
Zhou et al. Cell Communication and Signaling            (2023) 21:8  
https://doi.org/10.1186/s12964-022-01009-9

REVIEW

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Cell Communication
and Signaling

The roles of connexins and gap junctions 
in the progression of cancer
Mingming Zhou1†, Minying Zheng2†, Xinyue Zhou1, Shifeng Tian1, Xiaohui Yang3, Yidi Ning3, Yuwei Li4 and 
Shiwu Zhang2* 

Abstract 

Gap junctions (GJs), which are composed of connexins (Cxs), provide channels for direct information exchange 
between cells. Cx expression has a strong spatial specificity; however, its influence on cell behavior and information 
exchange between cells cannot be ignored. A variety of factors in organisms can modulate Cxs and subsequently trig-
ger a series of responses that have important effects on cellular behavior. The expression and function of Cxs and the 
number and function of GJs are in dynamic change. Cxs have been characterized as tumor suppressors in the past, 
but recent studies have highlighted the critical roles of Cxs and GJs in cancer pathogenesis. The complex mechanism 
underlying Cx and GJ involvement in cancer development is a major obstacle to the evolution of therapy targeting 
Cxs. In this paper, we review the post-translational modifications of Cxs, the interactions of Cxs with several chaperone 
proteins, and the effects of Cxs and GJs on cancer.
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Introduction
Gap junctions (GJs) are specialized protein channels that 
allow two neighboring cells to communicate directly with 
each other. This process is called gap junction intercel-
lular communication (GJIC). The function of GJIC is 
achieved by gap junctions (GJs). The main components of 
GJs are connexins (Cxs).

GJIC is widely distributed between normal–normal, 
cancer–cancer, and cancer–normal cells. Substance 

exchange between normal microvascular endothelial 
cells and cancer-associated fibroblasts (CAFs) can regu-
late cellular proliferation [1], the cell cycle itself [2, 3], the 
expression of epithelial–mesenchymal transition (EMT)-
related proteins [4–6], self-renewal of cancer cells [7] 
and angiogenesis [8]. In addition, the exchange of infor-
mation between cancer cells via GJIC is associated with 
the anti-tumor effects of chemical reagents [9]; cytotoxic 
substances, such as reactive oxygen species (ROS) pro-
duced by radiotherapy, are transmitted through GJIC [10, 
11]. The balance between the synthesis and degradation 
of Cxs and GJs is critical for maintaining homeostasis in 
normal cells. GJIC and Cxs not only play an important 
role in normal physiological processes, such as embry-
onic development [8, 12, 13], bone formation [14, 15], 
and ovum expulsion [16], but are also associated with 
some pathological processes, including wound healing 
[15] and inflammatory responses [17].

The relationship between GJIC and cancer has been 
receiving increasing attention. Cxs have been charac-
terized as tumor suppressors in the past, with the main 
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evidence thereof being as follows: (1) Tumor cells lack 
functional GJIC, and cancer cells do not express Cxs in 
HeLa28 [18] and MCF-7 cancer cells [19]; (2) Tumor-pro-
moting chemicals and conditions reversibly inhibit GJIC; 
(3) Some oncogenes, including src, ras, raf, and mos, can 
decrease the expression of GJIC; (4) Cx gene transfection 
inhibits the growth and decreases the tumorigenicity of 
tumor cells [19, 20]; (5) Mice with connexin-32 knockout 
can develop spontaneous and chemically induced liver 
cancer [20]. However, recent studies have revealed that 
Cxs and GJs in fact play crucial roles in cancer pathogen-
esis. GJs can increase tumor cell invasion and migration 
in EMT-dependent and EMT-independent pathways. 
Abnormalities in the function of GJIC or the expression 
levels of Cxs are generally also accompanied by the onset 
of cancer. In addition, GJIC and Cxs are associated with 
the grade and stage of cancer [21–24], with abnormal 
expression and subcellular localization of Cxs being asso-
ciated with cancer initiation and progression. Post-trans-
lational modifications (PTMs) of proteins, which occur 
via phosphorylation, acetylation, ubiquitination, and 
SUMOylation, can regulate their active state and subcel-
lular localization. In this review, we discuss the PTMs of 
Cxs, the interaction of Cxs with several chaperone pro-
teins, and the effects of Cxs and GJs on cancer.

Structure and function of Cxs
To date, 21 Cxs have been identified. The isoforms of 
Cxs are named according to their molecular weights 
and order of discovery, and each Cx has its own coding 
gene. The distribution of each isoform is also tissue- or 
cell-specific (Table  1). All Cxs are tetraspanins with a 
cytoplasmic N-terminus, two outer membrane loops, an 
inner membrane loop, and a carboxyl-terminus located 
in the cytosol. The two outer membrane loops of Cxs, 
denoted by EL1 and EL2, are conserved regions (Fig. 1). 
Six Cx monomers can be assembled into a cyclic hexa-
meric hemichannel. Two hemichannels located on the 
membranes of different cells form an intact GJ in a head-
to-head manner. Several or even thousands of GJs can 
form GJ plaques. GJs undergo dynamic changes that can 
be updated continuously [25]. The turnover of GJ plaques 
generally occurs when hemichannels accumulate in the 
periphery of GJ plaques and form new GJs, whereas GJs 
present inside GJ plaques are first internalized and then 
degraded [26]. GJs are selective for substance delivery; 
only small molecules with molecular weights less than 
1 ×  103, such as inorganic salts, glucose, prostaglandins, 
and secondary messengers, can pass through them. Mito-
chondria [27], microRNAs (miRNAs) [8], and certain 
chemotherapeutic drugs such as gemcitabine [9] have 
also been reported to pass through GJs. The exchange 

of substances mediated by GJIC is bidirectional and, in a 
few cases, unidirectional [6, 28].

Regulatory mechanisms related to the expression 
and function of Cxs and GJs
Positive regulation of Cxs and GJs
The expression of Cxs, opening and closing of GJ gating, 
and size of GJ plaques play decisive roles in intercellu-
lar material exchange [55]. Various intracellular proteins 
and cytokines are involved in regulating Cxs and GJs. 
Cx monomers are first synthesized in the endoplasmic 
reticulum and then transported to the Golgi apparatus to 
form hexameric structures [56–58]. These structures are 
transported by vesicles to the cell membrane surface for 
assembly into GJs [59]. For example, the TGF-β2/Smad3 
pathway promotes Cx43 synthesis in the endoplas-
mic reticulum [60]. Connexin 43-interacting protein of 
75 kDa (CIP75), belonging to the ubiquitin-like and ubiq-
uitin-associated domain family of proteins, promotes the 
proteasome-mediated degradation of Cx43 monomers 
located on the endoplasmic reticulum [61]. In addition, 
the interaction between CIP75 and Cx43 promotes the 
transfer of Cx43 from the endoplasmic reticulum to the 

Table 1 Coding genes and tissue distribution of connexins (Cxs)

The first two columns were compiled from NCBI (National Center for 
Biotechnology Information (nih.gov)) data. Currently, 21 types of Cxs are known. 
The expression of each type of Cx in the human body is spatially different. The 
third column provides examples of the distribution of Cxs in normal human 
tissue

