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Abstract 

Cellular fusion e.g. between cancer cells and normal cells represents a stepwise process that is tightly regulated. 
During a pre-hybrid preparation program somatic cells and/or cancer cells are promoted to a pro-fusogenic state as 
a prerequisite to prepare a fusion process. A pro-fusogenic state requires significant changes including restructure 
of the cytoskeleton, e.g., by the formation of F-actin. Moreover, distinct plasma membrane lipids such as phosphati-
dylserine play an important role during cell fusion. In addition, the expression of distinct fusogenic factors such as 
syncytins and corresponding receptors are of fundamental importance to enable cellular mergers. Subsequent hybrid 
formation and fusion are followed by a post-hybrid selection process. Fusion among normal cells is important and 
often required during organismal development. Cancer cells fusion appears more rarely and is associated with the 
generation of new cancer hybrid cell populations. These cancer hybrid cells contribute to an elevated tumour plastic-
ity by altered metastatic behaviour, changes in therapeutic and apoptotic responses, and even in the formation of 
cancer stem/ initiating cells. While many parts within this multi-step cascade are still poorly understood, this review 
article predominantly focusses on the intracellular necessities for fusion among cancer cells or with other cell popula-
tions of the tumour microenvironment.
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Introduction
The hypothesis that cancer cells can fuse with other cells, 
such as macrophages, mesenchymal stroma-/stem-like 
cells (MSC), or further populations, with evolving cancer 
hybrids of an altered phenotype, was already postulated 
by the German physician Otto Aichel more than a cen-
tury ago [1]. Such altered cancer hybrids can exhibit an 

enhanced metastatic capacity, an increased drug resist-
ance and prospective cancer stem/initiating cells (CS/
ICs) properties as described in a plethora of in vitro and 
in vivo studies (for review see: [2–8]). While these stud-
ies indicate that cancer cells and other cells could fuse, it 
not only remains unclear how this process is directed in 
detail, but also why cancer cells, or at least a certain sub-
population could fuse at all.

The fusion of cancer cells represents a pathophysiologi-
cal process with increased malignancy that can ultimately 
be life-threatening to the organism. With respect to a 
variety of different tumour entities it is well known that 
development of metastases are the main cause of death 
in more than 90% of cases [9, 10]. Accordingly, cancer 
cell fusion, e.g. with MSC can develop cancer hybrid cells 
from a subsequent post-hybrid selection process (PHSP) 
with significantly increased metastatic capacity [11, 12].
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Cancer hybrid cells may also contribute to immune 
escape [6, 13–22]. Gast et al. and Powell et al. suggested 
that leukocyte properties alone were sufficient to explain 
why (circulating) tumour × leukocyte hybrids may exhibit 
an immune-privileged phenotype [16, 17]. YKL-40 and 
immune checkpoint protein B7-2 (CD86) were elevated 
in glioblastoma × macrophage hybrids and independently 
suppressed anti-tumour immune factor levels of CD8+ 
cytotoxic T lymphocytes resulting in escape of immune 
surveillance [14]. Aguirre and colleagues observed that 
in  vitro-derived cancer hybrid cells expressed high lev-
els of the immune checkpoint ligand PD-L1, which was 
correlated to a reduced CD8+ lymphocyte proliferation 
in a PD-L1/PD-1 interaction-dependent manner [22]. 
Similarly, NK cell activity was significantly downregu-
lated due to higher expression of NK cell inhibitors HLA 
class I members [22]. Likewise, HERV env proteins, such 
as syncytin-1 and syncytin-2, themselves exhibit immune 
suppressive properties, whereby it remains to be clari-
fied how these proteins suppress host immunity [19, 20]. 
Syncytin-1 is commonly associated with (cancer) cell-
cell fusion (Table 1) [23–33], but exhibits further tumour 
promoting characteristics, such as proliferation, invasion, 
metastasis [26, 34, 35], and possibly even immune escape. 
However, the precise role of cancer hybrids in immune 
escape still remains to be clarified. A possible focus could 
be on syncytins and checkpoint inhibitors. 

In contrast to cancer cell fusion, physiological fusion 
processes, such as fertilization, placentation and myo-
genesis, are essential for an organism. Proper function-
ing of these fusion processes are ultimately required since 
dysregulation and/or dysfunction are associated with 
infertility and embryonic lethality [36–43]. Tissue regen-
eration represents another physiological cell-cell fusion 
process, which is facilitated by MSC and bone marrow-
derived cells (BMDCs) [17, 44–57]. Even though the 
potency of BMDC-mediated tissue regeneration via cell-
cell fusion was demonstrated in several in  vivo studies 
[17, 44–57], the overall involvement of BMDCs in main-
taining tissue homeostasis and repair remains less clear.

