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Abstract 

In the last few decades, the role of cancer stem cells in initiating tumors, metastasis, invasion, and resistance to 
therapies has been recognized as a potential target for tumor therapy. Understanding the mechanisms by which 
CSCs contribute to cancer progression can help to provide novel therapeutic approaches against solid tumors. In 
this line, the effects of mechanical forces on CSCs such as epithelial‑mesenchymal transition, cellular plasticity, etc., 
the metabolism pathways of CSCs, players of the tumor microenvironment, and their influence on the regulating of 
CSCs can lead to cancer progression. This review focused on some of these mechanisms of CSCs, paving the way for a 
better understanding of their regulatory mechanisms and developing platforms for targeted therapies. While progress 
has been made in research, more studies will be required in the future to explore more aspects of how CSCs contrib‑
ute to cancer progression.
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Introduction
Cancer is still one of the primary reasons of death all 
around the world with several complications such as 
metastasis, heterogeneity in cells, invasion, relapse, and 
therapy resistance [1]. In the last two decades, the dis-
covery of the origin of cancer has led to a better under-
standing of the mechanism of malignancies. In this line, 
the model of cancer stem cells (CSCs) has been widely 
accepted in different malignancies as potential fac-
tors in charge of invasion and therapy resistance [2–5]. 
Despite advances in screening programs and the devel-
opment of new immunotherapy methods, eradication 
or representation of a defined method to identify, rec-
ognize, and isolate the population of turmeric cells has 
not yet succeeded and remains unknown. One of the 
challenges ahead of the eradication of CSCs is reckoned 
to stem from the plasticity and heterogeneity that these 
cells show in the microenvironment of a tumor [6]. This 
plasticity could take root in the metabolism of these 
cells, which has been introduced to be one of the ways 
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through which this fraction of cells could support their 
feature of growth and tumorigenesis [7]. The metabo-
lism of CSCs has received special attention as the key 
to adjusting to the severe condition of the tumor micro-
environment (TME), which contributes to cancer cells 
thriving, expanding, and overcoming immune cells [8]. 
The plasticity and heterogeneity of CSCs in their metabo-
lism pathways could be rooted in different factors. One 
of which is assumed to be the TME consisting of factors 
like tumor-associated macrophages (TAM), cancer-asso-
ciated fibroblasts (CAF), endothelial cells (ECs), immune 
cells and the received signals from the presented cells 
in TME, playing a vital role in influencing and regulat-
ing the population of CSCs and their metabolism repro-
gramming [8, 9]. Therefore, considering the significance 
of TME in the regulation of the metabolism of CSCs, in 
this review, we will focus on the effects of mechanical 
forces on CSCs and the metabolism of CSCs, players of 
the TME and the influence of the TME on regulating the 
metabolism of CSCs.

The origin of cancer stem cells and their contribution 
to cancer progression
Tumor-initiating cells (TICs) also known as CSCs are 
subpopulations of tumor cells that initiate tumors and 
cause relapses. Cells that can self-renew are designated as 
cancer stem cells. These cells divide and give rise to other 
cells that give rise to different kinds of cancer [10–12]. 
CSCs develop from tumor progenitor cells, stem cells, 
or dedifferentiated cells that acquire CSC characteristics 
during tumor initiation. Transformation can occur during 
regeneration and as a result of infections, toxins, radia-
tion, or metabolic influences causing mutations [13]. The 
transformation can also occur as a result of infections, 
toxins, radiation, or metabolic influences. At this time, 
tumor suppressors are inactivated promoting uncon-
trolled growth of the cells [14]. Consequently, stem cells 
acquire stem cell characteristics as a result of de-differ-
entiation. For stem cells to transform, different genomic 
changes are needed that allow them to proliferate in 
uncontrolled, niche-independent ways [15]. It is believed 
that stem cells and their progeny can be transformed 
by only a few genomic changes since stem cells have 
unlimited growth potential. Even differentiated intesti-
nal epithelial cells can become CSCs in mice, according 
to recent studies [16, 17]. The liver has also been shown 
to produce tumors from adult differentiated cells, tissue-
resident stem cells, or their progeny [18, 19]. Only the 
CSC population can initiate tumor growth in tumors 
generated from CSCs, resulting in a unidirectional hier-
archy. To maintain their pool of CSCs, CSCs divide asym-
metrically at tumor initiation. Transient amplifying cells 
are generated from asymmetric divisions and undergo 

symmetric divisions, resulting in high proliferation rates 
[20, 21]. For the first time, the hypothesis of CSCs was 
proved by Lapidot et al. [22], who found out that a rare 
population isolated from myeloid leukemia (AML) can 
initiate tumorigenesis in severe combined immune-
deficient (SCID) mice [22]. This minority subgroup 
whose footsteps have been found in numerous tumors, 
including melanoma [23], breast cancer [24], AML [25], 
gastrointestinal cancer [26], colorectal cancer [27], glio-
blastoma [28], pancreas cancer [29], and lung cancer [30] 
is believed to derive from normal tissue stem cells or the 
dedifferentiation of normal cancer cells. Resistance to 
therapy, recurrence, tumor growth, and metastasis have 
been attributed to the presence of this small fraction of 
the cells in their residence tumor [31, 32]. Properties like 
self-renewal, remaining in the G0 phase, and expression 
of molecules related to the drug efflux transport system 
in CSCs contribute to drug resistance, and the capacity 
to initiate tumorigenesis [28, 33]. Concerning the fact 
that the markers expressed by CSCs are also expressed 
by the other populations of stem cells like adult tissue 
residents and embryonic stem cells that can also vary 
among different tumor types lead to limiting the speci-
fying biomarkers of CSCs [34]. However, over-expression 
of surface markers such as CD133, CD44, epithelial cell 
adhesion molecule (EpCAM, CD326) [35–42], home-
obox protein NANOG, octamer-binding transcription 
factor 4 (OCT4), sex-determining region Y HMG-box 2 
(SOX2) [43] sphere formation [44], aldehyde dehydro-
genases 1A1 (ALDH1A1) activity [45] and ATP-binding 
cassette sub-family G member 2 (ABCG2) [46] have been 
detected and used for isolation of CSCs. It is not surpris-
ing that CSCs take advantage of signaling pathways like 
Wnt/β-catenin, c-MYC, Janus kinase /signal transducer 
and activator of transcription (JAK/STAT), Hedgehog/
Notch, etc. [47, 48] to preserve some of their properties 
like mechanical forces and metabolism shifting and regu-
lation, plasticity, self-renewal, etc. [49]. It is notable that 
metabolism alterations in these cells are closely related 
to the mentioned signaling pathways, which will be dis-
cussed in the next parts.

Metabolism feature of CSCs
To survive in the wide range of micro-environmental 
conditions they experience, CSCs are likely designed 
to obtain energy from various sources, depending on 
the available substrates. There is sufficient support for 
a glucose-based and oxidative-based metabolism [50]. 
Furthermore, CSCs may use different amino acids as 
fuel, such as glutamine and lysine. Acetyl-CoA is gen-
erated from glycolysis, and fatty acid oxidation is cat-
abolized by the tricarboxylic acid cycle (TCA) cycle and 
oxidative phosphorylation (OXPHOS) in normal cells’ 
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mitochondria to make ATP. Through the well-known 
Warburg effect, cancer cells, unlike normal cells, increase 
the glycolytic flux in aerobic conditions [50]. Addition-
ally, the glycolytic degradation of glucose creates the 
building blocks for the biosynthesis of nucleotides and 
amino acids. As a result, the transition from oxidative 
to glycolytic metabolism effectively gives cancer cells 
the ability to endure difficult conditions with low oxy-
gen levels. It causes cancer cells to proliferate, move to 
distant regions, and attack other tissues. It has been 
established that CSCs have a different metabolism from 
non-CSCs, whose phenotype, at least in part, resembles 
that of regular stem cells, which mainly consume glucose. 
The development of pluripotent markers coincides with 
metabolic reprogramming toward glycolysis and indica-
tions of mitochondrial involution in induced pluripotent 
stem cells [51]. However, many studies have suggested 
that secondary pathways such as fatty acid oxidation, 
PPP pathway, and glutaminolysis, as well as mitochon-
dria and OXPHOS, may be essential for CSC metabolism 
[52] (Fig.  1). The uncontrolled expansion of tumor cells 
requires to be supported by increased uptake of nutrients 
[53, 54]. Metabolism adaptation has been introduced as 
one of the ways through which cancer cells get to sup-
ply their energy demands. The difference between nor-
mal cell metabolism and cancer cells metabolism such as 
increased glucose uptake and lactate production in the 
presence of oxygen was first noticed by Otto Warburg 
[55, 56]. The metabolism shifting can be applied to CSCs, 
although in recent experiments, the metabolism of CSCs 
has been the topic of debate, as controversial data on 
whether CSCs mostly rely on glycolysis or mitochondria-
related metabolism have been reported [57].

