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Abstract 

Glioblastoma (GBM) is the most malignant CNS tumor with a highest incidence rate, and most patients would 
undergo a recurrence. Recurrent GBM (rGBM) shows an increasing resistance to chemotherapy and radiotherapy, 
leading to a significantly poorer prognosis and the urgent need for novel treatments. Immunotherapy, a rapidly 
developing anti-tumor therapy in recent years, has shown its potential value in rGBM. Recent studies on PD-1 
immunotherapy and CAR-T therapy have shown some efficacy, but the outcome was not as expected. Tumor 
vaccination is the oldest approach of immunotherapies, which has returned to the research focus because of the 
failure of other strategies and subversive understanding of CNS. The isolation effect of blood brain barrier and the 
immunosuppressive cell infiltration could lead to resistance existing in all phases of the anti-tumor immune response, 
where novel tumor vaccines have been designed to overcome these problems through new tumor antigenic targets 
and regulatory of the systematic immune response. In this review, the immunological characteristics of CNS and GBM 
would be discussed and summarized, as well as the mechanism of each novel tumor vaccine for rGBM. And through 
the review of completed early-phase studies and ongoing large-scale phase III clinical trials, evaluation could be 
conducted for potential immune response, biosecurity and initial clinical outcome, which further draw a panorama of 
this vital research field and provide some deep thoughts for the prospective tendency of vaccination strategy.
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Importance of this study

1. We reviewed the literature concerning immune 
microenvironment of GBM, from the biological 
features of the immunosuppressive CNS to the 
mechanism of immunotherapy resistance in detailed 
stages, and focused on the newly emerging evidence.

2. We summarized the differences between newly 
diagnosed GBM and rGBM through immunological 
features, highlighting the uniqueness of rGBM and 
discussed the possible connection between the 
unique immunological characteristic and the failure 
of present clinical trials on immunotherapy of this 
tumor.
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3. We comprehensively reviewed the mechanism of 
each novel tumor vaccine for rGBM, and explained 
the reason we believed in these vaccines despite the 
present challenges.

4. We conducted a detailed summary on the completed 
and ongoing RCTs of tumor vaccines for rGBM, 
from preclinical trials to large-scale phase III trials, 
analyzing the clinical outcomes, and pointing out the 
achievements as well as problems for all vaccines.

5. We depicted a tumor vaccination landscape for 
rGBM treatment and provided some deep thoughts 
for the prospective tendency of vaccination strategy, 
from basic research to clinical application.

Introduction
Glioma is the most common primary tumor in central 
nervous system (CNS), with an incidence rate of about 
8/100000 people worldwide [1, 2]. There are more than 
ten subtypes of glioma according to the 2021 WHO 
Classification of Tumors of the Central Nervous System 
[3, 4], and among which, glioblastoma (GBM) has 
occupied a crucial role because of its highest malignancy 
and a 60% proportion of all patients [5]. The standard 
therapy, established by Stupp in EORTC-26981 trial 
in 2005, consists of grass total surgical resection, 
concurrent radiotherapy combined with temozolomide 
(TMZ) and adjuvant TMZ [6], and with the encouraging 
result of a 20.9-month overall survival (OS) in EF-14 
trial [7], the latest standard of care has added concurrent 
treatment with alternating electric fields and adjuvant 
TMZ to the first-level choice as well as the EORTC-
NCIC study-based adjuvant involved-field RT with 
concurrent and adjuvant TMZ [8]. However, the median 
OS is still about 14.4–16.7 months in most randomized 
clinical trials (RCTs) [2, 9, 10] with an almost inevitable 
tumor recurrence [11]. And for patients with recurrent 
GBM (rGBM), the resistance to radiotherapy and 
chemotherapy could occur on a much larger scale, with 
only fewer than 30% of the patients qualified for a second 
surgery [12, 13]. Bevacizumab (BEV) is a widely approved 
treatment for improving progression-free survival (PFS), 
but it failed to extended OS in the studies [14]. As a 
result, the median OS of these patients ranges from 4.7 to 
11.4  months based on highly individualized therapeutic 
choices in different RCTs [15, 16]. Therefore, GBM is still 
one of the most dangerous cancers with leading mortality, 
especially for rGBM, which has no established standard 
care till now, making it an urgent need for researchers to 
explore novel therapeutic targets and plans [17].

Immunotherapy has been a rising star in the field of 
tumor treatment in recent years [18], which is defined 
as a biological treatment using substances to stimulate 

or suppress the immune system, helping human body 
against cancer, infection, or other types of diseases 
according to National Cancer Institute (NCI) [19]. For 
cancer treatment, immunotherapy aims to generate 
a tumor-specific immune response to selectively 
eliminate tumor cells [20], which can be divided 
into two parts: active immunotherapy and passive 
immunotherapy [21, 22]. The active immunotherapy 
induces certain immune responses against tumors 
by injection of exogenous antigens, such as vaccines 
including peptide vaccines and cell-based vaccines, 
while passive immunotherapy kills tumor cells by 
injecting exogenous immune substances without a 
direct activation of the body’s immune system, which 
includes but not limited to antibody therapy and 
adoptive immunotherapy [23].

