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Abstract 

Diabetic vascular complications (DVCs), including macro- and micro- angiopathy, account for a high percentage 
of mortality in patients with diabetes mellitus (DM). Endothelial dysfunction is the initial and role step for the patho-
genesis of DVCs. Hyperglycemia and lipid metabolism disorders contribute to endothelial dysfunction via direct 
injury of metabolism products, crosstalk between immunity and inflammation, as well as related interaction network. 
Although physiological and phenotypic differences support their specified changes in different targeted organs, there 
are still several common mechanisms underlying DVCs. Also, inhibitors of these common mechanisms may decrease 
the incidence of DVCs effectively. Thus, this review may provide new insights into the possible measures for the sec-
ondary prevention of DM. And we discussed the current limitations of those present preventive measures in DVCs 
research.
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Introduction
With the enhancement of our lifestyle, the global epi-
demic of metabolic diseases as represented by DM and 
its complications seriously threatens human life and 
health [1]. According to International Diabetes Federa-
tion (IDF 2021, version 10th), it is estimated that 537 mil-
lion of the adult population were affected [2]. The high 
incidence of DM imposes huge personal and societal 
healthcare burdens. Global health spending on adult DM 
has grown from US$ 232 billion in 2007 to US$ 966 bil-
lion in 2021, representing a 316% increase over 15 years 
[2]. As for World Health Organization (WHO) statistics 
from 2005 to 2015, the economic burden of DM on our 
country was 557.7 billion US dollars, of which 80% was 
spent on diabetic complications [3].
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DVCs, including microangiopathy (diabetic kid-
ney disease (DKD), diabetic retinopathy (DR), diabetic 
cardiomyopathy (DCM), etc.) and macroangiopathy 
(DM-related coronary heart disease (CHD), etc.), play a 
leading role in morbidity and death among patients with 
DM [4–6]. Adults (20–79 years old) who died from DM 
or its complications equate to 12.2% of all-cause deaths 
in 2021 [2].

In recent years, the three-level system for prevention 
and control of DM has been proposed, in which second-
ary prevention (prevention of complications) and ter-
tiary prevention (treatment of complications, delaying 
their death and disability) are both focused on the stage 
of complications [7]. Therefore, the early prevention and 
treatment of diabetic complications, especially DVCs, 
occupy a concernful position. At present, the interven-
tion of diabetic microangiopathy is mostly at the level 
of tertiary prevention, such as ACEI/ARB drugs and 
SGLT2 inhibitors for DKD [8], calcium dobesilate com-
bined with laser photocoagulation and anti-vascular 
endothelial growth factor (VEGF) agent for DR [9, 10], 
anti-heart failure therapy for DCM [11]. However, no 
clear evidence-based proof confirms the preventive abil-
ity of these therapeutic measures. Only general practical 
guidelines that control blood glucose, blood pressure, 
and blood lipids are recommended for DM secondary 
prevention, while more effective targeted measures are 
absent.

Known as one of basic pathological features of DVCs, 
vascular endothelial dysfunction  is ordinarily caused 
by common upstream mechanisms of metabolic disor-
ders and immuno-inflammation [12–14]. In this arti-
cle, we reviewed the interaction of metabolic disorders, 
immuno-inflammation and endothelial dysfunction. By 
summarizing the common core mechanisms underly-
ing DVCs, we hope to grasp opportunities to find multi-
targeted approaches for the prevention and treatment of 
DVCs.

Endothelial dysfunction and DVCs
Endothelial cells (ECs) constitute a single-layer cell bar-
rier covering the surface of the vascular lumen [14]. They 
bear the brunt of various stimuli from DVCs, highlight-
ing their importance on vascular morphology, function, 
and metabolism homeostasis regulation [15].

There are two important hallmarks closely coordi-
nated with each other to provoke endothelial dysfunction 
in DVCs: one is hyperglycemia induced by insufficient 
insulin secretion or insulin resistance (IR), and another 
is chronic, low-grade inflammation induced by proin-
flammatory immune cells and released cytokine [16]. It 
is characterized by reduced production or bioavailability 
of nitric oxide (NO), increased oxidative stress, increased 

vascular endothelial growth factor (VEGF), vasomotor 
dysfunction, and impaired endothelial recovery [17–19].

Macrovascular disease depends on vascular smooth 
muscle cells (VSMCs) to regulate vasomotor response 
while tiny blood vessels and capillaries are less affected 
by vascular tension for a lack of VSMCs [17]. So vascular 
endothelial homeostasis is more particularly significant 
to diabetic microangiopathy. For microvessels, the resist-
ance to systemic blood flow in the body’s blood vessels 
increased with high blood pressure. Small artery remod-
eling results in a decrease in blood flow reserve function, 
leading to abnormal tissue perfusion, and even preclini-
cal or clinical cardiovascular diseases [17, 20]. Endothe-
lial barriers (including blood–brain, blood-retina, and 
glomerular barrier) are destroyed for cellular connexin 
downregulation and integrin upregulation, thereby lead-
ing to vascular leakage and abnormal permeability [21, 
22]. For diabetic macroangiopathy, endothelial dysfunc-
tion leads to vascular wall remodelling. Subsequently 
vascular becomes stiffer and less compliant, and even 
atherosclerosis (AS) forms [20, 23]. Thus, ECs are poten-
tial therapeutic targets for the prevention and treatment 
of DVCs, whether they are macrovascular or microvas-
cular diseases.

Regulatory mechanisms of vascular endothelial 
homeostasis in DVCs
The maintenance of vascular endothelial homeostasis in 
DVCs, a complex regulatory process involving multiple 
steps, includes cell barrier and damage repair, vascular 
and blood flow regulation, redox, metabolic regulation 
and so on (Fig. 1).

