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Abstract 

Recurrence, metastasis, and drug resistance are still big challenges in breast cancer therapy. Internal and external 
stresses have been proven to substantially facilitate breast cancer progression through molecular and systemic 
mechanisms. For example, endoplasmic reticulum stress (ERS) results in activation of the unfolded protein response 
(UPR), which are considered an important cellular stress response. More and more reports indicate its key role in pro‑
tein homeostasis and other diverse functions involved in the process of breast cancer progression. Therefore, thera‑
pies targeting the activation of ERS and its downstream signaling pathways are potentially helpful and novel tools to 
counteract and fight breast cancer. However, recent advances in our understanding of ERS are focused on character‑
izing and modulating ERS between healthy and disease states, and so little attention has been paid to studying the 
role and clinical application of targeting ERS in a certain cancer. In this review, we summarize the function and main 
mechanisms of ERS in different molecular types of breast cancer, and focus on the development of agents targeting 
ERS to provide new treatment strategies for breast cancer.
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Introduction
Breast cancer (BC) is the most common cancer globally 
and the fifth leading cause of cancer mortality world-
wide in women [1]. According to histological expres-
sion of three receptor proteins, estrogen receptor (ERα; 
ESR1), progesterone receptor (PGR), and human epider-
mal growth factor receptor 2 (ERBB2; HER2; Neu), BC is 
divided into Luminal A, Luminal B, HER-2 positive, and 
triple-negative breast cancer (TNBC) [2]. The therapeu-
tic used in treatment depends on the molecular subtypes 
and tumor stages. Other than surgery, chemotherapy, 
and radiation therapy, the main therapeutic options 
include hormone therapy in the Luminal subtypes and 
molecular targeted therapy in HER-2 positive subtypes 

[3]. Additionally, immunotherapy has made great pro-
gress in the treatment of TNBC [4]. However, therapeu-
tic resistance and metastases are still important factors 
that frequently lead to treatment failure [2, 5]. Therefore, 
exploring the underlying mechanisms driving different 
BC types and identifying novel therapeutic targets may 
help improve the prognosis of BC patients.

In the progression of BC, cancer cells face extracellu-
lar and intracellular stress in the tumor microenviron-
ment. These stress response pathways directly promote 
the malignant characteristics of tumors, reshape the 
tumor microenvironment, and weaken anti-tumor 
immune responses [6]. Among them, endoplasmic 
reticulum stress (ERS) has been proven to play a key 
role in cancer development [7]. ER is the organelle for 
protein secretion and appropriate protein folding to 
maintain protein homeostasis [8]. In the microenviron-
ment of a malignant tumor, the protein folding ability 
of the ER in cancer cells and infiltrating immune cells 
changes, which leads to the accumulation of misfolded 

Open Access

*Correspondence:  yangwu@njmu.edu.cn; jhtang@njmu.edu.cn

1 Department of General Surgery, The First Affiliated Hospital of Nanjing 
Medical University, Nanjing 210029, People’s Republic of China
2 Department of Biobank, The First Affiliated Hospital of Nanjing Medical 
University, Nanjing 210029, People’s Republic of China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12964-022-00964-7&domain=pdf


Page 2 of 12Xu et al. Cell Communication and Signaling          (2022) 20:174 

and unfolded protein [9]. When the accumulation of 
misfolded proteins exceeds the tolerable threshold, 
the three ER sensors will trigger the unfolded protein 
response (UPR), which results in the activation of a 
series of complex signaling pathways [10]. Mild ERS 
can regulate cancer cells and immune cells to promote 
cancer cell proliferation, metastasis, and drug resist-
ance. Conversely, severe and lethal ERS can trigger 
immunogenic cell death (ICD) and protective antitu-
mor immunity [7]. Therefore, the results of ERS and the 
UPR is determined by the duration and intensity of the 
stress [11].

In this review, we aim to introduce the latest develop-
ments of ERS in different types of BC, discuss related 
functional mechanisms, and illustrate the challenges and 
likelihood of their therapeutic applications.

