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Abstract 

Presently, more than half of cancer patients receive radiotherapy to cure localized cancer, palliate symptoms, or 
control the progression of cancer. However, radioresistance and radiation-induced bystander effects (RIBEs) are still 
challenging problems in cancer treatment. Exosomes, as a kind of extracellular vesicle, have a significant function in 
mediating and regulating intercellular signaling pathways. An increasing number of studies have shown that radio-
therapy can increase exosome secretion and alter exosome cargo. Furthermore, radiation-induced exosomes are 
involved in the mechanism of radioresistance and RIBEs. Therefore, exosomes hold great promise for clinical applica-
tion in radiotherapy. In this review, we not only focus on the influence of radiation on exosome biogenesis, secretion 
and cargoes but also on the mechanism of radiation-induced exosomes in radioresistance and RIBEs, which may 
expand our insight into the cooperative function of exosomes in radiotherapy.
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Introduction
Radiotherapy has been applied as a mainstay treatment 
for cancer. More than half of cancer patients receive 
radiotherapy to cure localized cancer, palliate symptoms, 
or control the progression of cancer [1]. Radiotherapy 
an also be combined with surgery, chemotherapy or 
immunotherapy to achieve a better therapeutic effect. 
However, radioresistance and local relapse accompa-
nied by metastasis remain challenges in the treatment 
of cancer patients. Although there are some clinical 
approaches, such as hyperfractionation and higher doses 
[2], to counteract radioresistance, it is still a seemingly 
unsolvable problem that reduces the curative effect of 
radiotherapy. We have found that exosomes, as a kind of 
extracellular vesicle (EV), seem to play a very important 
role in the mechanism of radioresistance. Radiotherapy, 
as a kind of environmental stress, tends to disrupt the 
homeostasis of the tumor microenvironment. Exosome 
secretion was initially proposed to maintain cellular 

homeostasis. Radiation induced lethal cytotoxicity and 
tumor cell apoptosis chiefly by breaking double-stranded 
DNA [3]. Radiation-induced exosomes could irrepara-
bly transport radiation-damaged DNA from irradiated 
cells to the extracellular environment to stop the acti-
vation of programmed cell death. Therefore, exosomes 
hold great promise for clinical application in reducing 
radioresistance.

Radiotherapy can induce bystander effects, not only 
on nonirradiated tumor cells leading to tumor cell death 
but also on normal cells and tissue leading to radiation 
injury [4]. Exosomes can transmit the radiation-induced 
bystander effect (RIBE) by using miRNAs as effector 
molecules [5, 6]. Therefore, exosomes may be a potential 
therapeutic target to kill nonirradiated tumor cells and 
protect nonirradiated normal cells.

In this review, we describe the influence of radiother-
apy on exosome biogenesis and secretion and cargoes, 
placing a particular focus on the role of radiation-induced 
exosomes in radioresistance and RIBEs. These advances 
expand our insight into the role of exosomes in radio-
therapy and new treatments of cancer.
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The influence of radiotherapy on exosome 
biogenesis and secretion
Exosomes are generated by outward budding of the 
endosome. Exosomes mainly include cargoes such 
as DNA, miRNA, mRNA, proteins and lipids, which 
have a significant function in mediating and regulat-
ing intercellular signaling pathways [7, 8]. The biogen-
esis of exosomes includes the formation of endosomes, 
the formation of multivesicular bodies (MVBs), the 
formation of intraluminal vesicles (ILVs) and then the 
secretion or degradation of exosomes (Fig.  1) [7–9]. 
At the onset, a cup-shaped structure containing cell-
surface proteins and soluble proteins related to the 
extracellular milieu is formed by the invagination of 
the plasma membrane. Then, the cup-shaped structure 
enters the de novo formation of an early-sorting endo-
some (ESE), including processes such as exchanging 
cargoes with the trans-Golgi network and endoplas-
mic reticulum and taking in some cargoes from mito-
chondria or merging with a pre-existing ESE. Next, the 
ESE turns into a late-sorting endosome (LSE). Then, 
the late-sorting endosomal membrane is invaginated 
to generate intraluminal vesicles (ILVs) and to further 
modify the cargoes of future exosomes with cytoplas-
mic constituents. After the defined collection of ILVs 

(future exosomes), LSEs are turned into MVBs. Finally, 
the MVBs fuse with the plasma membrane to release 
the contained ILVs as exosomes with the help of MVB 
docking proteins or combined with lysosomes to enter 
the process of degradation. This model of exosome bio-
genesis, primarily enlightened by a study [10] on the 
vesicular secretion of TfR in maturing reticulocytes, 
is generally accepted by researchers and has gradually 
become the standard model of exosome biogenesis. 
However, there is still much evidence showing that 
exosomes can directly bud from the plasma membrane 
[11]. Recently, some researchers [8] hypothesized that 
exosomes bud from the plasma membrane and the 
endosomal membrane, and the reason for the contro-
versy is observational bias.