Cell barrier and damage repair homeostasis
The normal cell barrier ensures complete structure and 
well function of vascular endothelium, which is the basis 
of vascular endothelial homeostasis [24]. Inner cell-
to-cell connections include tight junction (TJ), adher-
ens junction (AJ), and gap junction (GJ) [25]. Normally 
arranged ECs rely on tight junctions to maintain paracel-
lular permeability and polarity, forming an inner mem-
brane barrier [25]. TJ regulation-related signal pathways 
involved in DVCs include the protein kinase C (PKC), 
RhoA, MAPK, Src, PI3k/Akt, NF-κB and so on [24, 26]. 
AJ controls cell contact inhibition and permeability of 
inflammatory cytokine and solutes. Uncontrolled DM 
and DVCs cause inactivation and reduction in the expres-
sion of TJ protein, and related regulative signal pathways 
include Wnt/β-Catenin, PI3k/Akt, Ras, Rac, RhoA and 
so on [25, 27]. The endothelial glycocalyx (EG), which is 
associated with GJ, acts as a special barrier with glycosa-
minoglycans attached to prevent DVCs [28]. EG main-
tains structural and functional integrity of gap connexin 
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proteins, ensuring interendothelial molecular transport 
[29]. More importantly, EG can reduce platelet and leu-
kocyte adhesion, inflammatory stimulation, and oxidative 
stress damage to vascular ECs, underscoring the impor-
tance of EG preservation to avoid disease initiation and 
progression [30, 31].

Apart from cell-to-cell junctions, maintaining bar-
rier function needs updates and repairs of vascular ECs 
themselves. The sphingolipid signal pathway and related 
mediators, such as sphingosine 1-phosphate (S1P) and 
its G-protein coupled receptor 1 (S1PR1), perform bar-
rier protective function to ECs and restore cell com-
munication [29, 32]. Activation of S1PR1 prompts 
redistribution of connexins (VE-cadherin, β- Catenin, 
and α-Catenin, etc.) to the intercellular contact region, 

thereby tightening ECs barrier [33]. Concerning ECs 
repair, activation of transcription factors EGR1 and 
STAT3 is needed for transcribing sphingosine kinase 1 
and sphingolipid transporter 2 to increase the generation 
and efflux of S1P [34, 35]. Then, the transition of S1PR1+ 
ECs amplifies and they activate endothelial regenerative 
programs to mediate vascular endothelial repair in DM 
[35, 36]. In addition, the role of immune cells and circu-
lating angiogenic cells (CACs) are even more crucial to 
the sustainable complement for ECs [37, 38]. As one of 
the necessary regulatory factors maintaining the chemo-
taxis of CACs, endothelial nitric oxide synthase (eNOS) 
activates MMP-2 and MMP-9 to promote bone marrow 
differentiation and release CACs [30, 32, 38]. CACs posi-
tion the site of endothelial injury and produce cytokines 

Fig. 1  Four main regulatory mechanisms of vascular endothelial homeostasis. Mechanisms required for endothelial homeostasis regulation include 
cell barrier and repair homeostasis, vascular and blood flow regulation homeostasis, redox homeostasis and metabolism homeostasis; cell barrier 
and repair involves cell-to-cell junction, communications and relative pathways; vascular and blood flow regulation homeostasis involves blood 
flow sensor and control, as well as angiogenesis; redox homeostasis involves intracellular and extracellular reduction–oxidation reaction associated 
with inflammation; metabolism homeostasis involves mitochondria balance, energy conversion, metabolite and ion exchange. eNOS: endothelial 
nitric oxide synthase; FFA: free fatty acid; NO: nitric oxide; NOX: NADPH oxidase; NRP1: neuropilin-1; OS: oscillatory shear; PGE2: prostaglandin 
E2; PKC: protein kinase C; PS: Pulsatile shear; ROS: reactive oxygen species; YAP: Yes-Associated Protein; VEGF: vascular endothelial growth factor; 
VEGFR2: VEGF receptor 2
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(VEGF, SDF-1, etc.) to promote angiogenesis and ECs 
repair in DM [38, 39].

Vascular and blood flow regulation homeostasis
Mechanical stress is a key factor underlying the patho-
physiology of DVCs. Compared to straight vascular 
segments exposed to laminar flow, other vascular sites 
exposed to disturbed flow patterns appear more suscepti-
ble to endothelial dysfunction and atherosclerotic plaque 
formation [40]. Pulsatile shear (PS) stress in straight seg-
ments increases the expression of antioxidant and anti-
inflammatory (flow-mediated genes (e.g. YAP-TAZ)) 
genes to keep a vascular protective phenotype, whereas 
this is not the case for oscillatory shear (OS) stress at the 
vessel curvatures, branchpoints, and bifurcations [41]. 
The signal transition mediated by various endothelial 
mechanosensors (e.g., caveolae and lipid rafts, membrane 
proteins, primary cilia, glycocalyx, cellular junction, and 
adhesion molecules) is responsible to regulate vascular 
homeostasis and adaptative ability [42]. Take the YAP 
protein (one mechanosensor) as an example, it interacts 
with STAT3 to regulate angiogenesis [43]. YAP/TAZ 
pathway, constitutively activated by hyperglycemia, has 
been proven to be associated with proinflammatory gene 
expression in endothelial cells as well as disturbed flow-
induced diabetic vascular inflammation and renal dam-
age [44, 45].

Under acute stress conditions (e.g., trauma, infection, 
fever), a sensitive mechanotransduction sensing mecha-
nism regulates blood flow changes to match tissue sup-
ply–demand balance through negative feedback [46]. 
Meanwhile, ECs are regulated by sympathetic nerves to 
synthesize, release and balance endogenous regulators 
(e.g., NO, PGs, ET-1, and endothelium-derived hyper-
polarizing factors) of vascular tone change [47, 48]. Vas-
cular ECs can also secrete platelet-activating factors, and 
regulate factors related to the coagulation-fibrinolytic 
system to control blood flow [49].

Under long-term chronic injury, ECs extracellular 
matrix turnover interacts with smooth muscle cells that 
control intimal proliferation, thereby affecting vascular 
structure and function [46]. Numerous regulated signal 
pathways and targeted molecules (VEGF, FOXO1, and 
several miRNAs) get involved [50–53]. VEGF, a key fac-
tor in angiogenesis and normal vascular function main-
tenance, binds to its main receptor VEGFR-2 to regulate 
ECs proliferation and migration [54]. Neuropilin-1 (NRP-
1) acts as a co-receptor to increase their binding ability 
[55]. Another regulatory factor FOXO1 inhibits the MYC 
signal pathway to decrease over-proliferated ECs and 
overgrown neovascular, maintaining a quiescent phase 
[56]. A variety of miRNAs, including miR-126, help to 

leverage the homeostasis maintenance of the neovascular 
and lymphatic network [57].

