. In what way do TRPM channels interpose 
their distinct properties and also whether their actions 
overlay or combine or TRPM2 are regions for imminent 
investigation.

TRPM2 in lung cancer
Lung cancer results from the uncontrolled growth of 
abnormal cells in the lungs that do not perform the func-
tion of normal lung cells. TRPM2 is highly expressed 
in lung cancer [38, 103]. In non-small cell lung cancer 
(NSCLC), TRPM2-AS a long non-coding RNA, anti-
sense transcript of TRPM2 was observed to be overex-
pressed. Besides, greater expression levels are connected 
with higher tumor size, progressive TNM stage, as well 
as reduced patient survival [104]. Cell multiplication 
and amplified apoptosis were considerably lowered after 
silencing of TRPM2-AS with siRNA (small interfering 
RNA). The advanced investigation will be essential to rec-
ognize the function of lncRNAs (long non-coding RNAs) 
including TRPM2 in cell multiplication and survival of 

patients as well as the consequence of expression and role 
of TRPM2.

TRPM2 in digestive cancers
Oral malignant tumor or oral cancer appears as a lesion 
on the oral mucosa, and is caused by the division and 
chaotic development of cells; it can develop in any oro-
maxillo-facial area, but it appears most often in the area 
of the tongue and floor of the mouth. In human tongue 
carcinoma specimens and cell lines, TRPM2 expres-
sion has been reported to be increased [105]. Treatment 
through 0.5 or 1 mM  H2O2 amplified apoptosis in SCC9 
cells of tongue carcinoma. Moreover, the breakdown of 
TRPM2 with siRNA augmented apoptosis, lowered sur-
vival, and hindered the movement of SCC9 cells. The 
subcellular location of TRPM2 was not similar in can-
cerous and non-cancerous cells as a considerable extent 
of TRPM2 protein is located in the cancer cell’s nucleus. 
Although in TRPM2 KO cells the processes of cell death 
were not discovered fully, it was not dependent on the 
p53-p21 pathway. The outcome is that TRPM2 has a role 
in the survival and movement of SCC cancer cells along 
with in head and neck cancers, it can be a possible thera-
peutic object [38, 105].

Gastric cancer begins when cancer cells form in the 
inner lining of the stomach. These cancer cells can 
grow into a tumor, and cancer usually develops slowly 
over several years. TRPM2 expression within tumors 
has a negative correlation with the overall survival of 
patients suffering from gastric cancer. After down-
regulation of TRPM2 with shRNA in AGS and MKN-
45, two gastric cancer cell lines, the cells developed 
slowly, and the proportion of apoptotic cells raised 
[38, 105]. Mitochondrial role expressed through oxy-
gen intake amounts and ATP assembly was consid-
erably declined in TRPM2 diminished cells as well 
as COX 4.1 and 4.2 expression and BNIP3 were low-
ered, which was described in neuroblastoma [71]. 
Autophagy was also declined, with a lowered amount 
of autophagy related genes (ATGs) involving ATG3, 
ATG5, ATG6, ATG7, and ATG12 and reduced trans-
formation of LC3-I to LC3-II. Decreased autophagy 
led to the gathering of impaired mitochondria, low-
ered cellular bioenergetics, and augmented ROS, caus-
ing death of the cell. TRPM2 controlled autophagy by 
an mTOR (mammalian target of rapamycin) indepen-
dently but JNK (Jun N-terminal Kinase) signaling reli-
ant pathway, facilitated through regulation of ATGs, 
BNIP3 as well as JNK stimulation.  Apoptotic proper-
ties of together paclitaxel and doxorubicin were higher 
in TRPM2 exhausted cells, indicating that TRPM2 
conserves the survival of cells where inhibition raises 
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sensitivities of chemotherapy and proposing this as a 
therapeutic attitude to increase the cell death of gas-
tric tumors.