Gene Cx Expression in normal human tissue

GJA1 Cx43 Cardiac [29], lung [30], skin [31]

GJA3 Cx46 Cartilage [32], lens [33]

GJA4 Cx37 Spinal cord [34], ovary [35]

GJA5 Cx40 Spinal cord [34]

GJA8 Cx50 Lens [33]

GJA9 Cx59 Retina [36]

GJA10 Cx62 Platelets [37]

GJB1 Cx32 Liver [38, 39], cartilage [32], oligodendrocytes [40]

GJB2 Cx26 Liver [38, 39], astrocytes [40], cochlea [41]

GJB3 Cx31 Cochlea [41]

GJB4 Cx30.3 Thymus [42]

GJB5 Cx31.1 Trophoblast cells [43], epidermis [44, 45]

GJB6 Cx30 Astrocytes [46]

GJB7 Cx25 Hematopoietic stem cells [47]

GJC1 Cx45 Cardiac cells [48]

GJC2 Cx47 Astrocytes [49], oligodendrocytes [49]

GJC3 Cx30.2/31.3 Oligodendrocytes [50]

GJD2 Cx36 Retina [51]

GJD3 Cx31.9 Cardiac cells [52]

GJD4 Cx40.1 Skeletal muscle [53]

GJE1 Cx23 Lens [54]



Page 3 of 19Zhou et al. Cell Communication and Signaling            (2023) 21:8  

Golgi apparatus, which releases Cx43 from its “binding” 
to the endoplasmic reticulum [61]. Cx43 is transported 
to the cell membrane by vesicles after its assembly into 
hemichannels. This transport process occurs along 
microtubules. Studies have shown that the combina-
tion of Cx43 and α/β-tubulin ensures the movement of 
Cx43 to the cell membrane and also helps to maintain 
the stability of microtubules, which is important for the 
maintenance of cell polarity and homeostasis [62–64]. 
Phosphorylation of Cx43 at Tyr247 hinders the binding 
of Cx43 to tubulin [65]. Interestingly, Yun Fu et  al. [66] 
showed that Cx43 overexpression inhibits α/β-tubulin 
expression in MDA-MB-231 cells. In addition to tubu-
lin, F-actin facilitates the transport of hemichannels to 
the cell membrane. However, F-actin and Cx43 cannot 
bind directly, and drebrin is required as a mediator [67]. 
Zonula occludens-1 (ZO-1) protein mediates hemichan-
nel assembly in cell membranes and its overexpression 
increases the number of GJ plaques on the cell membrane 
while enhancing the transport capacity of substances. It 
also increases the size of the plaques compared to that of 
control cells [25, 68]. Disruption of the junction between 
Cx and ZO-1 does not significantly change the amount of 
Cx43 on the cell membrane but drastically decreases the 
ability of GJs to exchange substances [68]. This implies 
that ZO-1 not only affects the formation of GJs from Cxs 
but also has important implications for GJIC function. 

The half-life of Cx43, which does not detach from ZO-1 
after binding to it, is prolonged, and Cx43-ZO-1 conju-
gates that appear in GJ plaques affect the functioning of 
GJIC by always keeping the channel in an open state [25]. 
Phosphorylation of Cx43 at S373 inhibits its binding, 
whereas phosphorylation at S365 does the opposite [25, 
69]. The opening of GJ gates is also influenced by many 
factors. Modification of Cx43 by cAMP/protein kinase 
A (PKA) signaling promotes the opening of GJs. Ezrin 
can furthermore assist in the binding of Cx43 to PKA 
or ZO-1 and is necessary for Cx43 phosphorylation and 
GJIC [70, 71]. In addition, β-catenin promotes the stabili-
zation of GJs with the Wnt/β-catenin pathway promoting 
Cx expression [72]. The localization of NF-κB also pro-
motes GJA1 expression [73].

Negative regulation of Cxs and GJs
Negative regulation of Cxs or GJs generally leads to the 
degradation of both or the closure and internalization 
of the latter. Upon synthesis in the endoplasmic reticu-
lum, Cxs may be degraded by proteasomes in a ubiqui-
tin-dependent manner as modulated by CIP75 [61]. GJ 
plaques located at the junction of two cells depress uni-
laterally to form connexosomes in a process called inter-
nalization [26]. Connexosomes are degraded directly via 
lysosomes or autophagy [74–78]. They can also enter the 
early endosome and late endosome before finally being 

Fig. 1 a Structure of connexins (Cxs). Cxs contain a cytoplasmic N-terminus, four transmembrane domains, two extracellular loops (EL1 and EL2), 
a cytoplasmic loop, and a cytoplasmic carboxyl terminus tail. b Six Cxs assemble into a hemichannel, which is a hollow structure. c Hemichannels 
of two adjacent cells connect in a head-to-head manner to form gap junctions (GJs). The exchange of various substances mediated by GJs is called 
gap junction intercellular communication (GJIC)
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degraded via lysosomes [79, 80]. As mentioned above, 
the ubiquitination of Cxs, as well as phosphorylation at 
some sites, can promote the internalization and degra-
dation of GJs. Notably, protein kinase C (PKC) can be 
activated by vascular endothelial growth factor (VEGF), 
an exchange protein that is directly activated by cAMP 
[81]. Modification of Cx43 by mitogen activated protein 
kinase (MAPK) promotes its binding to Nedd4 [81, 82]. 
The Cx43 binding region for Nedd4 is also the binding 
site for tumor susceptibility gene 101 and the AP2 adap-
tor protein complex. These proteins promote the degra-
dation of GJs [79, 83]. Epidermal growth factor promotes 
the endocytosis of Cx43 through the MAPK and PKC 
pathways. Modification of the Tyr247 and Tyr265 sites of 
Cx43 by Src blocks Cx43 from binding to tubulin. Cx43 
downregulation increases focal adhesion kinase-Src acti-
vation [84, 85]. The conjugates of these two proteins are 
early regulators of integrin signaling and can promote the 
invasion and metastasis of tumor cells [85]. c-Src regu-
lates EMT via the PI3K/Akt pathway. A reduction in the 
ability of c-Src to combine with Cx43 increases the activ-
ity of Akt, thus enhancing the ability of cancer cells to 
invade and metastasize [86].

PTMs of Cxs
PTMs are of great significance for the stability and func-
tion of Cxs, in which they occur via phosphorylation, 
ubiquitination, acetylation, and SUMOylation of the 
proteins. The carboxyl termini of different Cx isoforms 
vary substantially and comprise the major sites of PTMs. 
Modification by phosphorylation changes the half-life of 
Cxs as well as their ability to form GJs and resulting gat-
ing properties [71, 87]. Ubiquitination, acetylation, and 
SUMOylation mainly regulate Cx or GJ degradation.

