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Abstract 

Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the 
genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. 
The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may 
be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative 
disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting 
enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by 
triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, 
which play important roles in the progression of neurodegenerative diseases like Alzheimer’s disease, epilepsy, and 
multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds 
such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated 
that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, lead-
ing the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds 
to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses 
against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and 
the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to 
deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initia-
tion of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or 
treatment for COVID-19 and related diseases.
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Introduction
In late January 2019, Wuhan, China, experienced the first 
outbreak of the novel coronavirus disease, COVID-19, 
which then spread rapidly worldwide [1, 2]. The virus that 
causes the highly contagious disease COVID-19 is called 
SARS-CoV-2 [3, 4]. This virus has a single-stranded RNA 
genome with a positive sense. Microscopic studies show 
that this virus has crown-shaped ridges on its surface, 
which shows that it belongs to the family of coronavi-
ruses [5–7]. Typically, the virus is structurally arranged in 
a 50-cap structure, followed by the leader sequence, the 
untranslated region (UTR), and the sequences encoding 
the replication polyproteins and accessory and structural 
proteins, and finally, the UTR regions and poly-A tail is 
coded [8, 9]. On the other hand, the replicase gene called 
open reading frame 1ab (ORF1ab) occupies two-thirds of 
the virus genome, located downstream to the 50′ ends. 
This region encodes NSPs, called pp1a and pp1ab pro-
teins, respectively [10, 11]. In addition, nonstructural 
pp1a proteins include NSP1 to NSP11 and nonstruc-
tural pp1a proteins include NSP12 to NSP16 [11, 12]. 
Finally, the remaining region before the 30′ end encodes 
the structural proteins including S, M, N, and E proteins 
[12, 13]. Also, structural proteins encode nine acces-
sory proteins, which are encoded by ORF3a, ORF3d, 
ORF6, ORF7a, ORF7b, ORF8, ORF9b, and ORF10 genes 
[14]. The pathogenicity of this virus is the beginning of 
the entry of the virus into the host cell by binding to the 
ACE2 receptor through its S protein [14]. There are two 
ways for this virus to reach the host cell: 1) cutting in S1 
and S2 sites, which is done by surface membrane serine 
2 proteases [15]. 2) endolysosomal cathepsin L, which 
causes the cell membrane of the virus to fuse at the cell 
surface and endosomes [16]. Once the RNA genome is 
released into the cytoplasm of the host cell, replication 
begins in the endoplasmic reticulum (ER)-derived dou-
ble-membrane vesicles (DMVs) [17], and these DMVs 
combine to form a complex network of membranes [18]. 
Then the positive strand genome acts as a template for 
negative-sense RNA and RNA(sg) [19]. The translation 
of RNA leads to the formation of structural and periph-
eral proteins whose function is to assemble the virion 
in the middle part of the Golgi [20]. Finally, the positive 
genome is synthesized into new virions and the host 
cell is infected with this virus [12] (Fig. 1). It can be con-
cluded that these studies facilitate our understanding of 
how this infection occurs and lead to the development of 
more efficient antiviral and therapeutic strategies.

For example, it has been reported that the Omicron 
variant can prevent neutralization by sera obtained 
from individuals who have received only one or two 
doses of the vaccine, especially when antibody titers are 
low [21]. Three doses of the spike-based vaccine may 

provide only partial protection against infection with 
present strains [22, 23]. In countries with high rates of 
vaccination or natural immunity, Omicron evasion of 
the immune system may have contributed to extraordi-
narily high rates of transmission [24]. Also, due to the 
continuous mutations new variants such as Delta vari-
ants emerge with higher or different manifestations of 
COVID-19 appear [25] (Table 1).

Spike protein
The 200 nm long spike (S) protein located on the surface 
of the viral membrane between amino acids 1160 and 
1450 contributes to the fusion of the viral membrane with 
the host cell membrane [36, 37]. This protein is a mul-
tifunctional molecular machine that is released from the 
virus in the form of a crown [38]. A single-pass anchor, a 
short intracellular tail, and S1 and S2 subunits constitute 
the three structural components of the S protein [39, 40]. 
S1, which binds to the host ACE2 receptor, and S2, which 
mediates the fusion of the viral cell membrane with the 
host [41, 42]. Two envelope glycoproteins of SARS-
CoV-2, the S and membrane (M) proteins, are essential 
for virus pathophysiology [43, 44]. Several host cell pro-
teases, including furin, trypsin, cathepsin, and TMPRSS2 
(transmembrane protease serine subclass 2), degrade this 
protein [45, 46]. The presence of proteases in the target 
cell determines the ways to enter the virus through the 
host cell membrane, plasma, or endocytosis [47, 48]. In 
other words, the virus enters the cell by binding to the 
receptors of the host cell if this protein is present, or the 
junction of the virus to the host cell membrane facilitates 
the entry [49, 50]. The S2 subunit fuses the virus to the 
host cell membrane and allows the virus to enter the host 
cell, while the S1 subunit binds the virus to the host cell 
[51]. This protein contains the most important antigens 
that are responsible for neutralization by antibodies and 
are the target of cytotoxic cells [52, 53]. The main role of 
the S protein is to increase the contact of the cell mem-
brane with the viral membrane, which can be a target for 
treatment with antibodies or chemical compounds or a 
target for vaccination [54, 55] (Table 2).

Specific receptors of spike protein
ACE2
One of the important components of COVID-19 is 
ACE2, which acts as a specific receptor for virus entry 
[66]. Multiple cell lines in the CNS express ACE2, includ-
ing oligodendrocytes, microglia, astrocytes, and neurons 
(Fig.  2). ACE2 has shown a protective role in chronic 
diseases such as hypertension, acute respiratory distress 
syndrome, and cardiovascular diseases in the prognosis 
of COVID-19 [67–69] (Fig. 2). Hypertension can be sig-
nificantly decreased by ACE inhibitors, which reduce the 
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inward remodeling of arteries [70, 71]. The human brain, 
as well as other organs and tissues, express a unique 
SARS-CoV-2 receptor known as ACE2 [72]. It may help 
the SARS-CoV-2 virus enter host cells in the CNS in 
addition to ACE2, ephrin receptor, neuropilin-1 (NRP-
1), and CD147. It may also trigger intracellular signaling 
pathways linked to pathological problems of the CNS 
and malignancies such as glioblastomas [73] and stimu-
late intracellular signaling pathways associated with CNS 
diseases and malignancies such as glioblastoma [73, 74] 
(Figs. 3 and 4). A receptor-binding site on the spike pro-
tein in the envelope of SARS-CoV-2 directly contacts the 
extracellular domain of ACE2 [75]. The spike protein of 
SARS-CoV-2 has been shown to have a stronger affinity 
for human ACE2 than the spike protein of SARS-CoV. 
For example, the newly generated variant Omicron RBD 
binds more strongly to human ACE2 than the main strain 
[76–78] (Table  1).  A graphical summary of proteomics 
studies, clinical and laboratory signs of people infected 
by SARS-CoV-2, SARS-CoV-2 receptors, and cytokines 
expression traits in different organs infected by SARS-
CoV-2 (brain, heart, eye, lung, kidney, liver, and gastroin-
testinal organs) [79–93] (Fig. 2).

Ephrin/Eph receptors
The largest human receptor tyrosine kinase (RTK) fam-
ily is known as the erythropoietin-producing hepatocyte 
(Eph) receptors [95, 96]. The ephrin-Eph-RTK pathway 
controls many cellular functions including cell adhesion, 
proliferation, differentiation, and migration. Ephrin binds 
to Eph receptors as a ligand to activate it [97, 98]. Ligand-
binding regions are found in the extracellular domain 
of Eph receptors, while regulatory domains and protein 
kinase regions are found in the intracellular domain [73]. 
Tyrosine residues on receptors become phosphorylated 
upon ligand activation and serve as sites where intracel-
lular signaling proteins (or adapters) recruit and activate 
[73]. Eph and ephrin proteins can support viral replica-
tion, persistence, and vector-mediated viral transmission 
[99]. Multiple samples for viral infections can disrupt 
neuronal function, including the potential receptor for 
SARS-CoV-2 entry into human brain cells and the spike 
protein that acts as a stimulator of Eph receptor down-
stream signaling in COVID-19-related neurological dis-
eases and cancers (Fig.  3) [73, 74, 100, 101]. These cells 
may serve as potential hosts for entry of SARS-CoV-2 
or potentially initiate upstream signaling pathways. In 
Eph receptors, ligand-binding domains, cysteine-rich 
regions, two fibronectin III repeats (FNIII), transmem-
brane regions, tyrosine kinase domains, and PSD95/
DLG/ZO-1 subunits are present [102]. Spike protein of 
SARS-CoV-2 can activate Eph receptors because Ephrin-
A directly stimulates SRC and RhoA and activates FYN 

and ERK through focal adhesion kinase (FAK) [102]. 
JAK2 can be activated by STAT3 (signal transducer and 
activator of transcription factor 3) [103]. Activation of 
AKT is well known to occur in pancreatic cancer cells 
when EphA2 is present [104]. MMP8 (matrix metallo-
proteinase 8) STAT3, Src, and RAC1 are stimulated by 
ephrin-Bs to initiate EMT (endothelial-mesenchymal 
transition) [74]. EMT and invasion are triggered when 
these substances activate RAC1, RhoA, and CDC42. Eph/
ephrin has the potential to exacerbate some prevalent 
diseases and age-related disorders [105]. Also encourages 
EphA4 forward signaling to exert its synaptotoxic effects. 
Consequently, EphA4/ephrin-A1 can also increase lev-
els of endothelial cells and their supporting cells, such 
as smooth muscle cells and pericytes, which are also 
regulated by Eph/ephrin, which contributes to angiogen-
esis, vascular permeability, and vascular remodeling [74]. 
Ephrin-B2, for instance, may be expressed as a result of 
vascular endothelial growth factor (VEGF), because it is 
necessary for the endocytosis of the VEGF receptor and 
angiogenic signaling. Self-renewal and glioblastoma stem 
cell differentiation is inhibited by EphA2, an Eph recep-
tor that is frequently overexpressed in cancers. In lung 
cancers, EphA2 overexpression also causes abnormal 
cell growth [73, 106]. Ephs/ephrins play a role in heart 
health and disease, and with the shape of heart tissue 
[107]. Age-related diseases impair EphA2 signaling for 
human cardiac progenitor cell migration [108]. As EphB4 
is activated by EphA1/EphA2/EphA4 binding to EphB2, 
it promotes the adhesion of leukocytes and monocytes 
to endothelial cells, leading to intimal inflammation and 
atherosclerotic plaque formation. Therefore, the develop-
ment of drugs and substances that affect and regulate the 
Eph/ephrin system will help in the treatment and cure 
of many disorders [106]. Polyphenols, doxazosin, litho-
cholic acid derivatives, kinase inhibitors, peptide analogs, 
peptide proteins, and specific antibodies are examples 
of small molecules that have the potential to target Eph 
receptors [74, 109].