Glucose is a source of energy for CSCs
The significance of glucose for CSC preservation and 
proliferation in various cancer cells, including the brain, 
lung, breast, liver, osteosarcoma, nasopharyngeal cancer, 
and glioblastoma, has been thoroughly demonstrated 
by numerous studies. Liu et  al. recently showed that a 
subpopulation of cells with stem-like characteristics 
primarily relies on glucose as a fuel source by employ-
ing a panel of cancer cell lines. In addition, glucose was 
able to raise the proportion of cancer stem-like cells, 
which had increased levels of various glycolytic enzymes 
and lactate generation. The number of CSCs was also 
decreased, and their capacity to develop tumors in  vivo 
was interfered with by inhibiting glycolysis [58–62]. 
When the activity of the mitochondrial complex I was 
blocked for the loss of FBP1, an acceleration of gly-
colysis and the acquisition of stem characteristics were 
seen. Additionally, it has been demonstrated that over-
expressing FBP1 reduces the number of cancer cells 

with stem-like features in basal-like breast cancer cells 
and prevents the formation of tumor spheroids in  vivo. 
FBP1 promotes the gluconeogenic pathway while sup-
pressing glycolysis [61, 63]. Further supporting these 
findings, Shen et  al. recently showed that compared to 
CD133-cells, a subgroup of hepatic cancer cells selec-
tively activate aerobic glycolysis and inhibit the gluco-
neogenic pathway. The glycolysis rate and capacity of the 
CSC-like subgroup were increased, and the glycolytic 
enzymes HK2, GLUT1, pyruvate dehydrogenase kinase 
(PDK), and PGAM1 were all upregulated. In contrast, 
the gluconeogenic enzymes PEPCK and G6PC were 
down-regulated [60]. These findings imply that the pri-
mary catabolic pathway of CSCs from various tumor 
types is glycolysis, which inhibits anabolic de novo syn-
thesis. This has also been mentioned in colorectal cancer 
(CRC), where CSCs have recently been found to have an 
odd metabolic signature. They combined high-resolution 
unbiased metabolomics with transcriptome analysis of 
five microarray datasets of  CD133+ and CD133 cell sub-
populations derived from CRC cell lines and patients. 
This made it possible to depict the metabolic activity of 
CSCs, which was characterized by up-regulated fatty acid 
production and down-regulated expression of genes and 
metabolites from the glycolytic pathway and TCA cycle 
[64]. Recently, the metabolic profile of breast cancer cells 
grown as spheroids or in adherent conditions was exam-
ined using high-throughput data from proteome and tar-
geted metabolomics analyses. The enhanced activity of 
the pyruvate kinase M2 isoform, lactate dehydrogenase, 
and glucose 6-phosphate dehydrogenase in cancer stem-
like cells suggests a switch from mitochondrial oxidative 
phosphorylation toward fermentative glycolysis. In Goi-
dts et  al., RNA interference (RNAi) was used to screen 
the entire human kinome and phosphatome to iden-
tify genes and pathways essential for glioblastoma CSC 
survival. They discovered numerous genes involved in 
metabolism, particularly the glycolytic enzymes including 
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 
4 (PFKFB4), pyruvate kinase M2 hypotype (PKM2), and 
PDK-1, which were crucial for maintaining brain CSCs 
[65, 66]. Together, these findings support the unique 
function of glucose as the primary fuel for CSCs, and 
oxidative pathways may be adversely affected by the low 
oxygen availability in the hypoxic CSC niche. In this con-
text, it has been demonstrated that TICs isolated from 
human glioblastoma xenografts use glycolysis to produce 
ATP and prefer low-oxygen environments to maintain 
their stemness characteristics and tumor-forming poten-
tial [67]. Hypoxia’s role in CSC proliferation has been 
thoroughly studied, and it has been linked to glucose 
dependence, especially in the quiescent phenotype of 
CSCs. Mahase and colleagues have explored the potential 
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for various processes, such as CSC proliferation and 
metabolic changes, to explain the resistance to antian-
giogenic medications in the therapeutic management of 
glioblastoma patients. It has been demonstrated that the 
formation of intra-tumor hypoxia following the injec-
tion of antiangiogenic drugs increases the subpopula-
tion of cells with stem characteristics in glioblastoma, 
breast cancer, and lung cancer [68–70]. Hypoxia-induc-
ible factor-1 (HIF-1) enables the transcription of genes 
involved in glucose regulation and ATP synthesis and 

has been related to an increase in the  ALDH+ popula-
tion. Hexokinase-2, the first enzyme in the Embden-
Meyerhoff/glycolytic pathway, is abnormally expressed 
by glioma cells in perinecrotic regions. Its overexpression 
is related to glioblastoma cell proliferation and aerobic 
glycolysis. Additionally, an increase in PDK-1 caused by 
HIF-1α-mediated action prevents pyruvate dehydroge-
nase activity and TCA cycle entry [69–71]. Glycolysis, 
which involves the production of nicotinamide adenine 
dinucleotide (NADH), pyruvate, and two ATP molecules, 

Fig. 1 Metabolic adaptation in CSCs and cancer cells. Even when there is a sufficient supply of oxygen, cancer cells frequently adopt the Warburg 
effect or aerobic glycolysis, relying on glycolysis rather than OXPHOS for ATP production. As a result, the pyruvate is turned into lactate and 
transferred outside of the cell, where it acidifies the tumor microenvironment and creates an immune‑suppressive environment. Additionally, 
glutamine becomes more important to cancer cells for anabolic processes (such as the production of nucleotides and other amino acids) that 
promote cell growth and replenish the TCA cycle. In addition, glutamine plays a crucial role in glutathione production, which is essential for 
chemo‑resistance. In cancer, fatty acid oxidation (FAO) and fatty acid synthesis (FAS) are increased to supplement glycolysis for energy and provide 
the necessary membrane components for accelerated cell development. Furthermore, the composition of their membranes and the signaling that 
promotes proliferation and invasion in cancer cells rely on the production of cholesterol
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seems to be the preferred metabolism pathway by cancer 
cells. Cancer cells change their metabolism pathways to 
glycolysis to maintain abnormal growth, while normal 
cells are more dependent on OXPHOS, ATP, lactate, and 
pyruvate production [72]. The reprogrammed metabo-
lism to glycolysis has been shown to take over in differ-
ent types of CSCs like breast cancer, osteosarcoma [73], 
ovarian CSCs [74], lung and colorectal CSCs [58], hepa-
tocellular carcinoma [75], brain cancer [76]. Similar evi-
dence for metabolism switching to glycolysis has been 
observed in induced pluripotent stem cells (iPS) [77]. 
Glycolysis could guarantee fast proliferation through 
glucose-6-phosphate (G6P) production that can be used 
in the formation of ribose groups and, consequently, the 
synthesis of nucleotides that is necessary for the rapid 
replication of cancer cells [78–80]. Increased expression 
of genes imprinted in glucose-related metabolism genes 
like glucose transporter 1 (GLUT-1), PDK-1, hexokinase 
1 (HK-1), and c-Myc makes up the expansion of the pop-
ulation of CSCs, extends the lifespan of cells and their 
immortalization [77, 81]. Furthermore, the interference 
of oncogene transcription factors, including NANOG, 
OCT4, Wnt, Myc, K-Ras, and HIF-1α in the shift of CSCs 
to glycolysis, could provide beneficial support [82–85], 
which is consistent with the fact that reduction of mito-
chondrial-related metabolism and downregulation mito-
chondrial genes is associated with enhanced expression 
of epithelial-mesenchymal transition (EMT) genes linked 
to stemness [86]. Furthermore, maintaining stemness in 
some cancer types seems to be closely related to reduced 
mitochondrial-dependent metabolism [73, 87, 88]. On 
the other hand, considering the enhanced mitochondrial 
DNA and mature cell gene expression and decreased 
expression of stemness-related genes during differentia-
tion, indicate that CSCs would likely tend to shift glyco-
lysis [89]. Above all, low reactive oxygen species (ROS) 
production, enhanced detoxification system, creation of 
an acidic environment, and escaping the immune system 
cells, which consequently help the invasion and metasta-
sis, are other beneficial effects for CSCs through meta-
bolic reprogramming [90–92].