Endoplasmic reticulum stress (ERS) and unfolded 
protein response (UPR)
ERS and the UPR are regulated by three ER transmem-
brane proteins: inositol requiring enzyme 1 (IRE1), 
protein kinase R-like ER kinase (PERK), and activating 
transcription factor 6 (ATF6) [7]. In cell homeostasis, the 
endoplasmic reticulum domains of these three proteins 
bind to molecular chaperone 78-kD glucose-regulated 
protein (GRP78/BiP). While in ERS conditions, GRP78 
is actively recruited to accumulating misfolded proteins 
and separates from these three proteins (Fig. 1) [12].

ER-localized transmembrane sensor IRE1α and its 
substrate XBP1 are the most conserved arm of the UPR. 
After activation, IRE1α undergoes oligomerization and 
auto-phosphorylation on the cytosolic side to activate its 
RNase domain and triggers an unconventional splicing of 
the XBP1 mRNA. This splicing generates the transcrip-
tion factor XBP1s which codes for the functionally active 
protein XBP1 [13]. Then, XBP1s promotes protein fold-
ing and induces endoplasmic reticulum stress-associated 
degradation (ERAD) via activating the transcription 
of genes [14]. IRE1α RNase can also cleave other ER-
associated mRNA, degrading certain mRNAs through 
regulated IRE1-dependent decay (RIDD) and modu-
lating diverse cellular responses [15]. Similarly, PERK 
undergoes oligomerization and auto-phosphorylation to 
phosphorylate the eukaryotic translation initiation factor 
eIF2α. This results in attenuation of the general transla-
tion of proteins while mediates the translation of specific 
mRNAs, such as that of the transcription factor ATF4 
[16]. ATF6α is also another branch of the UPR. ATF6 
activates after being transported from the endoplasmic 
reticulum to the Golgi apparatus where it undergoes S1P 
and S2P protease cleavage, releasing its cytosolic domain 
fragment which acts as a transcription factor.

ERS responses in different molecular types of BC
The occurrence of different molecular types of BC are not 
equally distributed: ER+/PR+/HER2− (70% of patients), 
Her2+ (15%), and triple-negative BC (TNBC, 15%) [2, 17, 
18]. In each of these different subtypes of BC, the role of 
ERS in progression varies [19].

The role of ERS in estrogen receptor positive (ERα+) BC 
cells
Hormone receptor positive BC accounts for 65% of cases 
under 50  years old and 75% of cases in elderly women 
[20]. In hormone-sensitive BC cells, ERα is a proliferat-
ing factor which inhibits inflammatory responses, regu-
lates lipid metabolism, and promotes the proliferation 
of tumor cells [21]. Under NCCN guidelines, adjuvant 
endocrine therapy is recommended for hormone recep-
tor positive BC, including selective estrogen receptor 
modulator (SERM), selective estrogen receptor down-
regulator (SERD), aromatase inhibitor (AI), and GnHa. 
SERMs, such as tamoxifen, initiates cell apoptosis 
through over activation of nuclear ERα [22]. Recently, 
several studies have found that ERS in ERα+ BC could be 
divided into rapid UPR responded to ERα and long-term 
UPR responded to endocrine therapy [21, 23].

As shown in Fig.  2, IRE1α-XBP1 signaling plays an 
essential role in the development of ERα+ BC. Estro-
gen (E2), acting via ERα, opens IP3R calcium chan-
nels mediated through a phospholipase Cγ (PLCγ) and 
then induces rapid anticipatory activation of the UPR 
[24]. XBP1 is expressed at high levels in ERα+ BC and 
co-expressed with ERα signaling [23, 25]. L. Wyld et  al. 
found that the expression of XBP1 was noted in 90% of 
BCs and correlated with ERα+ (P = 0.017) by immuno-
histochemical analysis of 395 BCs [26]. Moreover, ERα 
is not only the therapeutic target in ER positive BC 
patients, but also the site where take place of estrogen-
induced endocrine resistance. Robert Clarke et al. found 
that XBP1s is involved in anti-estrogen resistance in pro-
tecting ERα+ BC by regulating NF-κB signaling [21, 27]. 
Thus, the estrogen signaling pathway and the IRE1-XBP1 
axis generate a positive feed forward loop in BC [28].