Redox homeostasis
Oxidative stress mentioned above is an important link 
to mediate inflammatory response, which leads to vas-
cular ECs damage through direct cytotoxic effects. The 
balance between reactive oxygen species (ROS) accu-
mulation and nitric oxide (NO) consumption in hyper-
glycemia ultimately contributes to normal vascular 
endothelial function [58]. On one hand, the overproduc-
tion of ROS can be a central mediator of injury to cell 
constituents, including lipids, nucleic acids, and proteins 
[59]. The accumulated ROS subsequently induces signal-
ing cascade of MAPK and activate NFκB, which results in 
expression of pro-inflammatory cytokines, chemokines 
and receptors [60, 61]. Lipids peroxidation, the denatura-
tion of nuclear or mitochondrial DNA, as well as inac-
tivated proteins after oxidative modification, together 
bring about substantial changes in membrane permeabil-
ity and elasticity [59, 62]. On the other hand, NO (also 
called an endothelium-derived relaxing factor), is one of 
the most important vasodilator factors. It continuously 
maintains the dynamic balance of vascular endothelium 
by activating ERK1/2 and p44/p42 mitogen-activated 
protein kinases and causing tyrosine phosphorylation of 
focal adhesion kinase (FAK) [63]. Except for antihyper-
tensive and antiplatelet effects, NO also inhibits LDL oxi-
dation and leukocyte adhesion, thereby reducing the risk 
of endothelial thrombosis in patients with arteriosclero-
sis or diabetic CHD [64]. NO is synthesized from L-argi-
nine under the catalysis of eNOS in vascular ECs [65]. 
However, some studies have shown that eNOS is mainly 
expressed in large vascular ECs, rarely in arterioles, and 
not in capillary ECs [30, 66]. Based on this structural 
expression, eNOS may not be involved in diabetic micro-
angiopathy, but it is not clear at present.

Metabolic homeostasis
Mitochondria are best known for cellular energy con-
version and metabolic homeostasis. The balance of 
mitochondrial fusion and division, as well as normal 
autophagy, ensure the functional retention of mitochon-
dria and timely clearance of damaged mitochondria, 
forming a highly dynamic regulatory mechanism against 
injury from DVCs [67, 68]. The OPA1 gene mediates 
mitochondrial fusion to protect ECs viability and reduce 
oxidative stress [68]. Normal release of ROS and stabili-
zation of mitochondrial membrane potential reduce cell 
damage and aging, further preventing the vicious circle 
of mitochondrial damage caused by excessive peroxide in 
DVCs [67]. As for autophagy, VEGF equalizes autophagic 
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flux through an AMPK/mTOR-dependent mechanism to 
prevent DVCs progression [69, 70].

Vascular ECs may also maintain their metabolic 
homeostasis by dynamically regulating ionic metabo-
lite exchange. Iron homeostasis maintenance act as a 
vascular protector by reducing lipid peroxidation and 
excessive iron death [71, 72]. Zinc ions are required for 
eNOS dimerization and subsequent production of NO, 
while NO leads to the rapid mobilization of endothe-
lial Zinc storage to mediate vascular cell protection and 
vasodilation [73]. Besides, other regulators Na+/H+ 
exchanger regulator-2 (NHERF-2) and second messen-
ger Ca2+ also exist in the regulative process of endothe-
lial homeostasis [74, 75].

Common mechanisms of DVCs
Effects of metabolic disorders on ECs
Glucose metabolism disorder
Glucose metabolism disorder acts as the initiating step 
and important risk factor of DVCs [76]. The continuous 
high glucose status and accumulation of intermediate 
metabolites increase mitochondrial membrane potential 
and ROS production. Four classical pathways (hyperac-
tivated polyol pathway and hexosamine pathway replac-
ing normal glucose metabolism pathway, PKC activation, 
accelerated production and accumulation of advanced 
glycation end products (AGEs), reviewed by Ighodaro 
[77]) exacerbate the damage to vascular endothelial func-
tion [78]. Among them, the most important AGEs are 
produced by non-enzymatic glycosylation reaction of 
proteins, lipids, DNA, and other substances in the human 
body with reducing sugars [79]. Excessive AGEs bind to 
their receptors (RAGE) in ECs. On one hand, TLR-4 het-
erodimerization activates the NF-κB pathway to upregu-
late the expression of adhesion molecules. Along with 
inflammatory cells and cytokines migrating and infiltrat-
ing local tissues, oxidative stress is prone to increase the 
permeability of blood vessel wall [80]. On the other hand, 
AGEs-RAGE leads to VEGF overexpression and abnor-
mal hyperplasia of neovascularization [79, 81]. Over-
lapped multi-effects not only directly lead to damage 
of vascular ECs (such as peroxidation of biofilm lipids, 
destruction of cell structure and increased apoptosis), 
but also accelerates oxidative stress to prompt further 
damage to ECs [82].

Lipid metabolism disorders
Obesity-induced insulin resistance (IR) is reported as the 
common soil and intermediate connecting mechanism 
for glucolipid metabolism disorders [83]. Firstly, IR inhib-
its eNOS activity to reduce NO concentration through 
the PI3KA-MAPK pathway, which severely impairs 
endothelium-dependent vasodilation and increases its 

permeability [84]. In addition, IR stimulates the prolifera-
tion of VSMCs in turn and the excessive release of free 
fatty acid (FFA) in adipose tissue to aggravate oxidative 
stress and PKC activation, eventually forming a vicious 
circle [85]. Suppressed endothelial fatty acid oxidation 
(FAO) increases intracellular calcium oscillation. Those 
negative effects reduce NADPH levels and increase the 
ratio of NADP+/NADPH, resulting in vascular leak-
age, weakened endothelial antioxidant stress capac-
ity and aggravation of endothelial activation caused by 
lipopolysaccharide (LPS) [86, 87]. Under the stimulation 
of hyperinsulinemia, the synthesis of lipoproteins in the 
liver increases. AGEs participate in modifying lipopro-
teins as accelerators of lipid metabolism disorders. Ulti-
mately, AGEs increase TG-rich lipoproteins and LDL and 
decrease HDL [88].