The OXPHOS phenotype in CSCs
Contrary to the conventional belief that CSCs primarily 
exhibit a glycolytic phenotype, several studies indicate 
that CSCs preferentially utilize mitochondrial respiration 
and oxidative metabolism. Numerous independent 
researchers have presented evidence of decreased glyco-
lytic flow and enhanced mitochondrial-driven ATP gen-
eration. For example, it has been discovered that 
mitochondrial OXPHOS and fatty acid oxidation 
enzymes are up-regulated in CSCs isolated from individ-
uals with ovarian cancer [93]. Consequently, current 

analysis and comparisons of the metabolic characteristics 
of spheroids developed from both ovarian and cervical 
carcinoma cells were completed. Intriguingly, the 
researchers noted that spheroid CSCs had a TCA cycle 
metabolism that is different from non-CSCs. Gao et  al. 
recently FACS sorted CSCs from small cell lung cancer 
cells using a similar experimental strategy to examine 
their metabolic condition. Compared to their non-stem 
counterpart, CSCs were discovered to have a stronger 
dependence on OXPHOS and mitochondrial activity [94, 
95]. It has been shown that CSCs isolated from gliomas 
use less glucose, generates less lactate, and keep their lev-
els of ATP from oxidative phosphorylation high. In 
 CD133+ human glioblastoma cells, there has been a simi-
lar tendency toward using mitochondrial respiration over 
glycolysis, with a mechanism relying on the insulin-like 
growth factor 2 mRNA-binding protein. The researchers 
specifically showed that IMP2, which is involved in con-
trolling oxygen consumption rate (OCR), mitochondrial 
mass, and the expression of various stemness markers, 
including CD133, SOX2, OCT4, and NANOG, is more 
highly expressed in  CD133+ glioblastoma cells. Given 
that IMP2 directly interacts with numerous genes for 
mitochondrial complexes to drive the assembly of com-
plexes I and IV, it is reasonable to suppose that the 
increased IMP2 expression found in glioblastoma CSCs 
may result from the cells’ high need for OXPHOS [96, 
97]. In a mouse model of pancreatic cancer, Viale et  al. 
also examined the population of dormant cells that sur-
vived the deletion of the oncogene RAS. It has been 
established that these inactive cells have stem-like char-
acteristics and depend on mitochondrial activity and oxi-
dative phosphorylation rather than glycolysis and 
glutaminolysis [98]. Notably, the transcription co-activa-
tor peroxisome proliferator-activated receptor gamma, 
co-activator 1 alpha (PPARGC1A, referred to as PGC-1), 
has been linked to the ability of cancer cells to metasta-
size. As demonstrated by employing human invasive 
breast tumor samples, PGC-1 has been clinically shown 
to relate oxygen consumption, OXPHOS, and mitochon-
drial biogenesis with the increased migratory and inva-
sive potential of cancer cells [99]. The upregulation of 
PGC1 has been seen in circulating tumor cells and breast 
CSCs, where its suppression decreases stemness quali-
ties, supporting the involvement of PGC1 in CSC main-
tenance and proliferation via mitochondrial activity. 
These findings suggest that the biology of CSCs depends 
on intact mitochondrial activity and function. Since 
CSCs produce more mitochondrial mass and membrane 
potential, more mitochondria-derived ROS are produced, 
and they consume more oxygen than differentiated cells 
in the tumor bulk; mitochondrial biogenesis is recog-
nized as a crucial characteristic of CSCs in this setting 
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[93, 100–106]. According to a recent study, brain tumor-
initiating cells, which show increased mitochondrial fis-
sion mediated by dynamin-related protein 1, play an 
essential role in mitochondrial dynamics (DRP1). It’s 
remarkable to note that DRP1, which inhibits mitochon-
drial fission by severing the membrane stalk between two 
developing daughter mitochondria, was associated with a 
poor prognosis in glioblastoma, indicating that inhibiting 
mitochondria in BTICs may be a valuable strategy to 
decrease the progression of the disease [107]. Notably, 
the proliferation of stem-like cells in breast epithelium 
has been linked to the appropriate fragmentation and 
segregation of the mitochondrial population and the effi-
cient preservation of the mitochondrial network. It 
should be noted that stem cells asymmetrically divide 
into one daughter cell that keeps stemness characteristics 
and another cell that is subjected to a differentiation pro-
gram to contrast tissue aging and promote regeneration. 
Katajisto et al. showed that stem cells sort mitochondria 
using age by examining the destiny of old and young 
organelles during stem cells’ asymmetrical division in the 
human breast epithelium. In addition, aged mitochondria 
are distributed asymmetrically among daughter cells by 
stem cells, with cells getting younger mitochondria being 
destined to keep stem features. To do this, stem-like cells 
use a highly effective method that includes mitochondrial 
spatial segregation. The loss of stem characteristics in the 
progeny cells may result from disrupting such carefully 
controlled processes during mitochondrial fission [108]. 
Following these findings, it has been shown that activat-
ing many oncogenic pathways, such as MAPK, contrib-
utes to mitochondrial fragmentation, which can be seen 
as an initial stage in reprogramming cells to become 
pluripotent [109]. Similarly, it has been demonstrated 
that c-Myc stimulates mitochondrial fusion in breast 
cancer cells to enhance clonogenic development, a char-
acteristic of cells with stem characteristics. Notably, a 
mitochondrial retrograde signaling pathway has been 
demonstrated to initiate an EMT-like reprogramming, 
leading to altered morphology and increased migratory 
and invasive potential in human mammary epithelial 
cells. Maintaining a healthy mitochondrial population is 
required for maintaining and propagating the stem traits, 
so targeting these organelles in a therapeutic setting may 
represent a valuable strategy to eradicate CSCs. Based on 
these observations, mitochondrial functions and ener-
getic dynamics may be involved in CSC propagation [110, 
111]. On the other hand, mitochondria-dependent 
metabolism and OXPHOS could remain active and a 
source of energy supply in CSCs. Evidence indicated the 
usage of mitochondrial-dependent metabolism, 
increased mitochondrial ROS, and mass oxygen con-
sumption in CSCs in Lung cancer [112], glioblastoma 