Based on the different immune molecular pathways, 
target proteins and mechanisms, there have been 
several kinds of treatments that have been applied 
to clinical practice or achieved the clinical trial for 
further development, including tumor vaccines, 
adoptive immunotherapy, immune checkpoint 
inhibitor, virus therapy and intratumoral injection 
etc. [24–27]. As the first-developed immunotherapy, 
tumor vaccination has been one of the most important 
approaches for researchers to regulate human immune 
system to strengthen the local immune response and 
consequently, reach a therapeutic reaction [28, 29]. 
Novel treatments have achieved much impressive 
therapeutic outcome in some specific tumors in recent 
years. Immune checkpoints PD-1/PD-L1 was found 
promising through clinical trials in non-small cell 
lung cancer, [30–33],while chimeric antigen receptor 
T-cell (CAR-T) therapy has been a greater hotspot 
for the investment in immunotherapy because of its 
remarkable efficacy in hematological malignancies 
However, the profound therapeutic effects were limited 
in solid tumor till now. In recent researches on CAR-T 
therapy, not only the outcome of survival didn’t meet 
the expectation in CNS tumor-related studies [34], the 
treatment also showed severe neurotoxicity through 
the activation of the microglia and astrocytes and 
some life-threatening graft-versus-host responses [15, 
35–38]. The disappointing progress could be attributed 
to the unique immunosuppressive microenvironment 
of brain tumors and CNS, which on the other hand, 
pointed out a greater possibility of success in tumor 
vaccination [17, 18]. In this review, we introduced 
the immunological characteristics of CNS and GBM, 
especially the uniqueness of rGBM, and the basic 
mechanism of tumor vaccination to explain the reason 
we believe in this traditional way of immunotherapy 
and the present and potential challenges. Then we 
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would review the completed and ongoing clinical trials 
on tumor vaccination for rGBM in recent years, hoping 
to make a panorama of this vital research field and 
provide some deep thoughts for the future progress.

Immune microenvironment of GBM
The development of immunotherapy in glioma have expe-
rienced a long and winding road in the past decade [39]. As 
the most aggressive and malignant form of primary CNS 
tumor, GBM has unique molecular features and biologi-
cal properties, which has led to its tendency of recurrence, 
strong infiltration among brain tissues and high resistance 
to chemotherapy, radiotherapy and immunotherapy [40]. 
The unique immune microenvironment of GBM has been 
found to play a crucial role. Generally speaking, GBM has 
been considered as a “cold” tumor immunologically, with 
multiple mechanism against human immune system [41, 
42] (Fig.  1). Such extensive immunosuppressive mecha-
nisms then enable GBM to be segregated by the local and 
systematic response based on its location in the CNS [43]. 
However, through numerous studies, more evidence con-
firmed that GBM could be recognized by human immune 
system and not totally unaffected by the attack of the 
immune system, showing some immunotherapy-respon-
sive tumors display initially [43, 44]. The crux is its strong 
ability to keep away from immunosurveillance, escaping 
followed-up immunological pressure, while its immune 
microenvironment highly contributes to this process [45]. 
To be detailed, several pathways are involved in the immu-
notherapy resistance of GBM, which cover the mecha-
nisms found in other solid tumors, as well as some unique 
strategies consequence of its location in the CNS [46].

Systematic immunosuppression is a major fea-
ture of GBM and its microenvironment, which causes 

immunological dysfunction in a wide range of patients 
[47]. The microenvironment of GBM is generally infil-
trated with immunosuppressed immune cells. A study 
has shown that a relatively high ratio of CD4 + tumor-
infiltrating lymphocytes to CD8 + tumor-infiltrating lym-
phocytes was observed around GBM, which was proved 
to be a signal of poorer overall survival [44, 48]. Regu-
latory T cells, another subtype of immune cells which 
would turn the immune microenvironment less respon-
sive to immunotherapy, were found highly infiltrated in 
GBMs rather than in low grade gliomas, and expressed 
the transcription factor FoxP3 [44]. Meanwhile, GBM 
could secrete paracrine immunosuppressive mediators, 
such as l-Tryptophan (Trp) and indoleamine-2,3-dioxy-
genase 1 (IDO1) [49]. Sphingosine-1-phosphate receptor 
1 (S1P1), another functional protein on the T cell surface, 
could direct to the sequestration of T cells in bone mar-
row, leading to systemic immunosuppression [43].

The intrinsic resistance is another important mecha-
nism for GBM. In a study, researcher took samples from 
spatially isolated regions in 11 different GBMs, several 
molecular subtypes were found present within one same 
tumor, showing great molecular heterogeneity [50, 51]. 
Such heterogeneity could lead to the selective destruc-
tion of treatment-susceptible clones, and finally prevent 
the initiation of an immune response. And for the pro-
cess of recurrence, the driver clonal mutation would be 
a subclone from the primary one instead of the initial 
clonal mutation of the primary GBM [51], resulting in 
the failure of some targeted therapies for rGBM based 
on the tumor genome at primary diagnosis [52, 53]. For 
example, clinical trials of EGFR and EGFR vIII could 
be effective for the initial tumor but not responsive in 
the recurrent one due to its immune evasive trait [54]. 

(See figure on next page.)
Fig. 1 Glioma local microenvironment and main associated changes. The glioblastoma (GBM) has highly immunosuppressive tumor 
microenvironment (TME) consisting of considerable cells, cytokines, chemokines and microvessels. TGF-β will transfer the fibroblast into 
cancer-associated fibroblast (CAF); there will be more epithelial mesenchymal transition (EMT) under IL-1β, IL-6 and TNF-α; with VEGF, there will 
be more abnormal vessel growth. With IL-10, TGF-β, M-CSF and IL-35, M2-macrophage polarization will be enhanced and regulatory T cells (Tregs) 
will inhibit immune activity of CD8 + T cells by secreting IL-10, TGF-β, M-CSF and IL-35. The tumor cells highly express immune suppressive factors 
like programmed cell death ligand 1 (PD-L1), IDO and decreases the level of MHC to inhibit tumor antigen recognition and presentation. In GBM 
TME, the microglial cells always downregulate potential immune response and promotes systematic immunosuppression by secreting TGF-β 
and IL-10. Tumor-associated macrophages (TAMs) has two subtypes, namely immunopromoting subtype (M1) and immunosuppressive subtype 
(M2). TAMs mediate and balance tumor immune activity by highly expressing PD-L1 and secreting TGF-β, IDO, CXCR4, IL-10, CXCL12, CCL20, 
CCL22 etc. MDSCs highly secrete IL-10, IL-12, TGF-β, TNF-α, IDO to inhibit immunotherapy response. Immature DCs can secrete some factors and 
express PD-L1, however, role of immature dendritic cells (DCs) is not determined. Tregs mediate immunosuppressive effects through upregulation 
of various soluble factors, immune checkpoints and metabolic pathways. Due to the increased levels of checkpoint exhaustion molecules, 
exhausted T cells downregulates immune response. Neutrophil and natural killer cells (NK cells) participates in the regulation of immunotherapy 
by upregulating G-CSF, S100A4 and IFN-γ, while clear role of B cell in GBM TME is not well established. Extracellular matrix (ECM) also serves as an 
important component in GBM TME. Vascularization is observed to be reinforced in GBM immunosuppressive TME, therefore anti-vascularization 
can be useful target to treat GBM. Immune cells, for example DCs, can migrate via tumor draining lymph nodes of the brain to deep cervical 
lymph nodes and promote tumor antigen to promote an adaptive antitumor immune response. The process can also be suppressed by the local 
immunosuppressed TME. On one hand, the bone marrow can restore and release suppressed T cells, on the other hand, chemotherapy (eg., TMZ) to 
GBM can induce lymphopenia that is exacerbated by bone marrow sequestration of T cells. Specific T cells to tumor antigens can be destroyed by 
spleen. Green arrow indicates the factors or activities are upregulated. CSF, colony stimulating factor; APC, antigen-presenting cells; IDO, indolamine 
2,3-dioxygenase; MHC, major histocompatibility complex
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Other immune pathways are also affected through dif-
ferent mechanisms in GBM, such as adaptive resistance 
deactivating tumor-infiltrating immune cells [55, 56], 
developing resistance protecting the tumor from being 
eliminated in the face of attack by the immune system 
[57, 58]. Generally, GBM cells can express various regu-
lators to modulate their immune microenvironment, and 