While all cell-cell fusion processes converge at a shared 
pathway of phospholipid bilayer fusion, the merger of 
cancer cells as compared to normal cells such as tropho-
blasts (placentation) and myoblasts (myogenesis) must 
be different processes. In addition to the fundamental 
difference on the physiology of the organism, this also 
includes the induction and regulation of cell-cell fusion. 
In particular, placentation and myogenesis include tightly 
regulated and very efficient fusion processes giving rise 
to a high number of viable multinucleated syncytial cells 
[42, 43, 58, 59]. In contrast, the fusion of cancer cells 
either with further cancer cells or with other cell popula-
tions like macrophages or MSC reveals a low fusion rate. 
Moreover, the overall survival of the resulting cancer 

Table 1  Syncytin-1 expression in cancer

Cancer type Fusogen/ cell Fusogen receptor/ cells Effect on cancer progression References

Breast cancer (cells) Syncytin-1/
Breast cancer cells

ASCT2/
HUVEC

Cell fusion was correlated with 
improved prognosis

[23, 24]

SyHP/
Breast cancer cells

Not analysed PGCC formation [29]

Breast epithelial cells Syncytin-1/
Syncytin-2/
Breast cancer cells

ASCT2/
MSFD2A/
MSC

Not investigated [121]

Colon cancer cells Syncytin-1, CD9, CD47/
Colon cancer cells

Not analysed PGCC formation [27]

Syncytin-1/
Colon cancer cells

Not analysed Overall disease progression [32]

Endometrial cancer (cells) Syncytin-1/
Endometrial cancer cells

Not analysed Cell-cell fusion;
Proliferation; invasion

[26, 35]

NSCLC Syncytin-1/ NSCLC cells Not known/
NSCLC cells

Overall disease progression [31]

OSCC cells Syncytin-1/
OSCC cells

ASCT2/
HUVEC

Cell-cell fusion [30]

prostate cancer (cells) Syncytin-1/
Prostate cancer cells

Not known/
Skeletal/ smooth muscle cells

Cell-cell fusion [28]

seminomas Syncytin-1/
Seminoma cells

Not analysed Not analysed [33]

UCC​ Syncytin-1/
UCC​

Not known/
UCC​

Cell-cell fusion;
Proliferation

[25]
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hybrids is extremely low due to the reorganization of 
aneuploid chromosomal nuclei in a subsequent PHSP.

Accordingly, cancer cell fusion is influenced by both 
intrinsic signals and extracellular events. These questions 
will be explored and addressed in this review, with a par-
ticular focus on intrinsic signalling factors.

Similarities between physiological 
and patho‑physiological cell‑cell fusion 
events with a focus on fusogens, membrane 
phospholipids, and the actin cytoskeleton
The merger of bilayered phospholipid membranes of 
vesicles (e.g. endo-and exocytosis), organelles (e.g. 
mitochondria, exosomes), infection of host cells with 
enveloped viruses, or cell-cell merger represent fusion 
processes. These are complex, multi-factorial (including 
various proteins, phospholipids and biophysical condi-
tions), energy depending, tightly and timely regulated 
but still scarcely understood actions (for review see: [3–5, 
40, 60–69]). Figure 1 illustrates the apparently conserved 
pathway of lipid rearrangements in fusion of plasma 
membranes of cancer cells and normal cells, e.g. tropho-
blasts (placentation) and myoblasts (myogenesis) (Fig. 1).

In addition to other proteins/ factors, a decisive role 
in cell-cell fusion is displayed by distinct proteins and 
phospholipids, which are indispensable for plasma mem-
brane merger. These include so-called fusogens and their 
cognate receptors, as well as phosphatidylserine (PS), 

scramblase activity and PS-binding proteins [60–62, 
64–67].

Fusogens and cognate receptors during physiological 
and non‑physiological cell‑cell fusion events
Although fusogens share the similar functionality to pro-
mote membrane merger, they differ in tissue-specific 
structure and compartmentalization and thus, display a 
marked heterogeneity. Syncytin-1 (human endogenous 
retrovirus-type W (HERV-W)) and syncytin-2 (human 
endogenous retrovirus-type FRD (HERV-FRD)) rep-
resent fusogens, which belong to the large family of 
HERV elements that account for about 8% of the human 
genome. Syncytin-1 and -2 are structurally related to 
class I viral fusogens [60, 61, 66, 70–72]. In a physiologi-
cal environment these fusogens facilitate the fusion of 
villous and extravillous cytotrophoblasts to form syn-
cytiotrophoblasts during placentation [73–78]. In the 
course of placenta formation Sugimoto and colleagues 
demonstrated that the human endogenous retroviral 
(HERV) element suppressyn impaired syncytin-1-medi-
ated cytotrophoblast fusion by binding to the syncytin-1 
receptor alanine, serine, cysteine transporter 2 (ASCT2) 
[79]. Moreover, increased suppressyn serum levels were 
found in women with placental defects in Down syn-
drome pregnancies [80]. In fact, a disturbed or dysregu-
lated trophoblast syncytialization during placentation 
is commonly associated with an impaired maintenance 

