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Abstract 

Background: Serous ovarian carcinoma is the most frequent histological subgroup of ovarian cancer and the leading 
cause of death among gynecologic tumors. The tumor microenvironment and cancer-associated fibroblasts (CAFs) 
have a critical role in the origin and progression of cancer. We comprehensively characterized the crosstalk between 
CAFs and ovarian cancer cells from malignant fluids to identify specific ligands and receptors mediating intercellular 
communications and disrupted pathways related to prognosis and therapy response.

Methods: Malignant fluids of serous ovarian cancer, including tumor-derived organoids, CAFs-enriched (eCAFs), and 
malignant effusion cells (no cultured) paired with normal ovarian tissues, were explored by RNA-sequencing. These 
data were integrated with single-cell RNA-sequencing data of ascites from ovarian cancer patients. The most relevant 
ligand and receptor interactions were used to identify differentially expressed genes with prognostic values in ovarian 
cancer.

Results: CAF ligands and epithelial cancer cell receptors were enriched for PI3K-AKT, focal adhesion, and epithelial-
mesenchymal transition signaling pathways. Collagens, MIF, MDK, APP, and laminin were detected as the most sig-
nificant signaling, and the top ligand-receptor interactions THBS2/THBS3 (CAFs)—CD47 (cancer cells), MDK (CAFs)—
NCL/SDC2/SDC4 (cancer cells) as potential therapeutic targets. Interestingly, 34 genes encoding receptors and ligands 
of the PI3K pathway were associated with the outcome, response to treatment, and overall survival in ovarian cancer. 
Up-regulated genes from this list consistently predicted a worse overall survival (hazard ratio > 1.0 and log-rank 
P < 0.05) in two independent validation cohorts.

Conclusions: This study describes critical signaling pathways, ligands, and receptors involved in the communication 
between CAFs and cancer cells that have prognostic and therapeutic significance in ovarian cancer.
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Background
The most common histology of malignancies of the ovary 
is epithelial cancer, recognized by the World Health 
Organization as low- and high-grade serous ovarian can-
cer [1, 2]. High-grade serous ovarian cancer (HGSOC) 
is the most prevalent and aggressive form of the disease 
and the leading cause of ovarian cancer deaths [1, 3]. The 
main therapeutic strategies are debulking surgery and 
platinum-based chemotherapy [4, 5]. The cytoreductive 
surgery is performed as primary treatment or as inter-
val debulking surgery in conjunction with neoadjuvant 
chemotherapy [6]. The asymptomatic nature of ovar-
ian cancer leads to an advanced diagnosis (FIGO stage 
III-IV) in 70% of cases, which results in a poor progno-
sis of ~ 25% 5-year survival for patients with stage IIIC-
IV disease [7]. Furthermore, more than 30% of patients 
at advanced stages of the disease have malignant ascites 
or pleural effusions at diagnosis and are associated 
with recurrence and metastasis [8–10]. These fluids are 
drained regularly to relieve pain and discomfort and rep-
resent an inexpensive and less invasive source of meta-
static tumor cells [11].

Communication and interaction between cancer cells 
and cancer-associated fibroblasts (CAFs) facilitate metas-
tasis development and tumor progression [12, 13]. CAFs 
play a crucial role in these processes by producing com-
ponents of the extracellular matrix (ECM) and secreted 
factors, which also influence angiogenesis, immunity, 
remodeling of the ECM, chemoresistance, and response 
to treatment (reviewed in [13, 14]). However, a compre-
hensive evaluation of the interactions between CAFs and 
cancer cells from malignant effusion fluids has not yet 
been determined.

Single-cell RNA sequencing (scRNA-Seq) has pro-
vided new insights into cancer biology by revealing the 
landscape of intercellular interactions and cell commu-
nication and improving the knowledge of tumor hetero-
geneity [15, 16]. In HGSOC, scRNA-Seq has been used 
to determine the transcriptomic heterogeneity of cancer 
and stromal cells from ascites and tumor tissues with a 
high-resolution [17–20]. Using scRNA-Seq in HGSOC, 
Kan et  al. reported that CAFs induce epithelial-mesen-
chymal transition (EMT) of tumor cells via TGFβ sign-
aling, with consequent effects on chemoresistance and 
metastasis [21]. A previous study showed that changes 
in the ECM promote an adaptive response during the co-
evolution of stromal and cancer cells that drive aggres-
siveness in HGSOC patients [22].

In this study, we analyzed intercellular communica-
tion networks in malignant fluids from ovarian cancer 
patients. The inference and analysis of cell–cell com-
munication and the signature of CAFs were obtained 
from the scRNA-Seq data [17] and combined with our 
RNA-Sequencing (RNA-Seq) data. We demonstrated 
that ligands and receptors of the PI3K-AKT pathway are 
essential mediators of CAFs communication with cancer 
cells. A set of these ligands and receptors genes was asso-
ciated with an unfavorable prognosis. We also described 
promising targets for therapy.

Materials and methods
Patient samples and data collection
Patients diagnosed with serous ovarian cancer referred 
to the University Hospital of Southern Denmark, Vejle, 
DK, between February 2020 and March 2021 to drain 
ascites or pleural effusion were eligible to participate in 
the study. All patients signed an informed consent form. 
Malignant effusion fluids were drained and transferred to 
50 mL tubes for further analysis. We also included eight 
normal ovarian tissue samples obtained from individu-
als who underwent surgery for other causes than cancer. 
Each sample was coded, and the personal health infor-
mation was removed. Clinical and histopathological data 
were provided in a de-identified manner. Clinical data 
were obtained from patient records (Additional file  14: 
Table S1).

Sample handling and cell culture
Malignant effusion fluids (four ascites and four pleural 
effusions) were immediately processed after drainage. 
Fluids were centrifuged (1000  rpm/5  min), and the pel-
let was treated with AKC lysis buffer (Merck, Darmstadt, 
Germany) for 5  min at room temperature to remove 
erythrocytes. The pellet was resuspended DMEM/F12, 
GlutaMAX (Gibco, Thermo Fisher Scientific, Waltham, 
USA) supplemented with 10% fetal bovine serum (FBS; 
Biological Industries, Beit HaEmek, Israel) and 1% antibi-
otic–antimycotic 100x (Gibco, Thermo Fisher Scientific, 
Waltham, USA). Cell number, live-cell fraction, and cell 
size distribution were determined using the Countess 
II Automated Cell Counter (Thermo Fisher, Waltham, 
USA). Ten mL of media were used to incubate the cells 
during the first 12 h at  37o C with 5% CO2. After 12 h, 
cells attached to the flasks were cultured in two-dimen-
sional (2D), and the supernatant was collected and cen-
trifuged (1000  rpm/5  min) for three-dimensional (3D) 
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cell culture. The cells were washed in medium and resus-
pended on ice in (1:1) cold StemPro™ hESC SFM growth 
full medium (which is composed by DMEM/F-12, Glu-
taMAX™ medium bovine serum albumin 25%, StemPro® 
hESC Supplement) (Thermo Fisher Scientific, Waltham, 
USA), added with FGF (10  µg/mL) (Thermo Fisher Sci-
entific, Waltham, USA), 2-Mercaptoethanol (Thermo 
Fisher Scientific, Waltham, USA), Penicillin/Streptomy-
cin (10,000U/ 10  mg/mL), Gentamycin, Amphotericin 
(2.5  µg/mL each) (Sigma-Aldrich, St. Louis, MO, USA), 
and Matrigel® Basement Membrane Matrix (1: 1full 
medium; Corning, New York, USA). We used 75 µL of 
the full media mixture in each well of a 24-well plate 
and kept it for 30  min at 37  °C, 5% CO2. After incuba-
tion, 1  mL of medium and supplements were added to 
each well, and the cells were incubated at 37 °C, 5% CO2. 
The medium was changed every 2–3 days, and 3D cells 
were harvested using Cell Recovery Solution (Corning, 
New York, USA), according to the manufacturer’s pro-
tocol. Two-dimensional cell culture when confluent (5 to 
10 days) was harvested with 0.5% trypsin–EDTA (Gibco, 
Thermo Fisher Scientific, Waltham, USA) and pellets 
were used for RNA isolation. Tumor-derived organoids 
(TDO) developed within 1–3 weeks.