Phosphorylation of Cxs
Modification of Cx phosphorylation is closely associated 
with the malignant progression of cancer. Gould et  al. 
showed that in situ and invasive breast carcinoma tissues 
exhibit more Cx43 phosphorylation than normal breast 
tissues [88]. Phosphorylation of Cx43 also contributes to 
the development of pancreatic cancer [89]. In addition, 
phosphorylation of Cxs may function as a prognostic 
marker for gliomas [90]. Dysregulation of Cx phospho-
rylation and restoration of normal GJIC or GJs in cells 
may be potential targets for cancer therapy [91, 92]. 
Malignant gliomas show increased Cx phosphorylation 
[90]. Phosphorylation of Cx43 at Ser279 has been shown 
to promote tumor vessel formation [93]. Phosphorylation 

Fig. 2 Schematic diagram of the regulation of Cx synthesis and assembly. The formation and assembly stages of Cxs are influenced by various 
kinases and chaperones. In this figure, Cx43 is used as an example to describe the factors for Cx expression, formation of GJs, and gating regulation
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of Cxs is associated with the number of GJs, dynamic 
changes in GJ plaques, and the internalization of GJs 
[94, 95]. The enzymes capable of phosphorylating Cxs 
mainly include PKA, PKC, MAPK, casein kinase 1 (CK1), 
and Src (Fig.  2). Most phosphorylation sites of Cxs are 
located at their carboxyl termini, and different modifi-
cation sites have different effects on GJIC. Phosphoryla-
tion of Cxs leads to not only the localization of GJs on 
cytomembranes, but also the formation of hemichannels 
on cyto- and mitochondrial membranes.

Cx43 is the most commonly expressed Cx. The poten-
tial phosphorylation sites of PKA in Cx43 include Ser364, 
Ser365, Ser368, Ser369, and Ser373. Phosphorylation of 
Cx43 by PKA can promote GJ assembly and GJIC func-
tion [71] and reduce the migration ability of cells [96]. 
Notably, the Ser365 site, which can hinder PKC modifica-
tion at Ser368, has a protective effect on GJs [97]. Akt, the 
downstream target of PI3K, mainly modifies the Ser373 
and Ser369 sites in Cx43 [98]. These sites are modified 
to increase Cx43 cell membrane localization and to pro-
mote gate opening. Geletu et al. [99] found that PI3K may 
be necessary for GJ formation. The modification of Cx43 
by Akt reduces Cx43 binding to 14-3-3 protein [100]. The 
14-3-3 protein can facilitate the trafficking of Cx43 from 
the cytoplasm to the cell membrane and its assembly into 
GJs [100]. ZO-1 is one of the chaperone proteins of Cx43 
that can promote the formation of GJs and maintain the 
open state of GJ gating and stability of GJ plaques [25, 
69]. However, the ability of Cx43 to bind to ZO-1 dimin-
ishes after its S373 site is phosphorylated. PKC acts as a 
downstream target for phospholipase C. However, phos-
phorylation of the Ser368 site of Cx43 by PKC causes the 
closure of or a reduction in the number of GJs, which is 
not conducive to cell-to-cell signal delivery and material 
communication [94, 101]. Phosphorylation of Cx43 at 
Ser368 is important for the cell cycle. Phosphorylation at 
this site is generally elevated in the S and G2/M phases of 
mitosis [102]. MAPK mainly modifies the Ser255, Ser262, 
Ser279, and Ser282 sites of Cx43, and GJIC is inhibited 
after phosphorylation at these sites [81]. The phospho-
rylation of these sites by MAPK also affects the binding 
of Cx43 to cyclin E, which may lead to an increase in the 
cell proliferation ability [103]. During the prophase and 
metaphase of mitosis, a smaller proportion of Cx43 is 
involved in the formation of GJs, and numerous GJs are 
internalized. When mitosis enters the telophase, a large 
number of GJ plaques appear between cells [104]. This 
may be related to the modification of Ser255 and Ser262 
sites of Cx43 by CDC2 [105, 106]. CDC2 levels may not 
significantly fluctuate during the cell cycle; however, its 
activity peaks in the G2/M phase. Notably, SRC, an onco-
gene, can not only directly modify Tyr247, Tyr265, and 
Tyr313 of Cx43 (which also inhibits or even destroys GJs) 

but can also indirectly modify Cx43 and further affect 
GJIC through PKC and Erk1/2, Ras/Raf/Erk, and PI3K/
Akt [107–110]. The phosphorylation of Cx43 by CK1 
regulates GJ assembly. A study on pancreatic ductal ade-
nocarcinoma by Solan et al. confirmed that GJs are abun-
dant in stromal cells of Kras (LSL-G12D/+; p48Cre/+) 
mice but absent in KC; Cx43 (CK1A) mice (crossing the 
Cx43(CK1A) mouse onto the KC background), and that 
KC;Cx (CK1A) cells can efficiently downregulate Cx43 
expression [89]. Combining CX43 with C-terminal Src 
kinase and phosphatase and tensin homolog in the region 
between residues 266 and 283 within the C-terminus can 
inhibit Src activity [111].

As a proto-oncogene, the tyrosine-protein kinase, Src, 
regulates the phosphorylation of Cxs, allowing Cx inter-
nalization and inhibiting GJIC. The phosphorylation 
level of Cxs increases the malignancy of breast cancer 
cells [88]. The Src effector, STAT3, may be necessary for 
GJs to perform their functions. The number of GJs does 
not change appreciably following treatment of cells with 
STAT3 inhibitors; however, their permeability decreases 
[112]. Other types of Cxs such as Cx26, Cx32, Cx36, and 
Cx45 have also been confirmed to be phosphorylated. 
The same protein kinases differ with regard to the modi-
fication sites of different Cxs; the main sites modified by 
PKA in Cx35 are Ser110 and Ser276. PKA inhibits GJIC 
function in a Cx35-dependent manner [113].

Ubiquitination of Cxs
Ubiquitination is another important process that forms 
PTMs of proteins and has a huge impact on protein 
function. Several studies have demonstrated that ubiqui-
tination is associated with the internalization and degra-
dation of GJs. The lysine residues of Cx43 are important 
sites for ubiquitination. Ubiquitination of Cx43 is a 
reversible process that can be modulated by many mole-
cules to ensure the stability of Cx43 at the cell membrane. 
For example, Nedd4 [82], epidermal growth factor, and 
ginsenoside Rg-1 [114] promote ubiquitination. How-
ever, molecules associated with the SH3 domain of the 
signal transducing adaptor molecules (a subunit of the 
endosomal sorting complex required for transport-0) 
[115] and ubiquitin-specific peptidase 8 [116] can down-
regulate the ubiquitination level of Cx43. Ubiquitinated 
Cx43 is degraded through different pathways, including 
the proteasome and lysosomal pathways, and autophagy 
[80, 117, 118]. The entry of Cxs into different degradation 
pathways may be related to their subcellular localization. 
Ubiquitination of Cx is not isolated from phosphoryla-
tion; they are interrelated. One study showed that high 
phosphorylation of Ser368, Ser279, Ser282, and Ser255 
sites occurred when ubiquitination of Cx43 Lys264 and 
Lys303 sites was inhibited [119]. This phenomenon 
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suggests that phosphorylation can induce ubiquitination. 
Growing evidence from further research suggests that 
the crosstalk between phosphorylation and ubiquitina-
tion of Cxs can regulate the internalization of GJs and 
degradation of Cxs. The ubiquitination and de-ubiquit-
ination of Cx32 and Cx40 are tightly regulated [120, 121]. 
Mitra et al. showed that prostate carcinogenesis may be 
accompanied by the dysregulation of Cx degradation 
[122]. In addition, an increase in the degradation of Cxs 
is generally accompanied by a decrease in the number 
of GJs. This may result in a decrease in the sensitivity of 
cancer cells to chemotherapeutic drugs and a weakening 
of radiation-induced bystander effects [11, 123].