[97], Papillary Thyroid Carcinoma [113], Leukemia [114], 
ovarian cancer [115], and breast cancer [116]. It seems 
that the required ATP from OXPHOS plays an essential 
role in the metastatic and invasive properties of CSCs, 
which implies the possible role of mitochondria in CSCs 
[117, 118]. Additionally, ROS generation, which is medi-
ated by mitochondrial metabolism, could take part in the 
progression of tumor and malignancy transformation 
[119]. Moreover, the increased mitochondrial mass has 
been located in invasive CSCs linked to chemotherapy 
resistance [120]. The activation of peroxisome prolifera-
tor-activated receptor-gamma co-activator one alpha 
(PGC1α), whose overexpression has been found in tur-
meric cells and the reduced stemness of breast CSCs is 
associated with the inhibition of this factor, seems to take 
a role in high mitochondrial metabolism in cancer cells 
[99, 121, 122]. The vulnerability of CSCs to treatment 
with inhibitors of OXPHOS has been illustrated in differ-
ent studies, so far the repression of self-renewal and 
stemness properties and substantial temporary tumor 
growth/formation was observed during treatment with 
metformin as an inhibitor of the OXPHOS complex I 
[103, 123–125]. Therefore, mitochondrial metabolism 
can be a target to eliminate CSCs. There is raising evi-
dence that not only CSCs take a balance between glycoly-
sis and OXPHOS to make use of both of them, but also 
glutamine and lipid metabolism are intertwined in the 
metabolism of these cells. Glutamine takes part in the 
preparation of elements like amino-nitrogen and carbon, 
which are subsequently used in nucleotide, amino acid, 
and lipid production during the shortage of glucose to 
provide the energy needed for CSCs [126–128]. Further-
more, the role of lipids in the construction of cell mem-
branes, energy consumption, and signaling transduction 
modifiers should be considered as a part of CSCs metab-
olism [129, 130]. Accumulation of unsaturated lipids like 
monounsaturated FAs (MUFAs) in CSCs has been con-
firmed by several studies. Stimulation of pathways 
involved in stemness was mediated by the enzyme 
stearoyl-CoA desaturase implicated in lipid desaturation. 
De novo through FA synthase also helps the survival and 
preservation of the properties of CSCs and is counted as 
a curial factor for recurrence and metastasis of the tumor 
[131–133]. In a recent study, it has been demonstrated 
that tyrosine kinase inhibitor (TKI) resistance in non-
small cell lung cancer (NSCLC) could be caused by 
mutated epidermal growth factor receptor (EGFR) which 
uses the regulation of the fatty acid synthase (FASN) to 
induce TKI [134]. Taken together, it seems this capacity 
of switching between different metabolism statuses 
depending on the needs has made CSCs a challenging 
target to study, in light of the hypothesis of the plasticity 
of these cells.
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Other metabolic sources for CSCs
The metabolic examination of  CD133+/CD49f+ cells 
selected from hepatocellular carcinoma (HCC) revealed 
that liver-derived CSCs utilize fatty acid oxidation. In 
 CD133+ cells isolated from CRC patients, there was an 
increase in lipid content and Wnt/B-catenin activity. In 
CSCs isolated from ovarian cancer patients, fatty acid 
oxidation-related genes were up-regulated. Etomoxir, a 
carnitine palmitoyltransferase-1 inhibitor, has also been 
demonstrated to limit spheroid formation in breast can-
cer in  vitro and reduce tumor growth in  vivo by block-
ing fatty acid oxidation [93, 135–137]. On the other 
hand, the expression of CSC markers and the efficiency 
of sphere formation have been demonstrated to decrease 
when fatty acid synthesis is inhibited by Soraphen A, 
cerulenin, and resveratrol [138–140]. However, more 
research is necessary to fully understand the function of 
lipid metabolism in CSC biology, especially in response 
to unique alterations in the tumor microenvironment. 
In contrast to glycolysis and OXPHOS, CSCs have been 
demonstrated to increase the PPP, especially during 
hypoxia and reoxygenation. Furthermore, rapid oxygena-
tion increases the production of essential PPP enzymes, 
while hypoxia decreases it and causes the expression of 
glycolytic genes. This relationship between the activation 
of glycolysis and the PPP pathway in a microenvironment 
with various oxygen saturations may be due to cell migra-
tion being driven by glycolysis in hypoxia and cell prolif-
eration being mediated by PPP in acute oxygenation. The 
function glutamine metabolism plays in CSCs from vari-
ous malignancies, such as ovarian, pancreatic, and lung 
cancer, is notable [94, 141, 142]. In c-Myc-overexpressing 
cells, glutamine metabolism appears crucial, indicating 
that a pluripotency gene profile favors glutamine depend-
ency. It has been demonstrated that inhibiting glutamine 
availability decreases the stemness gene signature and 
makes pancreatic CSCs more susceptible to radiation 
therapy in vitro and in vivo. In line with these findings, a 
related study using a mouse model of systemic metastasis 
revealed that blocking glucose metabolism with the glu-
tamine analog L-DON can prevent the spread of meta-
static disease to the liver, lung, and kidney [142–144]. 
The tumor microenvironment plays an important role in 
the progression of all types of cancer through the stages 
of sub-invasion and metastatic spread. Several studies 
have investigated the relationship between hyaluronic 
acid (HA) receptors and cancer cells. HA is a key extra-
cellular component that helps control and regulates cell 
adhesion, migration, and invasive proliferation. CD44 
is a major cell surface receptor for hyaluronic acid, a 
major component of extracellular matrices. Interactions 
of HA with its binding proteins CD44 are important in 
promoting tumor progression [145]. Many cancer cells 

are known to overexpress HA receptors such as CD44. 
After uptake by cancer cells, HA is broken down into low 
molecular weight components by hyaluronidase through 
CD44 receptor-mediated endocytosis. CD44 receptor 
overexpression was shown in various cancer cells, includ-
ing colon, ovarian, breast and squamous cell carcinoma 
[146]. High levels of CD44 mRNA and protein expression 
levels in breast cancer are associated with significantly 
worse overall survival [147]. Many studies in recent years 
have identified the role of CD44 in a subpopulation of 
tumor cells with self-renewal capacity, the so-called 
CSCs [146]. A number of clinical studies have shown 
an association between CD44v6 expression and tumor 
progression in various tumor types. Günthert et  al. 
[148] showed a significant correlation between CD44v6 
expression and lymph node metastasis, lymphatic inva-
sion when they transfected CD44 or CD44v6 expressing 
plasmids into non-metastatic rat pancreatic cancer cells. 
In addition, Wang et  al. indicated a significant correla-
tion between CD44 expression and stage, tumor size, and 
lymph node metastasis of gastric cancer. CD44v6 was 
related with lymph node metastasis, lymphatic invasion, 
and venous invasion [149]. Furthermore, various studies 
showed that increased expression of CD44 or CD44v6 
was found in gastrointestinal tumors and was associated 
with tumor invasion, lymph node metastasis, and patient 
survival [149]. Wu et  al. investigated the biological role 
and regulation of HA and its receptors in human gastro-
intestinal cancers. In their study a correlation between 
HA accumulation and tumor progression has been dem-
onstrated in various gastrointestinal cancers. HA and 
HA fragment-tumor cell interactions can activate down-
stream signaling pathways, increase cell proliferation, 
adhesion, migration and invasion [150]. In another study, 
Li et  al. carried out a study on the expression of hyalu-
ronan receptors CD44 in stomach cancers. The results 
of their study shown that among CD44 isoforms, v6 is 
more related to malignant transformation of gastric epi-
thelium. Expression of receptor for hyaluronan-mediated 
motility (RHAMM), especially the cell surface variants, is 
closely correlated with tumor progression (P-value < 0.01) 
[145]. The CD44 expression may be mutually beneficial 
for gastric cancer cell invasion and metastasis. The roles 
of hyaluronic acid, hyaluronidases and HA receptors in 
cancer biology is complex and mediated by HA receptors 
expressed in cancer cells. Hence, HA was proposed as a 
drug carrier or for designing nanoparticles or liposomes 
for biocompatibility, biodegradability and based on the 
ability of CD44 to internalize HA [151]. Degradation of 
HA across a wide range of molecular sizes is stimulated 
by tissue ROS and Hyals that are found abundantly in 
tumor microenvironments. In particular, overexpression 
of Hyal-1 and Hyal-2 during cancer metastasis has been 
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reported in many in vitro and in vivo studies, and it has 
recently been suggested that HA fragments promote can-
cer progression through Hippo-Yap signaling. However, 
the role of Hayl-3 in cancer progression is controversial 
as some studies have shown inhibition of tumor growth, 
while others have reported increased levels of the mol-
ecule in some solid tumors [151]. Clinicopathological 
analyzes show a strong correlation between increased 
expression of HA and Hyaluronan Synthase 2 and 
decreased expression of Hyal1 in tumor cells and poor 
survival in pancreatic ductal adenocarcinoma patients. 
Serum HA is known as a biomarker for liver fibrosis and 
cirrhosis, and its concentration is easy to determine clini-
cally. However, little is known about the prognostic value 
of serum HA levels in patients with hepatocellular carci-
noma [150]. Mima et al. reported that high preoperative 
serum HA levels (100 ng/ml or higher) in hepatocellular 
carcinoma patients independently predicted poor prog-
nosis after hepatectomy [152]. The results obtained from 
these studies confirmed the results of the present study.