Neuropilin‑1 (NRP‑1)
One of the two neuropilin homologues, neuropilin 1 
(NRP-1), plays an important role in normal and patho-
logical conditions [73]. The two isoforms of NRP-1 are 
secreted and transmembrane (also known as truncated 
or soluble NRP-1). In contrast to the latter, which binds 
to multiple ligands and performs different functions, the 
former circulates freely in physiological fluid [73, 110]. 
Along with ACE2, the ephrin/Eph receptor, and CD147 
may facilitate the entry of the SARS-CoV-2 virus into 
host cells in the CNS and stimulate intracellular signal-
ing pathways that cause CNS diseases (e.g., glioblas-
toma) (Fig. 4) [73]. It is currently unclear how COVID-19 
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causes neurological disorders such as headaches, mem-
ory loss or mental disorders, insomnia, loss of taste or 
smell, and sleep disturbances [111, 112]. Neurological 
disorders, which continued 3 to 9  months after SARS-
COV-2, include dizziness and depression, loss of sense 
of smell, memory impairment, and cognitive disorders 
which have been described as having a negative impact 
on neurological health in patients [113, 114]. NRP-1 is 
essential for signaling molecules including VEGF (espe-
cially VEGF-A), integrins, semaphorins, transforming 
growth factor-beta (TGF-β), and plexins for function 
[115, 116]. Some processes that rely on it include tumori-
genesis, angiogenesis, virus entry, axonal guidance in the 
peripheral nervous system and CNS, and immunological 
activity [115] (Fig.  2). According to an interesting study 
by Cantuti-Castelvetri et al. SARS-CoV-2 can infect cells 
by binding to NRP-1 via the S protein, enter neurons, 
and then produce NRP-1 as well as two essential com-
ponents, furin and transmembrane serine protease 11A 
(TMPRSS11A) [117]. Since olfactory epithelial cells in 
COVID-19 patients have high levels of NRP-1 and VEGF-
A is a ligand for NRP-1, this implies that one explanation 
for the patient’s cognitive and neurological impairments 
could be the sensitivity of these brain regions to SARS-
CoV-2 [118]. The extracellular b1b2 domain of NFPs is 
involved in the binding of VEGF-A [119]. As a co-recep-
tor for VEGFR-1 and VEGFR-2, this receptor plays an 
important role in angiogenesis [120]. The interaction of 
VEGF-A with NRP-1 leads to the formation of the GAIP/
RGS19-interacting protein (GIPC1) + Syx molecular 
signaling complex, which facilitates RhoA GTP bind-
ing. This association is enhanced between the scaffold 
protein GIPC1 and NRP-1 [121]. When RhoA is acti-
vated, the tumor suppressor protein p27kip1 is destroyed 
by this active form of the protein. Therefore, this leads 
to the proliferation of tumor cells. Furthermore, activa-
tion of the PI3K/AKT/NF-κB pathway is thought to con-
trol NRP-1/GIPC1-mediated angiogenesis, proliferation, 
and migration [118, 122]. Finally, it is hypothesized that, 
especially in people who had multiple infections with 
SARS-CoV-2, the increased expression of NRP-1 caused 
by COVID-19 may play an important role in long-term 
clinical problems related to the CNS and may accelerate 
the development of brain tumors at the preliminary stage 
[73]. Pharmacological targeting of NRP-1 in such vulner-
able individuals may be a valuable and potentially effec-
tive treatment to prevent long-term neurological effects 
and reduce the risk of neurological diseases [118] (Fig. 2).

CD147
Transmembrane glycoprotein CD147 belongs to the 
immunoglobulin superfamily (HAb18G, sometimes 
called EMMPRIN) [123]. The brain, T cells, endothelial 

cells, and many organs and cells throughout the body 
contain CD147 [124, 125] (Fig.  2). Although CD147 is 
not directly bound to SARS-CoV-2 in other viral infec-
tions, particularly SARS-CoV-2 infection, it is involved 
in HIV-1 infection by interacting with virus-associated 
cyclophilin A [126]. CD147 receptor and TMPRSS2 
protease are likely to be more involved in SARS-CoV-2 
CNS infection than ACE2 [127] (Fig. 2). The cerebellum 
and cortex and pituitary of the mouse brain have higher 
mRNA levels for TMPRSS2 and CD147. CD147 activ-
ity is thought to be mediated by some signaling path-
ways, such as MAPK p38, ERK-1/2, PI3K, and NF-κB 
[73, 128, 129]. ERK and IB appear to be phosphorylated 
when CD147 is activated, and the p50 and p65 subunits 
of NF-κB translocate to the nuclear envelope [73, 128]. 
CD147 activates inflammation in some cells, includ-
ing macrophages, which inflammatory diseases may be 
triggered by them. In addition to increasing the expres-
sion of MMP-9 and the production of proinflamma-
tory cytokines and chemokines in endothelial cells [73, 
129]. SARS-CoV-2 entry receptors, such as CD147 and 
ACE2, are believed to activate the NLRP3 inflammasome 
(nucleotide-binding domain, leucine-rich repeat, and 
pyrin domain-containing protein 3), which induces cleav-
age of IL-1 and IL-18 cytokines [73, 130].

Targeting spike protein by using lectins and lectibodies
SARS-CoV-2, like other viruses, is contained in a gly-
coprotein envelope [131]. It also contains a glycopro-
tein that raises the possibility of using lectins as therapy 
[132]. During budding, the virus forms a double-layered 
envelope so that each of its components is dependent on 
the cell membrane from which it originated [133]. Some 
proteins present in SARS-CoV-2 envelope layers are 
glycosylated by host enzymes. These glycoproteins help 
develop and control immune system responses as well as 
virus attachment, invasion, and entry [134]. The S1 and 
S2 subunits each have 22 possible N-glycosylation sites 
and three potential O-glycosylation sites. Due to C-type 
lectin receptors (CLRs) preferentially binding specific 
glycans in a C-type lectin-dependent manner, the S1 gly-
coprotein of SARS-CoV-2 has ligands for many innate 
immune receptors [135]. Macrophage mannose receptor, 
macrophage galactose lectin, lymph node-SIGN, den-
dritic cell-SIGN, and dectin-2 are examples of CLRs that 
are often expressed by cells of the immune system such 
as macrophages and DC [136]. Lectins are not consid-
ered effective antiviral agents due to their cytotoxicity, 
mitogenicity, pro-inflammatory properties, small size, 
poor stability in the body environment, susceptibility to 
proteolytic lysis, and challenges in mass synthesis [137]. 
Lectibodies, modified lectins, have been developed using 
a variety of protein engineering techniques to circumvent 
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these challenges [138]. A lectin and the crystallographic 
fragment (Fc) of an immunoglobulin G (IgG) antibody 
combine to create a “lectibody” protein. As an antibody, 
this protein can bind carbohydrates (Fig.  5a) [139]. In 
addition to complement-dependent cytotoxicity (CDC), 
antibody-dependent cell-mediated cytotoxicity (ADCC), 
and antibody-dependent cell-mediated phagocytosis 
(ADCP), lectibodies are Fc-mediated antibody effec-
tors that can bind to surface glycoproteins via lectins, 
neutralise viruses or virus-infected cells (Fig. 5b) [139]. 
While C3b binds to pathogens and infected cells to ini-
tiate phagocytosis and clearance of immune complexes, 
the release of C3 and C5 molecules recruits and activates 
effector cells of the immune system [140]. Infected cells 

lyse after the formation of a membrane attack complex. 
The Fc gamma receptors (FcγRs) on natural killer (NK) 
cells and the Fc domain of antibodies bound to viral 
antigens on infected cells interact to trigger the ADCC 
reaction (Fig. 5b) [139]. Cytotoxic granules are released 
and destroy the infected cells. Anti-Ebola monoclonal 
antibodies significantly affect NK cells through ADCC 
[141]. In previous studies, it was discovered that phago-
cytic cells ingest virus-antibody or antibody-infected 
cell complexes during ADCP. After processing, the anti-
gen either binds to molecules on the cell surface of the 
major histocompatibility complex (MHC) or is trans-
ferred to lysosomes to be degraded. Mice treated with 

Fig. 1  SARS-CoV-2 entry receptors (ACE2, Eph, NRP-1, and CD147). Life cycle and role of proteins in replication of SARS-CoV-2
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anti-SARS-CoV antibodies showed that ADCP reduced 
SARS-CoV infection [142, 143].

Membrane protein
The membrane (M) protein is 221 amino acids long and 
has little similarity with the M proteins of other corona-
viruses [144]. This protein is important for the forma-
tion of virions inside the cell (between the ER and the 
Golgi body). The M protein consists of three structural 
components: 1) the N-terminal portion of the virion that 
protrudes from the membrane. The N-terminal domain, 
which is sensitive to protease, binds to the surface of the 
virus; 2) transmembrane domains; and 3) there are two 
domains in the C-terminal. The amphipathic domain 
near the transmembrane region of the third domain is 
followed by a tiny hydrophilic region that connects to the 
host viral or cytoplasmic membrane, where virus assem-
bly and germination occur [145]. The cell membrane pro-
tein eventually becomes a site for the production of new 
viral particles in the host cell. In addition, the M protein 
is important for enhancing aggregation through interac-
tion with viral ribonucleoprotein and S glycoprotein at 
the site of budding [146]. This protein in SARS-CoV has 
a protective glycosylated region that may be critical for 
host-virus interaction [147] and this is notable because 
it can inhibit NF-κB activity and reduce the production 
of COX-2 (an important inflammatory protein) [148]. It 
can interact with IkB kinase beta (IKKβ) and prevents 
the development of a fully functional IKK signalosome, 
thereby reducing NF-κB activity [149]. M protein can 

also interact with IKKβ and other subunits of the IKK 
signalosome. Another important point is that the M pro-
tein can bind to all structural proteins [150]. For example, 
the interaction of the M protein with the nucleocapsid 
(N) protein contributes to the stability of the N protein 
[151]. On the other hand, when the S protein and the M 
protein bind to each other, changes occur that may affect 
how the virus interacts with the host cell and enters the 
cell [152].