The binding affinity between sdLDL and LDL receptors 
decreases, which hinders sdLDL clearance pathway [89]. 
Moreover, due to its small particles, it is easy to adhere 
to the subendothelial layer and combine with proteogly-
can. Combined lipoproteins are more prone to oxidative 
modification. Stimulated macrophages in circulation and 
tissues phagocytize the modified LDL and turn them into 
foam cells, which eventually accelerates the development 
of DVCs under the pressure of immuno-inflammation 
[86, 89, 90].

Gut microbiome metabolites
The metabolites of intestinal flora, such as short-chain 
fatty acids (SCFA), bile acids (BA), branched-chain 
amino acids (BCAA), methylamines and gaseous trans-
mitters affect host metabolism [91]. Intestinal flora dis-
orders may help inhibit the reverse cholesterol transport 
mechanism (RCT). Excess production of LPS and foam 
cells then inhibits cholesterol efflux [92]. Other products 
indoxyl sulfate and trimethylamine-N-oxide (TMAO), 
lead to the deterioration of DVCs [93]. Indoxyl sulfate 
is produced in the liver from the metabolism of indole. 
Indole, known as a protein-imported uremic toxin, is 
converted from dietary tryptophan by bacterial tryptase 
in the colon. TMAO is the ramification of trimethyl-
amine derived from the intestinal microbiota oxidated by 
flavin-containing monooxy geniuses and acts as the pro-
moter of AS [92, 93].

Inflammatory metabolite‑arachidonic acid derivatives
Arachidonic acid can be metabolized by three path-
ways: COX, LOX, and CYP4. The leukotriene, 
thromboxanes TXA2 and TXB2, and EET produced 
during arachidonic acid metabolism are involved in 
vascular-related diseases [94]. In the pro-inflamma-
tory environment, PI3K/AKT signal pathway directly 
regulates the activity of NF-κB. Subsequently, NF-κB 
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upregulates the inducible expression of genes includ-
ing cyclooxygenase-2 (COX-2) and promotes cas-
pase-3 activity that triggers apoptosis of ECs. COX-2 
catalyzes arachidonic acid and produces numerous 
prostaglandins (PGs) [95]. PGI2 and TXA2 are dif-
ferent kinds of PGs produced by vascular ECs and 
platelets, respectively. PGI2 induces vasodilation and 
inhibits platelet aggregation, while TXA2 induces 
vasoconstriction. The imbalance between them is a 
key factor to disrupt endothelial homeostasis [96, 97]. 
Activation of thromboxane/endoperoxide receptors 
can also aggravate endothelial dysfunction [95]. More-
over, COX-2 activity interacts with oxidative stress. 
COX2 stimulates the production of non-phagocytic 
cell NADPH oxidase 2 (NOX2), and activates COX2 
reversely, resulting in a continuous vicious cycle of 
endothelial dysfunction [98].

Effect of immuno‑inflammatory interaction on ECs
Under the regulation of various cells and their secreted 
cytokines, TLR2/4-NF-κB, p38/MAPK, IL-6/STAT3 
and other key transcriptional regulatory pathways 
get involved to constitute the immuno-inflammation 
interaction mechanism in DVCs (Fig. 2). Innate immu-
nity is enhanced in patients with DVCs, yet adaptive 
immunity is relatively less studied.

Innate immune activation
Monocyte‑macrophage system  As an important compo-
nent of intrinsic immunity, the monocyte-macrophage 
system plays a key role in the chronic low-level inflamma-
tory process [99]. Under the stimulus of metabolic disor-
ders, Mφ polarized from anti-inflammatory M2-like mac-
rophages (CD68+/Arg-1+) to pro-inflammatory M1-like 
macrophages (CD68+iNOS+) [100, 101]. M1-like mac-

Fig. 2  The interaction mechanism of metabolic disorders, immuno-inflammation and endothelial dysfunction in DVCs. The metabolic disorder 
process, characterized by hyperglycemia and IR, involves glucose, lipid, and gut microbe metabolism. The immuno-inflammation process 
is activated by immunocytes, proinflammatory cytokines, and NETs. Then induced inflammation and redox injury cause damage to ECs and vessels. 
AGEs: advanced glycation end products; CXCL: chemokine (C-X-C motif ) ligand; FFA: free fatty acid; IR: insulin resistance; LPS: lipopolysaccharide; 
Mφ: macrophages; MCP-1: monocyte chemoattractant protein 1; MDSCs: marrow-derived myeloid cells; NETs: neutrophil extracellular traps; NO: 
nitric oxide; NOX: NADPH oxidase; PGI-2: prostaglandin I-2; PKC: protein kinase C; RAGE: receptor of AGEs; SCFA: short-chain fatty acids; Th: T helper; 
TLR: Toll-like receptors; TMAO: trimethylamine-N-oxide; Treg: T regulatory cells; TxA2: thromboxane A2; VEGF: vascular endothelial growth factor
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rophages secrete numerous proinflammatory cytokines 
(such as TNF-a, IL-1β, IL-6), chemokines (MCP-1/CCL-
2) and inducible nitric oxide synthase (iNOS) [102]. Those 
cells, cytokines, chemokines and essential substances in 
tissue form an inflammatory M1-like immune microen-
vironment, maintaining a long-term inflammatory stress 
state of ECs [102, 103]. In parallel, metabolic disorders 
products FFA and LPS bind to membrane protein recep-
tors of ECs and monocytes, leading to increased secre-
tion of vascular cell adhesion molecules (intercellular 
adhesion molecule 1 (ICAM-1), etc.) and E-selectin 
[104]. Under the regulation of the AMPK-STAT3 axis, 
chemokines MCP-1 and CCR2 recruit circulating mono-
cytes and M1-like differentiated macrophages to adhere 
to ECs in the vessel wall, accelerating metabolic disorders 
[103–105]. Infiltrating monocyte-macrophages trans-
fer from the ECs gap to the tubular endothelial layer by 
rolling [104, 105]. Excess oxidized LDL can be phagocy-
tosed and ingested by M1-like macrophages and VSMCs, 
which are the ultimate source of foam cell forms and 
AS plaques [106, 107]. Macrophages produce excessive 
metalloproteinases, which can dissolve and even rupture 
plaques [106, 108].