SUMOylation of Cxs
SUMOylation is a PTM which, in proteins, is a process 
in which small ubiquitin-like modifier (SUMO) proteins 
bind to substrates covalently or non-covalently under the 
catalysis of SUMO proteases [124]. In contrast to ubiqui-
tination, SUMOylation can have a positive effect on the 
stability of Cx43 at the cell membrane [125]. SUMOyla-
tion regulates the stability of Cxs. Upregulation of SUMO 
protein expression can improve GJIC, which enhances 
information exchange between tumor cells [125–127]. 
The SUMO system is associated with Cx43 protein lev-
els, and SUMO 1/2/3 at  Lys 144 and  Lys 237 can mod-
ify Cx43. Mutations in lysine 144 or lysine 237 lead to 
a reduction in Cx43 protein and GJ levels [125]. Modi-
fication of Cx43 by SUMO 1 improves GJIC function in 
hepatocarcinoma cancer stem cells (CSCs), and further 
experiments have confirmed that this improvement has 
a positive effect on the sensitivity of tumor cells to herpes 
simplex virus thymidine kinase/ganciclovir HEMC [126]. 
SUMO 2 and SUMO 3 have been shown to equally pro-
mote the formation of GJs on cell membranes, in addi-
tion to SUMO 1 [125]. Ubiquitination acts opposite to 
SUMOylation, and the internalization and degradation 
of Cxs can be effectively controlled. Osteosarcoma cells 
highly express the SUMO-conjugating enzyme, Ubc9. A 
decrease in Ubc9 expression can inhibit osteosarcoma 
cell proliferation and migration and induce decoupling of 
SUMO 1 from Cx43, increasing free Cx43 levels [127].

Acetylation of Cxs
The sites of acetylation in Cxs are also mainly located at 
the carboxyl termini. In  vitro studies have shown that 
acetylation of Cx32 enhances the proliferative capacity of 
cells but does not affect the function of Cx32-dependent 
GJs [128]. Accumulation of Cx32 in cells after acetylation 
can increase cell proliferation; however, the mechanism 
underlying this process remains unclear [128]. Cx43 can 
also be acetylated. The localization of Cx43 to the cell 

membrane reduces after acetylation. The binding of Cx43 
to ZO-1 is blocked after acetylation, but the binding to 
Src is not compromised [129]. Interestingly, acetylation 
and ubiquitination may also be interrelated, as the level 
of ubiquitination tends to decrease as the degree of Cx32 
acetylation increases [128]. Unlike Cx32, other types of 
Cxs have not been found to exhibit such crosstalk.

Other modifications of Cxs, such as O-GlcNAc glyco-
sylation [130], nitrosylation [131, 132], carboxylation, 
glutamate γ-carboxylation, and methylation [133], are 
also important for their stability and membrane distribu-
tion. PTMs have significant effects on the permeability of 
GJs and the stability and subcellular localization of Cxs. 
Cancer development is usually accompanied by changes 
in the PTM of Cxs [88], which may weaken the body’s 
control over cancer cells, block the spread of anti-cancer 
drugs among cancer cells, and increase drug resistance 
in cancer cells. The efficiency of synthesis and degrada-
tion of Cxs and GJs (which governs their numbers) have 
a crucial impact on cancer cell behavior such as migra-
tion ability and cell cycle progression [89, 96, 134]. An in-
depth exploration of the PTM of Cxs may provide novel 
insights into methods for curbing cancer progression.

GJs and cancer
GJs regulate tumorigenesis
Normal epithelial cells exhibit cell polarity in vivo, which 
is important for maintaining epithelial cell stability and 
contributes to the coordination of intracellular functions. 
A critical pattern of cell polarity within epithelial cells is 
the apical-basal polarity [135]. Studies have shown that 
disruption of epithelial cell polarity can be regarded as an 
indicator of cancer development [136]. Polarized micro-
tubules are essential for cell polarity. Bazzoun et al. found 
that GJs are involved in polarity formation in breast epi-
thelial cells. Disruption of GJ function may lead to the 
loss of homeostasis in epithelial cells and eventually tum-
origenesis [137]. In addition, in the initial stages of tumo-
rigenesis, functional GJs can help cells dedifferentiate 
and acquire immortality by modifying telomerase [138]. 
Decreased expression and altered subcellular localization 
of Cxs occur in many types of malignant tumors, includ-
ing those of gastric cancer [139], non-small cell lung can-
cer [140, 141] (NSCLC), and bladder cancer [142].

Cx43 can bind to microtubules and be transported to 
the cell membrane, and this process maintains the stabil-
ity of microtubules [26, 143]. The absence of microtubules 
prevents the development of cell polarity. Upon cancer 
initiation, the expression of Cx43 decreases, which may 
be associated with the destruction of cancer cell polarity 
[137, 143]. The subsequent series of signaling pathways 
initiated by integrins are also important for the mainte-
nance of the apical-basal polarity of epithelial cells [135]. 
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Downregulation of Cx43 can change the subcellular dis-
tribution of integrins, thereby affecting the cytoskeleton 
and cell polarity [144]. Endothelial cells, which are spe-
cialized epithelial cells, also exhibit polar characteristics. 
The binding of Cx43 to vasodilator-stimulated phos-
phoproteins in human vascular endothelial cells is of 
positive significance for the directional migration of cells 
and maintenance of cell polarity [96]. In addition, GJB2 
knockdown increases the probability of carcinogenesis in 
breast cancer [145]. In addition, decreased expression of 
Cx26, compared to that in normal breast tissue, or even 
no expression, has been found in breast cancer [146].