Once the MVBs escape degradation, secretion begins. 
First, MVBs are transported to the plasma membrane 
by the cytoskeleton (microtubules and actin) [12] with 
the help of Rab GTPases, including Rab27b [13–16]. 
Then, the MVBs are docked at the luminal side of the 
plasma membrane with the help of Rab27a/b [13–16] 
and MVB-docking proteins. Next, MVBs fuse with the 
plasma membrane via soluble N-ethylmaleimide-sen-
sitive fusion attachment protein receptors (SNAREs), 
such as synaptosome-associated protein 23 (SNAP-23) 

Fig. 1 Exosome biogenesis and secretion. Fluid and extracellular constituents such as proteins, lipids, and small molecules can enter cells, along 
with cell surface proteins, through endocytosis and plasma membrane invagination. Then, the cup-shaped structure enters the de novo formation 
of an early-sorting endosome (ESE), including processes such as exchanging cargoes with the trans-Golgi network and endoplasmic reticulum and 
taking in some cargoes from mitochondria or merging with a pre-existing ESE. Next, the ESE turns into a late-sorting endosome (LSE). Then, the 
late-sorting endosomal membrane is invaginated to generate intraluminal vesicles (ILVs) and to further modify the cargoes of future exosomes with 
cytoplasmic constituents. After the defined collection of ILVs (future exosomes), LSEs are turned into MVBs. Radiation can cause DNA single-strand 
breaks (SSBs) and double-strand breaks (DSBs) in tumor cells. After DNA damage, tumor suppressor-activated pathway 6 (TSAP6) is activated. Then 
the p53 protein is activated to become a transcription factor and involve in the formation of exosomes. MVBs can fuse with autophagosomes, 
and ultimately the contents can undergo degradation in the lysosomes. MVBs can also be transported to the plasma membrane through the 
cytoskeletal and microtubule network of the cell and dock on the luminal side of the plasma membrane with the help of MVB-docking proteins. 
Exocytosis follows and results in the release of the exosomes
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and synaptotagmin family members [17]. Finally, the 
exosomes are released into the extracellular environ-
ment with the help of exocytosis.

The complicated mechanism of exosome biogen-
esis and secretion is modulated by various factors and 
stress. Radiation, as a kind of external stress, can affect 
exosome biogenesis and secretion by the DNA damage 
response. Radiation therapy [3] can cause DNA single-
strand breaks (SSBs) and double-strand breaks (DSBs). 
After DNA damage, the p53 protein, which can respond 
to a wide variety of stress signals, is activated to become 
a transcription factor and enhances or represses the tran-
scription of a number of genes, which ultimately induce 
cell cycle arrest, senescence or apoptosis [18, 19]. Part of 
the p53 response to stress produces can secrete proteins 
that can communicate with adjacent cells, which is also 
called the “bystander effect” [20–22]. This process is clas-
sically mediated by a signal sequence at the NH2 termi-
nus of a secreted protein that directs the protein through 
the endoplasmic reticulum/Golgi pathway followed by 
transport to the plasma membrane and release of the 
protein into the extracellular environment via exosomes, 
suggesting that exosome biogenesis and secretion are 
increased after DNA damage [23]. This indicates that 
radiation-induced DNA damage can affect exosome bio-
genesis and secretion in a p53-dependent manner. How-
ever, these studies cannot prove that radiation can induce 
exosome biogenesis and increase exosome secretion. 
Some researchers have conducted further experiments 
and proved the effect. In irradiated nonhuman primates 
(NHPs), Amrita K. Cheema found that the number of 
exosomes per µL of plasma increased significantly by Day 
1 post irradiation with 5.8  Gy and Day 14 postirradia-
tion after two doses [24]. In MCF-7 human breast can-
cer cells, Nasrollah Jabbari [25] found that radiotherapy 
improved the biogenesis and secretion of exosomes in a 
dose dependent manner. These two studies all showed 
that radiation can induce exosome biogenesis and 
increase exosome secretion, but they have not explained 
the exact mechanism. In human prostate cancer cells, 
Lehmann found that radiation therapy has the ability to 
induce senescence by damaging DNA, which could trig-
ger a p53-dependent augmentation of the biogenesis 
and secretion of exosomes [26]. An observation [27] in 
TSAP6/Steap3-null mice indicated that p53 activated 
by IR-induced DNA damage could increase exosome 
secretion in a TSAP6-dependent process. In conclusion, 
these studies are limited to a p53-dependent DNA dam-
age pathway, but help to obtain a new understanding of 
the influence of radiation therapy on exosome biogenesis 
and secretion (Table  1). Radiation has various influence 
on tumor and tumor microenvironment and radiation-
induced DNA damage has many pathways except the 

p53-dependent manner. Further studies need to focus on 
whole tumor microenvironment and not to be limited by 
previous studies.