Histological characterization
Primary tumor tissues, uncultured cells on day 0 (base-
line), and TDO (6 to 15 days) were fixed and processed 
for histological analysis using automated protocols 
(Tissue-Teck VIP 6AI Tissue Processor, Sakura Fine-
tek, Japan). Representative sections of primary tumors 
and TDO were stained with hematoxylin and eosin 
(H&E) and compared by a board-certified pathologist. 
The expression of CK7, TP53, PAX8, and calretinin was 
evaluated by immunohistochemistry assays in primary 
tumors and their derived organoids using the Benchmark 
Ultra automated instrument (Ventana Medical Systems, 
Roche, Tucson, USA) or Dako Omnis (Agilent, Santa 
Clara, USA) (Additional file 14: Table S2).

RNA extraction and sequencing analysis
The RNeasy mini kit (Qiagen, Valencia, CA, USA) was 
used to isolate total RNA from all samples (malignant 
effusion cells or baseline, 2D cells, TDO, and normal 
ovarian tissues) following the manufacturer’s recom-
mendations. RNA purity and quantity (Nanodrop spec-
trophotometer, Thermo Fisher Scientific, Waltham, USA) 
and its integrity (RNA screen tape on a 2200 TapeStation, 
Agilent, Santa Clara, USA) were evaluated before down-
stream applications.

Total RNA (100 ng) was used to prepare libraries with 
the Illumina Stranded Total RNA Prep Ligation with 
Ribo-Zero Plus kit (Illumina, San Diego, California, 

USA), following the manufacturer’s protocol. TruSeq 
RNA UD indexes (Integrated DNA Technology – IDT, 
Coralville, Iowa, USA) were added to multiplex the sam-
ples, which were paired-end sequenced on the NovaSeq 
6000 system (Illumina) using the S4 Reagent Kit v1.5 (300 
cycles), according to the supplier’s recommendations.

RNA-Seq data quality control was performed using 
FastQC and MultiQC [23, 24]. The reads were aligned 
with the Ensembl human genome assembly GRCh38 
(release 99) using STAR (v.2.7.6a) [25], and the expres-
sion count matrix was generated using HTSeq [26]. The 
principal component plot and heatmaps were generated 
using the Galaxy [27] or Morpheus [28] platforms on 
log-transformed DESeq2-normalized counts [29]. Clus-
ter analyses based on Euclidean distance, variance, or 
marker selection were also performed using Morpheus 
[28]. We selected the top 1,000 highly variable genes 
(highest standard deviation) across all samples to identify 
markers for malignant effusion cells, 2D cells, TDO, and 
normal ovarian tissues. The highly expressed genes in 2D 
cell cultures were inputted into the EnrichR tool [30–32] 
for a gene set enrichment analysis using the WikiPath-
ways 2021, MSigDB Hallmark 2020, and Biological Pro-
cess 2021 (GO) libraries. The top five enrichment terms 
(lowest adjusted P-value, Fisher’s exact test) for each 
library were included in a final consensus list. The enrich-
ment terms were represented in heatmaps generated by 
the web tool Morpheus [28].

Single‑cell RNA‑sequencing data processing
Droplet-based scRNA-Seq data for eight HGSOC ascites 
samples were downloaded from Gene Expression Omni-
bus[33] (GSE146026). The identification and annotation 
of the 9609 cells to 18 cell clusters was obtained from the 
original publication [17] and processed using the default 
parameters of Seurat V3 [34]. Cells were clustered and 
visualized using the t-distributed stochastic neighbor 
embedding (tSNE) or violin plots in Seurat. The differ-
entially expressed genes (DEGs, positive and negative 
cluster markers) were defined with the ’FindAllMark-
ers’ Seurat function. We subset the cells into four clus-
ters containing myofibroblastic and inflammatory CAFs. 
This subset was then used to identify the markers among 
the fibroblasts clusters and visualized using the tSNE or 
violin plots in Seurat. The list of DEGs for each cluster 
was inputted into the EnrichR tool [30–32] for a gene 
set enrichment analysis using WikiPathways 2021 and 
MSigDB Hallmark 2020. As described above, we included 
the top five enrichment terms (lowest adjusted P-value, 
Fisher’s exact test) for these libraries in a final consen-
sus list. The heatmaps for these enrichment terms were 
generated with the web tool Morpheus [28]. The expres-
sion profile of 40 CAFs markers (Top 10 from each CAF 
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cluster) was analysed in our ovarian bulk RNA-Seq data 
to identify samples enriched  with  cells  expressing CAF 
marker genes.

Analysis of cell–cell communication
We quantitatively inferred and analyzed cellular com-
munication networks from the HGSOC scRNA-seq 
data using CellChat [35] (v.1.1.3). To identify the poten-
tial ligand-receptor interactions, we loaded the Seurat 
object into CellChat (https:// github. com/ sqjin/ CellC hat/; 
accessed on 01/10/2021) using the default parameters. 
This analysis included 1939 human-validated interactions 
for paracrine/autocrine signaling (61.8%), extracellular 
matrix receptor interactions (ECM) (21.7%), and cell–
cell contact interactions (16.5%). The aggregated cell–cell 
communication network was calculated by counting the 
interactions (represented in a circle plot), followed by 
the identification of cell–cell communication mediated 
by significant interactions (ligand-receptor pairs rep-
resented in bubble plots). We also filtered and explored 
specific interactions between CAFs and epithelial can-
cer cells using the webtool Morpheus [28]. Finally, Cell-
Chat was used to identify global communication patterns 
among cell types. The Cophenetic and Silhouette metrics 
were initially used to determine the number of incom-
ing and outgoing communication patterns between cell 
groups and pathways. The signals that contribute the 
most to outgoing or incoming communication signaling 
(probability score) for each cell group were then identi-
fied and visualized using heatmaps and bar graphs.