The effects of mechanical forces on CSCs
Carcinogenesis is related to interactions between tumor 
cells and mechanical stress in the TME. High mechanical 
stress in tumors can change a cancer cell’s metabolism, 
behavior, and capacity to create cancer stem-like prop-
erties, accelerate the growth of the primary tumor, and 
encourage metastasis [153]. Mechanotransduction trans-
forms mechanical signals into biochemical signals that 
activate the signaling pathways associated with tumori-
genesis [153]. Moreover, Biomechanical signaling in TME 
has an important effect on stemness fate of cancer cells 
and CSC differentiation. Matrix stiffness and fluid shear 
stress are two examples of the most important mechani-
cal forces that cause differentiation, migration, invasion, 
proliferation, EMT and so on by inducing different sign-
aling pathways. According to studies, the extracellular 
matrix (ECM) in TME has more stiffness than normal tis-
sues. This is due to the fact that cancer cells have a great 
growth power and more cells are accommodated in the 
limited environment, and also extracellular components 
such as collagen and proteoglycans are overexpressed in 
this space [154, 155]. Many studies have investigated the 
effects of stiffness of ECM on the stemness of cancer cells. 
For example You et al. [156] found that stiff ECM in HCC 
causes the transmission of mechanical signaling through 
integrin β1 molecule into the cell. The family of integ-
rins are converters of environmental mechanical forces 
into chemical signaling [156]. Sensing the stiffness of the 
environment by integrin β1 activates the AKT/ mamma-
lian target of rapamycin (mTOR)/SOX2 signaling path-
way [156]. SOX2 is a factor that maintains cell stemness 
and causes the expression of stem cell characteristics 

factors such as CD133 and EpCAM [156]. FAK is another 
membrane signaling factor that is activated by integ-
rin β1. FAK usually activates many signaling pathways 
including phosphoinositide 3-kinases (PI3K), mitogen-
activated protein kinase (MAPK)/extracellular signal-
regulated kinase (ERK) and cyclin D (Fig. 2). It has also 
been proven that the stemness of the CSCs and the ini-
tiation of cancer cells through the maintenance of CSCs 
can be strengthened by this factor [157, 158]. To that 
end, ECM stiffness has a very special role in tumorigen-
esis and stemness of cancer cells, therefore, agents have 
been used to disrupt tumor ECM in several studies [159]. 
Hsp47 is a chaperone in the ECM space that helps col-
lagen folding, secretion, and assembly and can be a good 
target for disrupting tumor ECM [159]. Substances such 
as transforming growth factor beta (TGF-β) inhibitor 
(TGF-β induces expression of Hsp47), AK778, Col003, 
and methyl 6-chloro-2-oxo-2,3-dihydro-1,2lambda ~ 4 ~ , 
3-benzothiazole-4-carboxylate are among these agents 
that inhibit Hsp47 activity [159]. TME is a hypoxic space 
and many tumorigenic factors are secreted by tumor cells 
in this environment, and as a result, a wide capillary net-
work is formed in TME. However, this capillary network 
does not have appreciable efficiency and high permeabil-
ity and there is a high interstitial fluid pressure in TME. 
In addition, another result of these events is a relatively 
extensive lymphatic system in the TME. The presence of 
IFP and the lymphatic system creates a weak mechanical 
force called fluid shear stress (FSS) [154]. Although the 
flow of this liquid and the strength of this force is weak, 
it has an important effect on the biological fate of CSCs. 
For example, FSS causes the differentiation of CSCs in 
lung cancer following the activation of the Wnt/β-catenin 
signaling pathway [160]. In addition, according to U. Tri-
antafilluet al’s research, FSS increases CSC in breast can-
cer [161] (Fig. 2).

Epithelial‑mesenchymal transition
Initial steps of metastasis of turmeric cells begin with 
EMT and involve epithelial cells losing their identity, 
changing morphologically and acquiring mesenchymal 
cell properties [162, 163]. This hijacked process by can-
cer cells is initially used for homeostasis, development 
of organs and tissue healing and consists of a series of 
transcriptional changes. Some of the involved factors 
in this process are HIF-1α, Twist-related protein 1/2, 
distal-less homeobox 2 (Dlx-2), Snail, zinc finger E-box-
binding homeobox (ZEB) 1/2, and Slug [163–166]. The 
EMT, as the center of tumor malignancy, is closely cor-
related to CSCs [29, 167, 168], because it seems that at 
the base of CSCs generation, the EMT mechanism is 
involved and is linked with decreased mitochondrial 
activity and enhanced glycolysis [164, 169]. Moreover, 
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signaling pathways imprinted in EMT like Wnt/β-catenin 
are also involved in the stimulation of stem-ness features 
and acquisition of CSCs [170]. More interestingly, regula-
tion of metabolic adaptation can occur with the help of 
molecules involved in EMT like Wnt and AKT, STAT3, 
Snail, HIF-1α, TGF-β, and Dlx-2 (Fig.  3) [63, 171–176]. 
Snail has been reported to be involved in the repression 
of mitochondria and supporting glycolytic metabolism 
[171, 174]. In EMT-derived cancer cells, STAT3 could 

promote glycolysis through positive regulation of trans-
porters linked to anaerobic glycolysis [177]. Dlx-2, whose 
expression relies on the metabolic stress induced by ROS 
through the expression of SNAIL, contributes to the 
glycolytic switch and inhibition of mitochondrial activ-
ity mediated by TGF-β/Wnt signaling pathway [171]. 
By promoting EMT in breast cancer, overexpression of 
SNAIL could cause the resistance of breast cancer cells 
to the lysis induced by  CD8+ T cells [178]. Additionally, 

Fig. 2 The illustration indicates interactions between CSCs and their environment: mechanical and chemical forces have their roles in this 
environment. For instance, inflammatory factors cause evaluation of STAT3, NF‑κB, and AP‑1 that result in stemness of CSCs. Sometimes, some 
changes in CSCs cause alterations in ECM that have indirect effects on CSCs like lactate emission from CSCs to ECM decreases environmental PH 
and then increases HIF‑1α that results in elevation of urokinase‑type plasminogen, cathepsins, and MMPs. Elevation of these substances causes 
degradation of the niche ( that is considered a mechanical change itself ). On the other hand, CXCR4/CXCL12 axis triggers the PI3K/ AKT signaling 
pathway that evaluates EGF level in CSCs that binds to VEGFR and causes differentiation of CSCs to endothelial cells. Moreover, CXCR4/CXCL12 axis 
increases the MMPs level, which is an ECM remodeling factor in its own way. Mechanical forces (or signalings) from ECM are felt by integrin‑β1 that 
starts FAK (maintenance of CSCs) and AKT/mTOR/SOX2 (expression of stemness markers such as CD133 and EpAM) signaling pathways
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negative regulation of mitochondrial function induced 
by HIF-1α by promoting the activity of PDK has made 
this factor one of the central regulators of the glycolytic 
switch [173, 179].

Cellular plasticity
As one of the complications ahead of tumor therapy, tur-
meric cells’ plasticity is defined as their ability to swing 
between asymmetric division and symmetric division, 
CSCs and non-CSCs, quiescence, and proliferation [180, 
181]. The dynamic conversion property of CSCs has been 
attributed to the emergence of drug resistance [182, 183]. 
Plasticity can make the heterogeneity of tumor worse and 
eradication of tumors more complicated as CSCs can 
convert from quiescence to proliferative or vice versa, 
making it possible for the recurrence of cancer years 
after chemotherapy [184]. The network between CSCs, 
surrounding cells, the niche of CSCs, and four intrin-
sic factors play a vital role in the regulation of plasticity 
by providing the agents and necessary signals in a wide 

range of forms [185, 186]. 1) The acidic microenviron-
ment of a tumor contributes to the reprogramming of 
non-CSCs and their dedifferentiation of them [187]. 2) 
The inflammatory microenvironment could promote the 
recruitment of inflammatory cells and the release of fac-
tors that favor CSCs resulting in the activation of sign-
aling pathways like Wnt, imprinted in de-differentiation 
[188–190]. 3) Metabolic adjusting, which was discussed 
in the previous section, is one of the central regulators of 
plasticity as a regulator of conversion from glycolysis to 
OXPHOS or vice versa [103]. 4) Hypoxic conditions of 
TME can also promote the induction of treatment resist-
ance in CSCs and stemness [191].