therefore avoid complement attack, gain adaptive resist-
ance and enhance immunosuppression.

The immunosuppressive CNS
As the living environment of GBM, CNS is tightly 
connected to the tumor and its progression. On the one 
hand, CNS brings GBM some unique molecular and 

Fig. 1 (See legend on previous page.)
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histologic features through the specific types of cells that 
only exist in CNS and their own function [59, 60]. On 
the other hand, GBM shares a similar microenvironment 
with the whole CNS, which turns the special 
immunological feature of CNS for preventing itself to a 
great obstacle for immunotherapy to come into effect [61, 
62]. The CNS has long been considered as an immune 
privileged site, with the unique biological structure 
made up of a well-developed blood–brain barrier (BBB) 
and surveillance system with microglia. And the BBB is 
a network mainly based on endothelial tight junctions 
with non-fenestrated cells, finally presented as tissue and 
blood vessels [60]. These semipermeable connections 
made it possible to prevent leakage of hydrophilic solutes 
as well as allowing the exchange of hydrophobic ones and 
active transport of circulating nutrients [63]. However, 
with the deeper exploration of CNS, researchers found 
that BBB could have a better permeability when the 
immune system aroused a full-scale systemic response 
to antigens under some pathological states such as 
an infection in CNS [64, 65], as well as other events 
that were able to induce CNS inflammation including 
autoimmunity, abnormal metabolites, brain trauma or 
stacking of misfolded proteins [66, 67]. The discovery has 
provided a theoretical possibility of the immunotherapy 
in CNS, that through peripheral immune cells carrying 
the essential substrate for immunotherapy and crossing 
the BBB as soon as endogenous potential harmful 
particles are detected, the effective cytokines and other 
immune-mediated small particles would direct toward 
the focus in brain, such as brain tumors [18, 64].

The unique immunological feature of rGBM: a comparison 
of GBM and rGBM
There hasn’t been much research on the features of 
rGBM, since the greater heterogeneity it showed 
compared to newly diagnosed GBM and the difficulty of 
rGBM sample collecting [68]. However, some features 
were found common in a few researches. A study showed 
that rGBM has nearly double IDH-1 mutation rate than 
newly diagnosed GBM [69]. Another study focused on 
the biological characteristics of rGBM. By using the four 
subtypes of GBM for classification, research found a 
difference that the proportion of the classical subtype in 
rGBM was lower than that in primary GBM [70]. Other 
researches illustrated that rGBM were likely to be pro-
neural (PN) subtype, in which of monocyte, regulatory 
T cell markers and immune checkpoint receptors were 
decreased, attenuating the immunosuppressive influence 
of rGBM on cytotoxic T cells [44, 71, 72]. TP53 mutation 
occurred much in rGBM, which is known to affect the 
expression of the immune checkpoint receptors cytotoxic 

T lymphocyte-associated antigen-4 (CTLA-4) and 
programmed death-ligand 1 (PD-L1) [70, 73, 74].

The uniqueness of rGBM could be shown in another 
critical aspect as the immune microenvironment. A 
single-cell analysis of primary and recurrent GBM 
samples showed that they share similar immune 
signatures in general, but a remarkable difference 
appeared on glioma-associated microglia/macrophages 
(GAM), the proportion of which decreased more than 
50 percent in rGBM samples. And some undefined 
CD45 + immune cells took up a much greater part 
among the immune cells of rGBM, which remained 
further classification. Regulatory T cells (Tregs) could 
be an important obstacle of anti-tumor treatment 
because of its mediation of immunosuppressive effects 
through upregulation of various soluble factors, immune 
checkpoints and metabolic pathways. The proportion 
of Tregs was higher than normal in tumor samples of 
all patients, while there was not a significant difference 
between the primary and recurrent ones [75, 76]. 
Meanwhile, the spatial organization might be another 
change occurred in the tumor immune environment for 
recurrence, especially for T cells. In a study conducted 
with high-dimensional cytometry, T cells were found 
enriched and activated in perivascular regions, where 
there were fewer regulatory T cells and more activated 
macrophages [77]. Another comparative study on tumor 
immunologic features found that in comparison with 
the tissue sample from newly diagnosed GBM, tumor 
tissue of rGBM showed much higher levels of infiltration 
of CD4 + T cells, CD8 + T cells, CD68 + macrophages, 
and CD163 + macrophages [78], however no significant 
difference was found in the CD8 to CD4 ratio of those 
two groups [79]. And the immune cells infiltrated in 
recurrent tumors accumulated in the perivascular region 
with a majority of CD4 + T cells. The increase of immune 
cell infiltration in rGBM seems to be unmatched with the 
poor survival [80, 81], which might be explained as the 
large percentage of the increasing accumulating immune 
cells could be transferred to the exhausted subset or 
converted to immunosuppressive ones, so that more 
brain edema and other severe events came up instead of a 
better microenvironment for immune response.