The influence of radiotherapy on exosome cargoes
To date, exosomes have already been confirmed to con-
tain proteins, nucleic acids (e.g., DNA, mRNA, noncod-
ing RNA, long noncoding RNA) and lipids. Due to their 
endosomal origin, exosomes contain protein families 
associated with multivesicular body (MVB) formation, 
membrane transport and fusion (e.g., Rab GTPases), and 
a broad array of transmembrane proteins, lipid-anchored 
membrane proteins, peripherally associated membrane 
proteins, and soluble proteins of the exosome lumen [7, 
8]. In terms of lipid species, exosomes usually have more 
cholesterol, phosphatidylinositol, ceramide, sphingo-
myelin, and monosialoganglioside than donor cells [32]. 
However, the amounts of phosphatidylcholine and lyso-
bisphosphatidic acid are lower [33]. Additionally, major 
histocompatibility complex (MHC) class I molecules, 
heat shock proteins and tumor antigens are also found 
in exosomes [34]. Some studies have shown that radia-
tion can not only affect the biogenesis and secretion of 
exosomes but also influence the cargo of exosomes [26] 
(Table 1). The B7-H3 protein, whose high expression pro-
vides an extremely reliable marker for the differentiation 
of indolent from aggressive prostate cancers [35], can be 
detected in exosomes derived from radiation-induced 
senescent 22Rv1 cells [26]. Arscott et.al found that con-
nective tissue growth factor (CTGF) and insulin-like 
growth factor binding protein 2 (IGFBP2) were upregu-
lated in radiation-derived exosomes [28]. Real-time 
quantitative PCR showed that the CTGF transcript was 
present at levels approximately two times higher in radia-
tion-derived exosomes than in nonirradiated controls.

Exosomes contain many nucleic acids, such as DNA, 
miRNA, noncoding RNA (ncRNA) and long noncoding 
RNA [36–38]. Compared to cellular RNAs containing a 
great deal of full-length ribosomal RNA (rRNA), exoso-
mal RNAs are generally abundant in ncRNAs, including 
small nuclear RNAs (snRNAs), miRNAs, transfer RNAs 
(tRNAs), vault RNAs, and repetitive element RNAs 
[38–40]. There is an intact RNA sorting mechanism to 
load RNA into exosomes in the endolysosomal com-
partment [41]. Gag and Gag-like proteins can coimport 
their genomic RNA and other RNAs into exosomes [42, 
43], while YBX1 plays a vital role in loading small ncR-
NAs into exosomes [40, 44]. Radiation can also affect 
exosomal nucleic acids, especially miRNAs [29, 30, 45] 
(Table  1). It was found that miR-3168, involved in the 
DNA damage response, was significantly upregulated in 
exosomes after 2 or 8 Gy radiation in FaDu cells (derived 
from human head and neck cancer) [29]. Gaines et  al. 



Page 4 of 13Yang et al. Cell Communication and Signaling          (2022) 20:171 

reported that the exosomal levels of hsa-miR-762, has-
let-7b-5p and hsa-let-7c-5p, which can regulate the 
genes associated with cognitive, motor delay and men-
tal, were significantly downregulated after exposure to 
3 Gy proton radiation [45]. And further analysis showed 
that these miRNAs may be biomarkers for neurological 
radiation injury. There are many studies on exosomes, 
but this study provides a new direction. Although this 
study used extracellular vesicles, it still revealed the role 
of exosomes. Further studies need to focus on the role 
of exosomes in neurological radiation injury, which may 
have implications for the treatment of neurological radia-
tion injury rather than merely serving as a biomarker. 
Abedi et  al. reported a significant upregulation of miR-
30a, miR-9a and TGF-β Protein accompanied by a signifi-
cant downregulation of miR-200b after 2 Gy X-ray [30]. 
Further analysis showed that these miRNAs and protein 
enhance invasiveness of nonirradiated cells. However, 
they did not study the exact mechanism. Chen et al. [31] 
reported 196 filtered differentially expressed exosomal 

circRNAs in pancreatic cancer cells after radiation. These 
overexpressed exosomal circRNAs can regulate meta-
bolic process and lysine degradation in tumor cells. And 
they may involve in pancreatic cancer cell repopulation 
via the hsa_circ_0002130-hsa_miR_4482-3p-NBN inter-
action network. In conclusion, these results showed that 
radiotherapy can influence exosome cargoes and these 
exosome cargoes can influence the effect of radiotherapy 
conversely, but further trials are needed to clarify the 
clinical significance of this interaction and how to turn it 
into clinical value.

Radiation‑induced exosomes in radioresistance
Radioresistance can be classified into two categories: 
intrinsic radioresistance and acquired radioresistance 
[46], but they are all derived from tumor cells’ strong pro-
pensity to live during fractionated radiotherapy. Radiore-
sistance comes not only from the protective processes of 
the tumor stroma and microenvironment but also from 
genetic or phenotypic changes within the tumor [47, 

Table 1 The influence of radiotherapy on exosome biogenesis, secretion and cargoes

MEFs, mouse embryo fibroblasts; BMDCs, bone marrow-derived dendritic cells; UC, ultracentrifugation; CTGF, connective tissue growth factor; IGFBP2, insulin-like 
growth factor binding protein 2

Source of exosomes Study model Dose of radiation Test approach Isolation method Effect References

22RV1 cell line Human prostate 
cancer

4 Gy SDS-PAGE UC Radiation induced 
a p53-dependent 
augmentation of the 
biogenesis and secre-
tion of exosomes

[26]