Fig. 1  Schematic scheme of decisive steps in membrane fusion. Fusogens ultimately catalyse the merger two phospholipid double membranes 
that should actually repel each other due to their negative charge
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and failed integrity of the blood-placental barrier. These 
effects could lead to pregnancy disorders with subse-
quent development of pre-eclampsia, HELLP syndrome, 
intrauterine growth retardation and even miscarriage 
[41, 79–84]. These unwanted complications and poten-
tial outcomes underline the importance of syncytin-1 
functionality and proper cell-cell fusion during placental 
development.

In addition to placentation, syncytin-1 might also be 
involved in osteoclastogenesis [85, 86]. Here, data of 
Moller et  al. revealed that syncytin-1 rather promoted 
cell fusions of two multi-nucleated osteoclasts, whereas 
the fusion of mono-nucleated pre-osteoclasts is directed 
by CD47 [85]. These findings suggest that different fuso-
gens are involved in promoting and regulating either 
mono-nucleated or multi-nucleated cell fusion of the 
same cell type.

Other cell-type specific fusogens include the single pass 
transmembrane protein myomerger (myomixer—min-
ion) and the seven transmembrane protein myomaker by 
promoting myoblast fusion [38–40]. A peak expression of 
both myomaker and myomerger is observed during skel-
etal muscle development [38]. Little if any multinucleated 
muscle cells were found in myomaker-myomerger knock-
out embryos [58, 87, 88]. This was further correlated with 
a lack of skeletal muscle wrapping, a transparent appear-
ance and an overall early embryonic lethality [58, 87, 88].

At the level of gametes representing haploid sets of 
chromosomes, Juno and Izumo1 are important media-
tors of oocyte and sperm fusion [36, 37]. While Juno is a 
folate receptor (also known as folate receptor 4), Izumo1 
represents a transmembrane protein in sperms. The ecto-
domain is composed of an immunoglobulin-like domain. 
The Izumo domain can be further divided into the N-ter-
minal unstructured region and an α-helical core region 
important for sperm–egg binding [37]. Likewise, Juno 
and the tetraspanin-4 family protein CD9 may be impor-
tant factors in oocytes. Accordingly, knockout of either 
Izumo1 (sperm), or Juno or CD9 (both oocyte) was asso-
ciated with an impaired cell-cell fusion ability and, hence, 
correlated with infertility [37, 89, 90]. Recent work sug-
gested that, in addition to its role in sperm to egg bind-
ing, Izumo1 exhibits fusogen activity [91]. Together, these 
data indicate the necessity of functioning fusogens and 
subsequent proper cell-cell fusion in various physiologi-
cal processes and during development of an organism.

A different picture is observed in a patho-physiolog-
ical environment such as the fusion of cancer cells. In 
contrast to the multiple fusogens that are involved in a 
variety of different physiological cell fusion events, only 
syncytin-1 has been identified with cancer cell-cell fusion 
and tumour progression so far [23–33, 35]. Interestingly, 
a potential association of syncytin-1 with cancer cell 

fusion was documented in various different tumour enti-
ties as summarised in Table 1.

It still remains unclear why syncytin-1 is expressed by 
cancer cells. Several studies have demonstrated an intrin-
sic basal syncytin-1 expression in various cancer cells and 
tumour types, which could be caused by changes in the 
promoter region and/ or other regulatory elements, such 
as 3’-long-term-repeat (LTR) and 5’-LTR regions [23–33]. 
Similarly, other data provided evidence that cytokines 
and an oestrogen responsive element, respectively, could 
induce, and thus increase intrinsic syncytin-1 expression 
levels in cancer cells and different tumour entities [23, 
24, 26–30, 32]. Additionally, viral infections could also 
induce syncytin-1 expression in different cell types, such 
as Epstein-Barr virus (EBV) and human immunodefi-
ciency virus (HIV) in astrocytes and monocytes [92, 93], 
and SARS-CoV-2 in Calu-3 cells and A459-ACE2 lung 
cancer cells [94]. Although these data indicate a possible 
link between certain viral infections and the induction 
of syncytin-1 expression, it is completely unclear if this 
actually plays a role in cancer cell fusion. Nevertheless, 
the tropism of viruses must also be taken into account, 
since viruses can only specifically infect their host cells.