Tumor vaccine in GBM
There are many types of immunotherapies for glioma/
GBM, of which tumor vaccine can target tumor anti-
gens and amplify anti-tumor immune response to 
achieve therapeutic effect [29, 82] (Fig.  2). The effective 
components of a tumor vaccine are mainly two parts, 
tumor antigen, and immune adjuvant. Tumor antigen 
is the cornerstone of a tumor vaccine, therefore, choos-
ing the appropriate tumor antigen is the first step for the 
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establishment of anti-tumor immune response [83]. And 
tumor-associated antigens (TAAs) have occupied a cen-
tral place in the process. A number of studies have exam-
ined the expression of TAAs in GBM, which has shown 
the possibility of several potential candidates for vaccine-
directed immunotherapy [84, 85]. As a result, dozens of 
GBM-related TAAs have been found till now, includ-
ing ACTL8, CTCFL, Opa interacting protein 5 (OIP5), 

XAGE3, CD133, epidermal growth factor receptor vIII 
(EGFR vIII), Interleukin-4 (IL-4), gp100, survivin, Inter-
leukin-13 receptor subunit alpha-2 (IL-13Rα2), Human 
Epidermal Growth Factor Receptor 2 (HER2), Human 
Chitinase-3-like Protein 1 (YKL-40), and erythropoietin-
producing hepatocellular receptor tyrosine kinase class 
A2 (EphA2) [29] with evaluation in early-stage thera-
peutic preclinical trials demonstrating the safety and 

Fig. 2 Major available immunotherapies for newly diagnosed and recurrent glioblastoma. A Treatment of monoclonal antibodies. There are 
three phase III clinical trials involving immune checkpoint inhibitors on GBM, namely CheckMate143 in rGBM, CheckMatre498 in uMGMT nGBM 
and CheckMate548 in MGMT nGBM. However, all the three clinical trials failed to prolong OS of nGBM/rGBM. B Treatment of oncolytic virus/
vectors. Virus potentially releases neoantigen and modulates damage-associated molecular patterns, it also helps to deliver gene therapy and 
release key inflammatory factors to activate immune system. Herpesviruses, reoviruses, pox virus, adenoviruses and Zika viruses are commonly 
used in vaccines in clinical manner. Briefly, virus vaccines and vectors have showed favorable anti-tumor activity in preclinical models and small 
clinical trials. C Treatment of chimeric antigen receptor. Chimeric antigen receptor (CAR) therapies mainly include CAR-T, TCR-T and CAR-NK. 
Common CAR-T targets involve EGFR vIII, HER2, IL-13αR2, NKG2D etc., common CAR-NK targtes involve NKG2D, glioma stem cell etc. CAR therapies 
demonstrate promising efficacy in preclinical glioma models, the large-scale clinical trials are still ongoing. D Treatment of peptide vaccines. 
EGFR vIII is also regarded as a target for peptide vaccine in glioma, the ACT IV trial administrates Rindopepimut in nGBM, the ReACT trial uses 
Rindopepimut to treat rGBM. OS of rGBM is prolonged in ReACT trial. E Treatment of DC vaccines. Tumor antigen, stem cell antigen and CMV 
antigen can be degraded to peptide, distinct peptide will invoke DCs to secrete immune activators to enhance the anti-tumor immunity. After 
the process by the peptide, sensitive DCs will be selected to generate DC vaccines. A phase III randomized controlled trial conducted on nGBM 
and rGBM reveales DCVax-L prolongs the OS with acceptable toxicity. F Other novel therapies include nanoparticles therapy, gene therapy and 
oligonucleotide therapy. The check mark in green indicates OS of glioma patients can be prolonged in clinical trials; the cross in red indicates OS 
of glioma patients can not be significantly prolonged. PD-1, programmed cell death 1; PD-L1 programmed cell death ligand 1; GBM, glioblastoma; 
nGBM, newly diagnosed GBM; rGBM, recurrent GBM; uMGMT, MGMT promoter unmethylated; MGMT, MGMT promoter methylated; DCs, dendritic 
cells; CAR, chimeric antigen receptor; TCR, T cell receptor-T; NK cells, natural killer cells; CMV, cytomegalovirus; OS, overall survival
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immunogenicity in human body. However, confirmation 
is still necessary to prove the existence of a therapeu-
tic window, where the vaccines against the tumor could 
induce sufficient immunity to achieve clinical efficacy 
without severe systemic autoimmune manifestations 
while maintaining a low level of expression in normal 
tissues. Viral antigen, which has the longest history for 
an application that could trace back to 1891, is a special 
class of TAAs which are exogenous structures to the 
host immune system [86]. The inherent immunogenicity 
makes it an excellent target for tumor-directed immuno-
therapy. Human cytomegalovirus (CMV) antigens were 
used most widely in the present studies [85, 87]. The 
other important subgroup of tumor antigen is the tumor-
specific antigen. It precisely expressed within tumor cells 
while a shared expression could hardly be found in nor-
mal tissues, such as EGFR vIII [37].

Immune adjuvant can do help to the activation of 
dendritic cells to assist in enhancing antigen presentation 
and costimulatory signals, which are generally pattern 
recognition receptor agonists on the surface of antigen 
presenting cells (APCs) [88]. There are five ways for 
tumor antigens and immune adjuvants to coactivate the 
tumor-related immune response, including proteins/
peptides, tumor cells, APCs, viruses and nucleic acids, 
each of which has its applicable situation [20].