Nucleocapsid protein
One of the most common structural proteins of the 
SARS-CoV-2 virus is the N protein [153]. N protein, a 
multifunctional protein, is essential for transcription 
and replication [154]. This protein is required for the 
creation of ribonucleoproteins that regulate the replica-
tion and synthesis of the viral RNA genome [155]. The 
main function of the N protein is to bind to the RNA 
genome of the viral infection and package it into a long 
nucleocapsid, which is also known as ribonucleopro-
tein [156]. Most studies have shown that this protein 
affects host–pathogen interactions, including actin 
reactivation and host-cell cycle progression [157]. This 
protein is highly immunogenic and is present in large 
quantities during infection [158]. Inside the virus, the 
N protein protects and stabilizes the viral RNA [159]. 
During virus assembly, this protein assists viral mem-
brane proteins and interacts with the M protein [44]. It 
also affects RNA folding, translation, and the cell cycle 
[157]. The N protein is associated with transcription 

Table 1  Mutations and evolution of the SARS-CoV-2 variants

Types of variants Mutations Targets Refs

Alpha (B.1.1.7 lineage) • 17 mutations • The viral genome [26–28]

• 8 mutations (especially N501Y) • Increased spike protein binding to ACE 2 
receptors
• Making the viral attachment stronger

Beta (B.1.351 lineage) • 9 mutations (D614G, D80A, D215G, R246I, K417N, 
E484K, N501Y, L18F and A701V)

• S protein [27, 29, 30]

• 3 mutations (K417N, E484K, and N501Y) • Located in the RBD and increase the ACE 
receptors’ binding affinity

Gamma (P.1 lineage) • 10 mutations (L18F, T20N, P26S, D138Y, R190S, 
H655Y, T1027I V1176, K417T, E484K, and N501Y)

• Spike protein [27, 31, 32]

• 3 mutations (L18F, K417N, E484K) • Similar to the B.1.351 variant and located in 
the RBD

Delta (B.1.617.2 lineage) • 10 mutations (T19R, R158G, (G142D), L452R, T478K, 
D614G, P681R, D950N,156del, 157del)

• Effect on spike protein [27, 33]

Omicron (B.1.1.529 lineage) • 30 mutations (T91, G204R, P13L, E31del, R32del, 
R203K,S33del, D3G, A63T, Q19E, N211/L212I, 
G142D, T95I, V70, H69, A67V, Y145del, Y144del, 
Y143del, G496S, Q493R, E484A, T478K, S477N, 
Q498R, G446S, N440K, S375F, S373P, S371L, G339D, 
N501Y,Y505H,K417N, D796Y, L981F, Q954H, N969K

• Envelope
• Nucleocapsid protein
• Matrix
• Domain at the spike protein’s N-terminus
• The RBD of the spike
• Fusion peptide of the spike
• Spike protein and NSPs

[27, 34, 35]
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Table 2  The summary of drugs and vaccines with their targets, structures, and advantages

Drugs/vaccines & companies Targets Structures Advantages Refs

Inactivated and protein subunit vaccines
  Sinopharm
  CanSinoBIO
  Sinovac
  AstraZeneca
  Sputnik V

• Spike protein • A virus that has been chemically 
inactivated after being grown in 
a culture

• 86% effectivity of Sinopharm [56, 57]

Nucleic acid vaccines
  DNA vaccines
    LineaRx
    Takis Biotech
    ZyCoV-D vaccine

• Enhance the induction of T cells
• Different forms of the SARS-
CoV-2 S protein are encoded by 
this gene
• The response was mediated by 
type I helper T cells (Th1) rather 
than type II helper T cells (Th2)

• Viral genetic sequence-based 
and S protein genetic sequence-
based)

• The safety and efficacy
• Humoral and cellular immu-
nity

[58–60]

  Vector vaccines
    Houston-based Greffex Inc
    Adenovirus Type 5 Vector
    ChAdOx1 nCoV-19
    Adeno-based (rAd26-
S + rAd5-S)
    Ad26COVS1
    Johnson & Johnson
    AstraZeneca

• Engineered viruses incapable of 
replication

• An adenovirus vector or other 
vector for the construction of 
SARS-CoV-2

• Elicits the innate immune 
responses that are neces-
sary for adaptive immune 
responses
• Effective in avoiding hospi-
talization and death caused by 
COVID-19

[56, 58, 59]

  mRNA vaccines
    Moderna
    Pfizer
    BioNTech
    German biopharmaceutical
    ZY Therapeutics
    CanSino
    CureVac AG
    Stermirna Therapeutics
    Guanhao Biotech Thera-
peutics
    BDGENE

• SARS-CoV-2 S protein and RBD 
domain

• Lipid nanoparticles • 90% effectiveness against 
the clinical disease caused by 
SARS-CoV-2, with very few side 
effects
• The rapidity of vaccine 
production
• Ability to produce responses 
to TH1 and TH2
• Vaccines for children and 
common SARS-CoV-2 variants 
that are approved

[56, 58, 61]

  Subunit vaccines
    Novavax
    Johnson & Johnson
    Chongqing Zhifei
    Sanofi Pasteur/GSK

• Viral proteins are injected into 
the host

• Recombinant SARS-CoV-2 in its 
entirety glycoprotein nanoparticle 
vaccine adjuvanted

• The best alternative is 
vaccines with adjuvanted 
subunits

[58, 59, 62]

  Virus-like particles vaccines
    Medicago Inc • Proteins from the viral capsid

• Induced immunity against 
SARS-CoV-2

• VLP is derived from plants and 
adjuvanted with Dynavax or GSK 
adjuvants
• VLP vaccines are recombinant 
genetically modified viruses that 
are generally thought to be safe 
because they fail to replicate
• Whole S protein

• Immunogenicity and safety 
advantages

[58, 63]

Drugs
  Arbidol (umifenovir) • Targets ACE2 protein and S 

protein interaction causes the 
viral envelope’s membrane fusion 
to be prevented
• Reduce the SARS virus’s enve-
lope’s fusion

• Advantages against SARS-CoV-2 [64, 65]

  Camostat • TMPRSS2 inhibitor of the host 
serine protease

• Advantages against SARS-CoV-2 [64, 65]
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and replication complexes in infected cells [160]. Evi-
dence suggests that this molecule may play a role in 
the pathophysiology of CNS infections. It is hypoth-
esized that the N protein may activate toll-like recep-
tors (TLR)3, TLR7, or TLR8, and subsequent signaling 
pathways may increase the activation of NF-κB and 
NLRP3, leading to a cytokine storm and inflamma-
tory responses [161]. As a result, they may play a role 
in the pathogenesis of a number of diseases such as the 
appearance of cancer, coagulation, neurodegenerative 
disorders, and cardiovascular diseases [162]. Research-
ers should be able to comprehend the contribution of 
each component of innate and adaptive immunity to 
COVID-19 infection with the assistance of the data on 
SARS-CoV and MERS that are already available [161]. 
Even though TLR7/8 is the only TLR that can recog-
nize ssRNA, COVID-19-associated genetic material, 
other TLRs, like TLR3, TLR4, and TLR6, may also be 
involved in COVID-19 infection [161, 163]. The type 
of TLRs (agonist/antagonist) that are treated depends 
on the stage of the disease. TLRs and related signaling 
pathways should be studied, as they have been associ-
ated with viral susceptibility and lethality in other coro-
navirus families. A therapeutic target may be to reduce 
inflammasome activation and neutrophil trap develop-
ment [161]. Many studies based on the TLR pathway are 
being conducted on COVID-19 [161]. Bioinformatics 
study may help us understand how TLRs interact with 
RNA and proteins of COVID-19 [161]. TLR3, TLR7/8, 
and TLR9 are all found on the endosome surface, while 
TLR2/6 and 4 are found in the cell membrane [164]. 
Pro-inflammatory cytokines and IFN-I are produced 

as a result of the activation of the downstream adaptive 
response of MYS88 and TRIF proteins [161]. MYD88 
activates TRAF6 in the TLR2/6 and TLR4 pathways, 
but it also activates IRAK4 and, indirectly, TRAF6 
and TRAF3 in the TLR7/9 and TLR9 pathways [161]. 
When TRAF3 is stimulated, IRF3 is then activated, and 
IFN-I is released [161]. Liquid–liquid phase separation 
(LLPS) occurred in RNA and N protein. The length 
and concentration of ssRNA determine the LLPS. With 
short ssRNAs, N protein makes typical droplets that 
look like spheres, but with long ssRNAs, it makes solid 
structures. Zn2+ could make LLPS better. The possibil-
ity that the N protein/RNA LLPS is necessary for the 
assembly of the SARS-CoV-2 virus provides insight into 
the development of intervention strategies to prevent 
the COVID-19 pandemic by disrupting the LLPS and 
viral assembly [165].

Envelope protein
The envelope (E) protein has 10–74 amino acids and 
occurs in monomeric and pentameric forms [166]. 
This protein is present in approximately 20 copies of 
viral material [167]. Previous research has shown that 
mutagenesis has a significant impact on the development 
and spread of viral infections [168]. In particular, viruses 
lacking this protein cannot infect the host cell and have 
a very low viral titer in the host cell [169]. This protein 
is located in the secretory pathways between the ER and 
the Golgi apparatus of the host cell [170]. The C-terminal 
region of the E protein is structurally located inside the 
envelope of the virus so that it is placed around the enve-
lope and finally entrapped inside the envelope [171]. It 

Table 2  (continued)

Drugs/vaccines & companies Targets Structures Advantages Refs

  Hydroxychloroquine • Acts on the spike glycoprotein-
ganglioside receptor and its inter-
action with the ACE2 receptor
• Reduced endosome acidifica-
tion and attenuation of host 
receptor glycosylation, proteolytic 
processing, cytokine production, 
lysosomal activity, autophagy, 
and endocytic pathways
• Enhances intracellular pH, even-
tually affects cathepsins, inhibits 
antigen-presenting cells (APCs), 
autophagosomal functions, MAP 
kinase, and autophagosomal 
functions
• Structural damage to SARS-CoV-
2’s spike proteins

• Anti-inflammatory effect on IL-17, IL-122, and IL-6 cytokines [64, 65]

  Remdesivir • Use RdRp to stop translation 
and replication processes
• Inhibits NSP12 in other corona-
viruses

• As evidenced by the low polymerase activity in host cells during 
the Ebola virus outbreak
• Undergoing in patients with mild, moderate, and severe SARS-
CoV-2

[64, 65]
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Fig. 2   Schematic illustration of proteomics studies, clinical and laboratory signs of people infected by SARS-CoV-2, SARS-CoV-2 receptors, and 
cytokines expression traits in different organs infected by SARS-CoV-2. The schematic illustrations of organs are obtained from Servier Medical ART: 
SMART [79–94]
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can block the host cell’s ability to replicate and spread the 
virus throughout the body [172]. Although its purpose is 
still unknown, this small protein can cause oil bubbles to 
form inside the virus [173]. It accompanied by the M and 
N proteins is very important for the development and 
propagation of virus particles in SARS-CoV-2 [174]. E 
protein interacts with host cell proteins and acts as an ion 
channel [169].

Hemagglutinin esterase protein
Infection requires hemagglutinin esterase (HE) protein, 
which can act as a second protein in the recognition 
of host cell surface receptors [175]. On the other hand, 
the HE protein of the human recombinant virus OC43 
(HCoV-OC43) can affect the replication and viral infec-
tions of cells and is important for the dissemination of 
infectious agents [176, 177]. Two functional features 
of the HE protein are its affinity with sialic acid and its 
ability to enzymatically degrade the receptor on the host 
cell surface [177]. These two distinct functions of the HE 
protein may help the virus to enter or facilitate exit from 
the cell surface. In addition, It helps in the efficient crea-
tion of viral particles. This protein can also remove the 

S protein from 9-O-acetyl sialic acid on the cell surface, 
causing the virus to fuse with the cell membrane [178].