Together, previous studies demonstrated that can-
cer cell-cell fusion is mediated primarily by syncytin-1, 
which appears similar to physiological syncytin-1-medi-
ated cell-cell fusion events. However, no other fusogens 
have been identified so far in cancer cell fusion. In this 
context, studies by Uygur et  al. showed that PC3 pros-
tate cancer cells can fuse with muscle cells. In contrast to 
the muscle-specific fusogens myomaker and myomerger, 
however, this fusion process was also mediated by syncy-
tin-1 [28].

Phosphatidyl serine (PS) in normal and cancer cell fusion
The membrane phospholipid component PS has been 
suggested as a uniquely conserved molecule in cell-cell 
and virus-cell fusion [62]. Under normal conditions PS 
is localised in the inner leaflet of the plasma membrane 
whereby translocation to the outer leaflet can be asso-
ciated with apoptosis [95]. However, this PS shuttling 
is also essential for cell fusion. The two Ca2+-activated 
phospholipid scramblases (Ca2+-PLS) TMEM16E and 
TMEM16F, have been associated with cell-cell fusion [84, 
96–99]. In particular, TMEM16F facilitates the trans-
location of PS from the inner to the outer leaflet of the 
plasma membrane which is essential for trophoblast 
fusion. Conversely, TMEM16F knockout mice exhibited 
a deficiency in trophoblast syncytialization and placental 
development, which was correlated to perinatal lethality 
[84].

Likewise, muscle progenitor cells from adult 
TMEM16E−/− knockout mice exhibited defective 
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cell-cell fusion in culture and produced muscle fibres 
with significantly fewer nuclei as compared to controls 
[96]. This markedly reduced fusogenic capacity was asso-
ciated with a decreased Ca2+-dependent PS exposure 
on the surface of TMEM16E−/− muscle progenitor cells 
and a decreased Ca2+ amplitude [96]. Re-expression of 
TMEM16E fully restored the fusogenic capacity of mus-
cle progenitor cells concomitant with PS translocation 
and normalised Ca2+-dependent currents [96]. In oppo-
site to these findings, however, studies by Gyobu and 
colleagues reported no apparent skeletal muscle abnor-
malities in TMEM16E−/− mice [97]. These discrepancies 
were hypothesised to be related to genetic differences in 
the murine animal models, to different approaches for 
down-modulation of TMEM16E, or to other experimen-
tal factors [96].

Fertilization represents another PS-dependent mecha-
nism. Viable sperms containing membrane-associated PS 
and corresponding PS recognition receptors on oocytes 
have been suggested as key players in sperm × oocyte 
fusion [99]. Indeed, fertilization was impaired by both, 
masking of PS or functional disruption of PS receptor-
specific signal transduction pathways [99]. Similarly, 
fertility was impaired in TMEM16E−/− mice, which, in 
addition to impaired PS translocation, was also attributed 
to a reduced sperm motility [97].

While the above summarised studies indicate the 
importance of PS in plasma membrane merger of normal 
cells, the role of PS in cancer cell-cell fusion is less clear. 
Only two studies so far suggested the involvement of PS 
in cancer cell-cell fusion [28, 100]. Muscle cell-mediated 
increase in IL-4 and IL-13 levels induced syncytin-1 and 
annexin A5 expression in human PC3 prostate cancer 
cells and subsequent cancer cell-cell fusion [28]. By con-
trast, hybridization of these two cell types was impaired 
by annexin A5 knockdown [28], which supports the 
necessity of PS even in cancer cell-cell fusion.

Whereas PS translocation to the outer plasma mem-
brane leaflet can be associated with either apoptosis 
or cell fusion Noubissi et  al. reported that the fusion 
between MSC and T47D human breast cancer cells or 
between MSC and MCF7 human breast cancer cells was 
significantly enhanced by apoptosis [100]. These findings 
suggest that apoptosis-induced cancer cell-cell fusion 
could result in viable cancer hybrids with a mixed gen-
otype. Moreover, early apoptotic cells with still intact 
genome may represent the preferred fusion partners. 
Simultaneously, engaged and running pro-apoptotic 
pathways must be terminated in these newly formed 
cancer hybrids. Hochreiter-Hufford et  al. demonstrated 
that apoptosis together with induced signalling via the 
PS receptor BAI1 promoted myoblast fusion [101]. 
Notably, apoptotic cells were only in contact with viable 

fusing myoblasts/myotubes, but did not merge with them 
indicating that cell-cell fusion was attributed to BAI1-
induced signalling [101]. It is quite conceivable that a 
similar mechanism may occur in apoptosis-mediated 
fusion of cancer cells.