In addition to IRE1α-XBP1 signaling, PERK also plays 
a key role in ERα+ BC. In addition to routine attenuation 
of protein translation through phosphorylated eIF2α, 
PERK was also persistently activated by ERα and then 
induced activation of ATF4 and CHOP [29]. Jordan VC 
et al. found that the PERK-NF-κB-TNFα axis could medi-
ate estrogen-induced apoptosis [30]. Also, estrogen was 
shown to promote ERα+ BC by inducing the expression 
of UPR regulator GRP78 [26, 31]. GRP78 could activate 
all branches of UPR transducers and contributed to pro-
mote cell survival and proliferation [24]. Therefore, ERα 
induces the UPR in sensitive and hormone-resistant BC 
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cells with varying consequences, depending on the dura-
tion and intensity of the stress (Fig. 3).

The role of ERS in HER2+ BC cells
HER2 is a receptor tyrosine kinase amplified and over-
expressed in 15–20% of BCs, which is associated with 
an aggressive clinical course and early metastasis. Sev-
eral investigations have revealed the sensitivity of HER2 
to agents that induce the UPR in BC cells [32, 33]. For 

example, Abelardo et al. found that HER2 had increased 
sensitivity to ER stress through the PERK-ATF4-CHOP 
pathway, resulting in the upregulation of the pro-apop-
totic cell surface receptor TRAIL-R2 and activated cas-
pase-8 [33]. Chen s et  al. found that HER2 upregulated 
ATF4 expression to improve ZEB1 and suppress E-cad-
herin, resulting in increased cell migration [34]. Mean-
while, HER2-mTOR signaling-driven BC cells require 
ER-associated degradation for survival [35]. Wegwitz 

Fig. 1  Overview of the three sensors of UPR. Under normal conditions, the three proteins (IRE1a, PERK, and ATF6) bind to the molecular chaperone 
protein GRP78. While under stress conditions, GRP78 releases from the three sensors, resulting in their activation. Each activation pathway has a 
different signal transduction mechanism. IRE1α splices XBP1 mRNA to encode for the transcription factor XBP1s, which promotes the expression 
of genes involved in the protein folding and erase induce and add in ERAD. PERK undergoes oligomerization and auto-phosphorylation which 
then promotes the phosphorylation of phosphorylate eIF2a, leading to general translational attenuation while selectively activating ATF4. ATF6 is 
transported from the endoplasmic reticulum to the Golgi apparatus where it undergoes S1P and S2P protease cleavage, which releases the active 
form of ATF6
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et al. found that USP22 actively suppressed UPR induc-
tion in HER2 BC by stabilizing the major ER chaperone 
HSPA5 [36]. Also, Maurizio et  al. found that activation 
of the UPR bypassed trastuzumab-mediated inhibition 
of the PI3K/AKT pathway [37]. Thus, selectively target-
ing ERS pathways in combination with HER2-targeting 
agents may have therapeutic benefits in the treatment of 
HER2 positive BC.

The role of ERS in TNBC BC cells
Triple-negative BC (TNBC) lacks targeted therapies and 
has the poorest outcomes when compared to the other 
types of BC [38]. Similar to what is observed in ERα+ BC, 
the majority of TNBC patients tend to develop some 
degree of drug resistance [39].

The mechanisms of ERS in TNBC were related with 
the three branches of ERS. Laurie et  al. found that the 

transcriptional activity of XBP1 was activated in TNBC 
but not in ER+ BC. XBP1s was shown to interact with 
HIF1α, creating an XBP1s–HIF1α complex via the 
recruitment of RNA polymerase II, which promoted 
TNBC development and poor prognosis [40]. These 
reports suggest that XBP1 is overexpressed in luminal 
cancers while increased XBP1s transcriptional activity is 
more strongly associated with TNBC. Thus, TNBC cells 
critically rely on IRE1α to adapt ERS and adjust the tumor 
microenvironment (TME) to facilitate malignant growth 
[41]. In addition, IRE1α–XBP1s pathway can be acti-
vated by c-MYC in TNBC and then sustain cell growth 
and survival [42]. Meanwhile, the PERK–eIF2α pathway 
induces autophagy and redox control in TNBC. Lopez 
et al. found that caspase-8 and Noxa-activated apoptotic 
mechanisms are activated in TNBC cells undergoing 

Fig. 2  UPR Signaling in ERα+ BC. In ERα+ BC cells, ERα can open IP3R calcium channels through PLCγ activity and then induce rapid anticipatory 
activation of the UPR. The IRE1α-XBP1s pathway is activated to reestablish ER homeostasis. PERK-eIF2α-ATF4 can be activated to induce expression 
of apoptosis genes, such as CHOP. PERK can also be activated to promote apoptosis through TNFα expression promoted by NF-κB. The drugs 
targeting ERS-associated signaling pathways in ER+ BC are listed. Red represents pathway inhibitors and green represents pathway activators
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sustained ERS [43]. ERS inhibits androgen receptor (AR) 
expression via the PERK-eIF2α-ATF4 pathway [44].