MEFs and BMDCs cell 
lines

TSAP6 knockout mice 10 Gy FACS analysis, 
Glycosylation and 
dimerization analysis, 
PCR

UC Radiation increased 
exosome secretion in 
a TSAP6-dependent 
process

[27]

Not applicable Rhesus macaques 5.8 Gy or 6.5 Gy Metabolomic and 
lipidomic analyses

UC Radiation increased 
the number of 
exosomes

[24]

MCF-7 cell line Human breast cancer 2, 4, 6, 8, 10 Gy Western blotting, 
real-time PCR

UC CD63 and Alix genes 
was significantly 
higher after radiation

[25]

LN18, U87MG, 
U251cell lines

Glioblastoma 2–8 Gy Immunoblot analysis, 
qRT-PCR

UC CTGF and IGFBP2 
were upregulated 
in radiation-derived 
exosomes

[28]

FaDu cell line Human head and 
neck cancer

2–8 Gy RNA-seq approach Differential centrifu-
gation, ultrafiltration 
and precipitation

MiR-3168 signifi-
cantly upregulated 
in exosomes after 
radiation

[29]

MCF-7 cell line Human breast cancer 2 Gy Flow cytometry, 
western blot

Differential centrifu-
gation

An upregulation of 
miR-30a and miR-9a 
accompanied by 
a downregulation 
of miR-200b was 
induced by radiation

[30]

Human pancreatic 
cancer cell line

Human pancreatic 
cancer

10 Gy QRT-PCR Differential centrifu-
gation

Radiation induced 
196 filtered dif-
ferentially expressed 
exosomal ircRNAs

[31]
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48]. Recently, many studies have shown that exosomes 
are involved in radioresistance. For instance, hepatocel-
lular carcinoma (HCC) is considered a radioresistant 
tumor in clinical and some researches showed that HCC 
derived exosomes played a vital role in radioresistance 
[47, 49, 50]. Therefore, studies on the function of radia-
tion-induced exosomes in radioresistance may help to 
uncover the specific mechanism of radioresisiatnce and 
find the way to alleviate radioresistance.

Radiation chiefly causes double-strand breaks (DSBs) 
to induce lethal cytotoxicity and tumor cell apoptosis [3]. 
Radiation-induced DNA damage can increase exosome 
biogenesis and exosome secretion in a p53-dependent 
manner [26, 27]. Interestingly, after treatments with 
low-dose radiation-induced exosomes, the growth of 
xenografted tumors was accelerated and the survival 
period was reduced [51]. It was found that low-dose 
radiation increased the secretion of exosomes with a 
high level of circ-METRN in glioblastoma cells. Treated 
with circ-METRN-abundant exosomes, γ-H2AX (radi-
ation-induced phosphorylation of H2AX, a marker of 
DNA breaks) was highly expressed in glioblastoma cells, 
indicating an efficient DNA damage-repair process in 
glioblastoma cells. Therefore, circ-METRN-abundant 
exosomes may be involved in radioresistance by inducing 
high activation of the DNA damage repair process. The 
specific mechanism may involve the miRNA-4709-3p/
GRB14/PDGFRα pathway. Circ-METRN-abundant 
exosomes were transported into glioblastoma cells and 
acted as miRNA-4709-3p sponge. Then miRNA-4709-3p 
targeted GRB14 and affected the expression of GRB14 
mRNA and protein. GRB14 plays a glioblastoma-pro-
moting role by regulating the downstream PDGFRα after 
treatment with low-dose radiation-induced exosomes. 
This study is the first to reveal the role of exosomal circ-
METRN via the miRNA-4709-3p/GRB14/PDGFRα path-
way in radioresistance. Studies have shown that radiation 
can increase exosome biogenesis and exosome secretion 
by inducing DNA damage. Conversely, radiation-induced 
exosomes can mediate resistance to radiotherapy by 
inducing high activation of the DNA damage repair pro-
cess. These solid research foundations seem to explain 
the inevitability of radioresistance and suggest the way to 
alleviate radioresistance. However, the researchers only 
conducted cell experiments with glioblastoma cells. The 
generalizability of the results is debatable. In other stud-
ies, it was found that exosomes derived from mesenchy-
mal stem cells enhanced radiotherapy-induced cell death 
in tumor and metastatic tumor foci [52], which is con-
trary to this result. Previous studies showed that CD44 
are associated with radioresistance in prostate cancer 
[53], glioblastoma [54] and head and neck squamous cell 
carcinomas [55]. Then, Wang et.al developed exosomes 

from γδ-T cells and found that γδ-T-exosomes can spe-
cifically target the radioresistant  CD44+/high CSCs in 
nasopharyngeal carcinoma. In addition, γδ-T-exosomes 
combined with radiotherapy had a higher therapeu-
tic efficacy than radiotherapy monotherapy in  vitro and 
in vivo [56].

This study has some limitations but still shows a pow-
erful preclinical evidence using exosomes to alleviate 
radioresistance.