Granulocytes, MDSCs and  NETs  The granulocyte sys-
tem mainly includes neutrophils, eosinophils, and baso-
phils. As a component of innate immunity, the granulo-
cyte system often participates in immuno-inflammation 
by releasing proinflammatory mediators and cytokines 
[109]. Neutrophils are the most abundant inflammation-
related immune cells in circulation and play a wide role 
in the inflammatory process [110]. Mechanisms of neu-
trophils that respond to immuno-inflammation in ECs 
mainly include the production of ROS, the secretion of 
inflammatory cytokines and peroxidase MPO, as well as 
the formation of NETs [111, 112]. With the spontaneous 
migration of granulocytes to targeted organs, the expres-
sion of adhesion molecules CD11b and ICAM-1 are also 
up-regulated [113, 114].

A special granulocyte system called proangiogenic 
granulocytes (PAGs) is composed of 20% neutrophils 
and 80% eosinophils [115]. PAGs are measured with 
CD49d+Ly6G+ adhesion marker on their surface and rich 
in VEGFR1 and CXCR4 molecules [116]. PAGs support 
the angiogenesis of ECs in vitro but PAG level is inversely 
proportional to blood glucose level [115]. The eosinophil 
count in DKD always rises, along with wider glomerular 
basement membrane (GBM) and positively correlated 
count with male albumin excretion rate [117, 118]. Eosin-
ophils are rarely studied in other DVCs, and basophils 
are even rarely reported.

A large number of polymorphonuclear marrow-
derived myeloid cells (PMN-MDSCs) are generated by 

bone marrow and spleen [112]. Under high glucose and 
chronic inflammatory conditions, IL-6/STAT3 path-
way is activated. After recruitment by inflammatory 
chemokines (CXCL1, CXCL2, CXCL5, and S100A8/A9 
(Calprotectin)), and activation by proinflammatory (IL-
6, VEGF, IFN-γ, IL-1β, HMGB1), PMN-MDSCs transmit 
to inflammatory ECs to triggers neutrophil extracellu-
lar traps (NETs) [112, 119]. Up-regulated PMN-MDSCs 
express the components p47phox and gp91phox of 
NOX2. NOX2 not only accelerates the inflammatory 
response by excessive ROS production but also promotes 
the occurrence of NETs [102, 120]. Moreover, activated 
NLRP3 inflammasome also promotes NETosis in CHD 
and atherosclerosis [121]. That is an important mecha-
nism of diabetic microangiopathy, which may be used as 
a potential therapeutic target.

The important role of other innate immune cells  Numer-
ous previous studies have focused on the role of mast 
cells (MCs) in AS and CHD. It has been found that MCs 
have involved in vascular plaque formation and inflam-
matory infiltration to atherosclerotic vessel walls through 
cell cytoplasmic vacuolization, extracellular extrusion 
of granules and nuclear sequestration [122]. MCs can 
secrete various mediators to activate other inflammatory 
cells (such as lymphocytes and foam cells) and affect the 
metabolism and circulation of HDL and LDL [123, 124]. 
MCs activated by endogenous factors (ET-1, component 
C5R, etc.) can release proteases through granule exocy-
tosis to degrade inflammatory markers and limit the pro-
gress of the inflammatory process [124].

DCs help to capture, process, and present antigens to 
antigen-presenting cells (APC). APC stimulates the acti-
vation and proliferation of antigen-specific T and B cells 
to initiate adaptive immunity [125, 126]. Activated den-
dritic cells (DCs) promote the secretion of proinflam-
matory mediators, including antibacterial mediators and 
chemokines, to help recruit more immune cells to infil-
trate to local inflammatory vascular endothelium [125, 
127]. In addition, DCs regulates the differentiation of T 
cells into different subsets [126].

Complement system  The systemic complement sys-
tem is activated, and deposited serum membrane attack 
complex (MAC) results in cell damage to targeted organs 
[128–130]. In addition to inducing epithelial-mesenchy-
mal transition and inflammatory cell infiltration, comple-
ment C3 and C5 also participate in transforming growth 
factor β (TGF-β) mediated endothelial EndMT [130, 131]. 
Complement regulator CD59, a membrane glycoprotein, 
can inhibit the polymerization of C9 to prevent the for-
mation of MAC. CD59 is more susceptible to glucose-
dependent nonenzymatic glycation-inactivation in DM. 
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Autoantibodies against glycosylated proteins initiate 
complement activation again via classical pathways [132].

Specific immunity activation
Diverse immunosuppressive cells (like Treg cells) and 
secretory cytokines mainly composed the vascular 
endothelial immunosuppressive microenvironment 
of patients with DVCs [133, 134]. AGEs may act as a 
new epitope bound by the mannose-binding lectin 
(MBL) pathway to motivate adaptive immunity [135]. 
The balance of the circulating T lymphocyte subset is 
dynamically affected by hyperglycemia, with signifi-
cantly increased CD4+ T cells and reduced CD8+ T 
cells [136]. Infiltrating CD8+ T cells in targeted tissues 
exerts negative regulatory effects on angiogenesis and 
endothelial function [137]. Moreover, microparticles 
released by T cells regulate the expression of eNOS and 
caveolin-1, accelerating endothelial dysfunction by NO 
and prostacyclin pathways [138].

T helper type 1 (Th1), Th2, Th17, regulatory T (Treg) 
cells, and cytotoxic T cells participate in the occurrence 
and development of DVCs, but the related molecu-
lar mechanism of endothelial dysfunction in various 
organs is not equal [139]. B cells contribute to the pro-
duction of antibodies and cytokines, whereas few stud-
ies focus on the interconnection between them and 
inflammation in DVCs [140].

Immuno‑inflammation related cytokines
Proinflammatory cytokines  The majority of proinflam-
matory cytokines infiltrated into local tissues originate 
from polarized M1-like macrophages or leukocytes [141, 
142]. Toll-like receptors (TLRs) recognize damage-asso-
ciated molecular patterns (DAMPs) released during cell 
stress and injury [143]. Combined TLR 2/4 in monocytes 
increases with NF-κB translocation to the nucleus and 
proinflammatory genes (encoding proinflammatory fac-
tors, like TNF-α, IL-6, IL-1β, IL-18) transcription. These 
changes result in NLRP3 inflammasome overexpression 
and NLRP3 activation-associated endothelial dysfunc-
tion [129, 144]. NLRP3 inflammasome also activates cas-
pase-1 to increase the speed and severity of inflammation 
[145]. In this regard, TLR2/4 is positively correlated with 
transcription factor NF- κB expression and the severity of 
inflammation [146].