GJs can promote tumor angiogenesis
Tumor angiogenesis is important for tumor metastasis 
and rapid growth [147]. Heterogeneous communica-
tion between cancer and vascular endothelial cells is 
essential for tumor angiogenesis [148]. Co-culture of 
metastatic colorectal cancer cells with human microvas-
cular endothelial cells (HMECs) can promote Cx phos-
phorylation and alter Cx subcellular localization from 
the cell membrane to the cytosol [148]. The effects of 
GJIC between HMECs and cancer cells cause transen-
dothelial cell metastasis and tumor angiogenesis [148]. 
Inhibition of tumor angiogenesis by regulating GJIC or 
Cxs may become a target for anti-tumor therapy in the 
future. Thuringer et  al. [8] demonstrated in  vitro that 
miRNA-145 can be transmitted between HMECs and 
SW480 colon cancer cells. Transmission of miRNA-145 
from HMECs to SW480 cells increases Cx43 expres-
sion in cancer cells. It also reduces the ability of cancer 
cells to promote angiogenesis. In addition to miRNA-
145, miR-30b and miR-200b affect tumor angiogenesis 
in a specific manner with the participation of Cxs [149]. 
Many researchers believe that an increase in Cx43 levels 
disrupts the integrity of tumor blood vessels [151152]. 
Murine xenografts from Cx43-overexpressing cells have 
fewer and smaller blood vessels than those from wild-
type cells [152153]. VEGF promotes vascular endothelial 
formation and injury repair through Cx43- and Cx43-
dependent GJIC [154]. Prevention of VEGF binding to its 
receptor and inhibition of GJIC can arrest the breast can-
cer cell line MDA-MB-231 in the G1/S phase and inhibits 
the proliferation, invasion, and metastatic ability of the 
cells to varying degrees [155]. Xenografts from MDA-
MB-231 cells receiving oleamide and avastin (inhibi-
tors of GJIC and VEGF, respectively) treatment exhibit 
smaller tumor masses and reduced liver and lung metas-
tases than those without treatment [155]. Fukuda et  al. 
[156] found that homogenous communication between 
cancer cells had less of an effect on tumor progression 
than heterogeneous communication between cancer cells 
and normal tissues. Cx37 and Cx40 form intercellular 

junctions between endothelial cells and participate in 
developmental angiogenesis. Loss of Cx37 and Cx40 
inhibits angiogenesis and decreases the growth of malig-
nant tumors, suggesting that these Cxs may be targets for 
anti-tumor treatments [157].

GJs participate in regulating the cell cycle of cancer cells
Many studies have shown that either GJIC or Cxs par-
ticipate in the regulation of cancer cell growth. The reg-
ulation of the cell cycle by Cxs mainly depends on their 
interactions with cell cycle regulators [2, 3]. Increased 
Cx expression prolongs the G1 phase. When the expres-
sion of Cx37 increases in insulinoma cells, the cell pro-
liferation cycle becomes longer and remains at the G1/S 
boundary, weakening the proliferative ability of tumor 
cells [158]. Removal of growth factors during cell cul-
ture makes this phenomenon more obvious. In gas-
tric cancer, Cx32 changes or even loses its subcellular 
localization with increasing malignancy [159]. In addi-
tion, the proportion of AGS gastric cancer cells in the S 
phase increases. Upregulation of Cx32 expression can 
also increase the proportion of cancer cells remaining 
in the G1 phase [160]. Cx32 affects the cell cycle prob-
ably because it promotes the expression of P21cip1 and 
P27kip1 [3]. GJs can also control the cell cycle by regu-
lating the transmission of  Ca2+ and other cellular factors 
[161]. In addition to their involvement in cell cycle regu-
lation, the effects of GJs and Cxs on apoptosis cannot be 
ignored. GJIC can regulate cell death by delivering pro-
death or anti-death factors [162]. Mitochondria play an 
important role in apoptosis. Although a decrease in Cx43 
expression in mitochondrial membranes has been shown 
to promote apoptosis, the specific mechanism remains 
unclear [163]. Interestingly, tumors do not appear to be 
sensitive to mitochondria-induced apoptosis. The mech-
anism by which Cxs affect mitochondrial membranes 
and tumor apoptosis is also unknown.

GJs and cancer metabolism
There are significant differences in metabolism between 
cancer and normal cells. It is well known that the metab-
olism of most cancer cells mainly follows the Warburg 
effect, i.e., cancer cells prefer aerobic glycolysis to the tri-
carboxylic acid cycle to produce adenosine triphosphate 
(ATP) [164]. GJIC induces metabolic coupling between 
hypoxic and oxygen-rich cells in tumors [165], which can 
be used as a pathway to diffuse hypoxic cell metabolites 
such as lactate into oxygen-rich cells and, in turn, trans-
fer  HCO3− from oxygen-rich cells to hypoxic cells [165]. 
Cells with higher low-glucose tolerance selected from the 
MDA-MB-231 cell line generally exhibit higher levels of 
Cx43 and GJs [166]. In a 3D culture of pancreatic can-
cer cells, lactate was transferred from the central hypoxic 
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site to the normoxic boundary via GJs [167]. Inhibition 
of Cx43 expression in cancer cells significantly reduced 
lactate delivery to the boundary [167]. GJIC was also 
found to promote glucose trafficking to central hypoxic 
cells in colorectal cancer cells cultured using 3D stereo 
culture methods [168]. GJIC can promote cancer growth 
when there is a lack of tumor blood vessels for substance 
exchange [168]. Interestingly, in a co-culture of NSCLC 
cells with CAFs, we found unidirectional and heteroge-
neous GJIC from CAFs to NSCLC cells. Unidirectional 
GJIC inhibited glycolysis in NSCLC cells but increased 
mitochondrial oxidative phosphorylation. Moreover, 
CAFs showed enhanced glycolysis [6]. CAF metabolites 
can be transported to NSCLC cells via unidirectional 
GJs. These products are reused by NSCLC cells to gener-
ate more energy, which supports their activity. Eventually, 
CAFs promote the invasion and metastasis of NSCLC 
cells through GJs [6]. As a critical proto-oncoprotein, 
Cx45 is essential for the high concentrations of glucose 
needed to stimulate the proliferative capacity of liver can-
cer cells [1]. In BALB/c immunodeficient mice of vary-
ing blood glucose concentrations inoculated with human 
hepatoma cells, an increase in blood glucose concentra-
tion was accompanied by a corresponding increase in 
Cx45 expression and rapid growth of the tumor mass. 
Knockdown of Cx45 could abrogate the rapid growth of 
tumors stimulated by D-glucose in mice [1]. These results 
demonstrate that GJIC can also form a metabolic cross-
talk with other stromal cells to meet their nutritional 
requirements.

GJs regulate tumor cell invasion and migration 
via EMT‑dependent and independent pathways
EMT refers to the transformation of epithelial cells into 
cells with a mesenchymal phenotype via a program that 
enhances cell invasion and migration. EMT is gener-
ally associated with a decrease in E-cadherin levels and 
an increase in the expression of mesenchymal markers, 
including N-cadherin and vimentin [169]. This process 
results in a loss of cell polarity and cell-to-cell contact 
[169]. The co-localization of Cxs with E-cadherin or 
N-cadherin has been detected in many types of cancer 
cells [4, 5]. A reduction in E-cadherin levels reduces the 
adhesion ability of cancer cells, rendering them more 
likely to invade surrounding tissues across the base-
ment membrane and to metastasize to distant sites. Cxs 
are involved in the regulation of EMT either as mono-
mers or in a GJIC-dependent manner. Cx31.1 and Cx43 
inhibit EMT in NSCLC [170], and Cx43 can reverse 
EMT in A549 lung adenocarcinoma [171]. A549 cells 
overexpressing Cx43 increase the expression levels of 
E-cadherin and decrease cellular invasive and migratory 
abilities [171]. In contrast, decreased expression of Cx43 

promotes the metastasis of MDA-MB-231 cells. Cx26 
interacts with endothelial cells and is involved in tumor 
cell intravasation and extravasation [172]. In the tumor 
microenvironment, GJIC between cancer and stromal 
cells generally promotes EMT. However, GJs can also 
facilitate metastasis in an EMT-dependent manner. The 
degree of EMT has been significantly enhanced by Cx26 
overexpression in NSCLC cells [173]. Lastly, GJs can 
enhance cancer cell invasion and migration via an EMT-
independent pathway. The expression of GJs between 
metastatic cancer cells and astrocytes is associated with 
brain metastasis of lung and breast cancers. GJIC occurs 
between CAFs and tumor cells; after the formation of 
a functional link between stromal and NSCLC cells 
through GJIC, CAFs differentiate into myofibroblasts and 
E-cadherin expression in cancer cells decreases, whereas 
N-cadherin expression increases [6].