At present, it has been confirmed that exosomal 
miRNAs are associated with radioresistance [57–64] 
(Table  2). In lung cancer cells [57], exosomal miR-
208a was significantly increased after 60  Gy X-ray. And 
miRNA-208a decreased cellular apoptosis and disturbed 
the cell cycle by targeting p21 with a corresponding acti-
vation of the AKT/mTOR pathway, which ultimately 
promotes cell proliferation and induces radioresistance. 
Chen et  al. reported that exosomal miR-93-5p from 
cancer-associated fibroblasts conferred radioresistance 
in colorectal cancer cells by downregulating FOXA1 and 
upregulating TGFB3 [60]. They also reported that exoso-
mal miR-590-3p has the same function via the positive 
regulation of the CLCA4-dependent PI3K/Akt signaling 
pathway [61]. These three studies showed that exosomal 
miRNAs involved in radioresistance and may be poten-
tial therapeutic target to alleviate radioresistance though 
the mechanism needed further research. Wan et.al found 
that microRNA-34c-5p (miR-34c) inhibited malignant 
behaviors in nasopharyngeal carcinomas [59]. Exosomes 
derived from miR-34c-transfected mesenchymal stem 
cells (MSCs) attenuated nasopharyngeal carcinoma inva-
sion, migration and proliferation. Furthermore, miR-
34c-overexpressing exosomes significantly increased 
radiation-induced apoptosis in nasopharyngeal carci-
nomas. This study showed that exosomal miRNAs can 
enhance radiotherapy, which is contrary to the study in 
lung cancer cells. Therefore, exosomal miRNAs have var-
ious function in radiotherapy and further studies need to 
focus on more miRNAs and the mechanism.

Radiation‑induced exosomes in RIBEs
Radiotherapy can induce radiation effects in nonirradi-
ated cells and tissues by intercellular communication, 
which is named radiation-induced bystander effects 
(RIBEs). RIBEs include genomic instability, DNA dam-
age, stress responses, senescence, cell apoptosis and pro-
liferation [4, 65–67]. Compared with the direct effects of 
radiation, RIBEs play a crucial role in the low-dose range 
[68–70] but not in the high-dose range [70, 71]. RIBEs 
tend to work 1–5 mm away from directly irradiated cells 
[72–74].

First, the signals from directly irradiated cells trans-
mitted into nonirradiated contact neighboring cells by 
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gap junction intercellular communication [75, 76]. Then, 
soluble signals such as reactive oxygen species (ROS) or 
secreted factors such as cytokines [77, 78] trigger RIBEs 
between the targeted cells and the distanced nontargeted 
cells by medium communication.

Recent studies showed that exosomes can play a crucial 
role in RIBE [6, 23, 52, 79–83] (Table 3). Exosomes can 
even deliver genomic instability from irradiated cells to 
bystander cells [30].

Abedi et  al. introduced CCCM (control cells condi-
tioned media) and ICCM (irradiated cells conditioned 
media) onto unirradiated MCF-7 cells and assessed 
the cell invasion by evaluating the number of invaded 
cells [30]. Compared with MCF-7 cells incubated with 
CCCM, those incubated with ICCM had a higher num-
ber of invaded cells. Further study showed that MCF-7 
cells incubated with ICCM-derived exosomes had an 
increased invasive potential as those incubated with 
ICCM. This indicated that exosomes involved in RIBE 
via delivering genomic instability from irradiated cells 
to bystander cells. In addition, exosomes can also 
deliver cell apoptosis from irradiated cells to bystander 
cells. Combining MSC cell therapy and radiotherapy in 

melanoma tumor xenografts implanted in NOD/SCID-
gamma-mice, the size of the established tumors, both in 
the primary-directly irradiated tumor and in the distant 
nonirradiated tumor, was reduced [52]. Then Farias et al. 
compared the survival fractions of A375 cells treated 
with irradiated MSC conditioned medium or irradiated 
MSC exosomes. Studies showed that exosomes from irra-
diated MSC reduced the cell survival of A375 cells the 
same as the irradiated MSC conditioned medium [52]. 
These studies showed that exosomes can deliver genomic 
instability and cells apoptosis from irradiated cells to 
bystander cells, but the mechanism is not clear.

Exosomes can transport miRNA from irradiated cells 
to nonirradiated cells, which play a vital role in RIBEs 
[5, 6]. MiRNA-21 in both directly irradiated cells and 
bystander cells was significantly upregulated via identifi-
cation of a set of differentially expressed microRNAs in 
the human fetal lung MRC-5 fibroblast (human embry-
onic lung fibroblast) culture medium after irradiation 
[84]. Transfection of miRNA-21 mimics into nonir-
radiated MRC-5 cells caused an apparent increase in 
the frequency of micronuclei and 53BP1 foci and a dra-
matic decrease in the survival fraction, suggesting that 

Table 2 Radiation-induced exosomes in radioresistance

Source of exosomes Study model Dose of radiation Isolation method Effect References