TRPM2 expression has a considerable role in gastric 
cancer cells’ bioenergetics and survival, according to 
confirmation from current numerous investigations 
[38, 66, 106, 107]. Using molecular and functional 
assays, one study has demonstrated that downregu-
lated TRPM2 significantly prevents the movement 
and invasion capacities of gastric cancer cells, includ-
ing a significant decline in the expression of meta-
static markers. Besides, reduced Akt (protein  kinase 
B) and augmented PTEN (phosphatase tensin homo-
logue) actions were connected with the consequences. 
Moreover, silencing of TRPM2 concluded the dereg-
ulated metastatic markers and lost the tumor grow-
ing capacity of AGS gastric cancer cells within NOD/
SCID mice. Altogether, the known outcomes offer 
convincing information on the vital role of TRPM2 
to modulate the gastric cancer cell invasion presum-
ably by monitoring the PTEN/Akt pathway [108]. In 
a recent study, Almasi et  al. demonstrated that the 
expression of TRPM2 might be associated with gas-
tric cancer [106]. By authors, two  shRNA (short 
hairpin RNAs)  were administered against TRPM2 to 
lower the expression and role in gastric cancer, AGS, 
and MKN45 [109]. Outcomes proved that TRPM2 is 
practically expressed like a plasma membrane ion 
channel which is penetrable to  Ca2+  in gastric cancer 
cells along with its impediment lowered cell  bioener-
getics, inhibited cell invasion, and declined cell sur-
vival. Further, these consequences were established in 
vivo through a SCID mouse model, and the decline of 
TRPM2 was directed to a decreased growth of tumor. 
The authors recognized that to facilitate gastric cancer 
survival TRPM2 functions through JNK-dependent as 
well as mTOR-independent pathways of autophagy 
[25, 109]. Later, Almasi et  al. stated that the efficacy 
of chemotherapy drugs, paclitaxel and doxorubicin, 
is increased by the inhibition of TRPM2 which pro-
poses that inhibition of TRPM2 in combination with 
established chemotherapeutics might be an effective 
approach to treat gastric cancer [109]. In addition, 
the authors stated that there is a correlation with the 
lower overall survival rate of patients particularly in 
late/advanced phases thus demonstrating the prob-
ability of possible function of TRPM2 as a prognos-
tic biomarker for the late phase of gastric cancer [38, 
109]. Likewise, further investigations have reported 
that elevated expression of TRPM5 was related to 
lower survival in patients suffering from gastric can-
cer [110]. However, additional research are required 
to confirm the significance of TRPM2 and TRPM5 

in the survival and clinical outcomes of patients with 
gastric cancer.

TRPM2 in prostate cancer
TRPM2 plays important role in the proliferation of pros-
tate cancer cells [38, 111]. After depletion of TRPM2 
with siRNA, the progress of prostate cancer, without 
non-cancerous cells, was lowered. Within non-cancer-
ous cells, TRPM2 was located in the plasma membrane 
as well as in the cytoplasm, without in the nucleus. 
However, a major quantity of TRPM2 was located in the 
nucleus and the non-nuclear fraction of prostate cancer 
cells. The role of TRPM2 in the nucleus of cancer cells is 
unknown. These outcomes recommend that the reduced 
TRPM2 can be a therapeutic way to regulate prostate 
cancer development.

TRPM2 in leukemia
In Jurkat cells firmly explicitly empty vector or Bcl-
2, TRPM2 inhibition with N-(p- amylcinnamoyl) 
anthranilic acid (ACA) subsequently irradiation reduced 
phosphorylation of CAMKII along with closed radia-
tion-prompted phosphorylation-dependent deactiva-
tion of cdc2 [38, 102]. Altogether ACA and clotrimazole, 
the nonspecific TRPM2 inhibitors, elevated cell death. 
Besides, TRPM2 breakdown considerably reduced the 
number of cells blocked in G2/M and declined via-
bility. This finding proposes that irradiation excites 
 Ca2+  entrance by TRPM2 that is excessive in Bcl-2 up-
regulated T Cell leukemia cells, also donates to deacti-
vation of G2/M cell cycle arrest, cdc2, and cell survival. 
Also, TRPM2 impediment discharge cells from G2/M 
arrest, leading to cell death. Those results recommend 
that the inhibited TRPM2 can be a therapeutic attitude to 
raise sensitivity within T-cell leukemia towards radiation. 
The expression pattern of TRPM2 ion channels in various 
cell lines is shorted in Table 1.