Table 2 summarizes the varying effects of different con-
nexins on EMT in breast, lung, and liver cancer. Even the 
effect of the same connexin isoform may differ among 
tumor types.

GJs and cancer dormancy
Tumor cells enter a dormant phase for several reasons, 
including immune escape and chemoradiotherapy resist-
ance. During clinical treatment of breast cancer, breast 
cancer cells (BCCs) enter the dormant phase; this sup-
pressed tumor state is closely related to GJs. The main 
dormancy site of BCCs is the bone marrow (BM) [180]. 
After entering the BM, BCCs can be linked to the BM 
stroma through GJs. Some substances that maintain 
dormancy, such as miRNAs, can enter BCCs and render 
them quiescent at the G0 phase [181]. Alternatively, M2 
macrophages present in the BM stroma can maintain the 

Table 2 The effect of Cxs regulation on EMT-related protein 
expression in different cancers

Cancer Cx Cell line EMT References

Breast carcinoma Cx32 MDA-MB-231 promote [174]

Hs578T inhibit [175]

Cx43 MDA-MB-231, 
T47D

inhibit [86, 176]

Cx46 MCF-7 promote [177]

Pulmonary carci-
noma

Cx26 HCC827, PC9 promote [173]

Cx31.1 H1299 inhibit [170]

Cx43 A549 inhibit [171]

Hepatocellular car-
cinoma

Cx32 HepG2, SMMC-
7721

inhibit [178, 179]
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dormant/quiescent state of BCCs via GJs [182]. M1 mac-
rophages are also present in the BM stroma. The effect of 
these cells on cancer dormancy is different from that of 
M2 macrophages in reversing the dormant state of BCCs 
[182]. After entering dormancy reversal, BCCs experi-
ence increased internalization of GJs and decreased GJIC 
and spread to other parts of the body, causing tumor 
recurrence.

GJs and cancer stem cells
CSCs, also known as tumor-initiating cells, are a spe-
cial subset of cancer cells that accounts for only 1–2% 
of cancer tissues and play a crucial role in tumor recur-
rence and chemoradiotherapy resistance. The expres-
sion of Cxs in CSCs is divided into three categories: no 
Cxs expression, Cxs expression without GJIC function, 
and Cxs expression with GJIC function. Cx expression 
is often absent in CSCs of glioma and pancreatic can-
cers. Glioma CSCs possess a low expression of Cx43 to 
maintain the malignant phenotype, and restoration of 
Cx43 expression results in a reversal of the malignancy 
by modulating E-cadherin [183]. Cx26 is present in tri-
ple-negative breast CSCs in a GJ-independent manner, 
and its expression level here is significantly higher than 
in common tumor cells [7]. Cx26 acts synergistically with 
NANOG transcription factor and focal adhesion kinase 
in the nucleus to maintain stemness and self-renewal 
of breast CSCs [7]. Cx32 is present in the cytoplasm of 
liver CSCs in a GJ-independent manner. In lung can-
cer, overexpression of Cx43 decreases the abundance of 
CSCs and reduced proliferation, invasion, and metas-
tasis ability [184]. Additionally, the effect of Cxs or GJs 
on maintaining self-renewal has also been demonstrated 
in embryonic and somatic stem cells. Secreted negative 
growth regulators from terminally differentiated daugh-
ters of stem cells or secreted stroma-derived factors can 
regulate the growth of stem cells without functional 
GJIC [185, 186]. The degree of CSC features in pancre-
atic cancer and gemcitabine resistance is associated with 
dysfunctional GJIC due to low or absent Cx43 protein 
levels [9]. However, an accumulation of cytoplasmic Cx32 
increases the self-renewal of CSC in hepatocellular carci-
noma [187]. Glioblastoma CSCs express higher levels of 
the GJs protein Cx46 than non-CSCs, and Cx46 main-
tains the proliferation and self-renewal of glioma CSCs 
[188]. Breast CSCs use Cx43 to form GJIC with BM niche 
cells, fibroblasts, and mesenchymal stem cells. Cx43 and 
N-cadherin conjugates have been found in abundance in 
breast CSCs [189].

GJs are associated with cancer treatment
GJs and radiotherapy
GJIC is widely believed to have a positive effect on tumor 
therapy. Many different types of microwave beams used 
in clinical practice (e.g., X-rays and proton microbeams) 
cause damage to surrounding bystander cells in addition 
to radiated cells, a phenomenon called the radiation-
induced bystander effect [11, 190]. Moreover, daughter 
cells of damaged bystander cells are subsequently affected 
[11]. One of the reasons for the bystander effect is that 
GJIC transmits substances that can cause cell damage, 
such as ROS produced by irradiated cells, to bystander 
cells [11]. ROS can trigger a series of DNA damage 
responses in cells, affect the cell cycle, and ultimately 
cause cell death. Inhibition of GJIC between bystander 
and irradiated cells reduces the damage to bystander 
cells and their daughter cells [11]. GJ-mediated cell-to-
cell communication is usually bidirectional. Therefore, 
irradiated cells can affect bystander cells through GJs, 
and bystander cells can similarly transmit information to 
irradiated cells. Konishi et al. [191] confirmed that non-
neoplastic bystander cells (WI-38) can promote DNA 
damage repair in irradiated cells via GJs. This differs from 
the previous view that GJIC is not involved in the protec-
tion of normal bystander and irradiated cells [192, 193]. 
Interestingly, the bystander effect, which involves GJIC, 
seems to protect surrounding normal bystander cells 
under hypoxia but is destructive to tumor cells [10]. This 
indicates that restoration of GJIC in hypoxic tumors may 
improve the accuracy of radiation therapy.