The Cancer Genome Atlas (TCGA) and Genotype‑Tissue 
Expression (GTEx) RNA‑sequencing data analysis
The expression levels [log2(normalized counts + 1)] of 
selected ligands and receptors genes (PI3K-AKT sign-
aling pathway)  in serous ovarian cancer (The Cancer 
Genome Atlas, TCGA, n = 418) and healthy tissues 
(Genotype-Tissue Expression, GTEx, n = 88) were down-
loaded from UCSC Xena [36] (https:// xenab rowser. net/). 
The ligands and receptors genes for PI3K-AKT signaling 
were selected for further analysis based on consistent 
findings of the communication patterns between CAFs 
and cancer cells. The DEGs were identified by Welch’s 
t-test and presented in a box plot using the UCSC Xena. 
Expression profiles [log2(normalized counts + 1)] of 
ligands and receptors genes of the PI3K-AKT signaling 
pathway were further used to perform clustering analysis 
using Morpheus [28].

Overall survival analysis
The Kaplan–Meier plotter (http:// kmplot. com/ analy 
sis) [37] was used to evaluate the effect of the expres-
sion of ligands and receptors genes (microarrays data) 
on patients’ overall survival. This analysis included two 
cohorts of patients with serous ovarian cancer, TCGA 
(n = 557) and GSE9891 (n = 264). The patients were 
divided into two groups using the autoselect best cutoff, 
and only JetSet best probes [38] were used for the anal-
ysis. These two groups were compared using a Kaplan–
Meier survival plot. The hazard ratio with 95% confidence 
intervals and log-rank test P values were determined.

Results
Clinical characteristics of the serous ovarian cancer 
patients
Eight patients with serous ovarian cancer (FIGO stage 
III-IV) [39] who underwent drainage of malignant 
effusions (four pleural effusions and four ascites) with 
or without neoadjuvant treatment were included in 
this study (Additional file  14: Table  S1). The median 
age of the patients was 72.5 (37–83) years old. Seven 
patients deceased of the disease (last follow-up Febru-
ary 2022). Four patients underwent debulking surgery. 
Six patients received neoadjuvant chemotherapy, and 
maintenance therapy was applied to four patients. Two 
patients presented previous colorectal cancer (case 4) 
and breast cancer (case 5) treated with surgery and sur-
gery and chemotherapy, respectively. These malignant 
effusion fluids were processed, and cells were seeded in 
a culture medium to generate 2D cell culture and TDO. 
In one patient, two TDO were obtained from distinct 
collections and days in culture (11 and 35 days), which 
presented similar transcriptional profiles (Fig. 1A). The 
organoids derived from ovarian tumors presented dif-
ferent growth rates and formed structures with mor-
phology and cohesiveness that varied from dense, 
low cohesive, or cystic (Additional file  1: Fig. S1), as 
described by Maenhoudt et al. [40].

Based on the histological analysis of the primary ovar-
ian cancer samples, six patients were diagnosed with 
high-grade and two with low-grade serous carcinoma 
(Additional file  14: Table  S1). We compared primary 
tumors and TDO using hematoxylin–eosin staining 
and immunohistochemical analyzes. The expression of 
CK7, PAX8, Calretinin, and TP53 in TDO was similar 
to their corresponding primary tumors (representative 
example in Additional file 2: Fig. S2).

https://github.com/sqjin/CellChat/
https://xenabrowser.net/
http://kmplot.com/analysis
http://kmplot.com/analysis
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RNA‑Sequencing reveals that 2D cell culture is enriched 
for genes involved in the epithelial‑mesenchymal 
transition and extracellular matrix organization
We selected the 1,000 most variable genes among all 
samples to capture specific biological processes and 
pathways associated with each condition (Fig. 1A). For 
most samples, cells from pleural effusions and ascites or 
from high-grade and low-grade tumors did not cluster 
closely but were more widely scattered throughout the 
heatmap (Fig.  1A). We found that the TDO and base-
line are clustered in the PCA plot between 2D cells and 
normal tissues (Fig.  1C). The sequencing data of two 
TDO obtained from one patient were grouped together 

with similar expression patterns (Fig. 1A). The 2D cells 
enriched for a set of genes involved in the epithelial-
mesenchymal transition, organization of collagen fibrils 
and ECM, focal adhesion and PI3K-AKT-mTOR sign-
aling pathways (Fig.  1B, Additional file  14: Table  S3). 
These data suggest that our 2D cells are enriched with 
ECM component–secreting cells and constitute a cell 
culture system enriched with CAFs.

Fig. 1 RNA-Sequencing analysis in cells from malignant effusions (baseline), 2D, and tumor-derived organoids (TDO) compared with normal 
ovarian tissues. A Top 1000 highly variable genes (highest standard deviation) across all samples. Rows and columns grouped by each condition 
(baseline, 2D, TDO, or normal tissue) were clustered based on the Euclidean distance between normalized counts values. In one patient, two 
TDO were obtained from distinct collections and days in culture (11 and 35 days), and are represented by an arrow and asterisks, respectively, at 
the bottom of the heatmap. AS: ascites and PE: pleural effusion. B Two-dimensional (2D) cell culture system presents a set of genes enriched for 
epithelial-mesenchymal transition (MSigDB Hallmark 2020), collagen fibril and extracellular matrix (ECM) organization (GO – Biological Process), and 
Focal Adhesion and PI3K-AKT-mTOR-signaling pathways (WikiPathway 2021). C Unsupervised PCA of RNA-Seq data (normalized counts) showing 
the segregation of ovarian cancer 2D cells and normal tissues from the cluster generated by ovarian cancer-derived organoids and baseline
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Fig. 2 Single-cell transcriptomics re-analysis confirm the heterogeneity of cancer-associated fibroblasts (CAFs) in ovarian cancer malignant ascites. 
A Single-cell RNA-sequencing (scRNA-seq) data visualization of four CAFs populations using t-distributed stochastic neighbor embedding (tSNE). 
B Violin plots show the expression levels of canonical CAFs markers in CAFs populations, including myofibroblastic cancer-associated fibroblasts 
(myCAF1-2) and inflammatory cancer-associated fibroblasts (iCAF1-2). C Heatmap shows the pathway enrichment analysis (EnrichR [30, 31]) for 
gene sets of cluster-specific CAFs markers. Top 25 pathway terms (lowest adjusted P-value) selected from the WikiPathways 2021 and MSigDB 
Hallmark 2020 libraries available in EnrichR [30, 31]. D Violin plots show the expression levels of ovarian cancer CAFs markers among the four CAFs 
populations
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Single‑cell transcriptomics reveals the heterogeneity 
of cancer‑associated fibroblasts (CAFs) in ovarian cancer 
ascites
We integrated our bulk RNA-Seq data with the pub-
licly available scRNA-Seq data of malignant ascites from 
HGSOC patients [17]. First, we followed the single-cell 
pipeline described by the authors [17] to reanalyze this 
HGSOC scRNA-Seq dataset and generate the same 18 
clusters of cells (Additional file  14: Tables S4 and S5). 
These clusters include ovarian cancer cells (Ep), myofi-
broblastic cancer-associated fibroblasts (myCAF), 
inflammatory cancer-associated fibroblasts (iCAF), 
macrophages (mac), dendritic cells (DC1), B cells (B), T 
cells (T), and erythrocytes (ery) (Additional file  3: Fig. 
S3, Additional file  14: Tables S4 and S5). Next, we con-
firmed the expression of canonical CAFs markers to 
define four clusters that include myCAF (myCAF1 and 
myCAF2) and iCAF (iCAF1 and iCAF2) between all 
cell types (Fig.  2A and 2B, Additional file  14: Tables S6 
and S7). All CAFs clusters expressed ACTA2, while FAP, 
TGFB1, and IGF1 were expressed in iCAF1, myCAF2, 
and iCAF2 (Fig. 2B). The markers CXCL12 and IL6 were 
highly expressed in iCAF1 and iCAF2 but expressed at 
low levels in myCAF2 (Fig. 2B). These findings confirmed 
the enrichment of CAFs in our 2D system and were used 
to estimate the mechanisms of CAFs communication and 
interactions with cancer cells.