Potential pharmacological inhibitors of TRPM2 
channel
TRPM2 channel is potentially regulated through a vari-
ety of factors, such as  [Ca2+]cyt,  H2O2, cADPR (Cyclic 
adenosine 5′-diphosphate ribose), NAADP (Nicotinic 
acid adenine dinucleotide 2’-phosphate), and extra- 
and intracellular pH of the cells [19, 92]. It has been 
suggested the activation of poly (ADPR) polymer-
ase causes the exposure of TRPM2 channels through 
 H2O2 [12]. Poly (ADPR) polymerase is a universally 
expressed enzyme which catalyzes the break of  NAD+ 
into nicotinamide and ADPR. Besides, TRPM2 action is 
escalated at increased  [Ca2+]i [76]. The range of active 
pharmacological modulators of TRPM2 is limited to 
the TRPM2 channel. Some of the pharmacological 
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inhibitors identified so far are not selective blockers. A 
small amount of TRPM2 channel blockers have been 
recognized along with seemed to be cell-specific. For 
example, N-(p-amylcinnomoyl) anthranilic acid (ACA), 
the IP3R (inositol 1,4,5-trisphosphate receptor) inhibi-
tor 2-aminoethoxydiphenyl borate or PLC inhibitor 
flufenamic acid (FFA) did not block the ADPR-induced 
 Ca2+ influx within hippocampal cells of the rat. How-
ever, ACA and FFA curbed the entrance of  Ca2+ in rat 
preliminary striatal cells [120]. Either ADPR or  H2O2 
can gate the TRPM2 channels in neuronal cells. It sug-
gests that the accurate connection between TRPM2 
channel stimulation as well as cell death now remains 
undetermined [120]. Determination of the ion channel 
structures is important for understanding the mecha-
nisms of gating, ion permeation, and selectivity [99]. 
Proper structural knowledge of the channel can also 
play an important role in the development of selec-
tive inhibitors. Recent studies suggest that flufenamic 
acid [121], clotrimazole, econazole [12], ACA [15, 122], 
2-APB [99], antioxidants, glycohydrolase inhibitors, 
PARP inhibitors, chlorpromazine AMP, 8 Br ADPR can 
act as non-selective inhibitors of TRPM2 channel. It 
has been known that intracellular acidosis may inhibit 
TRPM2 (pKa 6.7) [66, 92, 112, 113]. To know the details 
of the effects of TRPM2 channel inhibitors in mamma-
lian cells, readers are requested to some recent com-
prehensive reviews [66, 123, 124]. Moreover, as CD38 
signals to TRPM2 via ADPR [125] and arouses  Ca2+ 

influx through TRPM2, therefore, another possibility of 
pharmacologic inhibition of TRPM2 is the inhibition of 
receptor-mediated activation of CD38 [25].

Conclusion and future perspectives
A lot of work has been done on the activation of TRPM2 
channels by ROS for different cell types including neu-
ronal cells, liver cells, pancreatic, and cardiac cells. Now 
it is well-known that TRPM2 shows a crucial function in 
 Ca2+ entry into different cell types subjected to ischemic 
reperfusion injury. Inhibitors of  Ca2+ entry through 
TRPM2 have been shown to prevent IR injury in case of 
heart, liver, brain and/or kidney. Because it has been rec-
ognized that ROS-initiated stimulation of TRPM2 takes 
part together with acute and chronic liver injury, con-
siderable additional investigation is required to explain 
the mechanisms engaged as well as the situations under 
which pharmacological hindrance of TRPM2 can be a 
selective clinical approach to diminish ROS-initiated 
liver injury. In the case of cancers, the expression pat-
tern of TRPM2 in various kinds of cancer suggests that 
TRPM2 can stimulate tumor survival. Inhibited TRPM2 
has been known to increase cell death along with aug-
menting sensitivity to chemotherapeutic agents including 
doxorubicin in several malignancies with neuroblastoma 
[71, 98], gastric cancer [109], T cell leukemia [102], tri-
ple-negative breast cancer cell lines [101]. The preva-
lence of statistics in cancer models confirms the idea that 
TRPM2 expression as well as its role has an essential part 
in conserving the viability of cancer cells- which provides 
an important therapeutic opportunity. Further research 
on the roles of TRPM2 channels in cancer and the evalu-
ation of the pharmacological inhibition of TRPM2 in 
cancers may conceivably lead to improved and selective 
treatment regimens in the near future.
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