Clinical relevance
The clinical application of tumor vaccine in brain tumors 
could trace back to the 1980s. In a case report, Bergquis 
et  al. [89] injected the cell wall of Bacillus Calmette 
Guerin (BCG) vaccine into patients with glioma. The 
therapy was confirmed to be effective for patients’ overall 
survival in another larger pilot study in 1983 [90]. Some 
researchers tried to combine a Serratia marcescens-
derived vaccine with radiothera py to activate the 
patient’s immune system, which showed certain immune 
responses and tolerance in the experienced patients [91]. 
A phase I/II trial of intravenous NDV-HUJ oncolytic 
virus was conducted among patients with rGBM, in 
which the virus was expected to infect human cells as well 
as tumor cells to prevent the growth of tumor [92]. These 
vaccines in the early time were all non-specific, hoping 
to achieve the therapeutic effect through stimulating 
the whole immune system so as to activate its potential 
to kill tumor cells. After decades of development, there 
have been more than 50 ongoing registered randomized 
clinical trials for tumor vaccination therapy in GBM. 
The vaccines could be divided into four main subtypes, 
known as peptide vaccines, cell vaccines, DNA vaccines, 
and mRNA vaccines [42]. Peptide or DNA vaccines have 
the TAAs or DNA injected to elicit adaptative immune 
response. Cell vaccines, mostly DC vaccines, on the other 

hand, based on the cells stemmed from peripheral blood 
mononuclear cells (PBMCs), which can be prepared with 
tumor antigens. mRNA vaccines encode their own tumor 
antigens through mRNA, and the antigens sequentially 
fill the viral vectors for induction of immune responses 
[93]. However, most of the studies have not met the 
expectation, from the safety and toxicity of vaccines to 
benefit in survival and improvement of patient’s quality 
of life. Moreover, a major proportion of the clinical trials 
have been conducted on patients with newly diagnosed 
GBM, which has a larger patient cardinality. For rGBM 
researches, the recruitment of patients could be difficult, 
and lots of patients have already been under a poor 
physical condition, making it too dangerous to enroll in 
the trials. As a result, most completed or ongoing clinical 
trials stayed in phase I, especially for those completely 
aiming at patients with rGBM (Table  1) [94]. Only 4 
vaccination agents, Rindopepimut, DCvax, HSP96 and 
PPV have reached the stage of phase III clinical trial 
[95–97].

EGFR vIII peptide vaccine
EGFR vIII is a deletion mutation that generates a novel 
extracellular tumor-specific epitope. It is heterogene-
ously expressed in approximately one-third of the GBM 
population, and is not found in any normal tissues [98]. 
The mutation could enhance tumorigenicity and tumor 
cell migration by encoding a protein with an active 
tyrosine kinase. Preclinical studies also found it related 
to radiation and chemotherapeutic resistance to tumor 
cells [99]. And in a study on patients with GBM surviving 
more than 1 year, the expression of EGFR vIII was found 
to be an independent negative prognostic marker of sur-
vival, indicating it as a key potential target for anti-tumor 
immunotherapy [100]. Rindopepimut is a vaccine with 14 
amino acid peptides from EGFR vIII encircling the muta-
tion site and conjugated to keyhole limpet hemocyanin 
(KLH). In a phase II/III single-armed multicenter trial, 
the ACT III trial, patients with newly diagnosed GBM 
went through vaccination with rindopepimut combined 
with TMZ. 65 patients with EGFR vIII-positive GBM 
were recruited, with a median overall survival (OS) of 
21.8  months and a 3-year survival rate of 26%, which 
significantly prolonged the median survival of patients, 
proving the great efficacy of this vaccine [101]. For 
rGBM, rindopepimut was treated as an addition to BEV, 
a VEGF receptor inhibitor that has been proved to extend 
the progression-free survival (PFS) of patients with GBM 
in a randomized phase II study. 70 patients were matched 
1:1 randomly and received BEV plus rindopepimut or 
KLH, and BEV respectively. The objective response 
rate of the combined therapy group was 23%, 3 percent 
higher than the BEV group, indicating that rindopepimut 
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had a positive anti-tumor effect in patients with rGBM. 
Despite the clinical trial ongoing with the follow-up of 
survival outcome, rindopepimut has shown a significant 
improvement of the overall survival in this context, with 
a median OS of 12.0 months in rindopepimut group (95% 
CI 9.7–NA) compared to that of the KLH group, which is 
8.8 months (95% CI 6.8–11.4) [99, 102]. No patients pos-
sessed EGFR vIII-specific immune responses in advance 
of vaccination, proving the solid correlation between the 
induction of these responses and the extended OS.

A large-scale phase III study, the ACT IV trial has been 
completed subsequently, as a pivotal randomized placebo-
controlled clinical trial in GBM. A sum of 745 patients 
were enrolled into rindopepimut plus TMZ or con-
trol (KLH) plus TMZ group, and their median OS were 
20.1 months versus 20.0 months, showing no significantly 
difference [97]. Although rindopepimut didn’t extend sur-
vival in patients with newly diagnosed GBM as expected, 
researchers still looked forward to its potential efficacy 
within rGBM. In the newly released ReACT trial, 73 
patients with rGBM were randomized into 36 rindopepi-
mut group and 37 control group. The tolerability was first 
examined, as main toxic adverse events were transient, 
low-grade local reactions. As the primary endpoint, the 
6-month PFS rate was 28% for rindopepimut, compared 
with 16% for control. Secondary and exploratory end-
points further demonstrated the advantages of the rindo-
pepimut group, including a statistically significant survival 
extension, a higher overall response rate of 30%, a longer 
median duration of response, and the better ability to dis-
continue steroids for ≥ 6 months, which is 33–0% among 
all patients [103]. Despite more validation required due to 
the limited sample size and potential heterogeneity, it was 
still strong evidence to support the therapeutic effect of 
rindopepimut in patients with rGBM.