CSCs and tumor angiogenesis
Angiogenesis has been recognized to be vital for tumor 
growth, metastasis, and migration. Vascularization can 
happen in different ways in the tumor, such as sprout-
ing angiogenesis, recruitment of endothelial progenitor 
cells, intussuscepted angiogenesis, vascular mimicry, and 

Fig. 3 At the base of CSCs production, the EMT mechanism is involved and is associated with a decrease in mitochondrial activity and an increase 
in glycolysis. Signaling pathways implicated in EMT, such as Wnt/β‑catenin, are also involved in the stimulation of stemness characteristics and 
the acquisition of CSCs. Regulation of metabolic adaptation can occur with the help of molecules involved in EMT such as Wnt and AKT, STAT3, 
Snail, HIF‑1α, TGF‑β, and Dlx‑2. Cancer‑associated fibroblasts (CAFs) induce tumor remodeling through the release of factors such as matrix 
metalloproteinases (MMPs) and enzymes, and angiogenesis that summons other inhibitory cells, growth, and metastasis. Lactate released by CAFs 
following glycolytic metabolism in these cells is taken up and used by CSCs such as epithelial cells to supply the TCA cycle, which in turn promotes 
processes such as metastasis, self‑renewal, and invasion of MSCs provide
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trans-differentiation of CSCs [192]. CSCs, besides their 
capability to differentiate to ECs, by secretion of fac-
tors such as VEGF, HIF-1α, and CXCL12, can promote 
the recruitment and migration of ECs and mesenchymal 
stem cells (MSC) to the niche of tumor and differen-
tiation of them into ECs [193–195]. In this regard, high 
expression of MMP-2 and MMP-9 by CSCs contributes 
to the initiation of Extracellular matrix (ECM) remod-
eling. Moreover, the over-expression of VEGF receptors 
in these cells compared to their partners in angiogen-
esis is notable (Fig. 3) [196, 197]. On the other hand, the 
autocrine secretion of VEGF can be stimulated by high 
expression of CXCR4 and its ligand and activation of the 
downstream pathway through the PI3K/AKT signaling 
pathway, which eventually influences the expansion of 
CSCs via stimulation of stimulating neuropilin-1 [197, 
198]. Finally, the transformation of ECs to endothelial 
progenitor cells seems to be promoted by the expression 
of Notch and vascular–endothelial cadherin (VE-Cad-
herin) involved in this process [196, 199–201].

CSCs and tumor invasion
Invasion is considered the first step of metastasis and 
migration to nearby or faraway organs. This process 
involves a cascade of steps that enables cells to pass 
through the tissue structures and vessel walls. Different 
models of migration are used in different malignancies 
such as amoeboid migration, mesenchymal migration, 
and collective cell migration [202]. The invasion begins 
with the loss of cell–cell adhesion mediated by the loss 
of specific proteins involved in adhesion, which also 
influences cell–matrix adhesion. Moreover, the ability 
to change and deregulate the surrounding extracellu-
lar matrix via matrix metalloproteinase is the next vital 
step to migration. In the next levels, named intravasation 
and extravasation, cancer cells pave the way to enter the 
blood vessels or lymphatic system, and after exiting the 
circulatory system, inhabit organ parenchyma and start 
colonization [203]. The release of TGF-β to support the 
cellular invasion and metastasis by CSCs is another way 
through which CSCs promote invasion [204–206]. Fur-
thermore, the premetastatic niche (PMN) is the other 
part where CSCs could function as metastasis play-
ers. TGF-β and VEGF, which can be released by CSCs, 
enhance vasculature permeability, CCL-9, and inflamma-
tory agent secretion and enhance the utilization of bone 
marrow-derived cells (BMDCs) [207–210]. CXCL-12, 
which plays an essential role in metastasis, angiogenesis, 
and MMP expression and protects its activity in TME, is 
also expressed in CSCs [211, 212]. Aerobic metabolism of 
glucose by cancer cells in TME results in the formation of 
lactate, which is lethal to normal cells, while cancer cells, 
through the expression of MCTs transporters, transfer 

this substance to their niche, leading to decreased pH of 
TME [79]. The acidity of the environment provided by 
lactate, which itself can stimulate HIF-1α, is the favorite 
factor of MMP, cathepsins B, L, D, and urokinase-type 
plasminogen activators to function better and facilitate 
the degradation of the surrounding niche [213–216]. 
More interestingly, phosphoglucose isomerase (PGI), as 
one of the enzymes involved in glycolysis, has been noted 
to act as an autocrine motility factor (AMF) with an 
anti-apoptotic effect. PGI is used for enhancing metas-
tasis, invasion, and cellular migration through different 
mechanisms like upregulation IL-8 secretion, which is 
imprinted in migration, induction of EMT by promot-
ing the expression of mesenchymal markers expression 
in epithelial cells and halting expression of epithelial 
markers [217–220]. PGI has been observed to be capa-
ble of inducing self-renewal properties and promoting 
tumorigenesis in glioma CSCs [221]. PKM2 as one of 
the other vital enzymes in glycolysis, has been correlated 
with the decrease of E-cadherin and promoting the sign-
aling pathway of EGFR and, as a result, cellular migra-
tion [222]. Additionally, this enzyme has been observed 
to be able to promote the induction of cancer stem-like 
cells [223]. Lactate dehydrogenase A (LDHA), as the key 
element of converting pyruvate to lactate, overexpressed 
in tumor cells could also contribute to the regulation of 
TGF-β and the rise of MMP-2 in glioma cells [224]. In 
addition, in another study, breast cancer stem-like prop-
erties were generated via an LDHA-dependent way [225]. 
Taken together, it is reckoned that CSCs and cancer cells’ 
metabolism at the time of hypoxia, which mostly turns to 
aerobic glycolysis, and acidification facilitate the initia-
tion of invasion and migration to other niches.

CSCs and tumor microenvironment
The behavior of turmeric cells, including CSCs, is highly 
defined by the presence of heterogenic cell types, blood 
vessels, lymph vessels, ECM, and signals received from 
the microenvironment surrounding them. The tumor 
niche can be responsible for the creation of a web that 
defines the response of the immune system, induction of 
CAFs, MSCs, ECs, ECM, and soluble factors [226]. ECM 
with a unique composition contributes to impacting the 
signaling, cellular movements, invasion, and angiogenesis 
[227, 228]. Not only ECM acts as a blocking wall-facing 
agent used in chemotherapy and radiotherapy, but it also 
participates in the creation of hypoxia [229, 230]. Growth 
factors and other soluble agents existing in TGF-ß, inter-
leukin-6, fibroblast growth factor (FGF), and hepato-
cyte growth factor (HGF). In addition, the protection 
of tumor growth and induction of resistance to thera-
pies [231]. Some of the critical cell types present in the 
tumor microenvironment are Immune cells like TAM, 
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natural killer (NK) and dendritic cells (DCs), T lympho-
cytes and B lymphocytes, and Myeloid-derived suppres-
sor cells (MDSC), fibroblast cells, which could form a 
network to benefit the tumor cells or fight against them 
[232]. More importantly, the dominant condition of TME 
could also define invasion and progression. Inflamma-
tion and hypoxia are two vital situations needed for the 
growth of the tumor [233]. The mutation rate needed for 
the initiation of a tumor and the proliferation rate can be 
accelerated in an inflammatory environment [234, 235]. 
The production of ROS, produced by the inflammatory 
immune cells recruited to the location of inflamma-
tion, contributes to DNA damage, which could also lead 
to the arrest of the mismatch repair system [236]. The 
cytokines, chemokines, and growth factors released in 
the process of inflammation contribute to the activation 
of transcription factors like STAT3, nuclear factor-kappa 
B (NF-κB), and AP-1 imprinted in cellular proliferation 
and the induction of reprogramming needed to gain 
stemness and self-renewal properties [237] suggest-
ing that there must be a link between the CSCs and 
chronic inflammation. IL-6, as one of the factors mostly 
found during the incidence of inflammation, is vital for 
the survival of CSCs, as the exposed cells to this factor 
gained an increased capacity for invasion and resistance 
[238]. More interestingly, it seems that CSCs tend to 
firm their own niche in different ways [239]. This cross-
talk between CSCs and TME through the metabolites, 
exosomes, cytokines, growth factors, and chemokines, 
including vascular endothelial growth factor (VEGF), 
HIF-1, matrix metalloproteinases (MMPs), CCL5, CCL2, 
TGF-β, IL-1β, IL-8, and IL-6 [240–245] can be the defin-
ing factor in the regulation of the processes such as 
metastasis, angiogenesis, immune escape and drug resist-
ance [246].