In brief, there is growing evidence for the importance 
of PS in plasma membrane-membrane fusion of normal 
cells and cancer cells [62, 66]. Nonetheless, the regula-
tion of Ca2+-PLS activation and subsequent PS shuttling 
within the plasma membrane remains unclear although 
different Ca2+-PLS regulation pathways/ mechanisms 
have been identified [62, 66]. Moreover, potential signal-
ling cascades in PS-relayed apoptosis and/or cell fusion 
represent crucial mosaic pieces within the multifactorial 
cell-cell-fusion machinery.

Actin in cell fusion
In addition to PS translocation and the expression of 
certain fusogens, restructure of certain cellular com-
partments including the actin cytoskeletal system is fur-
ther  required for cell-cell fusion [102, 103]. Thus, actin 
polymerization and associated cytoskeletal proteins play 
a substantial role to provide a fusion-permissive struc-
ture for the fusogenic cellular partners.

Changes in intracellular contractile elements of 
cytoskeletal proteins and a switch between a more soft 
and a rigid trabecular system of actin/myosin compo-
nents promotes firm adhesion, higher migratory capac-
ity, and facilitates cellular interactions. This is supported 
by the activation of the small GTPases Rac1 and Cdc42, 
and the Arp2/3-WASP complex which are key effec-
tors of the actin cytoskeleton protrusion machinery to 
reorganise the actin cytoskeleton and promote an actin-
mediated cell motility [104–107]. Interestingly, many 
genes required for myoblast fusion have been identified 
in fly, zebrafish and mouse, which have in common that 
they are participating in Arp2/3-mediated actin polym-
erization and formation of podosome-like structures 
[64, 108]. In fact, before the discovery of myomerger and 
myomixer, the formations of podosomes and invadopo-
dia were thought to be instrumental in myoblast fusion. 
Reorganization and accumulation of F-actin results in the 
formation of F-actin-based protrusions that penetrate 
the target cell, causing the formation of fusion pores with 
ultimate fusion of the cells [108].

It is well-known that the Arp2/3 complex is deregu-
lated in various tumours. Overexpression of Arp2/3-
WASP is tightly associated with markedly enhanced 
cancer cell invasion and disease progression of several 
tumour types, including breast, lung, colorectal, pros-
tate, and pancreas (for review see: [109]). The impact of 
Arp2/3-WASP in cancer cell-cell fusion is unclear, but 
previous work suggested a substantial role of F-actin 
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polymerization and associated cytoskeletal protein align-
ment to enable a permissive microenvironment for the 
fusion of breast cancer cells with MSC within the tumour 
microenvironment [110, 111]. This fusion process could 
be inhibited by cytochalasin D which blocks elongation 
of actin filaments but exhibited no detectable effects on 
the expression of integrins and various cell adhesion mol-
ecules. Likewise, latrunculin B which belongs to a fam-
ily of macrolide-structured toxins prevented the complex 
formation of monomeric G-actin with ATP and thereby 
impaired the energy-dependent generation of F-actin 
structures [110]. These findings suggest that cytoskeletal 
components including F-actin play an important role to 
provide a pro-fusogenic intracellular structure by inter-
acting with distinct lipids of the cell membrane.

Taken together, cells are non-fusogenic per se, but 
must first undergo a pre-hybrid preparation program 
(PHPP) to promote transition into a so-called hypotheti-
cal pro-fusogenic state [4, 5, 60, 61, 112]. Fertilization, 
placentation, and myogenesis represent physiological 
cell-cell fusion processes that rely on important intrinsic 
signalling mechanisms. Structural cytoskeletal require-
ments in concert with sequential and timely availability 

of fusogens, corresponding fusogen receptors, and fur-
ther proteins/phospholipids involved in fusion medi-
ate transition into a pro-fusogenic state for preparation 
of cell fusion. However, cancer cells actually represent 
a non-fusogenic cell population although some stud-
ies indicated that cancer cells intrinsically can expressed 
fusogens such as syncytin-1 [23–33, 35]. A summary of 
these different models is presented in Fig. 2.

Thus, some basic components of cell-cell fusion in 
physiological and pathophysiological processes may not 
differ from each other with respect to the involved pro-
teins/phospholipids. Nevertheless, there are significant 
differences at the regulatory levels.