HSP vaccine
Heat shock protein (HSP) vaccine was another immuni-
zation approach. Heat shock protein is a kind of protein 
that is widely found in microorganisms, plants and ani-
mals, which has molecular chaperone activity to inhibit 
the denaturing of biological macromolecules affected by 
the ambient temperature as well as oxygen content and 
ions [89, 104]. Therefore, HSPs could reassemble reduc-
ible misfolded proteins, and guide the degradation of 
unreducible ones, which is predicted to be upregulated 
in tumor tissues where more abnormal proteins would 
appear and translate. The core anti-tumor immunologi-
cal function of HSP is to combine with nascent proteins to 
extensively activate innate and acquired immune systems 
in human body, and therefore, enhance tumor immuno-
genicity and regulate the immune response. However, 
only HSP gp 96, HSP 90, HSP 70, HSP 110, and HSP 170 

have been found emerging such immunogenic response 
through researches. And among which, HSP96 is the sub-
type most closely related to glioma, which is related to 
EGFR-VIII, TERT, P53, CDK4, MAPK, PI3K and many 
other molecules and signaling pathways [105]. The HSP96 
complex is first bound to CD91 on APCs, and brain 
tumor-derived HSP96 is internalized, which then leads 
to the presentation of HSP96-chaperoned tumor anti-
gen on class I and class II major histocompatability com-
plexes (MHC) and robust immunogenicity. The advantage 
of HSP vaccine, compared to other tumor vaccines, is 
its highly specificity of the interaction between HSPPC-
96 and APCs, and therefore, better eliciting robust 
CD4 + and CD8 + T-cell immune responses. A phase I 
clinical trial with HSP96 involved 12 patients with rGBM 
who had undergone surgical treatment for dose escalation 
[105, 106]. The adverse event ranking first was mild injec-
tion site erythema and no serious adverse events occurred 
with this vaccine, while the response time lasted 47 weeks 
for those patients having positive immune response. The 
subsequent single-arm phase II trial involved 41 patients 
with relapsed GBM, showing that the median OS of the 
HSP96 group was 42.6 weeks after the application of vac-
cine without serious side effects, similar to the previous 
research [107, 108]. Additionally, patients with reduced 
lymphocyte count were found to have a poorer OS. The 
randomized phase III trial supported by the Alliance Con-
sortium is already underway with a primary purpose of 
judging whether there is an OS advantage of HSPPC96 
combined with BEV, given concomitantly or at the point 
of progression in patients with rGBM [109].

Survivin vaccine
Survivin is an intracellular anti-apoptotic protein, 
which is overexpressed within brain tumors. It can 
inhibit caspase activation and as a result, regulate cell 
division. The immunogenicity of survivin could be 
proved by survivin-specific cytotoxic T lymphocytes 
and humoral immune response with anti-survivin 
antibodies detectable in serum, both being found in a 
certain of patients [110]. It wasn’t frequently detected in 
normal tissues of human, therefore, making it an ideal 
vaccination target. SurVaxM, a peptide vaccine targeting 
survivin has received orphan drug certification from 
FDA, as it can both stimulate T cell immunity and inhibit 
the activity of survivin pathway. In a phase I clinical trial 
of 9 survivin-positive patients with rGBM, the patients 
were treated with SurVaxM, and as a result, 6 of them 
had a cellular response and 3 of them achieved a local 
response. The safety of SurVaxM was generally favorable. 
The median PFS of all patients was 17.6 weeks, and the 
median OS reached 88.6 weeks with 7 patients surviving 
more than 12  months [111]. In 2020, the results of the 
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phase II clinical trial of SurVaxM peptide vaccine were 
published. The study recruited a total of 63 patients 
diagnosed with primary GBM and the outcome indicated 
the effectiveness of SurVaxM [111]. For patients with 
rGBM, another phase II study combined SurVaxM and 
Pembrolizumab, a humanized monoclonal anti-PD1 
antibody that has been comprehensively investigated in 
various solid tumors, for treatment [112]. All patients 
were divided into two groups: Arm A included patients 
who were already resistant to chemotherapy and had 
not yet received immunotherapy, while Arm B was those 
who had developed resistance to anti-PD-1 therapy in the 
previous treatment. The trial has stopped recruiting new 
testers, and is scheduled to complete in 2024.

Other peptide vaccines
As one of the landmark events in progression of glioma, 
Isocitrate dehydrogenase type 1 (IDH1) mutations 
have been constantly studied as a potential therapeutic 
target, among which IDH1(R132H) is the most frequent 
one. Researchers found an immunogenic epitope in 
IDH1(R132H), indicating it as a favorable target for 
mutation-specific vaccination to activate anti-tumor 
immunity, which has led to the initial peptide vaccine 
[113]. In recent clinical researches, TAA-specific immune 
responses were found to be superimposedly elicited with 
more than one peptide in most patients, some of which 
had significantly prolonged PFS after treatment initiation 
and demonstrated radiographic tumor responses [85, 107, 
113]. The optimized SL-701 vaccine was an interesting 
attempt, with peptides targeting IL-13Ra2, survivin, and 
EphA2. The Stemline Therapeutics-established project 
is currently undergoing a multicenter phase I/II study 
in adult patients with rGBM [114, 115]. The primary 
outcomes of the trial are safety, 12-month OS, as well 
as the objective response rate. Similarly, a multipeptide 
vaccine named IMA950 has been ongoing a phase I/II 
trial, which contains 9 major MHC class I and 2 MHC 
class II peptides. The vaccine, administered with poly-
ICLC, was first injected to 19 patients involved in this 
trial, with 84.6% of them showing tumor-peptide specific 
CD4 + T-cell responses and a median OS of 19 months. 
A combination of Pembrolizumab was designed to the 
follow-up study [116]. Another newly-enrolled phase 
I/II ROSALIE study conducted on rGBM has released 
its interim data recently [117]. 76 patients have been 
included in the clinical trial with the vaccination of 
EO2401, a polypeptide vaccine originated from three 
TAAs, IL13Ra2, BIRC5/surviving and FOXM1, partly 
combined with BEV and nivolumab, a monoclonal 
anti-PD-1 antibody. All patients have been well tolerated 
through injections, and the biosecurity feature of EO2401 
was almost the same as nivolumab. Robust immune 

response has been observed in EO2401 plus nivolumab 
group, while additional standardized BEV was positive 
for PFS, which indicated an exciting clinical outcome of 
the combined therapy of EO2401, nivolumab and BEV 
for follow-up study.