A gene set enrichment analysis using cell markers was 
performed to characterize pathways exclusively asso-
ciated with CAFs subtypes (Fig.  2C). All CAFs were 
strongly enriched for MYC targets, epithelial-mesen-
chymal transition pathway, VEGFA-VEGFR2 signaling 
pathway, glycolysis, fatty acid metabolism, and mTOR1 
signaling (Fig.  2C). The iCAF1 cluster featured genes 
related to hypoxia and TNF-alpha signaling via NF-KB, 
while the iCAF2 were associated with oxidative phos-
phorylation (Fig. 2C). myCAF2 showed a specific enrich-
ment of genes related to mTORC1 signaling, proteasome 
degradation, and E2F targets (Fig.  2C), while myCAF1 
presented an enrichment of genes associated with cyto-
plasmic ribosomal proteins.

The top DEGs capable of distinguishing the four clus-
ters of CAFs were then identified (Fig.  2D, Additional 
file  14: Table  S8). iCAF1 cluster presented reduced 
expression of RPL9, NME1-NME2, and RPS10, while 
IGGL5, EEF1G, and RPS26 were expressed exclusively in 
iCAF2 (Fig. 2D). myCAF1 exhibited reduced expression 
of the mitochondrial genes MT-CO3, MT-ND1, and MT-
CO2, while myCAF2 was marked by increased expression 
of HBB, CLND4, and IFI44L (Fig. 2D).

Cancer‑associated fibroblasts share common outgoing 
communication patterns for PI3K‑AKT signaling pathway 
and focal adhesion in malignant effusions from ovarian 
cancer patients
We used CellChat [35] to explore putative cellular inter-
actions and communication (receptor-ligand pairs) 
between CAFs and other cells in malignant effusion flu-
ids of HGSOC patients evaluated by scRNA-Seq (Addi-
tional file  14: Table  S9). This analysis included cellular 
interactions and communication based on secreted sign-
aling (61.8%), extracellular matrix-receptor (21.7%), and 
cell–cell contact genes (16.5%) (Additional file  4: Fig. 
S4A). iCAF1, myCAF2, and iCAF2 are cells that con-
tribute the most to outgoing signals (Fig. 3A, Additional 
file 4: Fig. S4B). Collagens, MIF, MDK, APP, and laminin 
are significantly involved in cellular interaction and com-
munication for outgoing signals (Fig. 3A).

We used a method of analysis of gene expression pat-
terns available on CellChat to explore how cells and sign-
aling pathways globally coordinate to function. First, we 
identified the correspondence between inferred latent 
communication patterns with groups of secreting cells to 
decipher outgoing communication patterns. Three sign-
aling patterns were found (Additional file  5: Fig. S5A), 
each of them associated with specific cell types that con-
tribute mainly to the outgoing communication: pattern #1 
(CAFs), pattern #2 (immune and blood cells), and pattern 
#3 (epithelial cancer cells) (Fig. 3B). Then, to identify the 
pathways associated particularly with outgoing commu-
nication shared by the four CAFs subtypes, we selected 
the list of all CAFs ligands (Additional file 14: Table S9) 
found in the pathways most contributing to communica-
tion pattern 1 (cluster 2; Fig.  3C). These CAFs-specific 
ligands enriched terms related to miRNA targets in ECM 
and membrane receptors, PI3K-AKT signaling, focal 
adhesion, epithelial-mesenchymal transition, and focal 
adhesion-PI3K-AKT-mTOR-signaling pathway (Fig. 3D). 
Epithelial cancer cell receptors for these CAFs ligands 
highlight a similar set of epithelial-mesenchymal transi-
tion, PI3K-AKT, and focal adhesion-related pathways as 
essential mediators of crosstalk between CAFs and can-
cer cells (Fig. 3E).

Cancer‑associated fibroblasts receive a specific signaling 
pattern associated with the differentiation pathway 
and EGFR tyrosine kinase inhibitor resistance
We also identified signals that most contribute to the 
incoming signaling to cell populations in malignant 
ascites (CellChat) [35]. Based on the overexpression 
of ligands and receptors in all cells, we verified that 
myCAF2 and iCAF2 are among the leading receivers of 
most incoming signaling, followed by B cells, cancer cells, 
and macrophages (Fig. 4A). Collagens, MIF, MDK, APP, 
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and laminin were detected as the most significant incom-
ing signaling molecules (Fig. 4A). We found three incom-
ing signaling patterns (Fig. 4B and Additional file 5: Fig. 

S5B), in which all CAFs are highly associated with signal-
ing pattern #1 (Fig. 4B). The cells ligands to CAFs (Addi-
tional file  14: Table  S9) found in the communication 