SW1783 and U-118MG cell 
lines

Glioblastoma 2, 4, 6, 8 and 10 Gy Differential centrifugation Exosomal circ-METRN 
involved in radioresistance 
via the miRNA-4709-3p/
GRB14/PDGFRα pathway

[51]

A549, H1299, H1975 and 
H460 cell lines

Human lung cancer 60 Gy Differential centrifugation Exosomes can transmit 
miRNA-208a to induce 
radioresistance

[57]

SW1990 cell line Human pancreatic cancer 10 Gy Not applicable Exosomal miRNA-194-5p 
potentiated tumor repopu-
lation by enhancing the 
DNA damage response

[58]

Cancer-associated 
fibroblasts and normal 
fibroblasts cell lines

Human colorectal cancer 6 Gy Ultracentrifugation Exosomal miR-93-5p 
induced radioresistance by 
downregulating FOXA1 and 
upregulating TGFB3

[60]

Cancer-associated 
fibroblasts and normal 
fibroblasts cell lines

Human colorectal cancer 12 Gy Differential centrifugation Exosomal miR-590-3p 
induced radioresistance by 
the positive regulation of 
the CLCA4-dependent PI3K/
Akt signaling pathway

[61]

Whole blood from 
oesophageal squamous cell 
carcinoma patients

Human oesophageal squa-
mous cell carcinoma

8 Gy Differential centrifugation Exosomal miR-340-5p 
promoted radioresistance of 
oesophageal squamous cell 
carcinoma via KLF10

[62]

KYSE-150 and TE-1 cell lines Human esophageal squa-
mous carcinoma

8 Gy Not applicable The exosomal transfer of 
miR-199a-5p involved in 
radioresistance

[63]

LIM1863 cell line Human colorectal cancer 68 Gy Differential centrifugation Exosomal microRNA-19b 
targets FBXW7 to induce 
radioresistance

[64]
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miRNA-21 is involved in RIBEs. Further research found 
that exosomes can transfer miRNA-21 from irradiated 
cells into the extracellular medium and subsequently 
obtain access to the recipient cells to induce DNA dam-
age and chromosome aberrations [6]. These studies 
showed that miRNA-21 involved in RIBEs and may be a 
potential target to upregulate RIBEs to kill nonirradiated 
tumor cells.

Wang et  al. reported that the expression of the 
autophagy markers LC3-II/LC3-I and Beclin-1 increased 
in bystander HepG2 (human hepatocellular carcinoma) 
cells treated with conditioned medium (CM) collected 
from irradiated HepG2 cells [85]. They found that the 
transfection of LC3 siRNA or Beclin-1 siRNA signifi-
cantly enhanced the yield of micronuclei in bystander 
cells. Therefore, autophagy may also play a role in modu-
lating the bystander effects. Song et al. used the human 
bronchial epithelial cell line BEP2D (bronchial epithe-
lial cells) as the normal cellular model for further study 
[86]. It was found that the recipient BEP2D cells took 
in more miRNA-7-5p-abundant exosomes from the IR-
irradiated cells compared with nonirradiated cells by 
labeling the exosomes from the conditioned medium of 
2 Gy irradiated cells with CM-Dil fluorescent dye. Then 
miRNA-7-5p targeted EGFR (epidermal growth fac-
tor receptor) and decreased its expression, which was 

largely attenuated by a miRNA-7-5p inhibitor. Next the 
phosphorylation levels of phospho-Akt and phospho-
mTOR decreased and subsequently regulated autophagy 
progression. Therefore, exosomes can transfer miRNA-
7-5p from irradiated cells to nonirradiated cells to induce 
RIBE via the EGFR/Akt/mTOR signaling axis. This study 
showed that exosomal miRNA involved in RIBEs with 
exact mechanism and miRNA-7-5p may be potential tar-
get to downregulate RIBEs to protect normal cells.

Radiotherapy can also induce various dysregulated pro-
teins and nucleic acids. These substances invaginate the 
LSE and are then transported to nonirradiated cells by 
exosomes, which also cause RIBEs [87, 88]. In a mouse 
model, exosomes derived from irradiated mouse breast 
cancer cells could transfer dsDNA to DCs and stimulate 
the upregulation of costimulatory molecules in DCs, sug-
gesting that exosomes derived from irradiated cells could 
transfer antitumor effects to nonirradiated cells [81]. 
These studies indicated that further studies should focus 
on all exosome cargoes.

Discussion
Radiotherapy, as a mainstay treatment for cancer, is used 
in more than half of cancer patients to cure localized 
cancer, palliate symptoms, or control the progression of 
cancer. However, radioresistance is still the main reason 

Table 3 RIBEs caused by exosomes

HNSCC, head and neck squamous cell carcinoma; DCs, dendritic cells; UC, ultracentrifugation

Donor cells Recipient cells Dose of radiation Isolation 
method

Effect References

Human non–small cell lung can-
cer cell lines (H460, H1299)

H460, H1299 5 Gy UC Exosomes communicated with 
adjacent cells

[23]

Human breast cancer cell line 
(MCF-7)

MCF-7 2 Gy UC Exosomes were partially involved 
in genomic instability

[79]

Human breast cancer cell line 
(MCF-7)