Differences between physiological 
and non‑physiological cell‑cell fusion events
The fundamental differences between physiological and 
pathophysiological cell-cell fusion events are their impact 
on the organism. Physiological fusion processes are 
essential for an organismal development whereby dys-
regulation and/or dysfunctions are associated e.g. with 
infertility and embryonic lethality [36–43]. In contrast, 
the pathophysiological process of cancer cell fusion is 

Fig. 2  Homotypic and heterotypic cell-cell fusion. Physiological homotypic cell-cell fusion is characterised by a highly efficient fusion frequency 
and the generation of multiple syncytia, which is most likely attributed to a high number of cells in a pro-fusogenic state (A). However, it is also 
possible that pro-fusogenic cells fuse with non-fusogenic cells in a homotypic manner. Heterotypic cell-cell fusion is different since it remains 
unclear, which cells provide fusogens and exhibit further fusion relevant properties (B). A pro-fusogenic cell fuses with a cell in a non-fusogenic 
state, which only expresses cognate receptors and phosphatidylserine (PS) (adapted from [166])
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associated with a significantly enhanced tumour plastic-
ity [12, 113]. Usually, this leads to disease progression 
due to an increased malignancy of the tumour hybrids 
[2–8]. Physiological and pathophysiological cell-cell 
fusion events unravel further differences, including the 
general fusion frequency, the regulation of the fusion 
process itself, the fusion partner, and the survival rate of 
the hybrid cells after a PHSP.

Regulation of cell‑cell fusion and general fusion frequency
Fertilization, placentation, and myogenesis represent 
examples for physiological cell-cell fusion events that are 
characterised by an inherent time-dependent expression 
of specific fusogens and cognate receptors [3–5, 40, 60–
69]. All of these fusion processes are running in a con-
trolled manner and are terminated at a certain time point 
to avoid additional unwanted cell-cell fusion events. In 
particular, placentation and myogenesis represent highly 
effective cell-cell fusion events, which give rise to numer-
ous syncytia in  vitro and in  vivo. For example, immor-
talised murine C2C12 myoblasts fused at a similar rate 
as compared to human skeletal myoblasts [59]. A lot of 
fusion events were also observed between nuclei pre-
sent in cultured syncytia and fibroblasts expressing both, 
myomaker and myomerger [58]. Likewise, marked lev-
els of myotube formation were determined by Isobe and 
colleagues using a novel fusion quantification system 
[42]. In this line, primary human trophoblasts cultured 
for 72  h and BeWo cells treated with forskolin for 48  h 
demonstrated a significant amount of fusion event [43]. 
These high cell-cell fusion rates during placentation and 
myogenesis are achieved by a precisely timed expression/
activation of the cell-cell fusion machinery. For instance, 
a continuous syncytin-1 expression is detectable in vil-
lous cytotrophoblasts until 37  weeks of gestation [41]. 
Conversely, a peak expression of both, myomerger and 
myomerger is observed during skeletal muscle develop-
ment [38].

In contrast, the fusion of cancer cells is different since 
only a certain subpopulation of cancer cells exhibits fuso-
genic properties. Moreover, the fusion frequency can 
change markedly between distinct cancer cell lines and 
read-out systems. Accordingly, determination of fuso-
genecity in vitro varied between 0.0066 and 6.5% [114–
118] and in  vivo between 0.5 and 51% [16, 17, 57, 115, 
118–120]. However, the in vivo data have to be regarded 
very carefully as they do not necessarily represent the 
actual fusion frequency of the (cancer) cells. This par-
ticularly applies to detection limitations during in  vivo 
studies with different tumour models, different readout 
systems, and especially different time points applied.

These data demonstrate that cancer cells apparently 
have an inherent fusogenecity that appears to be different 
among various cancer cell lines and only applies to a cer-
tain subpopulation. Moreover, the overall fusogenecity 
of cancer cells/ cell lines is rather low when compared to 
the rates observed during physiological cell-cell fusion 
events.

Cancer cell fusion partners: homotypic versus heterotypic 
fusion
Cell-cell fusion can be divided into homotypic and het-
erotypic processes. In homotypic cell-cell fusion events 
identical cell types are merging. Conversely, during hete-
rotypic fusion hybrids are formed with different cell pop-
ulations. Homotypic cell fusion predominantly applies to 
physiological processes, e.g. placentation and myogenesis 
(Fig. 2A) [3–5, 40, 60–69]. As an exception, heterotypic 
physiological cell-cell fusion is represented by the sperm 
and oocyte fusion with the rearrangement of haploid sets 
of chromosomes during fertilization [3–5, 40, 60–69].

Cancer cells may fuse in a homotypic as well as in a 
heterotypic manner [2–8]. According to the hypothe-
sis of a pro-fusogenic state as a prerequisite for cell-cell 
fusion, either one or both cancer cells should acquire 
this state (Fig.  2A, B). A similar picture would emerge 
for heterotypic cancer cell fusion events (Fig. 2B). Either 
both or one of the cancer cell or normal cell would be in 
a pro-fusogenic state (Fig. 2B). In addition, a direct fusion 
between a pro-fusogenic cancer cell and a pro-fuso-
genic normal cell is also possible. This may account for a 
higher fusion rate in heterotypic cancer cell fusion since 
two independent pro-fusogenic cell types are involved. 
Supportive evidence for this model was obtained from 
previous work which determined a significantly lower 
homofusion (autofusion) rate by more than tenfold in 
various breast cancer cell lines when compared to a cor-
responding heterofusion with MSC [121].