Fig. 3 Cancer-associated fibroblasts (CAFs) share common outgoing communication patterns for the PI3K-AKT signaling pathway and focal 
adhesion in malignant effusions from ovarian cancer patients. Outgoing patterns for signaling A, cell B, and communication C of multiple cell types 
in malignant abdominal fluids of ovarian cancer patients obtained with CellChat [35] from scRNA-seq data [17]. The asterisks in C indicate pathways 
not associated with CAFs and epithelial cells communication (pattern 1, cluster 2). This communication pattern 1 (cluster 2) was used to identify 
pathways for gene sets of CAFs ligands D and epithelial cell receptors E for these ligands. In both D and E, the focal adhesion and PI3K-AKT-mTOR 
are among the top altered pathways. The top 10 pathway terms (lowest adjusted P-value) were selected from WikiPathways 2021 and MSigDB 
Hallmark 2020 libraries available in EnrichR [30, 31]
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Fig. 4 Cancer-associated fibroblasts (CAFs) receive a specific communication pattern from malignant effusion cells associated with the 
differentiation pathway and EGFR tyrosine kinase inhibitor resistance. Incoming patterns for signaling A, cell B, and communication C of multiple 
cell types in malignant abdominal fluids of ovarian cancer patients obtained with CellChat [35] from scRNA-seq data [17]. The asterisks in C 
indicate pathways not associated with CAFs and epithelial cells communication (communication pattern 1, cluster 2). This communication 
pattern 1 (cluster 2) was used to identify pathways for gene sets of cells ligands D and CAFs receptors for these ligands E. In both D and E, the 
focal adhesion-PI3K-AKT-mTOR are among the top altered pathways. The top 10 pathway terms (lowest adjusted P-value) were selected from 
WikiPathways 2021 and MSigDB Hallmark 2020 libraries available in EnrichR [30, 31]
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pattern #1 (cluster 2; Fig. 4C) were enriched for neovas-
cularization processes, differentiation pathway, EGFR 
tyrosine kinase inhibitor resistance, and IL-6/JAK/STAT3 
signaling (cluster 2, Fig. 4D). CAFs receptors for epithe-
lial cancer cell ligands are consistently involved in the 
PI3K-AKT and focal adhesion-related pathways (Fig. 4E).

Top interactions between cancer‑associated fibroblasts 
and epithelial cells
The high number of ligand and receptor interactions 
(Additional file 6 Additional files: 7 8 and 9: Fig. S6A-D) 
indicated the complexity of the process that extended 
to and potentially beyond pattern #1 for outgoing and 
incoming signaling (cluster 2; Fig.  3C to Fig.  4C). Thus, 
to explore the top interactions involved in ovarian can-
cer, we first selected the outgoing signaling from CAFs 
to epithelial cancer cells with a communication probabil-
ity > 0.10. Among these, we found interactions that may 
constitute potential targets for CAFs-based therapies, 
such as THBS2/THBS3 (myCAF2) and CD47 (cancer 
cells) or between MDK (CAFs) and SDC2/SDC4/NCL 
(cancer cells) (Fig. 5A).

A comprehensive evaluation of all ligands and recep-
tors interactions between CAFs and epithelial cells 
(Additional file 6 Additional files: 7, 8 and 9: Fig. S6A-D) 
confirmed the crucial role of components of the focal 
adhesion-PI3K-AKT-mTOR signaling pathway (Fig. 5B–
C). These interactions between CAFs and cancer cells 
(Additional file 6 Additional files: 7 8 and 9: Fig. S6A-D) 
were filtered, and a high-resolution map with the most 
relevant interactions of the PI3K-AKT pathway revealed 
the involvement of collagens, fibronectin, vitronectin, 
laminin, and osteopontin from CAFs with integrins in 
cancer cells (Fig. 5D).

CAFs also have an essential role in maintaining an 
inflammatory tumor environment by secreting cytokines, 
chemokines, and ECM proteins that recruit and activate 
different immune effector cells [41]. We used CellChat 
to infer and analyze CAFs-immune cells communication 
using single-cell data (Additional file  14: Table  S9). The 
bi-directional crosstalk between CAFs and immune cells 
further confirmed that the PI3K-AKT signaling pathway 
is a general marker of the CAFs signaling (CAFs ligands 

and receptors) with other cell types (Additional file  10: 
Fig. S7).

MIF and MDK are essential regulators of cancer‑associated 
fibroblasts (CAFs) by epithelial cancer cells
We speculate that the diffusion of ligands produced 
by epithelial cancer cells into the adjacent stroma may 
also stimulate CAFs. The top outgoing signaling from 
epithelial cancer cells to CAFs (communication prob-
ability > 0.10) showed interactions between MIF (cancer 
cells) and CD74 + CD44 (CAFs) or MDK (cancer cells) 
and NCL/SDC2/LRP1 (CAFs) (Fig.  5E). In concordance 
with previous results herein described, both epithelial 
cancer cell ligands and CAFs receptors were enriched for 
PI3K-AKT and focal adhesion-related pathways. These 
ligands were highly correlated with their receptors (and 
vice versa) with redundancies for these top-enriched 
pathways (Fig. 5F–G).

Relevance of ligands and receptors genes associated 
with the PI3K‑AKT signaling pathway in ovarian cancer
We explored the PI3K-AKT signaling pathway using our 
RNA-Seq data performed in malignant fluid cells from 
eight HGSOC patients. This analysis included the base-
line, 2D cells, and TDO combined with normal ovarian 
tissues (Additional file 14: Table S10). First, we confirmed 
that our 2D cells were eCAFs and captured the similar 
expression profiles found in the scRNA-Seq re-analysis. 
To this, we analyzed the expression profile of the top ten 
markers that distinguished each CAFs cluster from the 
other ascites cells of the scRNA-Seq re-analysis (Addi-
tional file  11: Fig. S8). The expression profile of these 
marker genes did not show differences between pleural 
effusion and ascites, nor between high- and low-grade 
samples (Additional file  11: Fig. S8). Next, we analyzed 
the expression profile of CAFs ligands targeting epi-
thelial cells (Fig.  6A) or CAFs ligands within pattern #1 
(from cluster 2, in Fig.  3C) (Additional file  12: Fig. S9), 
and both showed a clear enrichment of CAFs outgoing 
signaling. However, compared to normal tissues, epi-
thelial cell receptors were enriched in eCAFs, TDO, and 
baseline (Fig. 6B). The profile of cell receptors indicated 
a complex regulatory interplay based on CAFs paracrine 
and autocrine signaling (Fig.  6B, Additional file  4: Fig. 

(See figure on next page.)
Fig. 5 Top interactions between cancer-associated fibroblasts (CAFs) and epithelial cells have multiple ligands and receptors associated with the 
PI3K-AKTsignaling pathway and focal adhesion. A Top ligand-receptor interactions (Commun. Probability > 0.10) between CAFs and epithelial cells. 
Heatmaps show the EnrichR pathway enrichment analysis for gene sets that define all CAFs ligands B and epithelial cell receptors C. The top 10 
pathway terms (lowest adjusted P-value) were chosen from WikiPathways 2021 and MSigDB Hallmark 2020 libraries available in EnrichR [30, 31]. D 
PI3K-AKT ligand-receptor interactions between CAFs and epithelial cells. E Top ligand-receptors interactions (Commun. Probability > 0.10) between 
epithelial cells and CAFs. Heatmaps showing the EnrichR pathway enrichment analysis for gene sets that define all epithelial cells ligands F and 
CAFs receptors G. The top 10 pathway terms (lowest adjusted P-value) were chosen from WikiPathways 2021 and MSigDB Hallmark 2020 libraries 
available in EnrichR [30, 31]. Commun. Prob., communication probability
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Fig. 5 (See legend on previous page.)
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Fig. 6 Establishment of in vitro system models based on tumor-derived organoids and culture enriched with cancer-associated fibroblasts 
(eCAFs) to validate the expression profile of ligand and receptor genes associated with the PI3K-AKT signaling pathway in ovarian cancer. Gene 
expression of CAFs ligands A and epithelial cells receptors (B) for these ligands. Genes were ordered based on a marker selection (signal to noise) 
that highlights the differences in the expression profile (normalized counts) of eCAFs A or normal tissues B compared to the other three conditions. 
C Top 50 highly variable genes from the PI3K-AKT signaling pathway across all samples. Genes were ordered based on a marker selection (signal 
to noise) that highlights the differences in the expression profile (normalized counts) between normal tissue and malignant cells. D Expression 
profile (normalized counts) of ligands and receptors of the PI3K-AKT signaling pathway across all samples. Rows (for ligand or receptor genes) were 
ordered based on a marker selection (signal to noise) that highlights the differences in the expression profile (normalized counts) of normal tissues 
when compared to the other three conditions
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S4B). CAFs seem to act through ligands that stimulate an 
increase in the expression of the PI3K-AKT genes in epi-
thelial cancer cells, including downstream effector genes 
such as AKT1 and MTOR (Fig.  6C). These downstream 
PI3K-AKT effector genes were consistently increased in 
baseline, TDO, and eCAF (Fig.  6C). Also, many of the 
PI3K-AKT ligand genes showed increased expression 
explicitly in eCAFs (Fig. 6D).