Nonstructural proteins of SARS‑CoV‑2
Accessory proteins
There are two genetic subgroups in group 1 coronavi-
ruses [179]. HCOV-NL63 and HCOV-229E are human 
coronaviruses belonging to groups 1a and 1b [180, 181]. 
The set of genes encoding one or more accessory pro-
teins between the S and E genes includes HCOV-NL63, 
ORF4a, and ORF4b for HCOV-229E and ORF3 protein 
for PEDV [182]. ORF1ab occupies two-thirds of the 
entire genome and sub-genome to play a role in viral 
pathogenicity, eliminate its replication function and also 
plays a role in cell signaling and gene expression regu-
lation [183]. For replication and production of the viral 
genome, this protein binds to 16 proteins. SARS-CoV-2 
has six major ORFs: ORF1ab, ORF3, ORF6, ORF7a, 
ORF8, and ORF10 [184]. Two polyprotein precursors, 
pp1a and pp1ab, are produced by ribosomal transla-
tion of ORF1a and ORF1b using positive-strand RNA 
as a template [185]. To form the viral RNA replication-
transcription complex, viral proteases first cleave these 

Fig. 3   SARS-CoV-2 may have a role in cancer or other diseases by using Eph receptors as entrance receptors and activating Eph receptor 
downstream signaling in the host cell (especially in malignant cells). Reprinted with permission from ref. [74]. Copyright 2022, Springer Nature
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polyproteins into 16 NSPs, then partially translocate to 
the ER membrane [185]. CoV produces full-length sgR-
NAs and intermediate negative-sense RNAs that serve as 
blueprints for subsequent viral genomes [186]. The trans-
lation of the first four structural and supporting proteins 
is complete. N proteins produce nucleocapsids that con-
tain the complete progeny genome [187]. Virions that 
produce envelopes enclose recently produced nucleocap-
sids. Virus particles are finally released from infected 
cells after being transferred to the plasma membrane by 
smooth-walled vesicles [188]. Double-membrane vesicles 
(DMVs), often found in the perinuclear region of the cell, 
are formed as a result of the CoV infection process, which 

engulfs the internal membranes of host cells [189]. DMVs 
create an environment that promotes viral RNA synthesis 
while protecting the ability of the innate immune system 
to recognize double-stranded RNA. Although the bilayer 
membrane origin of these autophagosome-like DMV is 
still unknown, specific studies suggest that the autophagy 
machinery is involved in their production. It is still 
unclear how autophagy contributes to the conversion of 
host membranes to DMV. Researchers are investigating 
the link between CoV infections and autophagy because 
of the structural similarities between the DMV and the 
autophagosome [190].

Fig. 4  The transmembrane protease serine subclass 2 (TMPRSS2), neuropilin-1 (NRP-1), ACE2, Eph receptors, ephrin ligands, P2X7, and CD147 
are expressed on cells of the CNS as SARS-CoV-2 spike protein entrance receptors. JAK inhibitors can target ACE2, EphA/B receptors, and IL-6 
receptors-activated signal transduction (JAKinibs). Also, the NLRP3 inflammasome can release IL-1 and IL-18 in response to ACE2, EphA/B receptors, 
TMPRSS2, NRP-1, P2X7, and CD147. These molecules may be targeted by IL-1 and IL-18 monoclonal antibodies, antagonists, and inflammasome 
inhibitors. Reprinted with permission from ref. [73]. Copyright 2022, Springer Nature
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ORF3a
This protein is the largest accessory protein of the virus 
with 274 amino acids translated from ORF3a, which is 
located in the viral genome between the S and E genes 
[166]. These accessory proteins can be activated through 
the interferon (IFN) signaling pathway and release pro-
inflammatory cytokines that can lead to changes in 
the infected cell’s environment and cause inflamma-
tion, possibly leading to the most lethal symptoms of 
COVID-19 [191]. ORF3a also helps the virus to escape 
by creating a hole in the membrane of the infected cell. 
This protein is used to identify patients with COVID-
19 in lung epithelial cells; the accessory protein, ORF3a, 
can increase the expression and secretion of fibrino-
gen. The pathogenesis of SARS-CoV-2 may be caused 
by increased fibrinogen and cytokine production. On 
the other hand, it may promote chemokine NF-κB, 
IL-8, and RANTES CCL5. It contains the primary bind-
ing site of caveolin-1. Caveolin is responsible for sig-
nal transduction. Since multiple signals bind to and 

control caveolin, it may play a role in cell cycle regula-
tion. Finally, accessory ORF3a protein is a byproduct 
that helps produce new viruses as well as their escape 
from the host cell [192]. The virus selectively targets 
mitochondria, where it attacks and destroys them, 
depleting the cells’ energy and reducing their capacity 
to fight infection, including through autophagy [193, 
194]. By controlling ACE2 and ORFs, SARS-CoV-2 
bypasses host cell defense mechanisms and accelerates 
virus replication. The mitochondrial ORF-96 protein 
of the virus damages mitochondria-related genes such 
as DRP1, MAVS, TRAF3, and TRAF6 [195]. ORFs like 
ORF3a can alter mitochondrial homeostasis (biogen-
esis, fusion, fission, and mitophagy) and function by 
focusing on the mitochondrial deubiquitinase USP30 
[196, 197]. ORF3a protein also induces apoptosis in 
mitochondria. The BCL-2 families of neuroprotective 
proteins and Bax proteins, which can switch to initiate a 
cell death cascade, are in balance in the cellular homeo-
stasis system. This can occur in response to extracellular 

Fig. 5   (a) A compound known as a “lectibody” is created when the IgG crystallizable Fc and lectin of an antibody are combined. (b) Through the 
actions of CDC, ADCC, and ADCP, lectibodies’ lectins bind to surface glycoproteins, neutralizing viruses or infected cells and assisting the innate and 
adaptive immune systems in combating pathogens. Reprinted with permission from ref. [138]. Copyright 2022, Springer Nature
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stimulation by stress, viral infection, excessive immune 
cytokines secretions, etc. Even though the molecular 
structure of Bax is normally stable, when it constricts a 
virus, it translocates to the mitochondrial outer mem-
brane, where it is deposited, releasing cytochrome c 
and initiating the process of apoptosis [184]. In addi-
tion, ORF3a protein increases the activity of truncated 
Bid (tBid), which causes mitochondrial perforation 
and promotes the release of apoptogenic compounds. 
The unique DNA of the degraded mitochondria is then 
released into the blood whose presence at high levels 
has now been reported to predict poor COVID-19 out-
comes [197, 198]. Furthermore, in COVID-19 patients, 
ORF3a protein activates HIF-1, enhances viral infec-
tion, and increases cytokine production. Since HIF-1 
controls inflammation and glycolysis, it is likely to be 
involved in the pathogenesis of COVID-19 [199, 200]. 
The transcription factor HIF-1 is induced by hypoxia. In 
cells infected with SARS-CoV-2, the increase of HIF-1 
causes the production of A-disintegrin and metallo-
protease 17 (ADAM17). This encourages TNF produc-
tion, TNF processing, and innate immune cell uptake of 
processed TNF. ADAM17 triggers a cytokine storm by 
disrupting the IL-6/IL-6R/gp130 complex and convert-
ing IL-6R into a pro-inflammatory agent [201, 202]. The 
transcriptional activity of the HIF-1 protein may affect 
various processes, including the body’s capacity to use 
glucose, metabolic pathways, cell growth, angiogen-
esis, and metastasis. HIF-1 can also alter the expres-
sion of genes related to cancer growth and autophagy 
[202]. Meanwhile, FLT3-ITD mutation in AML patients 
is associated with autophagy and HIF-1 activation 
[203]. The PI3K/AKT/mammalian target of rapamycin 
(mTOR) signaling is promoted by the FLT3-ITD muta-
tion which is the most common mutation observed 
in AML [204]. The FLT3-ITD mutation, previously 
described in AML patients with this genetic aberration, 
can be seen as an upstream mechanism in HIF-1 activa-
tion, even though the mTOR pathway increases HIF-1 
levels [205]. Furthermore, it has been noted that AML 
patients expressing FLT3-ITD have higher amounts of 
autophagy. Both treatment resistance and the devel-
opment of AML with FLT3 mutations are associated 
with autophagy [206]. FLT3-ITD mutation enhances 
autophagy in AML cells via ATF4, prolongs the lifespan 
of leukemia cells, and induces tolerance to FLT3 inhibi-
tors. In addition, the treatment of FLT3-mutated AML 
using autophagy inhibitors is more effective compared 
to FLT3-inhibiting drugs [207]. In addition, Deeb et al. 
found that in older AML patients with normal karyo-
types, higher cytoplasmic HIF-1 expression was associ-
ated with worse prognosis after conventional therapy. 
Therefore, COVID-19-stimulated autophagy and HIF-1 

could serve as markers of AML patients, especially 
patients with FLT3-ITD mutations. COVID-19 patients 
with AML who carry FLT3-ITD mutations are more 
likely to experience severe disease [208]. It is hypoth-
esized that in addition to predisposing these patients 
to a severe course of COVID-19 and high mortality, 
COVID-19 and FLT3-ITD-dependent autophagy and 
HIF-1 overexpression may also play a role in progres-
sion of leukemia and drug resistance. Not to mention, 
we believe that FLT3 inhibitors and Not to mention, we 
believe that FLT3 inhibitors and drug interactions with 
autophagy could be a potential treatment for FLT3-ITD 
mutant patients with COVID-19 to reduce the risk of 
mortality, halt the progression of leukemia, and stop 
drug resistance. This also requires more research to 
confirm this claim [209].

ORF3b
ORF3b accumulates in the nucleus and mitochondria 
of infected cells [210]. This protein inhibits cell growth 
in the G0/G1 phase. On the other hand, apoptosis and 
necrosis are caused by the overexpression of this pro-
tein. Moreover, this protein affects how the host’s innate 
immune system reacts to SARS-CoV infection. This pro-
tein inhibits the production and signaling of IFN, which 
is a key component of the antiviral immune response 
[211].

ORF6
It is a very small protein with a molecular weight of 
approximately 7 kDa, located in the Golgi and ER. The N- 
and C-terminals are composed of 2–37 and 54–63 amino 
acids, respectively. This protein is involved in reducing 
the synthesis of primary IFN and the functional signal-
ing of IFN. It is the main antagonist of antiviral IFN and 
results in the suppression of IFN induction by multiple 
signaling molecules such as MDAS, MAVS, TBK1, and 
IFN regulatory factor 3 (IRF3)-SD [212]. It is important 
to note that the last amino acids of the DEEQPMEID 
tail are required for ORF6 function in the suppression of 
IRF3 and STAT1 activation [213]. On the other hand, this 
sequence could be a suitable choice for therapeutic appli-
cations, because a role restriction peptide can reduce 
the severity of SARS-CoV-2. ORF6 also interacts with 
NUP98 and RAE1, which form a nuclear pore network 
[214].