Another important theoretical hypothesis is that once 
those immune responses involving antigen-positive 
tumor cells could be generated to multiple peptides, 
it could be possible to prevent the growth of antigen-
negative tumor cells, further amplifying the efficacy of 
the vaccine. A subsequent phase I study on 14 kinds of 
HLA-A24–restricted vaccine candidates (ITK-1) has 
enrolled 12 patients with rGBM based on this approach, 
demonstrating a prolonged OS of 10.6  months and a 
similar PFS of 2.3  months, despite the concern of the 
scale of the study weakening the strength of evidence 
[118]. Another vaccine of multiple peptides combined 
TAAs with an additional peptide from the TAA 
Wilms tumor 1 (WT1) [119]. WT1 is a TAA highly 
overexpressed in GBM, while DSP-7888, a WT1 peptide 
vaccin e, has gone through a dose-escalation trial and 
been undergoing a phase III trial combined with BEV in 
patients with rGBM [120, 121]. In the context of previous 
studies, a nonrandomized phase II clinical trial enrolled 
21 patients with rGBM, in which WT1 was targeted with 
an HLA-A*2402-restricted, modified 9-mer peptide in 
Montanide ISA51, and patients received intra-dermal 
injection for 12  weeks until progression. The primary 
outcomes indicated that the vaccine was tolerated and 
possessed a clinical response, with a 6-month PFS rate of 
33.3%, in spite of the unexpected unaltered frequency of 
WT1 cytotoxic T lymphocytes after immunization [122]. 
Personalized peptide vaccination (PPV) has become a 
worthwhile therapeutic choice in several malignances 
for a more precise and individualized treatment 
[123]. A randomized phase III trial of PPV on rGBM 
was completed in 2019, in which 4 of 12 warehouse 
peptides were selected and assembled into PPV, based 
on preexisting peptide-specific immunoglobulin G 
levels. Although the primary and secondary outcome 
was neither reached, with a median OS of 8.4 months in 
PPV group versus 8.0  months in placebo group and no 
statistical difference on median PFS between the two 
groups, some specific peptides, biomarkers and clinical 
factors was found to be correlated to a poor survival, 
such as SART2-93 [96, 124]. Such evidences could be 
valuable for the design of other PPV and subsequent 
clinical researches.

Dendritic cells vaccine
Dendritic cell (DC) is the most important kind of APC in 
the human immune system. It’s strongly characterized by 
the ability to stimulate primary T cells to proliferate. After 
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stimulation is applied, DCs could mature and migrate 
to draining lymph nodes for the induction of immune 
responses [114]. But the activated T cells won’t divide fast 
enough to wipe out the cancer cells under nature status. 
Therefore, researchers tried to generate autologous DCs 
ex vivo, then treated them with tumor antigens for pre-
condition, and finally injected the cells back into patients 
as an immunotherapy [125]. DCVax-L was developed 
through this procedure. DCVax-L is an autologous DC 
vaccine, composed of DCs pulsed with a lysate derived 
from the patient’s own resected tumor, which activates 
the immune response through a “multiplier effect”. The 
clinical trial on DCVax-L started to recruit in 2007 and 
finished in 2015, with 331 newly diagnosed patients from 
94 medical centers in 4 countries [95]. Each patient could 
choose to accept DCVax-L again if a recurrence occurred. 
The inspiring result of the phase III trial was published 
this year, that for the 64 rGBM patients using DCVax-L, 
the median OS was 13.2  months while the external 
control group was 7.8  months, which was a statistically 
significant prolongation. The long-term survival was also 
greatly improved, that the 24 months overall survival was 
20.7% versus 9.6% and the 30 months survival was 11.1% 
versus 5.1%. This has been the first study to succeed in 
prolonging the OS of rGBM in the past 27 years, which 
would sure to be one of the landmark clinical trials for 
GBM and rGBM [126]. Despite some doubts on the 
analysis methodology and the unclear mechanism of the 
vaccine, DCVax-L has proved its great potential value for 
clinical application.

Other DC vaccines, and peptide-pulsed DC vaccines, 
have been in progress as well [127–130]. ICT-107 is a 
vaccine of multi-epitope-pulsed autologous DCs with 
a variety of synthetic TAAs, including AIM-2, MAGE-
1, TRP-2, HER-2, and IL-13Rα2. The initial single arm 
phase I trial contained 17 patients with GBM treated 
with ICT-107, reaching a median OS of 38.4  months, 
which was found to be connected to the immune 
responses to some of the TAAs, further explaining the 
mechanism behind [131]. In another phase I/II study, a 
vaccine with αDC1 loaded with synthetic peptides for 
glioma-associated antigens epitopes and administered 
with an adjuvant named poly-ICLC was injected to 22 
patients with rGBM [132, 133]. 9 of them reached a PFS 
of more than 12 months, with positive immune responses 
observed in 58% of the patients, one of which dem-
onstrated a sustained complete response [134]. Jethro 
et al. tried an autologous DC vaccine pulsed with lysate 
derived from a GBM stem-like cell line for 35 patients 
with GBM, including 25 with rGBM [135]. The safety 
and tolerability were checked and the median OS and 
PFS were 11.97  months and 3.23  months, both better 
than the average. A GSC-pulsed DC vaccine (GSC-DCV) 

was studied in 21 patients with GBM including 10 with 
rGBM in a phase II trial, conducted by Yu et  al. which 
had a median OS of 10.7 months, as well as a surprising 
median PFS of 6.9 months [136, 137]. Autologous tumor 
lysate-pulsed DC vaccine with other specific tumor didn’t 
show an impressive result. For Gliadel Wafer plus lysate-
pulsed DC vaccine at the stage of phase I trial, 17 patients 
with rGBM reached a median OS of 10.9 months and a 
median PFS of 1.9  months [138]. Sakai et  al. [139] per-
formed a trial for 10 rGBM patients treated with Wilms’ 
tumor 1-pulsed DC vaccination. After the final injection, 
however, all the enrolled patients had a progression in 
tumor. To treat DC vaccine as an adjuvant therapy could 
be a possible plan as well since DCs may act as immune-
boosting adjuvants [94, 140]. Vleeschouwer et  al. [141] 
conducted a phase II trial using adjuvant DC vaccina-
tion on 56 adults and children with rGBM. The median 
OS was about 9.6 months, with a 2-year OS rate of 14.8%. 
Compared to other cell vaccines, such as whole tumor 
vaccines [142, 143], DC-based vaccines are showing a 
good effect on improving the survival of rGBM patients 
and delaying tumor progression, which could be expected 
to be one of the most universally pursued vaccination 
approaches in the future. Major available modalities and 
targets of the immunotherapy have been summarized in 
Fig. 3.