Increased expression of genes involved in PI3K‑AKT 
signaling between cancer‑associated fibroblasts 
and cancer epithelial cells is associated with worse overall 
survival in ovarian cancer patients
The expression profile of the ligands and receptor genes 
of the PI3K-AKT signaling pathway in the CAFs-cancer 
cell crosstalk revealed genes previously associated with 
the outcome, response to treatment, or overall survival 
in ovarian cancer (Fig. 6d). This list of 34 genes includes 
components of ITGA  and ITGB superfamily [42], 
laminins [43], fibroblast growth factors [44, 45], collagens 
[22, 46], insulin growth factors [47, 48], EGFR [49, 50], 
FN1 [22, 51–53], EPHA2 [54], TNC [55], SPP1 [55, 56], 
and VTN [22, 57].

We also evaluated the expression levels of these PI3K-
AKT pathway ligands and receptors genes by comparing 
TCGA ovarian cancer cohort (n = 418) with GTEx nor-
mal samples (n = 88). Twenty genes exhibited increased 
and 14 decreased expression levels in ovarian cancer 
(Fig. 7A and Additional file 13: Fig. S10). We focused on 
the 20 up-regulated genes of the PI3K-AKT pathway to 
test their association with overall survival in two cohorts 
of patients (TCGA, n = 557 and GSE9891, n = 264) avail-
able on the Kaplan–Meier (KM) plotter [37]. Nine genes 
from the TCGA dataset and 12 genes from the GSE9891 
dataset were significantly associated with a worse overall 
survival rate (HR > 1 and log-rank P value < 0.05) (Fig. 7b-
c). Seven of these genes, COL1A1, ITGB5, COL1A2, 
FGFR2, FN1, IGF1, and IGF2, predicted worse overall 
survival in both datasets (Fig. 7B–C).

Discussion
Increasing evidence indicates that communication and 
interactions between cancer cells and CAFs are essential 
determinants of tumor metastasis and progression [12, 
13]. The molecular mechanisms involved in these inter-
actions may contribute to the identification of new and 
more effective therapies or unveil clinically useful prog-
nostic biomarkers for patients with ovarian cancer. We 
reanalyzed scRNA-seq data from malignant ascites of 
HGSOC patients [17] to infer and investigate cell–cell 
interactions and communications. Next, we integrated 
these gene lists with our RNA-Seq data performed in 
patient-derived 2D cell culture and tumor organoids. 
Interestingly, our 2D cells system was enriched with 
CAFs (eCAFs), as demonstrated by a specific transcrip-
tional signature comprising stromal-related pathways. 
Our gene expression-based strategy revealed several 
ligand and receptor interactions between CAFs and can-
cer epithelial cells associated with the PI3K-AKT sign-
aling pathway and focal adhesion. From the total of 34 
ligand and receptor genes identified in these interactions, 
seven (COL1A1, ITGB5, COL1A2, FGFR2, FN1, IGF1, 
and IGF2) were consistently up-regulated and predicted 
worse overall survival in two additional cohorts (TCGA 
and GSE9891) of ovarian cancer patients.

CAFs exhibit considerable plasticity and heterogene-
ity [58], and different subpopulations have been reported 
in ovarian cancer ascites and tumor tissues. Givel et  al. 
[59] described the stromal heterogeneity in HGSOC with 
four CAFs subpopulations (CAF-S1 − S4). According to 
the authors, the accumulation of the CAF-S1 subset was 
associated with an immunosuppressive tumor environ-
ment. On the other hand, Kan et  al. [21] identified two 
subpopulations of CAFs (CAF1 and CAF2), where CAF1 
was strongly associated with metastasis. Hussain et  al. 
[60] described two CAFs states (FAP-low and FAP-high) 
and showed that CAFs FAP-high promote proliferation, 
invasion, and therapy resistance of cancer cells. Izar 
et  al. [17] identified four CAFs sub-populations, with 
two expressing immune-related genes (complement fac-
tors, chemokines, and cytokines). We demonstrated 
that between these CAFs expressing immune-related 

(See figure on next page.)
Fig. 7 Increased expression of genes involved in PI3K-AKT signaling in cancer-associated fibroblasts and cancer epithelial cells from ovarian cancer 
patients is associated with worse overall survival. A Expression levels [log2(norm_count + 1)] of ligands and receptors of the PI3K-AKT signaling 
pathway in ovarian cystadenocarcinoma (n = 419) of The Cancer Genome Atlas (TCGA) compared to normal ovarian tissues (n = 88) tissues of 
Genotype-Tissue Expression (GTEx). Rows (for ligand or receptor genes) were ordered based on a marker selection (signal to noise) that highlights 
the differences in the expression profile [log2(norm_count + 1)] of GTEx tissues when compared to the TCGA tissues. Twenty genes exhibited 
increased expression levels and were selected to test their association with overall survival. B Forest plots for these twenty ligand and receptor 
genes of the PI3K-AKT signaling pathway in two cohorts of patients with ovarian cancer (TCGA, n = 557 and GSE9891, n = 264) available on the 
Kaplan–Meier (KM) plotter [37]. The hazard ratio (HR) with 95% confidence intervals (CI) determined by Cox proportional hazards model was used 
to evaluate the association between gene expression values and overall survival. The statistical significance was determined by a log-rank test. 
C Representative Kaplan–Meier curves of overall survival for patients with ovarian cancer (TCGA and GSE9891) based on the expression of IGF2, 
COL1A2, IGF1, and FGFR2 
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Fig. 7 (See legend on previous page.)
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genes (iCAF1 and iCAF2), iCAF1 featured genes related 
to hypoxia and TNF-alpha signaling via NF-KB, while 
iCAF2 were highly associated with oxidative phospho-
rylation (Fig. 2C). We also found that myCAF2 showed a 
specific enrichment of genes related to mTORC1 signal-
ing and proteasome degradation, and E2F targets, while 
myCAF1 exhibited reduced expression of mitochondrial 
genes (Fig.  2C). Importantly, these results showed that 
CAFs present distinct functional states but also demon-
strated that these cells share signaling patterns that can 
be explored for targeted therapies.