ORF7a
This protein enhances NF-κB and p38 while inhibiting 
cellular protein transport [215]. Research has shown that 
new viruses escaping from the host cell can be stopped by 
a protein called tetherin. In this case, a viral protein called 
ORF7a helps viruses escape by creating nicks in infected 
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host cells that are the source of tetherin [216]. It can drive 
infected cells to commit suicide and help SARS-CoV-2 
damage lung cells. It has been demonstrated that the 
coagulation proteins VKORC1, SERPING1, and PABPC4 
interact with the SARS proteins [217]. Blood coagulation 
is influenced by ORF7a binding to VKORC1, which may 
be altered in individuals with specific VKORC1 poly-
morphisms [217]. VKORC1 is required to keep vitamin 
K levels active, which in turn keeps important clotting 
components active [217]. This may be related to the role 
of vitamin K in the synthesis of coagulation factors and 
proteins that control coagulation, the antagonistic inter-
action between vitamin K and inflammatory responses, 
or the antagonistic relationship between vitamin K and 
IL-6 levels [218–220]. In COVID-19 patients, the inflam-
matory and immune response plays an important role in 
the development of symptoms [221, 222]. Computational 
and experimental data support the binding of ORF7a 
and VKORC1. Some VKORC1 mutations affect pulmo-
nary intravascular coagulation of COVID-19 [217]. A 
deficiency of coagulation factors and active vitamin K, 
which are essential for the carboxylation of coagulation 
factors, may result in severe damage and clotting in the 
lungs [223]. By preventing the conversion of vitamin K 
epoxide to active vitamin K, the interaction of ORF7a 
and VKORC1 may further reduce pulmonary hemor-
rhage [224]. This interaction may be less significant in 
warfarin-resistant individuals due to increased VKORC1 
protein synthesis or altered VKORC1 structure, leading 
to increased clotting and worse prognosis in these indi-
viduals [217]. In addition, the SARS-CoV-2 ORF7a binds 
to immune cells (i.e., HLA-DR, DP, and DQ) and induces 
significant inflammatory reactions in the peripheral 
blood of the patient (altering proinflammatory cytokines 
(e.g., IL-1 and IL-6). Finally, it significantly reduces the 
level of HLA-DR, HLA-DP, and HLA-DQ molecules in 
monocytes. CD14 is one of the factors that indicate this 
stage of the process. Along with monocytes, other pro-
inflammatory cytokines also show significant changes, 
suggesting that this protein may be important for the 
onset of the cytokine storm in COVID-19 [73, 223]. The 
viral component, which has an immunoglobulin-like 
structure and helps the virus to escape from the host’s 
immune system, has a protective function for the virus 
[225, 226]. JNK is an important pathogenic mechanism 
for SARS-CoV [227]. By activating ORF3a, ORF3b, and 
ORF7a in this pathway, a large amount of pro-inflamma-
tory factors are synthesized, which can cause lung dam-
age and produce more pro-inflammatory factors [228]. 
The severity of the disease is associated with a hyperin-
flammatory syndrome characterised by fulminant and 
severe hypercytokinaemia with multi-organ failure and 
a cytokine profile similar to secondary haemophagocytic 

lymphohistiocytosis [229, 230]. Tumor necrosis factor, 
IL-2, IL-7, IFN-inducible protein-10, granulocyte colony-
stimulating factor, macrophage inflammatory protein 1, 
and monocyte chemoattractant protein-1 are some of 
the proteins produced under these conditions [230, 231]. 
In addition, SARS-CoV-2 showed increased infectivity 
and transmissibility but lower mortality when compared 
to other respiratory syndromes coronaviruses, such as 
MERS-CoV and SARS-CoV. There may be a link between 
SARS-CoV-2’s increased virulence and its stronger bind-
ing to ACE2 and mutations in its genome. ORF8 and 
ORF10 proteins, the NSP2 and NSP3 proteins, shorter 
3b segments, deletion of 8a segments, and larger 8b seg-
ments are all mutated in the SARS-CoV-2 gene [230].

ORF7b
This protein differs from other proteins of the SARS-
CoV-2 virus protein family because it lacks the same 
sequence [216]. The transmembrane domain of ORF7b 
is essential for protein retention in the Golgi apparatus. 
Alanine scanning assays have shown that the amino acids 
at positions 3–15 and 22–29 of this protein are critical for 
the maintenance of the Golgi complex. ORF7b of SARS-
CoV-2 is 81% similar to this protein in SARS-CoV [232].

ORF 8a
ORF8a proteins, which contain a signal sequence, play a 
key role in ER insertion into the lumen of the ER. ORF8a 
interacts with a variety of host cell proteins involved in 
the ER-associated degradation pathway [233]. ORF8a is 
released from the ER lumen because anti-ORF8a anti-
bodies are one of the most important markers of SARS-
CoV-2 infection. In addition, SARS-CoV-2 patients 
release this protein, which affects the IFN-I signal-
ing pathway. Conversely, cells with ORF8a produce 
less MHC-I [234]. The causes of immunodeficiency in 
COVID-19 may be determined by examining immune 
responses to SARS-CoV-2 over time. For instance, mul-
tiplex cytokine analysis and high-dimensional cytometry 
to fully assess the T and B cell fractions in the periph-
eral blood of COVID-19 patients recovered donors and 
healthy controls. This research includes immunological 
and clinical factors to detect temporal changes in the 
population of activated plasmablasts, effector memory T 
cells, and CD4+ follicular T cells. Three “immunity types” 
with different severity scores for COVID-19 were found 
using unsupervised cluster projection. Specifically, one 
sample showed significant activation of CD4+ T cells and 
plasmablasts associated with COVID-19, but the other 
sample showed minimal to no lymphocyte response. 
This research emphasizes different immune mechanisms 
at work in COVID-19, which could include changes 
in immunosuppressive responses [235]. Activation of 
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MHC-I specific CD8+ T lymphocytes and eradication of 
infected cells depends on the presence of MHC-I anti-
gens. Proteins degraded by the cellular proteasome com-
plex are loaded onto MHC-I molecules by the ER and 
then transported to the cell surface, where antigen-spe-
cific CD8+ T lymphocytes recognize the proteins. Sev-
eral viruses have developed the ability to prevent MHC-I 
processing and present viral antigens to infect and dis-
seminate throughout the host [236]. Similar methods are 
used by SARS-CoV-2 to redirect MHC-I through viral 
proteins [237, 238]. MHC-I autophagy is induced by the 
SARS-CoV-2 ORF8a protein, which also resists CTL 
surveillance [237]. The SARS-CoV-2 ORF8a gene grew 
rapidly in the first three months of the outbreak. These 
isolates included some with a 382 nt deletion covering 
the ORF7b and ORF8a gene area, which is associated 
with a robust T-cell response and a favorable clinical out-
come [239, 240]. These observations highlight the idea 
that variants of concern and ORF8a protein have evolved 
to improve their ability to downregulate MHC-I to pre-
vent antigen-specific memory CD8+ T cells induced by 
past infection or immunization [241]. ORF8a interacts 
with IRF3 to trick the host’s immune system and perhaps 
avoid recognition [242]. The interaction between ORF8a 
and IRF3 has been shown to target different elements of 
the IFN signaling cascade, inhibiting the host immune 
system and enabling the successful progression of infec-
tion [243]. Many studies have also identified defined 
conformational changes of ORF8a such as W45L, V62L, 
and L84S that can better evade the host immune system. 
ORF8a has also been shown to form intracellular aggre-
gates in lung epithelial cells. It has also been found to 
induce stress in the ER, which supports the evasion of the 
immune response [244]. Therefore, targeting the ORF8a-
IRF3 pathway is considered an important target for the 
development of new drugs against SARS-CoV-2 [245].

ORF8b
This affects the modification of the E protein and pro-
motes virus replication, and may be important for lim-
iting virulence [246]. ORF8b has an IgG-like structure 
and does not alter the ORF7 genome [247]. Interestingly, 
intracellular aggregates of SARS-CoV ORF8b induce 
cellular stress through activation of the EB transcrip-
tion factor and its target genes, leading to increased 
autophagy  (Fig.  6) [248]. However, excessive levels of 
ORF8b can damage lysosomes, interfere with autol-
ysosomal homeostasis, and impair the cell’s capacity to 
degrade cargo proteins [190]. Consequently, the propen-
sity of viral ORF8b to the cluster may protect SARS-CoV 
from destruction. They also discovered that the ORF8 
and SARS-CoV-2 N proteins of the mTORC1 pathway 

interact with La ribonucleoprotein 1, translational regu-
lator (LARP1), and FK506-binding protein (FKBP) prolyl 
isomerase 7 (FKBP7), but not interact with each other 
[249]. Viral N and ORF8 proteins may induce autophagy, 
but further studies are needed to confirm this [190].

ORF10
This protein in SARS-CoV-2 has the most immune 
epitopes among all ORF proteins, which can be a suitable 
target for vaccine development [250]. This protein has a 
molecular recognition feature a region of 3 to 7 amino 
acids, which serves as a molecular recognition site for 
interaction with other proteins [251]. This is a critical 
feature of misfolded proteins that allows them to adapt 
to a variety of chemicals when they bind to different pro-
teins and also allows them to interact with many proteins 
[251]. Previous research has shown that the virus uses 
bioinformatics to multiply components of the ubiquitin 
ligase complex, and the host machinery regulates ubiqui-
tin for the virus. Notably, ORF10 of Pangolin-CoV-2020, 
a protein specific for SARS-CoV-2 and undetectable in 
SARS-CoV, shares 15–99% of the nucleotide sequence 
with ORF10 of SARS-CoV-2, which was labeled as a mys-
terious protein [251].

Replicase proteins
To inhibit IFN signaling and the IFN-mediated antiviral 
response, the SARS-CoV-2 encodes some viral structural 
proteins and NSPs with different roles in viral replication 
and packaging [252]. The most important proteins are 
NSP1, NSP8, NSP9, and NSP16 because they limit pro-
tein transport, transcription, and translation in the host 
[253].

NSP1
This protein suppresses cell growth by interrupting the 
G-0 and G-1 phases of the cell cycle [254, 255]. It also 
binds to various ribosomal assemblies, including rest-
ing ribosomes, and translocates to pre-43S and similar 
pre-40S complexes, thereby inhibiting innate immune 
responses. Considering the importance of innate immune 
system cells in SARS-CoV-2 infection, NSP1 may be a 
suitable target for pharmaceutical agents and vaccines. 
The C-terminus of NSP1 serves as the main domain for 
interaction with ribosomes, which is required to control 
the cellular response to viral infection. Overall, NSP1 is 
a potential risk factor for coronaviruses and an attractive 
target for live attenuated vaccine development [256, 257].