As described above, expression of syncytin-1 in can-
cer cells appears to be primarily involved in cell fusion 
[23–33, 35]. These findings fit well to the assumption 
that “cancer cells fuse with other cells” (for review see 
[3–5, 61, 63, 122, 123]), which implies that cancer cells 
have acquired a pro-fusogenic state, express all necessary 
components of the fusion machinery and then actively 
fuse with other non-fusogenic cells (Fig. 3A).

In addition, normal cells such as macrophages and 
MSC also exhibit fusogenic properties by acquisition of 
a pro-fusogenic state to form hybrids with other cells 
including cancer cells (Fig.  3B) [121, 124–130]. This 
assumption resembles MSC- and BMDC-mediated tis-
sue regeneration e.g. during tumour growth-mediated 
chronic inflammation [17, 44–57, 131–135]. Tumour 
invading MSC and macrophages do not distinguish 
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between normal cells and cancer cells and exhibit their 
regenerative capacity according to the requirements of 
the tissue damage [136, 137].

Heterokaryon‑to‑synkaryon transition/ ploidy reduction 
and post hybrid‑selection process
Cell-cell fusion in neoplastic tissues represents a rare 
process. But even rarer is the survival of the resulting 
hybrid cells. The fusion of two cells does not simply 
result in the duplication of the karyotype. Rather, in 
case of division-active cells, such as cancer hybrids, two 
complex processes follow, which are the heterokaryon-
to-synkaryon transition/ploidy reduction [135, 138–
140] and PHSP [5]. Both processes are associated with 
aneuploidy and genomic instability due to chromosome 
missegregation, DNA damage, micronuclei forma-
tion and chromothripsis [141–146]. Thus, not only the 
fusion process itself, but also the survival probability 

of tumour hybrids in general is rather rare. Nonethe-
less, previous work assumed that despite a relatively 
low fusion frequency, fusion-mediated recombination 
could have a profound impact on clonal diversity and 
an overall increased intratumoural heterogeneity [113, 
115].

This raises the question if cancer hybrid cells follow-
ing HST/PR and PHSP are generally associated with 
increased malignancy? Besides increased malignancy, dif-
ferent outcomes have been described including reduced 
tumourigenicity [126, 147, 148] and tumour dormancy 
[149]. It is conceivable that HST/PR- and PSHP-associ-
ated cellular and genotypic stresses are survived primar-
ily by those cancer hybrids in which apoptosis pathways 
are turned off and survival signalling pathways are active. 
Such cancer hybrids could exhibit a selection advantage 
over chemotherapeutic agents. Nonetheless, the fact that 
survival of fused cancer hybrid cells represents a rare 

Fig. 3  In this model it is assumed that cancer cells fuse with other cells suggesting that all cells have entered a pre-hybrid preparation 
program (PHPP) by acquisition of a pro-fusogenic state (A). Alternatively, it cannot be ruled out that other cells in a pro-fusogenic state, such as 
macrophages, MSC, or stem cells could fuse with cancer cells in a non-fusogenic state (B). Similarly, both a cancer cell and a normal cell must have 
acquired a pro-fusogenic state for fusion (C). The resulting cancer hybrid populations from all of these alternatives have to undergo a post-hybrid 
selection process (PHSP) for re-organization of the chromosomal ploidy and corresponding metabolic adaptation to ensure survival
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event reflects one of the major differences to physiologi-
cal cell-cell fusion processes.

Conclusion
Beside the importance of physiological cell fusion, there 
is profound scientific consensus that cell-cell fusion 
events also occur in human cancers and that disease 
progression can be related to the formation of tumour 

hybrids [16, 124, 150–158]. However, precise regulatory 
mechanisms to control e.g. fusion of mononucleated ver-
sus multinucleated cells are still obscure.

Although some mechanistic principles of cell-cell 
fusion do not markedly differ between physiological and 
pathophysiological processes (Fig. 4), other fundamental 
differences can be observed. These include, for exam-
ple, the high fusion frequency in physiological processes 