Several studies have shown that the activation of 
CAFs by cancer cells is mediated via secretome com-
ponents associated with ECM remodeling, cytokine, 
chemokines, and growth factor-mediated signaling [58, 
61–64]. We found that CAFs from malignant fluids of 
ovarian cancer receive a specific signaling pattern from 
cancer cells, mainly composed of ligands associated with 
neovascularization processes, differentiation pathway, 
EGFR tyrosine kinase inhibitor resistance, and IL-6/
JAK/STAT3 signaling (Fig.  4D). Furthermore, we veri-
fied that MIF and MDK are essential regulators of CAFs 
by epithelial cancer cells targeting the heteromeric com-
plex CD74 + CD44 and NCL/SDC2/LRP1, respectively 
(Fig. 5E). MIF is known to be produced by ovarian cancer 
cells in an autocrine manner and may promote coloniza-
tion of the peritoneum and neovascularization of tumor 
deposits by other cytokines, chemokines, and growth 
factors [65]. Furthermore, MIF is secreted in ascites, and 
its serum levels in patients with ovarian cancer correlate 
with a poor prognosis [66]. Several therapeutic strategies 
under development use antibodies to block MIF or CD74 
and thus prevent MIF signaling in different tumor types 
[67]. Therefore, our findings may be valuable not only for 
helping to explain the role of MIF in ovarian cancer but 
also for designing targeted therapies that act on specific 
molecular targets of cancer cells that may activate CAFs.

The release of factors by activated CAFs enormously 
impacts cancer cells in the crosstalk that occurs in ovar-
ian cancer and is associated with several clinicopatho-
logical characteristics  and  disease  outcomes [13, 58]. 
Among the top CellChat interactions, we identified 
MDK from CAFs targeting SDC2/SDC4/NCL of cancer 
cells (Fig.  5A). Thus, MDK may participate in two-way 
communication between CAFs and ovarian cancer cells 
and act in an autocrine or paracrine manner. MDK is a 
growth factor that acts on cancer progression and con-
stitutes a potential therapeutic target [68]. In addition, 
among these top interactions, we found THBS2/THBS3 
secreted by myCAF2 targeting CD47 of cancer cells 
(Fig.  5A). CD47 is a highly and ubiquitously expressed 
cell surface protein in ovarian cancer [69] that induces 
cancer cell growth and predicts poor prognosis [70, 71]. 

CD47 inhibits macrophage phagocytosis, which con-
tributes to ovarian cancer progression [72, 73]. Con-
sequently, CD47 has been tested in ovarian cancer as a 
promising CAR-T cell-based therapy [74]. A treatment 
that combines engineered CAR-T cells targeting CD47 
and inhibits secreted THBS2/THBS3 using antibodies 
may constitute a valuable therapeutic strategy to inhibit 
ovarian cancer progression.

We show that the interplay between CAFs and epithe-
lial cancer cells has multiple ligand and receptor interac-
tions associated with the PI3K-AKT signaling pathway 
and focal adhesion (Fig.  5B–C). The activation of this 
pathway promotes cellular proliferation, migration, and 
invasion in the ovarian cancer [75]. Our RNA-seq data 
confirmed the relevance of these ligands and receptors 
of the PI3K-AKT signaling pathway (Fig. 6). CAFs induce 
cancer cell proliferation and metastasis by activating the 
PI3K-AKT-mTOR pathway in lung [76–78], colon [79], 
gastric [80], oral [81], endometrial [82], and anal [83] 
cancers. The CAF-derived ligand POSTN (Fig. 6A) found 
in our study was previously associated with chemoresist-
ance in ovarian cancer [50]. Furthermore, the secretion 
of FNI by mesothelial cell-derived CAFs was also shown 
to decrease the platinum sensitivity of ovarian cancer 
cells by inducing the PI3K-AKT pathway [84]. Drugs tar-
geting the PI3K-AKT signaling pathway, such as BEZ235, 
AZD5363, and NSC777213, have been tested to treat 
ovarian cancer with promising results [85–87]. A phase 
I trial with PI3-kinase inhibitor BKM120 in combina-
tion with PARP inhibitor olaparib is being conducted 
in patients with high-grade serous ovarian cancer, with 
evidence of clinical benefits [88]. The pharmacological 
and genetic inhibition of TTK, which is involved in the 
PI3K-AKT pathway, decreases the proliferation of ovar-
ian cancer cells and increases their sensitivity to cisplatin 
by suppressing autophagy [89]. Thus, drugs targeting 
the crosstalk between CAFs and cancer cells by block-
ing PI3K-AKT ligands and receptors constitute relevant 
therapeutic targets.

Considering the intercommunication between CAFs 
and cancer cells based on components of the PI3K-AKT 
pathway and its impact on mechanisms that induce 
tumor aggressiveness or drug resistance, we evaluated 
whether changes in expression of these ligands and recep-
tors genes are associated with prognosis. Several genes 
found in our analysis have previously been described as 
biomarkers of ovarian cancer or potential therapeutic 
targets, including genes from the ITGA  and ITGB super-
family [42], laminins [43], fibroblast growth factors [44, 
45, 90], collagens [22, 46], insulin growth factors [47, 48], 
EGFR [49, 50], FN1 [22, 51–53], EPHA2 [54], TNC [55], 
SPP1 [55, 56], and VTN [22, 57]. We demonstrated that 
COL1A1, COL1A2, FGFR2, FN1, IGF1, IGF2, and ITGB5 
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were also altered in two large cohorts of patients (TCGA 
and GSE9891) and are highly relevant for predicting the 
prognosis (Fig.  7B). These data demonstrate that CAFs 
induce changes in cancer cells via components of the 
PI3K-AKT pathway associated with ECM and adhesion. 
These results are aligned with findings showing that 
matrix adhesion is an adaptative response that drives 
HGSC aggressiveness by co-evolving ECM composition 
and sensing [22].

COL1A1 plays a central role in carboplatin resistance in 
ovarian cancer, acting through the ECM-receptor interac-
tion and focal adhesion pathways [46]. In addition to con-
tributing to changes in the PI3K-AKT pathway in ovarian 
cancer, these interactions may promote peritoneal metas-
tasis by forming ascitic CAFs heterotypic aggregates with 
tumor cells [91]. Integrins such as ITGB1, ITGB3, ITGB6, 
ITGA7, and ITGB8 are also involved in cell adhesion and 
signaling and provide further prognostic information and 
druggability in HGSOC [42]. We found that the integrin 
ITGA3 predicted a worse prognosis in the TCGA cohort, 
ITGB1 in the GSE9891 cohort, while ITGB5 predicted 
a worse prognosis in both. Despite differences in study 
design and population, we and Zhu et al. [42] highlighted 
the prognostic value of ITGA and ITGB superfamily 
members in serous ovarian cancer.