Future challenges
rGBM could be considered as the progressive outcome 
of patients with GBM. Consequently, it will show a more 
serious resistance to radiotherapy and chemotherapy 
and the patients are usually under a worse condition so 
a lot of them do not have a second chance of operation. 
Immunotherapy has become an expected new attempt 
for patients with rGBM, while tumor vaccination is 
one of the most promising approaches. Despite the 
disappointing result of the recently released data of 
clinical trials, especially extensively-concerned phase III 
trials with immune checkpoint inhibitors PD-1/PD-L1, 
CTLA-4, CAR-T therapy and viral therapy, tumor vaccine 
has shown its potential with the new understanding of 
TAAs and immunosuppressive mechanism of tumor 
microenvironment.

Multiple phase III trials of tumor vaccine with rGBM 
are underway, on the basis of solid preclinical studies 
and clinical trials of early-phase. The safety, tolerance 
and efficacy have been initially proved in these 
novel vaccines, however, the low tumor mutational 
burden and high heterogeneity of rGBM could lead 
to limited effective therapeutic targets and failure in 
the following clinical trials, just as those happened 
in immune checkpoint blockade and CAR-T therapy 
in the brain tumor. The exciting success of DCVax-L 
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is worthy of reference, but the data analysis method 
remains questioned, Since the biological mechanism 
of these immunotherapy have mostly been proved in 
experiments, a combination of different approaches 
could be a future direction of the development of tumor 
vaccines, just as the ongoing clinical trial that combined 
ATL-DC, a DC vaccine, with checkpoint inhibitor 
pembrolizumab, hoping to activate a synergistic effect 
of the systemic antitumor response [144, 145]. Novel 
adjuvants have been invented and found to boost the 
effectiveness of the vaccine through engagement of 

innate immune activation pathways, which is a model 
for other similar researches. The design of clinical trial 
can also be a solution, by setting a more divided sub-
group for research, choosing different clinical outcomes 
from a wider range and cooperation between clinical 
institutions. It is certain that more tumor vaccines will 
reach the stage to test their efficacy, and a more com-
plicated pathway can be applied in newly-designed vac-
cines, as well as more exquisite therapeutic strategies 
based on individualized vaccination, making it easier to 

Fig. 3 Available modalities and targets of immunotherapy for glioma/glioblastoma. Cell therapy mainly involves CAR-T and TCR-T therapy. As for 
cell therapy, the glioma-specific and glioma-associated targets for CAR-T therapy includes EGFR VIII (NCT01454596, NCT02664363, NCT02209376, 
NCT03283631) and IL-13Rα2 (NCT02208362), Her2 (NCT03500991), GD2 (NCT04196413), EphA2, B7-H3 (NCT05241392, NCT04077866), 
(NCT05241392, NCT05366179); the glioma-specific and glioma-associated targets include H3K27M (NCT04808245), CICR215W, IDH1R132H 
(NCT02454634) and NLGN4X, PTPRZ1. Tumor vaccines mainly include DC vaccine, DNA/RNA vaccine, neoantigens and peptide targets. As for 
vaccines immunotherapy, DC vaccine includes DCvax-L (NCT00045968) and ICT-107 (NCT00045968); DNA/RNA vaccine include VEGFR2-VXMO1 
(NCT02410733, NCT03750071); neoantigen as peptide targets includes IDH1R132H-IDH-vac (NCT03343197, NCT04056910, NCT02073994, 
NCT04195555), H3K27M-H3-vac (NCT04943848, NCT04749641, NCT04808245), EGFR VIII-CDX-110 (NCT02573324, NCT01520870, NCT01480479, 
NCT01498328), multi-peptide targets include APVAC1/2 (GAPVAC) (NCT03422094, NCT02287428), IMA950, NeoVax (NCT03422094). The combined 
therapy indicates the combination of two or more lines of immunotherapy (including checkpoint inhibitors) as well as small molecule mutant 
IDH inhibitors. Briefly, there are mIDH inhibitors (mIDHi) + IDH-vac (NCT03750071), AHRi + anti-PD-L1 (NCT03893903), VXM01 + anti-PD-L1, 
IDH1vac + anti-PD-L1, H3-vac + anti-PD-1 (NCT02960230), H3-vac + anti-PD-L1 (NCT02960230), vorasidenib/ivosidenib/BAY1436032 (NCT02481154, 
NCT02746081, NCT03030066, NCT03343197, NCT04164901). CAR, chimeric antigen receptor; TCR, T cell receptor-T; DCs, dendritic cells; PD-1, 
programmed cell death 1; PD-L1, programmed cell death ligand 1
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overcome the present immunosuppressive microenvi-
ronment and antitumor immunity of rGBM.

Conclusion
GBM is the most malignant CNS tumor with a high recur-
rence rate. Multiple tumor vaccines have been proved safe 
and tolerated in patients with rGBM through preclinical 
and early-phase trials, with several large-scale phase III 
studies ongoing. Despite the past failure of other immu-
notherapies in GBM, tumor vaccination is considered to 
be promising due to the recent progress in studying the 
immunosuppressive mechanism of GBM. The immuno-
logical feature of rGBM has not been fully understood, 
which shows some common features of GBM and brain 
tumors, as the intrinsic resistance, adaptive resistance and 
other type of resistance among all phases of the antitumor 
immune response. rGBM itself also demonstrates some 
unique characteristics, as it prefers the PN subtype and 
seems to have an increasing immune infiltration, which 
could partly explain the poor prognosis of rGBM, while it 
also indicated the possibility of using tumor vaccination to 
create more effective therapeutic therapies. More details 
on the microenvironment remain to be explored, and 
more newly-designed tumor vaccines will promote the 
development of better therapy for patients with rGBM.
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