MCF-7 2 Gy UC Exosomal RNA and protein mol-
ecules were associated with RIBEs

[80]

Human embryonic lung fibro-
blasts (MRC-5)

MRC-5 2 Gy UC Exosomal miRNA-21 induced 
DNA damage and chromosome 
aberrations in bystander cells

[6]

Human papillomavirus– immor-
talized human bronchial epithe-
lial (BEP2D),

BEP2D 2 Gy UC Exosomal miR-7-5p mediated 
bystander autophagy

[86]

Human HNSCC cell lines (BHY, 
FaDu)

BHY, FaDu 0–9 Gy UC Exosomes promoted the prolif-
eration and radioresistance

[83]

Human papillomavirus– immor-
talized human bronchial epithe-
lial (BEP2D),

BEP2D 2 Gy UC Exosomal microRNAs contributed 
to DNA damage

[82]

Human umbilical-cord stromal 
stem cells (MSCs)

Human melanoma cell lines 
(A375, G361) and human breast 
cancer cell line (MCF-7)

2 Gy UC Exosomes enhanced bystander 
tumor growth and metastasis

[52]

BALB/C mouse–derived mam-
mary carcinoma (TSA)

DCs 8 Gy UC Exosomes transferred anti-tumor 
effects to bystander cells

[81]

Human breast cancer cell line 
(MCF-7)

MCF-7 2 Gy UC Exosomes enhanced invasiveness 
of bystander cells

[30]
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for the failure of radiotherapy. It needs a biomarker that 
can predict the efficacy of radiotherapy to assist in rapid 
clinical adjustment of treatment plans through real-time 
monitoring [89]. Radiation can affect the biogenesis, 
cargo and secretion of exosomes. Conversely, exosomes 
can mediate radioresistance, and change the expression 
levels of their cargos which closely related to treatment 
response. These findings suggest that exosomes may be 
invasive, novel and sensitive biomarkers for monitor-
ing the efficacy of radiotherapy. However, the interac-
tion between radiotherapy and exosomes is complex, 
and it is difficult to quantify one or more factors into an 
index to evaluate radioresistance. The clinical value and 
practicability of exosomes as biomarkers also need to be 
evaluated.

Exosomes as natural nanoscale vesicles have attractive 
advantages in cancer treatment due to their high biologi-
cal permeability, high biocompatibility, and low immu-
nogenicity [90–93]. Besides, double-layer lipid and high 
stability of exosomes enable exosomes to maintain bio-
logical activity for a longer time in blood circulation even 
after repeated manipulations [91]. Therefore, exosomes 
may be used as delivery systems for therapeutic loads 
such as RNA (mRNA/miRNA and other non-coding 
RNA/interfering small RNA) and chemotherapeu-
tic drugs and immunomodulators. However, it needs a 
method that can efficiently and massively load drugs onto 
exosomes, which is a prerequisite for exosomes to be 
used as delivery Systems. Additionally, exosomes derived 
from diverse cells have different biological functions. 
Research on exosomes-based cell-specific drug delivery 
needs to be verified. Without the ability to deliver and 
release these drugs into the tumor microenvironment, 
precision therapy is just a theory. Recently, Wang et.al 
first reported the application of exosomes for anaplas-
tic thyroid carcinoma [94]. They engineered HEK-293 T 
(the human embryonic kidney epithelial cell line) cells to 
developed an exosomes-based targeted delivery platform 
loading with doxorubicin (Dox) and labeled with radioio-
dine-131 (131I). This vehicle specifically targeted to tumor 
and inhibited the growth of tumor with biosafety and no 
side effects by intravenous injection to a mouse model. 
This is a great advance in exosomes research, which 
proves the feasibility of exosomes as a delivery system to 
transport drugs and brings a lot of inspiration for future 
in vivo trials. However, this is the only one report on this 
aspect, and more experiments are needed to verify its 
authenticity and universality.

Radiation-induced exosomes involved in radioresist-
ance by specific mechanism. The presence of radiore-
sistant exosomes may be a signal to intensify treatment 
by radiation-enhancing agents, engage in radiotherapy 
dose escalation, or stop irradiation. In the meantime, 

exosomes may be a therapeutic target to alleviate radiore-
sistance and increase radiosensitivity, which will improve 
the therapeutic effectiveness of radiotherapy. Exosomes 
are not only involved in radioresistance but are also 
involved in radiation-induced bystander effects (RIBEs) 
mediated by miRNAs. Therefore, the risk of unirradiated 
normal tissue toxicity could be evaluated by exploring 
exosomal miRNAs. This evaluation could provide clinical 
guidance to use more stringent normalization tissue dose 
constraints or to avoid radiotherapy. Exosomes may also 
be a therapeutic target to modulate RIBEs to kill cancer 
cells on the basis of protecting normal cells as much as 
possible in nonirradiated tissue. While these ideas have 
great potential clinical value, research in these areas is 
scarce and at a basic level. More experiments are needed 
to understand the mechanisms involved and use them to 
create clinical value.