TME contributes to CSCs metabolism
The surrounding niche of CSCs is one of the defining 
factors that could explain the plasticity of these cells’ 
metabolism. Factors like CAF, endothelial cells, inflam-
matory agents, the presence of immunomodulatory 
cells, and conditions like inflammation and hypoxia 
could be considered as determining factors in the meta-
bolic switch in CSCs [57, 247]. For example, activation 
of NF-κB causes to release inflammatory cytokines like 
IL-1β, IL-6, and IL-8 can promote the recruit of AKT and 
PI3K and subsequently contributes to the self-renewal 
property of CSCs [248–251]. A high rate of ketone bod-
ies and lactate, which represent the usage of glycolysis 
and ketogenesis in TME, in the companionship of factors 
like TGF-β and HIF-1α, could contribute to the induc-
tion or preservation of stemness in CSCs [252–255]. In 
the following parts, the role of each of the mentioned 

factors will be discussed. Simultaneous high-speed pro-
liferation and lack of enough blood vessels put most solid 
tumors in a hypoxia condition [256], resulting in the 
induction of HIF. The hypoxic condition of the tumor 
can be responsible for the alteration in TME like EMT, 
suppression of apoptosis, metabolic changes, invasion of 
the tumor, infiltration of modulatory cells, and produc-
tion of modulatory agents, and neovascularization [257–
259]. In addition, to the fact that hypoxia can support 
stemness and undifferentiated properties. The potential 
to enhance glucose transporters on the surface, and shift 
to glycolysis, facing the lack of nutrients and hypoxia, 
represents the high adaptability of these groups of cells 
[260, 261]. Moreover, in a study, an ensconced number 
of breast CSCs as a consequence of the production of 
HIF-1α and activation of AKT/β-catenin was observed 
after the generation of intratumoral hypoxia with the 
help of anti-angiogenic agents [262, 263]. Not surpris-
ing that in xenograft models of breast cancer, inhibition 
of HIF-1α was accompanied by a decreased population of 
breast CSCs [264–266]. In NSCLC, hypoxia also resulted 
in gefitinib-Resistant Lung CSCs enrichment, and the 
expansion of this population was mediated by insulin-like 
growth Factor 1 Receptor (IGF1) [267]. In glioma stem 
cells, enhanced activity of this population was observed 
under hypoxic conditions; additionally, suppression of 
HIF-1α and HIF-2α by shRNA caused a decline in the 
activity of CSCs [268]. Moreover, enhancement of stem-
ness property in glioma and leukemia CSCs because of 
HIF-1α activation has been reported [269, 270]. Finally, 
the formation of CSCs seems to be under the influence of 
HIF-2α, which can stimulate the activation of c-Myc by 
controlling the expression of OCT-4 [271].

CSCs and CAFs
as the first assistance of CSCs which can be trained and 
reprogrammed to obtain a protumorigenic character, in 
the companionship of other suppressor cells by secreting 
growth FGF, HGF, and CXCL12, accelerating the tumor 
As the predominant population in solid tumors, fibro-
blast cells, named CAF are recruited during the heal-
ing process after a sustained inflammation. These cells 
are considered growth and metastasis via induction of 
tumor remodeling via the release of factors like MMPs, 
enzymes, and angiogenesis summoning other inhibi-
tory cells [226, 272, 273]. Moreover, the protection fence 
provided by these cells could facilitate the therapy resist-
ance and recruitment of immune cells to secret inflam-
matory factors, which makes the environment ready 
for tumor progression besides suppressing activated 
lymphocytes [272, 274, 275]. Moreover, supporting the 
invasive phenotype of CSCs by  CD90+ CAFs has been 
observed following the habitation of  CD44+  CD90+ CSCs 
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at periphery sites of breast tumors, where they were in 
direct contact with CAFs [276]. In addition, their role 
in the regulation of CSCs metabolism has been noticed. 
Reprogrammed and dependent CAFs on aerobic gly-
colysis can also gain energy from autophagy to fuel the 
processes such as migration, proliferation, and cytokine 
secretion [277–279]. In this line, the usage of autophagy 
in CAFs could provide the demands of pancreatic ductal 
adenocarcinoma [280]. In breast cancer cells, enhanced 
expression of cell membrane-bound GLUT-1 transporter 
increasing the uptake of glucose is promoted by the 
secretion of cytokines by CAFs [281]. The usage of glu-
tamine in CAFs, which consequently supports the tum-
origenicity and microenvironment of CSCs, is a perfect 
target to stop the development of ovarian tumors [282]. 
Moreover, metabolic reprogrammed CAFs in NSCLC 
was correlated with a rise in the glycolytic metabolism of 
tumor [283]. Alternatively, in some experiments, it has 
been revealed that the metabolites produced in CAFs 
during a phenomenon called "reverse Warburg Effect" 
can be consumed by the CAFs surrounding cells, lead-
ing to enhanced tumorigenicity [284]. Moreover, the 
transference of mitochondrial DNA via exosomes from 
CAFs to breast CSCs promotes OXPHOS and possible 
therapy resistance in an OXPHOS-dependent manner 
[285], which provides evidence that CSCs show plastic-
ity in their metabolism. Lactate released by CAFs, fol-
lowing the glycolysis metabolism in these cells seems to 
be absorbed and used by epithelial CSC-like cells to fuel 
the TCA cycle, which in return fuels processes such as 
metastasis, self-renewal, and invasion in CSCs [286].

CSCs and ECs
ECs are one of the vital parts of TME that orchestrate 
with other cells to provide tumor progression, which can 
be recruited to the niche of the tumor upon the section 
of VEGF, HIF-1, and SDF-1/CXCL12 by CSCs to initiate 
the process of angiogenesis [24, 287, 288]. Co-culturing 
CSCs and ECs have revealed that ECs play an essential 
role in supplying the factors required for the mainte-
nance of self-renewal and stem-ness in CSCs [289]. In 
glioma and colorectal cancer, robust self-renewal and 
stemness of CSCs through the Notch signaling path-
way was attributed to the presence of ECs [290, 291]. In 
breast cancer, the activation of NF-κB in CSCs, which led 
to the secretion of S100A8/9 and establishment of resist-
ance to doxorubicin and cyclophosphamide, was a result 
of the production of TNF-α by ECs [292]. Activation 
of STAT3 by the IL-6 secreted in head and neck squa-
mous cancer cells in tumor-associated endothelial cells 
has nominated this factor to be a part of CSCs and ECs 
network, considering the role of IL-6 in the induction of 
glycolytic pathway, as a glycolytic phenotype in ECs cells 

[293, 294]. Studies have introduced glycolysis as the pri-
mary source of energy in ECs, and PFKFB3 knockdown 
in ECs, resulting in sabotaging the glycolytic pathway, has 
caused a reduction in angiogenesis [293]. Cancer-associ-
ated endothelial cells (CAEC), under the influence of the 
accumulated lactate in TME, which results in enhanced 
IL-8/CXCL-8 signals, can support angiogenesis [294]. 
Although aerobic glycolysis has been recognized as the 
favorite source of energy in ECs [295], stimulation of 
signaling pathways imprinted in preserving the prevas-
cular niche has been correlated with mitochondrial activ-
ity in ECs. As one of the crucial factors in angiogenesis, 
VEGF has indicated the capacity to promote mitochon-
drial metabolism in ECs, which could respond to the 
expansion of CSCs [278, 296, 297].