As one of the earliest detectable cytokines, TNF-α 
promotes the generation of ROS to aggravate intimal 
injury. The amount of TNF-α goes up with disease pro-
gression to form a vicious cycle. Its continuous secre-
tion leads to the release of ICAM-1, which controls 
recruited macrophage infiltration [147]. Addition-
ally, TNF-α is a key signaling molecule of the AMPK/

NF-κB /NLRP3 pathway. Activation of NLRP3 inflam-
masome can trigger IL-1β and proIL-18 secretion to 
promote further inflammatory processes and oxidative 
stress [148]. Analogously, IL-6 interacts with TNF-α 
to enhance oxidative stress and reduce eNOS phos-
phorylation [149]. IL-6 receptor family activates JAK/
STAT signal pathway to cooperatively regulate B cells 
differentiation, plasma cell genesis, and acute phase 
response [150, 151].

Chemokines  Chemokine MCP-1 and ICAM-1 can 
attract monocytes, macrophages, T cells, and DCs to 
inflammatory sites [139, 152]. MCP-1 promotes mono-
cytes and macrophages activation and also upregulates 
the expression of adhesion molecules and proinflamma-
tory cytokines [153, 154]. In addition, CXCL1, CXCL2, 
CXCL5, and calprotectin (S100A8/A9, calprotectin) are 
involved in neutrophil recruitment [155].

Other cytokines  VEGF is by far the strongest specific 
angiogenic factor and is also a signal communication 
bridge between islet β cells and ECs [66]. Under the 
condition of metabolic disorders, VEGF overexpres-
sion, mediated by various proinflammatory mediators, 
leads to increased vascular permeability, disordered 
angiogenesis, increased adhesion molecules, as well as 
broken barrier protection and function repair of ECs 
[156]. Multiple mechanisms related to VEGF include 
Wnt, PI3K/Akt/mTOR/eNOS and p38/MAPK [66, 
156, 157]. TGF-β mainly participates in the process of 
ECs-related organ fibrosis. In kidney, retina, and heart 
fibrosis, disorders of glucose and lipid metabolism 
mediate EndMT in ECs through PKC β/TGF-β/PAI-1, 
TGF-β/SMAD, and a part of lncRNA signal pathways 
[158–161]. High glucose stimulation triggers ROS pro-
duction and activates TGF-β/SAMD3 pathway. Thus, 
caused proinflammatory cytokines and chemokines 
upregulate fibroblast-stromal cell proteins by stimulat-
ing the AGE-RAGE axis [162].

The important role of oxidative stress 
in immuno‑inflammation
Oxidative stress is associated with IR, B cell dysfunction, 
and damage to cell membrane integrity. Induced apoptosis, 
microvascular damage, and barrier break, ultimately lead to 
the progression of vascular complications [163, 164].

ROS in ECs is mainly generated by NOX2, mitochon-
drial respiratory chain, and eNOS uncoupling [165]. 
The systemic chronic inflammatory state induced by the 
disorders of glucose and lipid metabolism stimulates the 
overproduction of ROS from different sources. Endothe-
lial NO inhibits NF-κB activation and upregulation of 
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VCAM-1, E-selectin, and ICAM-2, thereby inhibit-
ing leukocyte adhesion to vascular endothelium [166]. 
Total eNOS levels decreases, however, endothelial NO 
production is impaired and consumed by oxidative 
inactivation [64]. Imbalanced NO and ROS contrib-
ute to a vicious circle of oxidative stress. Pathways and 
molecules involved in this process include the polyol 
pathway, MAPK, NF-KB, forkhead box O (FOXO), 
Keap1-Nrf2/ARE, Nrf2/HO signal pathway and so on 
[90, 167–169]. Oxidative stress disturbs endothelial sig-
nal transduction and enhances vascular endothelial per-
meability and leukocyte adhesion through these above 
mechanisms, which ultimately exacerbates vascular 
endothelial dysfunction [167].

Interaction between metabolic disorder 
and immuno‑inflammation
Increased levels of circulating inflammatory biomarkers 
in DM patients appear to predict the onset and progres-
sion of DVCs [170]. Long-term high glucose environment 
triggers innate immunity and homeostasis maintaining 
response once AGEs are recognized by pattern recogni-
tion receptors (PRRS). Induced abnormal function of 
mitochondria and endoplasmic reticulum promotes oxi-
dative stress and endothelium structural damage. The 
process of oxidative stress is related to the elevated levels 
of proinflammatory cytokines and autoantibodies. AGEs/
RAGE pathway activates downstream NF-κB signal path-
way to stimulate blood vessels continuously.

Lipotoxicity leads to lipid metabolism products and 
visceral adipose tissue levels dynamic storage addition. 
These products induce M1 polarization of macrophages. 
LDL adhesion remains in the subendothelial layer of 
blood vessels and receives oxidative modification to oxi-
dized low-density lipoprotein (ox-LDL), which can be 
engulfed by M1-like macrophages and transformed into 
foam cells. The expression of systemic inflammatory 
cytokines increases, to form a chronic low-level inflam-
matory state in the body, which runs through the process 
of DVCs.

Downstream effector mechanisms of DKD, DR 
and DHD
Different targeted organs consist of different cells. Inevi-
tably, the main functional cells of kidney, retina, heart 
and coronary artery seem to be affected by endothelial 
dysfunction (Fig. 3).