GJs and chemotherapy
Drug delivery between cells is important for therapeu-
tic effects. In the initial stages of carcinogenesis, GJIC 
changes between cancer cells and between cancer and 
normal cells. Fluctuations in GJIC function may adversely 
affect the efficacy of anti-cancer drugs and cause cellular 
resistance. Forster et al. [9] conducted a controlled study 
using three pancreatic cancer cell lines with different 
degrees of resistance to gemcitabine: BxPc-3 (gemcit-
abine-sensitive), BxPc-3-GEM (resistant strain selected 
from BxPc-3), and AsPC-1 (gemcitabine-resistant). The 
more drug-resistant cell lines contained more CSC-like 
cells and exhibited the worst permeability of GJs. Plati-
num chemotherapy drugs are cytotoxic chemotherapeu-
tic agents that can hinder DNA synthesis and replication, 
ultimately causing apoptosis. In vitro, cisplatin cytotoxic-
ity positively correlates with the density of cancer cells. 
An increase in cell density enhances Cx43-based GJIC 
function and, ultimately, the rate of drug diffusion [123]. 
Additionally, oxaliplatin and cisplatin directly inhibit the 
expression of Cx43. A decrease in Cx43 expression not 
only inhibits GJIC function but also blocks drug diffusion 
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between cells and decreases cytotoxicity [194]. In ovar-
ian cancer, a reduction in cisplatin toxicity reduces Cx32 
localization to the cell membrane and increases its cyto-
solic and nuclear expression [195]. It has been confirmed 
that cytosolic Cx32 inhibits cisplatin cytotoxicity [196]. 
Interestingly, Hong et  al. [123] found that the effect of 
GJIC on normal cells was different from that on cancer 
cells when treated with cisplatin. GJIC reduces cisplatin-
induced DNA damage in normal cells, but does not pre-
vent cisplatin-induced cancer cell damage. However, 
the specific mechanisms underlying this phenomenon 
require further investigation.

The products of tumor suicide genes can convert prod-
rugs with little or no toxicity to the human body into 
toxic substances, eventually leading to cancer cell death 
[197]. The thymidine kinase (tk) gene, a suicide gene 
from the herpes simplex virus (HSV), converts ganci-
clovir (GCV) to toxic GCV-triphosphate [197]. GJIC-
mediated bystander effects play important roles in the 
effects of HSV-tk/GCV. GJs deliver GCV-triphosphate 
compounds to other cancer cells. When GCV is used for 
cancer therapy, drugs such as all-trans retinaldehyde and 
histone deacetylation inhibitors enhance the function of 
GJIC and the cytotoxicity of HSV-tk/GCV [198]. Iron 
oxide nanoparticles [199], curcumin [200], dioscin [201], 
and resveratrol [202] also enhance the expression of Cxs 
and promote the cytotoxicity of HSV-tk/GCV.

Furthermore, Cxs can also mediate tumor resistance 
independent of GJIC. Gefitinib is a common targeted 
agent used in the treatment of NSCLC. Gefitinib-resist-
ant NSCLC cell lines exhibit increased Cx26 expression 
in the cytoplasm and decreased membrane expression 
[173]. Moreover, the degree of EMT is aggravated in 
resistant cells. Cx26 may affect EMT through the PI3K/
Akt pathway, but this process is not dependent on GJIC 
[173]. Resistance of glioblastoma to the commonly used 
chemotherapeutic drug, temozolomide (TMZ), is cur-
rently an urgent clinical problem. Decreased Cx43 
expression renders glioma cells sensitive to TMZ [203]. 
Moreover, Yang et  al. [204] found that TMZ-resistant 
cells secrete exosomes with higher Cx43 content than 
TMZ-sensitive cells; such high-content exosomes are 
more easily taken up by resistant cells. Cells that ingest 
these exosomes show greater metastasis, colony forma-
tion ability, and resistance to TMZ. Therefore, studies 
targeting exosomal Cx43 may provide new therapeu-
tic strategies for glioblastoma treatment. Hemichannels 
composed of Cxs are also found in extracellular vesicle 
membranes. Such channels can transfer information to 
distant cells [205, 206]. This property can be exploited to 
deliver therapeutic drugs directly to target cells. Nota-
bly, Cxs are widely expressed in human cells and tissues; 
therefore, the targeted drugs for a certain subtype of Cx 

should be highly specific to avoid adverse effects on other 
subtypes of Cxs.

We mentioned here that a reduction in Cx43 expres-
sion can reduce cell sensitivity to cisplatin and oxali-
platin; however, a reduction in Cx43 expression can 
increase the sensitivity of malignant glioma cells to TMZ 
[207]. Many reports have indicated opposite effects of 
Cxs on cancer cell resistance. Moreover, different Cxs 
have different effects on chemoresistance in different 
tumor types. The pathway or mechanism by which Cxs 
mediate chemoresistance requires further investigation.

GJs and other cancer treatments
In addition to radiotherapy and chemotherapy, the 
emerging nanosecond pulse tumor ablation technology 
in clinical treatment is associated with GJIC. A pulsed 
electric field induces the internalization of Cx43 and 
inhibits the expression of Cx43 and its mRNA [208]. In 
addition, kinases such as MAPK, which can modify Cxs, 
are activated in the presence of nanosecond-pulsed elec-
tric fields [208]. Hyperphosphorylated Cxs negatively 
affect the occurrence and function of GJIC. Photody-
namic therapy (PDT) has been widely used in the treat-
ment of malignant tumors such as esophageal cancer, 
lung cancer, and basal cell carcinoma [209]. Wu et  al. 
[210] found that Cx43-dependent GJIC correlated with 
the effect of PDT. At high cell densities, an increase in 
intercellular Cx43-dependent GJIC leads to enhanced 
toxicity of luciferin, making malignant cells more sensi-
tive to this compound. This phenomenon may be related 
to the transmission of ROS between cells via GJIC. It may 
also be related to the exchange of small molecules, such 
as  Ca2+ and ceramide, between cells [210]. GJs composed 
of different types of Cxs have different effects on the effi-
cacy of PDT. Wu et al. found that Cx32/Cx26-dependent 
GJIC reduced the sensitivity of malignant cells to photo-
toxins [211].

Small‑molecule inhibitors targeting GJs
Cx-mimetic peptides are analogs of amino acid 
sequences corresponding to conserved regions of Cxs 
that can reversibly bind to Cxs to regulate GJIC. They 
can be subdivided into three classes: extracellular loop 
domain, cytoplasmic loop domain, and cytoplasmic 
carboxyl-terminal domain mimetic peptides. Gap26 is a 
mimetic peptide corresponding to the conserved region 
of the first outer loop of Cx43. In a study by Desplantez 
et  al. [212], the gate-opening ability of Cx43-composed 
hemichannels reduced upon the treatment of HeLa cells 
with Gap26. Correspondingly, the permeability of GJs 
formed when the HeLa cells came into contact with each 
other also reduced. It is possible that Gap26 first acts on 
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the hemichannel composed of Cx43 and then gradually 
affects the GJs. This effect of Gap26 is concentration-
dependent [213]. Gap27 is an analog within the second 
outer loop region of Cx43 and acts in a manner similar to 
that of Gap26 [213]. Gap27 that is attached to a segment 
of the lipid tail can form a lipidated Cx-mimetic peptide. 
This novel mimetic peptide induces the phosphoryla-
tion of the Cx43 Ser368 site [214]. Mimetic peptides act 
not only on hemichannels in the cell membrane but also 
on those present in the mitochondrial inner membrane 
[214].