NSP2
NSP2 proteins are the most variable NSPs in the corona-
virus family [258]. Because NSP2 sequences are different 
in all coronaviruses. This protein works with the host to 
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perform host functions and regulate infection and it is 
required for optimal virus replication. When NSP2 was 
deleted from the virus, the virus titer and the level of 
RNA synthesis were reduced on average compared to the 
wild type. This protein interacts with components of the 
cytoskeleton and plasma membrane of the primary site 
of virus production, as well as with vesicle components. 
A212, ZFANDs, NUMBL, USP15, STAT5B, IBTK, CYLD, 
and TRIM26 are a few other innate immune system ele-
ments that are associated with NSP2. It also associates 
with key proteins of autophagy such as WIPI1, WIPI2, 
and MAP1LC3B, as well as with important apoptosis reg-
ulators such as AVEN, BAG3, AREL1, TP53BP2, CASP8, 
and ZAK, and many kinases [259, 260]. Thereupon, this 
protein is associated with severe disruption of signal 
transduction in infected cells. On the other hand, NSP2 
may play a role in altering the cellular response to infec-
tion and signaling death. NSP2 replicas are required for 
replication and can bind to inhibitors of apoptosis 1 and 
2, leading to host cell survival. To maintain the functional 

integrity of mitochondria and defend cells against various 
stresses, this protein interacts with host PHB and PHB2 
to alter the signaling system for host cell survival. The 
COVID-19 NSP2 protein has an entry pocket. A tight 
bond is now formed between nigellidine and CYS240, 
as well as an H-bond with LEU169, VAL126, TRP243, 
ALA127, CYS132, THE256, GLY257, TYR242, and 
VAL157 [261, 262]. Finally, it promotes mitochondrial 
integrity and alleviates cellular stress to keep the virus 
alive, and they play a role in viral replication [262, 263].

NSP3
The novel coronavirus encodes a large and versatile pro-
tein with multiple domains [264]. Mac1 or X domain is 
one of the domains that can bind to ADP-ribose (ADPr) 
and act as a transcription factor [265]. Expression of 
NSP3 in macrophages activated by IFNλ indirectly 
regulates long-term expression dependent on STAT1 
pro-inflammation through IFN-stimulated genes by 
inhibiting the reduction of STAT1 through MARylation 

Fig. 6   The potential contribution of SARS-CoV-2 ORF8, NSP3, and NSP6 to cancer growth, chemoresistance, and tumor recurrence in infected cells 
(cancer cells). Reprinted with permission from ref. [248]. Copyright 2022, Springer Nature
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and increasing the pool of STAT1 molecules available 
for phosphorylation [73]. This method helps to char-
acterize cytokine storms in severe cases of COVID-19. 
In an interesting hypothesis, the IFN-stimulated gene 
ACE (SARS-CoV-2 receptor), which is associated with 
clinical symptoms and viral eradication, is thought to 
be present in many cells of the lung and small intestine 
[266]. For example, the discovery of STAT1 binding 
sites in the ACE2 promoter region by NSP3 in IFN-
stimulated macrophages may lead to overexpression 
of SARS-CoV-2 receptors on the surface of auditory 
epithelial cells and prolong the duration of infection. 
By infecting more individuals and releasing more IFN, 
it increases STAT1 activity. This mechanism leads to 
increased inflammation and viral receptors. It also 
neutralizes PARP14-dependent MARylation of STAT1 
continuous production. Consequently, it prevents the 
control and termination of the pro-inflammatory phase. 
MARylated STAT1 can also prevent viral pathogen-
esis by balancing NSP3 protein activity. STAT1 is the 
expected NSP3 target of SARS-CoV-2 in all cases. Phys-
ical contact exists between STAT1 and the N-terminal 
domain of the NSP3 protein of SARS-CoV-2, a multi-
functional protein that functions as a viral protease and 

can inhibit IFN responses [267]. STAT1-dependent ISG 
synthesis is inhibited by SARS-CoV-2 NSPs (i.e., NSP1, 
NSP3, NSP6, and NSP13) by reducing STAT1 phospho-
rylation and reducing inflammatory conditions. ORF3a 
and ORF7b inhibit STAT1 function. NSP6 and NSP13 
together with ORF7a and ORF7b inhibit STAT2 phos-
phorylation [268]. By binding to karyopherin-2, ORF6 
prevents STAT1 from translocating to the nucleus [269] 
(Fig.  7). STAT1 nuclear translocation is inhibited by 
SARS-CoV-2 3CLpro, and STAT1 protein levels and 
STAT1-induced IFN phosphorylation are enzymati-
cally reduced. It has also been suggested that 3CLpro 
may promote STAT1 autophagy. Increased expression 
of 3CLpro promotes viral replication by downregulat-
ing IFN and ISG signaling pathways [15]. PLpro can 
use the JAK/STAT pathway to de-ubiquitination and 
de- ISGylation. Its ability to precisely cleave STAT2 and 
block IFN signaling has been demonstrated [268, 270]. 
The N protein, one of the structural elements of SARS-
CoV-2, has been shown to inhibit STAT1 and STAT2 
phosphorylation and nuclear translocation, thus pre-
venting the inflammatory cascade induced by the IFN-I 
pathway. In addition to hyperinflammation, the sever-
ity of the disease is also affected by coagulation [271]. 

Fig. 7   Intracellular signaling pathways stimulated by SARS-CoV-2 and the interactions of NSPs and ORFs with them
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In order to prevent thrombotic effects in in people 
with metabolic and cardiovascular diseases, the control 
of oxidized phospholipids caused by oxidative stress 
(OxPLs) in monocyte and endothelial cells has been 
studied [272]. There are many pathways to block the 
ACE2 receptor, inhibitors of TMPRSS2 (e.g., camostat 
mesylate), drugs that target STAT1 (e.g., emapalumab), 
which are anti-IFN-γ baricitinib and ruxolitinib, two 
JAK1 and JAK2 inhibitors that block ACE2-mediated 
endocytosis, antibody monoclonal that targets the S 
protein. Furthermore, PARPs that block antiviral ADP-
ribosylation can help with treatment [268].

NSP4
This protein interacts with other proteins and causes 
fluid bubbles to form in infected cells. In addition, parts 
of new forms of the virus are created inside these bubbles 
[273]. This protein together with NSP3 and NSP6 forms 
a complex that is important in viral replication by induc-
ing DMVs. This protein destroys MAVs and controls 
NOTCH1 degradation. It ubiquitinates the chemokine 
receptor CXCR433 and directs it to the destructive path-
way of HGS and STAM, both components of the ESCRT 
complex. NSP4 has also been shown to interact with the 
dual effects of the ACE2 receptor and control its neu-
tralization. Altogether, through interaction with these 
machines, it appears as a major regenerator of the host 
membrane, and in SARS-CoV-2 infection, it disrupts two 
homeostases of methylated proteins in the membrane 
[260]. Multiple interactions occur between SARS-CoV-2 
proteins and host proteins. The most interactive viral 
proteins were E, M, NSP4, and ORF7b, which frequently 
interacted with host proteins involved in immunity 
and translation in all organ types. APOB, PCDH9, and 
NCAM1 were the top three genes with the most virus-
host protein interactions, all of which are consistent 
with symptoms of COVID-19 such as decreased apoli-
poproteins, decreased endothelial barrier function, and 
decreased immune cell proliferation. Finally, viral pro-
teins have been investigated to interact with host genes 
involved in cardiomyopathy and angiogenesis [274].

NSP5
This protein has three domains: D1, D2, and D3, which 
are unique. Domains 1 and 2 contribute to the activa-
tion of the 3-chymotrypsin-like protease (3CL protein). 
The 3CL protein from NSP5 known as M pro is one of 
the best drug targets. Autodegradation of NSP5 leads 
to the formation of a mature 3-chymotrypsin product, 
and further degradation of this protein culminates in 
the formation of eleven non-structural products known 
as NSP4/16. Substrate transfer is between the first and 
second domains. For the protein to be catalytically 

controlled, protein dimerization is essential. Glucose 
molecules make up the remaining portion of the M pro-
tein structure, which is crucial for the dimerization and 
formation of a binding substrate. On the other hand, 
two amino acids Cys141 and His41 act as catalysts in 
the active site of the protein. Recent studies have shown 
that methods can be used to produce drugs resistant to 
M pro-SARS-CoV-2 [275]. The major protease of SARS-
CoV-2 NSP5 inhibits both RIG-I and mitochondrial 
antiviral signaling (MAVS) protein. NSP5 selectively 
truncates the N-terminal 10 amino acids of RIG-I, pre-
venting MAVS activation while increasing MAVS ubiq-
uitination and proteosome-mediated degradation. NSP5 
thereby prevents the induction of IFN in an enzyme-
dependent manner by double-stranded RNA (dsRNA). 
A synthetic small molecule inhibitor blocks SARS-CoV-2 
NSP processing and NSP5-mediated cellular degrada-
tion of RIG-I and MAVS, reinitiating the innate immune 
response and halting SARS-CoV-2 replication. This study 
provides a new understanding of how SARS-CoV-2 tricks 
the immune system of COVID-19 and suggests a poten-
tial antiviral drug [190].

NSP6
NSP6 is a membrane protein approximately 34 kDa in 
size with six membrane helices whose C-terminals are 
highly protected and enter the host ER membrane. A 
ring of small membrane vesicles surrounds the micro-
tubule-organizing core (MTOC) after the transfection 
of NSP6. Since NSP6 leads to the formation of smaller 
autophagosomes, this protein may slow the prolifera-
tion of these structures. This protein may transport 
ER-regulated proteins produced by the ER and self-lyse 
autophagosomes in response to an immune response. 
When cells or organs fail, viral proteins typically lead 
to DMV double membranes (e.g., ER stress, Golgi frag-
mentation, and changes in the autophagic apparatus). 
Consequently, the virus uses these proteins to hide and 
translate its so-called accessory proteins [276, 277]. 
The mouse hepatitis virus (MHV) model virus is often 
used in laboratories around the world, unlike the three 
novel hCoV viruses, which have limitations for care-
ful study. MHV infection leads to various forms of 
autophagy activation, which are essential for the viral 
life cycle. In mouse embryonic stem cells lacking the 
autophagy-related gene ATG5, Cottam and colleagues 
found that MHV NSP6 could stimulate autophagic flux 
to form ER autophagosomes via omegasome mediators, 
but MHV could not form DMVs in these cells [278]. 
Compared to cells expressing ATG5, MHV replication 
is reduced more than 1000-fold in ATG5/embryonic 
stem cells, demonstrating that autophagy is critical for 
both DMV development and MHV replication [279]. 
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A link between human coronavirus development and 
host cell autophagy has been proposed as a model. 
Emerging human COVIDs (SARS-CoV, MERS-CoV, or 
SARS-CoV-2) alter autophagy in host cells at different 
stages of infection: (A) SARS-CoV and SARS-CoV-2 
NSP6 proteins induce omegasome intermediates in the 
initiation of autophagy (Fig. 6). To promote the forma-
tion of phagophores, all three CoVs can activate the 
ULK1 complex through the AMPK/mTOR pathway. (B) 
To prevent vesicle formation, MERS-CoV and SARS-
CoV-2 degrade BECN1 via AKT1/SKP2. However, 
BECN1 is deubiquitinated by SARS-CoV and MERS-
CoV PLpro to promote the initiation of autophagy. (C) 
SARS-CoV S proteins and NSPs induce ER stress that 
activates the unfolded protein response (UPR) and 
promotes phagophore elongation through the ATG5-
12-16L complex. (D) Autophagosome-lysosome fusion 
limits autophagosome maturation by promoting insuf-
ficient autophagy inhibited by SARS-CoV and MERS-
CoV PLpro. Meanwhile, SARS-CoV ORF8b can also 
damage lysosomes [190].