Glomerular ECs, podocytes, mesangial cells and DKD
As the most common diabetic microangiopathy, DKD 
developed with the cellular structure destruction and 
dysfunction of glomerular ECs, podocytes, and mesan-
gial cells. VEGF secreted by ECs or podocytes binds to 
its receptors VEGFR, regulating the normal vascular 
permeability and angiogenic function [171]. Once ECs 
are damaged, the function of renal mesangial cells will 
be seriously affected along with plenty of podocytes lost. 
Besides, activated local renin-angiotensin aldosterone 
system (RAAS) results in the consequences of glomerular 

Fig. 3  The inner linkage of endothelial dysfunction and different DVCs. The complex relationship of metabolic disorders, immuno-inflammation 
and endothelial dysfunction (left part) and different downstream effector mechanisms of DKD, DR and DHD (right part) are shown. ECs: endothelial 
cells; RAAS: renin-angiotensin aldosterone system; RPE: retinal pigment epithelial
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hyperperfusion, high pressure and high filtration. Other 
mechanisms include immune activation related to 
immune complex deposition, inflammatory response 
caused by the chemokines serum amyloid A (SAA) and 
regulated upon activation of normal T-cell expressed and 
secreted (RANTES) [172, 173], as well as the profibrotic 
cascade with multiple cytokines involved [174, 175].

Retinal vascular ECs, RPE cells, microglia and DR
The high metabolic demand and limited vascular sup-
ply to retinal cells make them extremely sensitive to 
metabolic disorders. The disorder of vascular structure 
is more significant in DR for the influence of VEGF 
overexpression [8]. Thrombus and haemorrhage coex-
ist after the formation of microangioma [176]. Even 
fibrovascular membrane hyperplasia or traction retinal 
detachment occurs in the proliferative stage, accom-
panied by retinal neurodegeneration [177]. In fact, the 
retina is an immune privilege tissue. The blood-retinal 
barrier (BRB) is formed by a tight junction of retinal 
vascular ECs (inner BRB) and retinal pigment epithe-
lial (RPE) cells (outer BRB) [188]. Unless BRB struc-
tural disruption in severe DR, circulating cells and 
molecules cannot freely enter the retinal parenchyma, 
much less specific autoantibodies or T cell infiltration 
[178]. Additionally, there is no lymphatic system in the 
retina so that it is difficult to recognize DAMPs.

Retinal microglia are known as the most important 
local immune cells in DR. Others include perivas-
cular macrophages, persistent transparent cells and 
DCs. Hyperglycemia inhibits the activation of myeloid 
cells (microglia/macrophages) and T cells, but it can 
induce Tregs cells formation through CD200-CD200R 
or CX3CLL-CX3CRL pathway [179, 180]. RPE cells 
induce apoptosis of infiltrating immune cells through 
FAS ligand and TRAIL pathway. RPE cells also inhibit 
complement activation with the help of CD55, CD46 
and CD59. Recently, it has been found that CD11b+ 
monocytes in the peripheral blood of DM mice 
were more active and expressed higher levels of the 
chemokine receptor CCR5 [181]. They preferentially 
stay in retinal microvessels and may be the risk factor 
for DR.

Coronary artery and microvascular ECs, cardiomyocytes 
and DHD
Adverse outcomes of diabetic heart disease (DHD) 
include significant reduction of glucose supply and utili-
zation, depletion of glucose transporter 4 (GLUT4) medi-
ated PPARs pathway, pyruvate dehydrogenase activity 
inhibition by β-oxidated FFA, the burden of lipid metab-
olism in cardiomyocytes aggravated by ubiquitin ligase 
MG53, and cardiac systolic and diastolic dysfunction 

caused by myocardial lipotoxicity intermediates such as 
ceramide [182–185]. There are intimate relationships and 
intercellular dependence between ECs and cardiomyo-
cytes. DM-related coronary heart disease is mainly asso-
ciated with atherosclerosis caused by glucose and lipid 
metabolism disorders, whereas the targeted cells of dia-
betic cardiomyopathy are mainly cardiomyocytes. Cardi-
omyocytes are more sensitive to energy metabolism and 
ion changes, among which Ca2+ is the main ion causing 
myocardial contraction. Endoplasmic reticulum stress 
promotes the disorder of Ca2+ metabolism in the cardio-
myocyte membrane and eventually causes cardiomyocyte 
death [186, 187].

Discussion
Vascular disease is a leading cause of death and dis-
ability for DM patients worldwide [188]. The burden 
of DM and its complications are unmet public health 
issues. Secondary prevention of DM, which means pre-
venting diabetic complications and decreasing risks of 
major organ injury, is immediately needed. If so, a large 
quantity of DM patients might have the opportunity 
to escape from those bad consequences. However, the 
absence of suitable drugs for the prevention of major 
vascular events after DM leaves clinicians with dilem-
mas. For example, ACEI/ARB drugs could not prevent 
disease progression in the kidneys but increase the 
incidence of cardiovascular events [189, 190]. Aspirin 
and clopidogrel for primary and secondary prevention 
of CHD are recommended, while few proofs of they 
improve microvascular complications [191, 192].

Proofs of DVCs prevention
Potential preclinical interventions (Table  1) bring new 
light on realizing secondary prevention of DM. These 
potential medications were associated with a possible 
structural benefit in administration of different DVCs. 
With respect to diabetes-related CHD, combined sec-
ondary prevention practices of CHD (e.g., antiplate-
let, lipid-lowering, blood pressure control and lifestyle 
intervention) and antidiabetic drugs without cardiovas-
cular risk have been proposed [191]. The scope of the 
research on diabetes-related CHD gradually increases 
and present studies are carried out around thera-
pies of novel glucose-lowering drugs, lipid regulators, 
antithrombotic drugs, and so on [193]. Eventually, 
these data should be confirmed with prospective, rand-
omized, controlled clinical trials.

A retrospective summary of registered clinical trials 
(WHO international clinical trials registry platform, 
https://​trial​search.​who.​int/) on the prevention of DVCs 
(Table  2) demonstrates that evidence of both safety 

https://trialsearch.who.int/
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and effectiveness is still absent. PRIORITY is a multi-
centre, prospective, observational randomised con-
trolled trial initiated by Steno Diabetes Center [219]. 
This study illustrated that spironolactone could not 
prevent progression to microalbuminuria and diabetic 
kidney disease, which is contrary to what the previous 
experiment showed [195, 219]. Another exciting trial 
PRECIDENTD is currently in progress and is due to be 
completed in 2028. Up-to-now guidelines recommend 
the initiation of SGLT2 inhibitors or GLP1 receptor 
agonists with proven cardiovascular benefits in adult 
patients with T2DM [220]. PRECIDENTD trial will 
innovatively compare two drugs to prevent cardiovas-
cular and diabetic kidney disease.