GJ channel opening requires contact between the 
carboxyl termini of Cxs and the cytoplasmic ring. The 
principle of action of cytoplasmic loop region-mimetic 
peptides (e.g., Gap19 and L2) is to regulate channel gat-
ing mainly by blocking the interaction of the Cx cyto-
plasmic loop with the carboxyl terminus [215, 216]. 
Since the action site of this kind of peptidomimetic is 
inside the cell membrane, it needs to be carried into the 
cell by cell-penetrating peptides such as TAT and Xen-
try [217]. In radiotherapy, substances that can cause cell 
damage or even death, such as ROS, can be produced 
in normal cells; these substances can also enter normal 
cells from other cells through GJs [218, 219]. The applica-
tion of Gap19 (a mimetic peptide in the cytoplasmic loop 
region of Cx43) in vitro can decrease the permeability of 
membrane channels to protect normal endothelial cells. 
Endothelial cells were treated with TAT–Gap19 before 
irradiation. Compared with that in untreated cells, the 
amount of ROS in treated cells reduced significantly; 
hence, cell death due to radiation also reduced signifi-
cantly [218]. TAT–Gap19 can enter the mitochondrial 
membrane, causing a decrease in the permeability of the 
mitochondrial inner membrane to  Ca2+ and preventing 
cell death induced by  Ca2+ entry [220].

The mimetic peptide, Cx43 266–283, corresponding to 
the cytoplasmic carboxy terminal domain of Cx43, can 
be carried by TAT from the cell membrane into the cyto-
plasm to take effect. In in vitro and in vivo experiments, 
TAT-Cx43 266–283 effectively slowed down the growth 
of malignant glioma cells and inhibited their invasion and 
metastasis by binding to the carboxyl terminus of Cx43 
[221]. This effect is more specific, and normal astrocytes 
and neurons in the brain sections of mice are not affected 
[221], mainly because Cx43 266–283 can inhibit the 
interaction of c-Src with Cx43 [84, 221]. c-Src enhances 
the self-renewal ability of stem cells, whereas Cx43 inhib-
its c-Src activity [222, 223]. Another carboxyl-terminal 
region mimetic peptide, alpha-connexin carboxyl-termi-
nal (ACT1), also shows great promise for cancer therapy. 
After the treatment of BCCs with ACT1, GJs showed an 
increased ability to transport substances. The prolifera-
tion ability of cancer cells reduced compared with that of 

normal breast epithelial cells in the control group [224]. 
Additionally, the combination of ACT1 with chemo-
therapeutic agents, such as tamoxifen and lapatinib, 
enhanced drug efficacy [224].

Table 3 briefly summarizes specific Cx inhibitors (pep-
tidomimetics) along with their Cx targets and binding 
locations. In addition to specific Cx inhibitors, there are 
non-specific chemical Cx inhibitors, such as octanol and 
glycyrrhetinic acid and its analogs. These inhibitors are 
thought to dissolve in the lipid bilayer of the cell mem-
brane, altering the local fluidity of the membrane and 
ultimately affecting GJ channels [225].

This table briefly introduces peptidomimetics cor-
responding to various Cxs. The sequences and sites of 
action of the peptidomimetics are also listed.

GJs and the prognosis of cancer patients
Tumors and Cxs are inextricably linked. Cxs not only 
affect tumor progression but their expression also pro-
vides indications for the prognosis of tumor patients. 
During the development of colorectal cancer, the func-
tion of GJIC is inhibited, and the expression of Cx43 and 
Cx32 gradually changes from strong membrane expres-
sion to cytoplasmic expression [234]. Cx43 can also be 
used as an independent prognostic marker for breast, 
oral squamous cell, and gastric carcinomas [235–239]. 
The mRNAs levels of several important Cxs (Cx26, 
Cx30.3, Cx32, and Cx43) in patients with NSCLC can be 
used to predict their overall survival rate. These Cx sub-
types have different prognostic correlations with tumors 
and are more applicable to lung adenocarcinoma than 
lung squamous carcinoma [141]. The main reason for 
the fluctuation in mRNA levels during tumor develop-
ment at different stages is the changes in the degree of 
DNA methylation. Therefore, some scholars have found 

Table 3 Mimetic peptides that target connexins (Cxs)

Cx target Peptide Sequence Location

Cx43 Gap26 [212] VCYDKSFPISHVR EL1

Gap27 [226] SRPTEKTIFII EL2

Gap36 [227] KRDPCHQVDCFLSRPTEK EL2

Peptide 5 [228] VDCFLSRPTEKT EL2

Gap19 [229] KQIEIKKFK Cytoplasmic loop

L2 [230] Cytoplasmic loop

Cx43 266–283 Carboxy terminal

ACT1 Carboxy terminal

Cx32 Gap27 [231] SRPTEKTVFT EL2

Des5 [227] LEGHGDPLHLEEC Cytoplasmic loop

Gap24 [232] GHGDPLHLEEVKC Cytoplasmic loop

Cx40 Gap27 [233] SRPTEKNVFIV EL2
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that it is also feasible to use the changes in the Cx pro-
moters, CpG islands, to predict the prognosis of gliomas 
[240]. Another surprising finding of this study was that 
nuclear Cx43 expression correlates with overall survival 
of patients with NSCLC.

Interestingly, Cx43 is often regarded as a tumor sup-
pressor, whereas Cx26 has the opposite effect. In esopha-
geal squamous cell carcinoma, the five-year survival of 
patients with a high expression of Cx26 is lower than that 
of patients with no or low expression, and high expres-
sion of Cx26 is often accompanied by lymph node metas-
tasis [241]. In addition to being independent prognostic 
markers, Cxs can be used to predict the survival period 
of patients when considered in combination with other 
factors. Zhu et  al. [242] found that endoplasmic reticu-
lum oxidoreductase 1 beta, endoplasmic reticulum oxi-
doreductase 1-like beta, and Cx26 can jointly be used 
to predict the prognosis of pancreatic cancer; however, 
the samples selected for this experiment were all in situ 
carcinoma samples, the mechanism of which remains 
unclear.

Conclusion
The importance of GJs in the body is self-evident; hence, 
any factor that can affect GJs, such as post-translational 
modifications, interactions with other proteins, and Cx 
peptidomimetics, are worthy of in-depth exploration. 
GJIC has a profound effect on the occurrence and devel-
opment of cancer. GJs between normal and tumor cells 
can regulate cancer cells to a certain extent. If such GJs 
decrease in number or are completely lost, the malig-
nancy of cancer cells increases, enhancing their ability to 
invade and metastasize. GJs can promote the cytotoxic-
ity of various chemotherapeutic drugs. Upregulating the 
number of GJs in cancer cells appropriately can alleviate 
drug resistance. The widespread bystander effect in radi-
otherapy is also inseparable from GJIC. Some substances 
that can damage normal cells, such as ROS generated 
during chemotherapy, can be transmitted to bystander 
cells through GJs, causing negative effects.

GJIC is a double-edged sword. The goal of scientific 
research on GJIC is to use GJs or Cxs to develop novel 
cancer treatment methods. There is still a long way to 
go for cancer research and treatment, and Cxs or GJs 
(which are composed of Cxs) may become new thera-
peutic targets. As Cxs and GJs are widespread in tissues, 
some treatments targeting them may have significant side 
effects in humans. Therefore, there are currently no drugs 
targeting GJs for use in clinical settings.
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