Fig. 4  Cancer cell-cell fusion model which is focused predominantly on the expression of the fusogen syncytin-1 and includes some basal 
similarities to physiological fusion events. In this model it is assumed that a cancer cell with a re-organised actin cytoskeleton expresses syncytin-1 
and a PS-binding receptor, which recognises ASCT2 and PS, respectively. A basal syncytin-1 expression could be attributed to promotor mutation 
and/or hypomethylation (TF = transcription factor). The majority of expressed syncytin-1 will remain in the cytosol. In some cells, syncytin-1 may 
translocate to the plasma membrane, which may be facilitated by altered cytoskeletal structures. The corresponding cell exhibits Ca2+-PLS activity, 
which is engaged by Ca2+ to shuttle PS and subsequently enable plasma membrane merger and cell fusion (modified according to [166])
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such as placentation and myogenesis, which is ensured 
by a time-controlled upregulation of the fusion machin-
ery. In contrast, fusion of cancer cells represents a rare 
process that is predominantly relayed by a basal expres-
sion of the fusogen syncytin-1. The rarity of cancer cell 
fusion events is also based on the limitation of fusogens 
expressed only in certain cancer subpopulations. In this 
context, the significantly higher rates of cancer cell het-
erofusions (e.g. with MSC) as compared to homofusions 
[121] are explained by the availability of more fusogenic 
partner cells and support the hypothetical fusion models 
(Figs. 2 and 3). In addition to the low cancer cell fusion 
rates, the number of surviving tumour hybrids is even 
far lower as a consequence of restoring DNA stability 
during the PHSP [5]. This is also consistent with math-
ematical models which show that despite a relatively low 
fusion frequency, fusion-mediated recombination could 
have a profound impact on clonal diversity and an overall 
increased intratumoural heterogeneity [115].

If the amount of PHSP-surviving aneuploid can-
cer hybrid cells is obviously negligibly low why care for 
these cells? Previous work has demonstrated in vitro and 
in  vivo that certain cancer hybrid cells with aneuploid 
karyotype, e.g. after fusion of breast cancer cells with 
MSC acquire a proliferation advantage during the selec-
tion process beside other properties such as enhanced 
metastatic capacities. Consequently, the cancer hybrid 
cells rapidly overgrow the initial cancer cells by exhibi-
tion of new properties [11, 119] and thus, expanding the 
tumour heterogeneity and plasticity. Of interest, a sum-
marising compilation revealed various tumour-derived 
aneuploid cell lines. These include among others different 
carcinoma types and tissues such as 12 × breast, 4 × ovar-
ian, 4 × cervical, 4 × endometrial, 4 × brain, 4 × lung, 
7 × colon, 4 × liver, 5 × kidney, 5 × pancreas, 4 × gastric, 
3 × prostate, beside melanoma, osteosarcoma, retinoblas-
toma, nasal, pharyngeal soft palate cancer, and 4 × leu-
kaemia [159]. Although no direct proof is available, most 
of these spontaneously tumourigenic patient-derived 
cancer cells may be associated with previous fusion 
events after surviving from a PHSP as aneuploid cell 
types. Nevertheless, other forms of cancer cell mergers 
such as cannibalism or entosis can also contribute to ane-
uploid outcomes [160, 161] and even a more metastatic 
phenotype [162]. However, these findings demonstrate 
that a negligibly low amount of cancer hybrid cells can 
have a significant impact on the corresponding tumour 
development after all.

It still remains unclear why syncytin-1 is expressed 
only in a specific fraction of cancer cells. Previous 
work has demonstrated that proliferation, invasion and 
potentially metastasis of cancer cells may be influenced 

by syncytin-1 [26, 34, 35]. Similar findings have already 
been described for other HERV env elements [25, 163–
165] indicating also a possible non-fusogenic  role of 
syncytin-1 in cancer progression.

The timely orchestration of intrinsic signalling path-
ways involves actin-mediated intracellular restruc-
turing to enable cytosolic syncytin-1 transport to the 
plasma membrane for a pro-fusogenic state. Mecha-
nisms that facilitate this syncytin-1 translocation are 
unclear. In addition, Ca2+-PLS, particularly TMEM16F 
facilitates PS shuttling from the inner to the outer leaf-
let of the plasma membrane as an essential prerequisite 
for membrane merger. A variety of further components 
such as e.g. extracellular events [166] conclude a PHPP 
for subsequent cell fusion.

Interestingly, the fusogenic properties of mac-
rophages and MSC are rather underestimated in the 
context of cancer cell-cell fusion. This is surpris-
ing, since many studies have shown that these cells 
can regenerate tissue damage through cell-cell fusion 
[17, 44–57]. Tumour invading macrophages and MSC 
seem to ignore as to whether normal cells or cancer 
cells represent their interaction partner. Moreover, the 
tumour microenvironment resembles chronic inflam-
matory tissue [131–133] which attracts macrophages 
and MSC and is a known inducer of cell-cell fusion [51, 
56, 167].

It is therefore important to unravel the detailed inter-
play of the fusogenic contributors and their regulation 
particularly at the molecular level of the entire cell 
fusion process. Further insights into the underlying 
mechanisms could help to develop selective anti-cancer 
cell fusion strategies in tumour therapeutic approaches.
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