RNA-Seq data provide unprecedented opportuni-
ties to explore new biological questions. Although our 
strategy has limitations, including the number of cases 
investigated, the ligand-receptor interactions were vali-
dated in two independent ovarian cancer cohorts and in 
a large number of cell types, strengthening the findings 
described here. In addition to identifying ovarian can-
cer biomarkers, we elaborated a detailed map of ligand-
receptor interactions in ovarian cancer malignant fluids.

In conclusion, we characterized the interactions and 
communication between CAFs and cancer cells from 
ovarian cancer ascites using scRNA-Seq data. This analy-
sis was used to compare and generate ligands and recep-
tors from RNA-Seq data performed in patient-derived 
eCAFs and tumor organoids obtained from ovarian can-
cer malignant effusions. PI3K-AKT signaling mediating 
through ligands and receptors potentially constitutes 
major players in CAFs interactions and communication 
with cancer cells. We also verified that a set of ligands 
and receptor genes of the PI3K-AKT pathway presented 
potential prognostic value. The expression profile of these 
drivers at the single-cell level revealed molecular mecha-
nisms and targets that may facilitate the development of 
therapies focusing on interactions and communication 
between CAFs and cancer cells.
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Additional file 1: Fig. S1. Tumor-derived organoids (TDO) from malig-
nant effusions of serous ovarian cancer patients. Representative examples 
of TDO from cases 8 (A), 4 (B), and 1 (C) show differences in the growth 
rate and morphology. (D) Representative images of TDO morphology 
(dense, low cohesive, and cystic, as described by Maenhoudt et al. [40]) of 
individual TDO from different patients (cases 4, 7, and 6, respectively) (40x).

Additional file 2: Fig. S2. (A) High-grade serous carcinoma showing 
strong and diffuse immunohistochemical expression of CK7, TP53, and 
PAX8. (B) Section from tumor-derived organoid day 11. The atypical cells 
show strong and diffuse immunohistochemical expression of CK7, TP53, 
and PAX, similarly to the primary tumor shown in (a). (C) Low-grade serous 
ovarian cancer shows a strong and diffuse immunohistochemical expres-
sion of CK7 and PAX8 and absent reaction for calretinin. (D) Tumor-derived 
organoids show atypical cells with strong and diffuse immunohistochemi-
cal expression of CK7 and PAX and an absence of reaction for calretinin, 
similarly to the primary low-grade serous ovarian cancer shown in (C).

Additional file 3: Fig. S3. Re-analysis based on single-cell RNA-seq data 
from malignant ascites of eight patients with advanced high-grade serous 
ovarian cancer described by Izar et al. [17]. The t-SNE shows 9.609 cells 
analyzed in 18 clusters (colors) that include ovarian cancer cells (Ep1-5), 
myofibroblastic cancer-associated fibroblasts (myCAF1-2), inflammatory 
cancer-associated fibroblasts (iCAF1-2), macrophages (mac1-4), dendritic 
cells (DC1-2), B cells (B), T cells (T), and erythrocytes (ery).

Additional file 4: Fig. S4. (A) Literature-supported ligand-receptor inter-
actions in humans available at the CellChatDB database (http:// www. cellc 
hat. org/) [35]. The 1,939 validated interactions included paracrine/auto-
crine signaling (61.8%), extracellular matrix (ECM) receptor interactions 
(21.7%) and cell-cell contact interactions (16.5%). (B) Circos plot showing 
the CellChatDB inferred cell-cell communication network based on single-
cell RNA-Seq data across ovarian cancer cells (Ep1-5), myofibroblastic 
cancer-associated fibroblasts (myCAF1-2), inflammatory cancer-associated 
fibroblasts (iCAF1-2), macrophages (mac1-4), dendritic cells (DC1-2), B cells 
(B), T cells (T), and erythrocytes (ery) from ovarian cancer patients.

Additional file 5: Fig. S5. Cophenetic and Silhouette metrics were used 
in CellChatDB [35] to identify the number of outgoing (A) and incoming 
(B) communication patterns that cell groups and pathways coordinate 
to function. Both Cophenetic and Silhouette values suggest three pat-
terns, as indicated by the first sudden drop of the measured score in this 
number of patterns.

Additional file 6: Fig. S6. Ligand-receptor interactions between cancer-
associated fibroblasts and epithelial cells inferred by CellChatDB [35] 
using single-cell RNA-seq data [17] from malignant ascites of ovarian 
cancer patients. (A) Inflammatory cancer-associated fibroblasts 1 (iCAF1)-
epithelial cells.

Additional file 7: Fig. S6. (B) Inflammatory cancer-associated fibroblasts 
2 (iCAF2)-epithelial cells.

Additional file 8: Fig. S6. (C) Myofibroblastic cancer-associated fibro-
blasts 1 (myCAF1)-epithelial cells.

https://doi.org/10.1186/s12964-022-00991-4
https://doi.org/10.1186/s12964-022-00991-4
http://www.cellchat.org/
http://www.cellchat.org/
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Additional file 9: Fig. S6. (D)  Myofibrobastic cancer-associated fibroblast 
2 (myCAF2)-epithelial cells. 

Additional file 10: Fig. S7. Pathways associated with the signaling 
(ligands and receptors) from CAFs to immune cells (a and b) and from 
immune cells to CAFs (d and e). The top 10 pathway terms (lowest 
adjusted P-value) were selected from WikiPathways 2021 and MSigDB 
Hallmark 2020 libraries available in EnrichR [30, 31].

Additional file 11: Fig. S8. Expression profile of 40 cancer-associated 
fibroblast markers (top 10 for each cluster from scRNA-Seq data) in ovarian 
bulk RNA-Seq. Genes were ordered based on a marker selection (signal to 
noise) that highlights the differences in the expression profile (normalized 
counts) between ovarian cancer-associated fibroblasts-enriched culture 
(eCAFs) and the other three conditions (Normal tissue, Normal; tumor-
derived organoids, TDO; and baseline). (A) grade; (B) malignant effusions 
or normal tissue; and (C) experimental conditions.

Additional file 12:  Fig. S9. Expression profiling of CAFs ligands (commu-
nication pattern 1) in ovarian bulk RNA-Seq. Genes were ordered based on 
a marker selection (signal to noise) that highlights the differences in the 
expression profile (normalized counts) between ovarian cancer-associated 
fibroblasts-enriched culture (eCAFs) and the other three conditions (Nor-
mal tissue, Normal; tumor-derived organoids, TDO; and baseline).  

Additional file 13: Fig. S10. Box plot showing the expression levels 
[log2(norm_count+1)] of ligands and receptors of the PI3K-AKT signaling 
pathway in ovarian cystadenocarcinoma (n = 419) of The Cancer Genome 
Atlas (TCGA) compared to normal ovarian tissues (n = 88) tissues of 
Genotype-Tissue Expression (GTEx).

Additional file 14: Supplementary Tables (S1-S10).
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