NSP7‑8
NSP7-8 acts as a cofactor for SARS-CoV-2 RDRP (RNA-
dependent RNA polymerase), also known as NSP12, 
which is an essential part of the replication and transcrip-
tion machinery [280]. NSP12 alone has the lowest activ-
ity rate, while the maximum activity rate is determined 
by the common elements NSP7-8. These proteins are not 
sufficient for NSP12 to function properly. However, the 
combination of the two increases SARS-CoV-2 RNA syn-
thesis by NSP12 [281].

NSP8 primase
This protein acts on the one hand as a primase for the 
synthesis of a primer for NSP12 and on the other hand 
in the synthesis of the RNA genome that is associated 
with the SARS-CoV-2 RNA virus. The protein also forms 
a small channel in the nucleus of an infected cell and can 
even cause molecules to move through the nuclear mem-
brane, but no reliable information is yet available [282].

NSP9
NSP9 are binder dimers and are composed of a unique 
type that binds to each other through the GXXXG non-
complex non-crossover pattern. The primary amino acid 
sequence of this protein in SARS-COV-2 is 97% related 
to the SARS-CoV virus, which is essential for virus rep-
lication. This protein is stable for single-stranded DNA 
and RNA oligonucleotides [283]. Through the use of 
reverse genetics, it was discovered that the SARS-CoV 

NSP9 gene could be altered to block the virus from 
spreading [284].

NSP10
Antiviral proteins (IFN, TNF, IL-12) present in human 
cells can destroy viral RNA. NSP10 contains viral 
genes that protect host antiviral proteins from damage. 
Nuclear elements involved in chromatin remodeling and 
mRNA processing directly interact with this protein. 
In addition, NSP10 stimulates NSP14 and NSP16  3′-5′  
exoribonuclease (ExoN)  and 2’-O-methyltransferase 
(2’-O-MTase). According to one theory, NSP10/14 may 
be a simple modification and amplification system [285]. 
During viral replication, NSP10/14 may be active. Its 
involvement begins when it corrects the mutated ribo-
nucleotides produced by the RNA polymerase and allows 
it to resume its activity [286]. NSP10/16 is also essential 
for virus survival and replication. This complex codes for 
2’-O-MTase, which helps the virus hide from the host’s 
innate immune system by altering its genetic material 
to mimic the host cell’s (human) RNA [287]. This allows 
the virus to multiply rapidly in the human body. The 
development of a therapy that destroys the SARS-CoV-2 
NSP10/16 complex helps the immune system recognize 
and eliminate the virus. The SARS-CoV-2 genome was 
modified by the NSP10/16 complex. When the protein 
that acts as its activation complex, NSP10, is present, the 
SARS-CoV NSP16 protein is functionally activated and 
produces the NSP10/16 complex [288]. The viral genome 
is genetically modified to mimic human mRNA and pro-
tect it from the host’s immune defenses [289]. This mole-
cule binds to NSP14 to form further complexes, but also 
requires a cofactor. Before NSP10/16 RNA 2’-O meth-
ylation, which is responsible for RNA cap methylation, 
guanine N7-methylation occurs mediated by NSP14 
[288, 290].

NSP12 polymerase
This protein contains seven motifs [291]. Among these, 
motifs A-F are highly protected from RDRP encoded by 
the virus [292, 293]. Motifs J, as an RDRP, are primer-
dependent in several viruses. Motif C contains impor-
tant catalytic residues (759 to 761 (SDD)) that are joined 
together by two adjacent strings in the β-turn [294, 295]. 
Motif F forms a fingertip that protrudes from the cata-
lyst chamber and interacts with the finger extension and 
thumb subdomain rings [295, 296]. On the other hand, 
segmented negative-strand RNA virus (sNSV) polymer-
ases (e.g., influenza and bunya virus) need to be attached 
to a protected hook 5′-RNA protected to activate syn-
thesis with fingertip, which is otherwise very flexible in 
the apo form [297, 298]. In the structure of coronavirus 
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polymerase, the fingertip ring is fixed adjacent to the 
finger-extension rings by interactions with the NSP7/8 
heterodimer. If this is not a heterodimer, the ring finger 
extension shows considerable flexibility which in turn 
destabilizes the finger-tip motif resulting in poor perfor-
mance NSP12 which is why heterodimers NSP7/8 on top 
of subdomain thumb RDRP linked and sandwiches the 
finger-extension rings between them to stabilize its struc-
ture. Also, this protein is expressed in Escherichia coli 
and can modify the genetic letters within the new viral 
genome. Remdesvir is an antiviral drug that interacts 
with NSP12 in other coronaviruses [297, 298].

NSP13 helicase
When SARS-CoV-2 infects host cells, a variety of mul-
tivalent RNAs can be generated, and the virus can also 
assemble viral NSPs required for viral genome replica-
tion and transcription. Of sixteen NSP proteins related 
to SARS-CoV-2, four types of NSP have been discovered 
[299]. Among SARS-CoV-2 families, the NSP13 helicase 
is a key protein for viral replication and has the highest 
sequence conservation [300]. The main function of this 
protein is to prevent the virus from dying. In contrast, 
NSP13 converts double-stranded DNA into two single-
stranded RNAs suitable for replication [301]. Deoxyri-
bonuclease and ribonucleotide triphosphatase can also 
be hydrolyzed by this enzyme. This protein is also asso-
ciated with centrosome proteins. SARS-CoV-2 NSP is 
an antagonist of IFN signaling [214]. The sequence of 
this protein is 99.8% identical to the SARS-CoV helicase 
sequence [302]. The terminal part of NSP13 is predicted 
to form a Zn2+ cluster that is immune to coronaviruses 
and nidoviruses [303]. NSP13 has NTPase activity and 
uses the energy of ATP hydrolysis to fuse base pairs. It is 
thought to be critical for RNA-related activities such as 
transcription and translation [304]. However, this critical 
enzyme is a suitable target for drug development against 
SARS-CoV-2 [304].

NSP14
This protein is changed by the coronavirus and is released 
by the COV3L protein. In other words, this protein can 
contribute to some genetic changes in viral RNA associ-
ated with NSP15 protein through its enzymatic activity. 
Because NSP12 copies the coronavirus genome, it some-
times adds new nucleotides to form new versions. The 
NSP14 function corrects these errors and can replace 
the incorrect nucleotide with the correct one. On the 
other hand, SARS-CoV-2 has developed the capacity 
to limit host RNAs through some pathways to enable 
successful replication in the host cell. The N-terminal 
region of NSP14 also contains the N7 methyltransferase 

(N7-MTase) enzyme, which is present near the end of 
the C-terminal of NSP14 and has an ExoN domain [305]. 
The mechanism of RNA capping plays an important role 
in the virus escaping from host immune cells and failure 
in capping RNA causes RNA viral destruction and ulti-
mately, prevents the virus from replicating. Therefore, 
inhibition of the SARS-CoV virus may be possible by 
targeting the N7 region of MTase [306, 307]. The 3′ to 
5′ ExoN and guanine N7-MTase activities of the NSP14 
proteins of the coronavirus are well known. RNA poly-
merase dependent on viral RNA is believed to add mis-
matched nucleotides and the N-terminal domain of 
ExoN acts as a proofreader to facilitate the removal of 
these nucleotides [308, 309]. The proofreading activity 
of the ExoN domain is essential to maintain high levels 
of replication fidelity because coronaviruses have enor-
mous viral genomes [310, 311]. Recently, changes in ZF 
motifs and active regions of the ExoN domain caused 
SARS-CoV-2 and MERS-CoV to exhibit a lethal pheno-
type [306]. An S-adenosylmethionine (SAM)-dependent 
N7 MTase is present in the C-terminal domain of NSP14 
and is required for 5’ capping of viral RNA. The 5’ cap 
prevents recognition of viral mRNA by the host’s natu-
ral antiviral defenses and promotes viral mRNA stability 
and translation [312]. NSP10, a zinc-binding protein with 
no reported enzymatic activity, and SARS-CoV NSP14 
form a protein complex. NSP10 enhances ExoN activ-
ity but not N7-MTase activity when it interacts with the 
N-terminal ExoN domain of NSP14. Notably, SARS-CoV 
develops a lethal phenotype in response to NSP10 muta-
tions that disrupt NSP10/14 junction. Like SARS-CoV-2 
infection, SARS-CoV infection limits the synthesis of 
host proteins [313]. NSP1 overexpression reduces pro-
tein synthesis in cells, which supports previous studies 
on SARS-CoV and more recent studies on SARS-CoV-2 
[313]. Furthermore, it was found that overexpression of 
NSP14 results in an almost complete cessation of cellu-
lar protein production. Mutations that inactivate either 
ExoN or N7-MTase enzymatic activities reverse trans-
lation inhibition mediated by NSP14 [313]. ExoN or 
N7-MTase mutants with a lower enzymatic activity com-
pletely abolish NSP14-induced translational inhibition. 
Moreover, the NSP10/14 protein fusion enhances the 
capacity of NSP14 to inhibit translation [313]. However, 
this increase in activity can be reduced by changing spe-
cific interacting residues. NSP14 inhibits the induction of 
IFN-dependent ISGs, which suppress the production of 
antiviral proteins. The ability of this translational inhibi-
tor to reduce IFN-I responses [314]. This research led 
to the identification of the translational inhibitor SARS-
CoV-2 NSP14, which is encoded by the virus and blocks 
the production of host proteins, including antiviral pro-
teins [315]. It is essential to comprehend the processes by 
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which SARS-CoV-2 undermines host immune responses 
in order to build next-generation antivirals and get ready 
for forthcoming viral infections [313].

NSP15
One of the mysterious enzymes related to NSP15 is a 
nidoviral RNA uridylate-specific endoribonuclease (Nen-
doU) which carries the catalytic domain C-terminal and 
belongs to the family EndoU. Enzymes EndoU is respon-
sible for various biological functions related to RNA pro-
cessing RNA [316]. Furthermore, This protein can act 
as the hypothesis and probabilities. At first, this protein 
was directly involved in viral replication. Later it was 
shown that coronavirus viruses survive in the absence 
of this protein and perform their replication indepen-
dently, leading to doubts about the role of the enzyme 
EndoU in the process of RNA. Recently, the EndoU activ-
ity of NSP15 is responsible for the interaction of the pro-
tein with the innate immune response. There is also the 
hypothesis that this protein destroys the genome of the 
virus to hide it from the host defense. However, NSP15 
in the biology of the SARS-CoV-2 virus is essential [316].