CSCs and Immunomodulation
Low concentration of nutrients plus high speed 
expanding cancer cells starving for glucose and the 
mass of metabolites left from turmeric cells metabo-
lism make TME like a barrier that stops immune cells 
from getting fully functional. In particular, low levels 
of oxygen or hypoxia could lead to enhanced pyruvate 
dehydrogenase kinase and lactate dehydrogenase A 
expression, which subsequently sabotage mitochondrial 
respiration and ROS production and shut down the 
conversion of pyruvate to lactate, respectively. Depriva-
tion of glucose seems to cause a reduction in aerobic 
glycolysis and the regulation of NFAT signaling, which 
influences and halts the functions of T cells [298]. Lac-
tate besides protons  (H+), which are transported to 
the niche of turmeric cells, are among the most abun-
dant metabolites released by these cells [299–301]. The 
accumulated lactate leads to low pH in the TME or 
acidification, which limits the activity of immune cells 
by suppressing the activation of NK cells and confin-
ing the production of IFN-γ, and induction of apoptosis 
in T and NK cells [298, 302, 303]. On innate immunity 
cells, like DC cells, remaining in the tolerogenic state, 
decreased expression of CD1, the release of IL-12 and 
enhanced secretion of IL-10, and diminished migra-
tion ability [304, 305]. Moreover, reprogramming of 
DCs mediated by TME could result in the formation 
of regDCs, capable of sabotaging antitumor activity 
and facilitating lung tumor invasion [306]. Concern-
ing macrophage responses, there is some debate on the 
activity and properties of these cells in a lactic environ-
ment and polarization towards the M2 phenotype by 
stabilizing HIF-1α [307]. By stimulation of STAT3, M2 
macrophages, which in a tumor are named tumor-asso-
ciated macrophages, support population, invasion, and 
drug resistance of CSCs. Stimulation of self-renewal 
in CSCs can be promoted by the release of TGF-β, 
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IL-10, and IL-6 by TAM [308]. Moreover, the cytokines 
released by macrophages have been linked to the EMT 
reprogramming by the downregulation of miR-138. The 
stemness in NSCLC could also be regulated by TAMs 
through the upregulated expression levels of ubiqui-
tin-specific peptidase 17-like family member 9, which 
could result in the production of inflammatory fac-
tors, which consequently lead to increased stemness 
[309]. NK cells, which are known for their function in 
cytokine production and cytotoxicity, play a vital role 
in immunity against cancer [310]. From taking part in 
the activation of  CD8+ T cells and monocytes, helping 
maturation of DCs, defining polarization of T cells to 
production of tumor necrosis factor-alpha (TNF-α), 
IFN-γ, and granulocyte–macrophage colony-stimulat-
ing factor (GM-CSF) and eradication of infected and 
tumor cells by two mechanisms of antibody-dependent 
cellular cytotoxicity, in the absence of prior stimulation 
through natural cytotoxicity [310, 311]. More notably, 
in targeting CSCs, NK cells have an essential role as a 
study has shown the increased susceptibility of CSCs 
to NK killing [312], which must be because of the 
decreased expression of MHC-I to protect their growth 
in TME [313]. T cells, categorized as tumor-infiltrating 
lymphocytes (TIL) in tumors in charge of regulating 
immune responses, consist of subtypes like Th2, and 
T-reg that could favor tumors, and in some cases could 
be recruited by turmeric cells, and groups like Th1 and 
 CD8+ T cells act against cancer and mediates eradica-
tion of cancer cells [314, 315]. Studies on the effect of 
low pH of TME have reported that pH like 6.6 can put 
the function and expansion of T cells in jeopardy, plus 
decreased expression of TCR, IFN-γ, IL-2, TNF-α con-
sistent with the mentioned changes [316, 317]. Taken 
together, it seems that the acidic microenvironment of 
the tumor, which is the result of the glycolytic metabo-
lism of CSCs and cancer cells, could protect them from 
the attack of immune cells in different ways and help 
the invasion of CSCs.

Therapeutic perspectives
Given the crucial role of CSCs in the development, inva-
sion, and relapse of tumors, and their plasticity in the 
face of different conditions, choosing the most effective 
approach to eradicate these cells is challenging. Con-
cerning the close relation between the self-renewal, 
stemness, and metastasis properties of CSCs and their 
metabolism, one of the proposed solutions is targeting 
the metabolism of CSCs. In xenograft models, experi-
ments with a focus on mitochondrial respiration have 
led to the depletion of these cells via sensitization to 
chemotherapy. For instance, in metastatic melanoma, 
enrichment of JARID1B slow-cycling subpopulation 
was formed following the treatment with cisplatin and 
vemurafenib, inhibition of OXPHOS was then resulted 
in the suspension of  JARID1B+ subpopulation forma-
tion and making melanoma cells more vulnerable to 
chemotherapy agents [318] (Table 1). In PDAC cells with 
mutations in KRAS, targeting OXPHOS with inhibi-
tors like oligomycin, combined with therapies aiming 
at KRAS, showed better elimination rather than just 
using treatments specified for the oncogene [98]. The 
metabolic shift in CSCs of colorectal cancer is corre-
lated with 5-fluorouracil (5-FU) resistance, and a com-
bination of 5-FU and metformin to block mitochondrial 
activity has effectively reduced the population of CSCs 
[319]. In glioblastoma CSCs, combination therapy of 
3-bromopyruvate that targets glycolysis and doxorubicin 
led to effective inhibition of tumor and elimination of 
CSCs [320]. In a similar experiment on pro-neural and 
mesenchymal CSCs, high radiation therapy resistance 
and invasion of mesenchymal CSCs were diminished 
with the use of an inhibitor of ALDH [321]. Moreover, 
since CSCs recruit a wide range of cells and factors in 
their niche to support their survival and growth, perhaps 
targeting these allies could facilitate the eradication of 
CSCs. For example, targeting VEGF via monoclonal anti-
body combined with CXCR4 antagonist in glioblastoma 
resulted in enhanced survival, and the use of POL5551 

Table 1 Therapeutic perspectives of targeting CSCs in the tumor microenvironment

Drug Cancer/Cell line Description Refs

Cisplatin and vemurafenib Melanoma Enrichment of JARID1B slow‑cycling subpopulation was formed
Suspension of  JARID1B+ subpopulation formation and making 
melanoma cells more vulnerable to chemotherapy agents

 [302]

Oligomycin, PDAC cells with mutations in KRAS Better elimination of CSCs rather than just using treatments 
specified for the oncogene

 [303]

5‑fluorouracil and metformin Colorectal cancer Effectively reduced the population of CSCs by blocking the 
mitochondrial activity

 [304]

3‑bromopyruvate and doxorubicin Glioblastoma Effective inhibition of tumor and elimination of CSCs  [305]

VEGF monoclonal antibody and POL5551 Glioblastoma Enhanced survival via affecting the existing of CSCs  [307]

anti‑GPR77 antibody Breast and lung cancer Diminish tumor formation and sensitizing lung and breast 
cancer cells to chemotherapy

 [310]
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alone as the CXCR4 antagonist affected the existing 
CSCs [322]. Although the usage of anti-VEGF led to an 
increased breast CSCs, through induction of hypoxia 
[262], in the CSCs population of NSCLC, combination 
therapy of anti-hepatoma-derived growth factor (HDGF) 
antibody and VEGF tyrosine kinase inhibitor was suc-
cessful in diminishing this population [323]. Blocking 
Hedgehog signaling in breast cancer led to the halter 
of the activity of CAFs, which subsequently made CSCs 
more susceptible to chemotherapy [324]. Treatment of 
 CD10+  GPR77+ CAFs with anti-GPR77 antibodies was 
shown to diminish tumor formation and sensitize lung 
and breast cancer cells to chemotherapy [325]. Though 
developing new therapies based on CAFs is still going 
on, such as the therapies via CAR-T cell, SynCon DNA 
vaccine, and Oncolytic adenovirus focused on fibro-
blast activation protein (FAP) [326–329], targeting 
JAK/STAT3 pathway [330] or Blocking pan-TGF-β and 
GARP [331]. One of the CAFs is a type II transmem-
brane glycoprotein termed FAP. It was shown that when 
FAP-specific CAR-T cells were used alongside a tumor 
antigen-specific CAR, an enhanced anti-tumor activity 
in A549 lung cancer cells was observed [332]. A pioneer-
ing study has also shown oral administration of DNA-
based FAP vaccine-induced  CD8+ T cell-dependent 
killing of CAFs, which substantially increase the intra-
tumoral uptake of chemotherapeutic drugs in multi-
drug-resistant murine colon and breast carcinoma. Of 
note, FAP-specific CAR-T cell treatment in an immuno-
competent mouse model has been shown to boost host 
immunity. Similarly, the co-introduction of anti-FAP 
and anti-tumor CAR-T cells has also shown to enhance 
anti-tumor immunity in xenografted immune-deficient 
mouse models [333].

Conclusion
CSCs as the initiator of tumors, involved in processes of 
metastasis, invasion, and therapy resistance have been 
paid attention to be capable of being potential targets for 
tumor therapy. Mounting experiments are now focused 
on the metabolic side of these cells, which gets impor-
tant in the occurrence of phenomena like EMT, hypoxia, 
metastasis, and tumor growth, as the contradictory 
data on glycolysis or OXPHOX reliance, represents the 
involvement of other factors. Therefore, a better under-
standing of the plasticity and the metabolic state of CSCs 
in different stages of malignancies, and how the counter-
parts or enemies of CSCs get to affect this machinery is 
required so that we could get one step closer to devel-
oping new therapies to eliminate CSCs via targeting the 
metabolism of CSCs or the partners of CSCs in the TME.
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