Radiation can kill normal cells as well as tumor cells 
in clinical target volume. Clinically, there are three main 
ways to protect normal cells from radiation: radiopro-
tective agents delivered before radiation exposure, after 
radiation exposure and after the onset of symptoms [95]. 
Preclinical studies showed that amifostine has a good 
radioprotective effect [96], but severely limited due to its 
severe adverse effects and short half-life [97, 98]. As tra-
ditional radioprotectants cannot meet the clinical need, 
it is crucial to find a new radioprotectors. Some studies 
showed that exosomes play a vital role in treating and 
preventing radiation injury such as skin injury and bone 
loss [99, 100]. The major cause of skin injury induced 
by radiation is oxidative stress. In irradiated mice skin, 
MSC-derived exosomes treatment reduced reactive 
oxygen species generation and improved antioxidant 
capacities via adaptive regulation of the NRF2 defense 
system [99]. In the other rat model, exosomes derived 
from bone marrow mesenchymal stem cells (BM-MSCs) 
reduced oxidative stress and proliferation inhibition and 
accelerated DNA damage repair after irradiation [100]. 
Exosomes facilitate β-catenin expression and restore the 
balance between osteogenic differentiation and adipo-
genic in irradiated BM-MSCs. These experiments illus-
trate the role of exosomes in reducing radiation injury 
and provide a new treatment for radiation injury in clini-
cal. Although there are few studies in this field, they have 
shown great promise of exosomes in reducing radiation 
injury.

Exosomes have many advantages, such as high bio-
compatibility, long life, and low immunogenicity [101–
103]. Yet, limited understanding of biogenesis, cargoes, 
secretion and target cell uptake of exosomes has greatly 
restricted investigation on the role of exosomes in radi-
otherapy [89, 104]. First, exosomes from diverse cells 
have different potential biological functions. Therefore, 
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exosomes need to be targeted as the cell-specific deliv-
ery vehicle for therapy. Second, many factors, such as 
irradiation dose and the pH value of the culture medium 
can affect the process of cargoes loading into exosomes 
[29, 105] and there no unified standards for purification 
and quantification of exosomes. Third, there is a lack 
of how to effectively load exogenous ncRNAs or drugs 
into exosomes. Fourth, the immune responses are also 
unclear when utilizing non-autologous exosomes. Last, it 
is needed to prolong the half-life of exosomes in vivo to 
maintain a high blood concentration.

Unlike normal tissues, highly aggressive, rapidly grow-
ing solid tumors encounter hypoxia as a result of fluc-
tuating and/or inadequate a blood supply [106]. Tumor 
hypoxia drives the tumor toward a more malignant 
phenotype by stimulating the invasion of tumor cells, 
induces radioresistance and is an adverse clinical prog-
nostic factor [107–110]. By measuring the partial pres-
sure of oxygen  (pO2) in head and neck carcinomas, we 
found a correlation between low  pO2 and poor local 
control or survival after radiotherapy [111]. Therefore, 
hypoxia needs to be taken into consideration to deter-
mine whether exosomes can be applied to clinical. Stud-
ies on exosome functions in radiotherapy are in their 
infancy and need further in vivo experiments.

Conclusions
Radiotherapy remains the fundamental therapy for 
tumors, but it is not perfect and it currently cannot 
meet requirements to maintain high local control rates 
(LCRs) and overall survival rates (ORs). Radiother-
apy not only induces radioresistance but also causes 
bystander effects leading to radiation injury. There-
fore, it is necessary to explore the specific mecha-
nism of radioresistance and RIBEs. Despite functional 
and methodological challenges, the investigation of 
exosomes could help to unveil the mechanisms of radi-
oresistance and RIBEs. Additionally, detailed mecha-
nisms underlying the crosstalk between exosomes and 
radioresistance and RIBEs are being discovered by 
recent studies. We found that tumor-derived exosomes 
could protect tumor cells from radiation. Exosomes 
can also transport cargos from irradiated cells to non-
irradiated cells to induce RIBEs. Although the relevant 
research is still in the embryonic stage, it still shows the 
great potential clinical value of exosomes in radiother-
apy. Radioresistant exosomes may be an indicator of the 
prognosis of radiotherapy patients due to the presence 
of them will reduce the efficacy of radiotherapy. Radi-
oresistant exosomes may also be a therapeutic target 
to alleviate radioresistance and increase radiosensitiv-
ity. Recent studies showed the crucial role of exosomes 

in RIBE. This indicated that we may regulate RIBE 
via intervening exosomes to kill tumor cells and pro-
tect normal cells at the same time. We also found that 
exosomes could be used to alleviate radiation injury 
such as skin injury and bone loss. However, RIBE is a 
double-edged sword and exosomes can facilitate both 
of them. It is difficult to achieve the win–win idea of 
trying to regulate RIBE with exosomes. In conclusion, 
exosomes involve in various mechanisms of radiother-
apy and show great potential clinical value. Exosomes 
could be an indispensable combination therapy with 
radiotherapy. More experiments are need to study the 
specific mechanism of exosomes in radiotherapy and 
how to apply it in clinical.
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