NSP16
This protein forms a heterodimer with the NSP10 cofac-
tor and enhances the activity of 2’-O-MTase. In addition, 
the genetic material changes the virus to look like human 
RNA. This blocks MAD from recognising the viral RNA 
and stops the innate immune response, both of which 
are essential for reducing coronavirus replication and 
infection. Therefore, the immune system will be better 
equipped to identify and get rid of the virus more quickly 
if a medication or chemical molecule is developed that 
restricts the activity of NSP16 [317].

Vaccines for the SARS‑CoV‑2 virus
Using a wide range of technologies, including live attenu-
ated, viral vector, DNA/RNA-based vaccines, protein-
based vaccines, and inactivated vaccines, more than 100 
vaccine candidates are currently being developed by 
industry and academic institutions [58, 318]. A complete 
vaccination should provide immediate, comprehensive, 
and long-term protection by preventing serious illness, 
hospitalization, and death [319]. Businesses and aca-
demic institutions are currently working on the develop-
ment of more than 100 vaccine candidates using a range 
of technologies, including live attenuated vaccines, viral 
vector vaccines, DNA/RNA-based vaccines, protein-
based vaccines, and inactivated vaccines. DNA- and 
RNA-based platforms have the best chance of achiev-
ing the fastest production speeds because their synthesis 
does not require fermentation or cultivation. DNA-based 

vaccines have other advantages. Since the vectors used 
only encode and express the target antigen and do not 
replicate, they are notable for their safety profile. The 
problem with viral vectors is that they cannot change 
back into a form that causes disease. Another interest-
ing option is RNA-based vaccines, which have a low cost 
of production and strong safety records in animal tests 
[320]. Due to the possibility of low-cost manufacturing 
and the lack of vector-specific immunity, DNA-based 
vaccines are also a promising alternative [321]. These 
products can be used in prime and booster regimens 
with different products intended for the same patient 
because they lack vector-specific immunity (Inovio busi-
ness). In addition, RNA-based vaccines such as mRNA-
1273 (Moderna) and BNT162 (a1, b1, b2, and c2) from 
BioNTech SE/Pfizer, among others, are on the market 
[321] (Table 2).

Viral vectors
Vectors based on viruses are an effective tool for vacci-
nation. Their capacity to infect cells gives them the abil-
ity to be highly efficient, specific, and capable of inducing 
strong immune responses [320, 321] (Table 2).

Inactivated vaccines  Inactivated vaccines are made 
using bacteria or viruses that have been inactivated by 
heat, chemicals, or radiation. These methods prevent the 
virus from multiplying, which makes them more stable 
and increases their level of immunity. These attributes 
allow for their use in immunocompromised individuals 
[320, 321] (Table 2).

mRNA‑based vaccine  Recently, an mRNA-based vac-
cine (mRNA-1273) (NCT04470427) has been developed 
to prevent COVID-19, which evaluated the safety and 
immunogenicity of this vaccine for up to 2 years after the 
administration of the second dose. A comparable vaccine 
being developed by Curevac is still in pre-clinical testing 
[56, 322] (Table 2).

Subunit (recombinant protein) vaccines  Recombinant 
protein subunit vaccinations, an infectious virus do not 
require treatment; adjuvants can be used to boost immu-
nogenicity [322, 323] (Table 2). For example, SCB-2019, 
a protein subunit vaccine candidate containing a stabi-
lised trimeric form of the spike (S) protein (S-Trimer) 
combined with two different adjuvants that increased 
to achieve neutralizing antibody titers after two vacci-
nations. Convalescent serum samples from COVID-19 
patients had similar responses. Antibodies to S-Trimer S 
protein component and its receptor-binding domain are 
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directly correlated with this neutralizing activity [324, 
325].

Live attenuated vaccines
live attenuated vaccines are produced by either employ-
ing a non-virulent strain or by creating a weaker strain 
of the virus. Numerous methods, including repeated pas-
sages in cultured cells and genetic alterations, can atten-
uate a virus. The ability to give live attenuated vaccines 
intranasally, which closely resembles a genuine infection 
and triggers mucosal immune responses, is a significant 
advantage [323] (Table 2).

Replication‑incompetent vectors  A large number of vac-
cines in development are replication-incompetent vec-
tors. These vaccines are typically based on other viruses 
whose genomes have been altered to express the spike 
protein and destroyed to prevent them from replicat-
ing in  vivo [326]. Although modified vaccinia Ankara 
(MVA), human parainfluenza virus vectors, influenza 
virus, adeno-associated virus, and Sendai virus are also 
used, adenovirus (AdV) vectors account for the major-
ity of these strategies.ChAdOx1 nCoV-19, developed by 
Janssen using an AdV26-based vector and developed by 
CanSino using AdV5; A candidate from the Gamaleya 
Research Institute (Ad5/Ad26) is also undergoing phase 
III clinical trials, while another from ReiTheram (gorilla 
AdV) is undergoing phase I clinical trials [327] (Table 2).

Replication‑competent vectors  Attenuated or vaccine 
strains of viruses that have been modified to express 
a transgene, in this case, the spike protein, are typically 
the sources of replication-competent vectors. Animal 
viruses that do not spread quickly and do not infect 
humans are sometimes used as well. Because the vector 
is spreading in the person who has been vaccinated and 
frequently also elicits a robust innate immune response, 
this method can lead to a more robust immune response 
[328] (Table 2).

Information on structural and non-structural viral 
proteins can be used to design valuable diagnosis tests 
and vaccines. This matter could have many advantages 
for the global health system in the new coronavirus 
pandemic that could lighten disease complications 
by suggesting a new rapid test for diagnosis or effec-
tive vaccine candidates [329]. Therefore, the emphasis 
on research on genome structures, genes, and pro-
duced proteins can lead to identifying a proper target 
for laboratory diagnosis or vaccines for controlling 
viral infection. For the last purpose candidates for the 
SARS-CoV-2 vaccine are divided into two groups: 1) 

Vaccines that are based on genes, including DNA and 
messenger RNA vaccines, and vectors of recombinant 
vaccines and live viral vaccines because Antigens are 
produced in host cells. 2) protein-based vaccines that 
include completely inactivated viruses, or vaccines 
that use protein subunits [330]. For example, Lian-
pan et  al. have shown that the S protein binding site 
with the specific name RBD is an attractive target for 
vaccine preparation despite limited immunogenic-
ity. However, variable forms of RBD could overcome 
this limitation. This RBD vaccine can significantly 
increase neutralizing antibody (NAb) titers compared 
to its normal form (monomer) and protected against 
MERS-COV, COVID-19, and SARS infections [331]. In 
an interesting study by Salman Khan et  al. structural 
proteins, S and E proteins, and non-structural pro-
teins, ORF3 and ORF5 linked together by beta-defen-
sin which have potency and are highly antigenic have 
been studied. The vaccine was designed for further 
expression transferred to E. coli. This vaccine will not 
only be effective in immunizing the population with 
MERS-CoV but also will be effective in immunization 
against COVID-19 [332]. Furthermore, four epitopes 
were selected from the S1 structural protein domain 
with 14 to 685 amino acids. The analysis showed 
that three epitopes of the selected epitopes are in the 
N-terminal domain of the S1 protein and one epitope 
is related to the binding part of the receptor. Conse-
quently, this particular segment could be a good target 
for designing an antiviral vaccine [332]. Another study 
by Naz, et  al. reported that structural S protein plays 
an important role in inducing neutralizing antibodies 
and T cell responses as well as protective immunity 
during infection. Therefore, the researchers, consider-
ing the importance of this protein in immunogenicity, 
named it a suitable candidate for a vaccine against host 
receptors (ACE2). On the other hand, vaccines made 
based on S protein, could be potential therapeutic tar-
gets against the SARS-CoV-2 virus, as it is likely to 
block the virus from interacting with the host recep-
tor of the two host cells. Prevent pulmonary vascu-
lar permeability [333]. For example, Ong et  al. devel-
oped reverse vaccination tools Vaxign revers, and the 
newly developed Vaxign-ML medicine. By examining 
the SARS-CoV-2 proteins, two or six proteins, includ-
ing the S protein and five non-structural proteins 
(NSP3, 3CL-pro, and NSP10) predicted as an adhe-
sive, which is essential for virus binding and attack 
on the host. Structural and non-structural proteins 
(NSP3, S protein, and NSP8) predicted by Vaxign-ML 
with high protective antigenic properties. The NSP3 
protein contains the epitopes of MHC cells one and 
two T cells also predicted. Linear B cell epitopes are 
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translated in specific locations and functional domains 
of the protein. These proteins can be suitable targets 
for the preparation of an effective COVID-19 vaccine 
[334]. For example, Yang et  al. showed the recombi-
nant vaccine made from the 319–545 locus of the RBD 
S protein receptor induced a potential functional anti-
body. The serum of immunized animals with this vac-
cine contains a high titer of antibody that blocks RBD 
binding to the ACE2 receptor. Inducing the antibody 
response by this vaccine activates several immune 
pathways and T cell lymphocytes (CD4). These find-
ings demonstrate the importance of RBD in vaccine 
preparation for the prevention and treatment of SARS-
CoV-2 [335]. For example, Lei et al. created a recombi-
nant protein by binding the second extracellular recep-
tor ACE2 of humans to the FC region of the human 
immunoglobulin IgG1. This protein has a high affinity 
for the RBD of SARS-CoV and SARS-CoV-2 and could 
have potential applications in the diagnosis, preven-
tion, and treatment of this virus [336].

Conclusion and future directions
The COVID-19 epidemic has been a serious threat to 
human society and the global economy since the begin-
ning of the 21st century. However, there is currently 
no definitive treatment and only a few FDA-licensed 
COVID-19 vaccines. The introduction of safety infor-
matics approaches in vaccine production has led to a 
huge revolution. Utilizing proper protein antigens can 
stimulate both the antibody response and the immune 
response triggered by the host. The immune response 
to common illnesses is limited but can be enhanced by 
the development of an epitope-based vaccine. There-
fore, judicious selection is required to isolate the ele-
ments that are essential for the desired immunological 
response. Efforts are underway to find acceptable T-cell 
epitopes and to develop effective techniques for deliver-
ing such epitopes. The advantages of developing epitope-
based vaccination include increased safety, reduced 
time, and the ability to tailor epitope combinations 
for better resistance. It also makes it easier to focus on 
the required immune responses to protected antigenic 
epitopes. The key epitopes of this virus include struc-
tural and NSPs, which can be excellent and effective 
candidates for making vaccines and treatments. It is also 
known that COVID-19 can lead to the development of 
several complications and diseases such as neurologi-
cal diseases, cancers, etc. Hence, therapeutic and pre-
ventive approaches for early-stage COVID-19 patients 
could be beneficial. Meanwhile, some roles of structural 
and NSPs of SARS-CoV-2 in multiple complications and 

diseases have been discussed, suggesting that targeting 
these proteins could be a promising therapeutic approach 
have been discussed. However, more investigations are 
required to uncover their mechanism of action in con-
tributing to the severity of COVID-19 and associated dis-
ease progression.
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