Possibilities and challenges of parallel targets in DVCs
Treatment of metabolic disorders is based on lifestyle 
intervention and patient education [221]. By controlling 
blood glucose, blood pressure, blood lipids and other risk 
factors, it is expected that DM patients keep a healthy 
lifestyle and get effective follow-up care strategies. Loss 
of body weight and drugs assist with ideal metabolic con-
trol to protect the function of vital targeted organs [222]. 
SGLT2 inhibitors are high-profile glycaemic control 

drugs and associated with reductions in body mass and 
blood pressure, as well as with both kidney and cardio-
vascular protective effects [223]. Remarkably, metabolism 
regulation makes a meaningful impact on both primary 
and secondary prevention of DM.

Treatment on immunity and inflammation mecha‑
nisms includes extracts from Traditional Chinese Medi-
cine (TCM, like rhein, hirudin, polysaccharides), SGLT2 
inhibitors, ACEI/ARB agents and so on. TCM therapy 
has unique advantages for DVCs prevention, which 
still deserves further study [224]. Rhein, derived from 
the roots of Rheum L., protects islets β cells by inhibit-
ing abnormal activation of the hexosamine biosynthe-
sis pathway and reverse IR. Besides, Rhein antagonizes 
TGF-β and protects ECs function [225]. Hirudin, an 
acidic polypeptide secreted by the salivary glands of Hir‑
udo medicinalis, inhibits HIF1α/VEGF and p38 MAPK/
NF-κB pathways and activates NRF-2/HO-1 pathways to 
prevent DN and other vascular complications [226]. Pol-
ysaccharides from different Chinese herbs have signifi-
cant anti-diabetic and anti-DVCs effects through various 
mechanisms with almost no side effects [227]. Similarly, 
SGLT2 inhibitors also modify inflammatory responses 
by various underlying mechanisms (e.g., oxidative stress, 

Table 1  Potential preventive intervention for DVCs from experimental data

DKD diabetic kidney disease; DR diabetic retinopathy; DCM diabetic cardiomyopathy; DVCs diabetic vascular complications

Disease Potential preventive intervention from experimental data References

DKD Natural products (quercetin, fisetin, triptolide, sappanone A, ginkgo biloba leaf extract, lespedeza bicolor, silymarin and milk 
thistle extract)
Herbal prescription (TangShen WeiNing formula, Ayurvedic formula)
Metabolites (butyrate, polysulfides, thiamine)
SGLT2 inhibitors, calcium dobesilate, spironolactone, irbesartan

[194–207]

DR Natural products (pterostilbene, puerarin
Herbal prescription (Yiqi Tongluo Fang, Ayurvedic formula)
Montelukast

[208–212]

DC Metabolites (zinc supplementation)
 trimetazidine, telmisartan and thiorphan combination treatment, SGLT2 inhibitors, CaMKII inhibitors, FGF1ΔHBS treatment

[213–218]

Table 2  Registered clinical trials on the prevention of diabetic vascular complications

Main ID Country Invention Prevention Status

PRECIDENTD, NCT05390892 United States GLP-1 receptor agonist 
and/or SGLT2 inhibitor

Cardiovascular and diabetic kidney disease Ongoing

EUCTR2019-004772-19-DK Denmark Hjertemagnyl Diabetic kidney disease Ongoing

CTRI/2015/01/005366 India Ayurvedic formulation Diabetic vascular complications Ongoing

PRIORITY, NCT02040441/
UCTR2012-000452-34-GB/
DRKS00008801

Multi-European countries Spironolactone Diabetic kidney disease Completed

NCT01725412 Canada Thiamine Diabetic kidney disease Unknown

JPRN-UMIN000007718 Japan Antiplatelets (cilistazol) Diabetic kidney disease Unpublished

JPRN-UMIN000002718 Japan Olmesartan Diabetic kidney disease Unknown
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RAAS activation, and immune system function) [223]. 
Moreover, clinical investigators have been always try-
ing to use ACEI/ARB drugs for secondary prevention 
of DM, but results are still controversial. ACEI/ARB 
drugs reduce the formation of angiotensin II or prevent 
angiotensin II from binding to angiotensin receptors to 
inhibit RAAS system [228]. They also help relieve local 
inflammation on the vessel wall to reduce urine protein 
and regulate blood pressure for patients with DVCs, yet 
losartan probably increases incidence of macroalbumi-
nuria [229, 230]. Whether other ACEI/ARB use should 
be recommended for secondary prevention of DM need 
support from further research data.

Treatment of the endothelial injury ET-1 receptor 
inhibitors (avosentan, atrasentan, etc.) have been used 
to lower blood pressure and urine protein, but increase 
the risk of edema and heart failure [231–233]. Moreo-
ver, the effects of ET-1 receptor inhibitors for DKD and 
DHD lack clinical trial validation. Vasodilators can pre-
vent DVCs and their progression by improving the 
microcirculation of the kidney, retina and myocardium 
[234]. Pancreatic kallidinogenase (PK), a vital vasodila-
tor, increases capillary blood and tissue perfusion flow by 
dilating small pulsations and regulating blood rheology. 
It is reported that PK is beneficial to control the process 
of DKD, DR and DHD [235–237]. The mechanisms of PK 
may involve the protection of ECs, the influence of angio-
genesis and permeability, as well as the reduction of tis-
sue fibrosis [237–240].

Opportunities for new therapeutics and secondary 
prevention
In the future, an improved understanding of the integra-
tion and regulation of the crosstalk network between met-
abolic disorder, immuno-inflammation and endothelial 
dysfunction may provide novel and effective therapeutic 
targets for DVCs prevention. If effective interventions can 
be taken on those common mechanisms, multi-discipli-
nary comprehensive therapy of DM-related vascular dis-
ease may provide new ideas for further improved clinical 
efficacy. For now, though, this is still up for debate. There-
fore, the combinatorial drug treatment on the strong 
interaction network or natural products like TCM pre-
scriptions characterized by multi-component, multi-tar-
get, multi-path comprehensive prevention and treatment 
of diseases may be a preferable alternative.
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