Other indirect mechanisms activating ERS could func-
tion in TNBC. ER-oxidoreductase 1α (ERO1α) is an oxi-
dase located in the ER which controls oxidative protein 
folding. ERO1α was reported to be upregulated in BC 
and is correlated with poor recurrence-free survival in 
TNBC [45]. ERO1α promotes angiogenesis by increas-
ing VEGF expression and promoting immune escape 
via PD-L1 and chemokines in TNBC [46–48]. Moreo-
ver, Wood et  al. found that insulin-like growth factor 
type 1 receptor (IGF-1R) inhibition promoted TNBC by 

increasing ROS-mediated ERS [49]. Also, ERS induced 
CHOP and JNK pathways, which are known to play an 
important role in TNBC [50, 51]. Thus, different ERS 
mechanisms in TNBC could represent critical treatment 
targets (Fig. 4).

Drugs targeting ERS‑associated signaling 
pathways in BC
Cancer cells rely on high levels of ER stress response to 
deal with misfolded proteins and rapid growth. Exces-
sive and prolonged UPR activation has been shown to 
promote the resistance of BC cells to chemotherapy 

Fig. 3  UPR Signaling in HER2+ BC. In HER2+ BC cells, HER2 amplification can activate the UPR through the PERK-ATF4-CHOP-TRAIL-R2 pathway, 
and the PERK-ATF4-ZEB1-E-cadherin pathway can regulate cell apoptosis and migration. Meanwhile, HER2-mTOR signaling can activate the IRE1 
pathway. The drugs targeting ERS-associated signaling pathways in HER2+ BC are listed. Green represents pathway activators
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and radiotherapy [52]. Therefore, altering UPR signal-
ing to disrupt this balance between surviving ER stress 
and UPR-initiated apoptosis could effectively induce cell 
death in BC cells. Recently, some drugs that promote BC 
cell sensitivity to treatment have been identified as having 
effects on UPR signaling. For example, doxorubicin had 
been identified as a novel inhibitor of the IRE1α-XBP1 
pathway, which was previously unknown [53]. Thus, we 
summarized the different drugs targeting ERS-associated 
signaling pathways in the treatment of BC. The drugs 
which can target ERS and the UPR to treat BC are sum-
marized in Table 1.

Drugs targeting IRE1α‑XBP1 signaling
Several studies have developed various specific inhibitors 
for different components of the IRE1α-XBP1 signaling 
pathway. Inhibitors targeting IRE1α-XBP1 include two 
drugs targeting RNase activity and protein kinase activ-
ity. Several IRE1 RNase inhibitors have shown efficacy in 
in  vivo models of multiple myeloma, such as MKC3946 
and STF083010 [54, 55]. Treatment efficacy with these 
inhibitors was unclear in the treatment of solid tumors.

MKC8866, as a selective IRE1 RNase inhibitor, can 
decrease the production of cytokines, including IL-6, 
IL-8, and TGFβ, and promote paclitaxel sensitivity in 
TNBC [56]. Zhao et  al. also found that the MKC8866 

Fig. 4  UPR Signaling in TNBC. In TNBC cells, the IRE1α–XBP1s pathway can interact with HIF1α and c-MYC to participate in cell survival, 
angiogenesis, and invasion. Meanwhile, the PERK–eIF2α pathway activates either the peIF2α–ATF4 pathway or the transcription factor NRF2 to 
induce autophagy and redox control. The drugs targeting ERS-associated signaling pathways in TNBC are listed. Red represents pathway inhibitors 
and green represents pathway activators
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inhibition of the IRE1–XBP1 pathway can suppress 
MYC-driven BCs [42]. STF083010, an inhibitor that spe-
cifically blocks XBP1 splicing, was able to re-established 
tamoxifen sensitivity in resistant MCF-7 cells [57].

Drugs targeting PERK signaling
There are several ATP-competitive PERK kinase inhibi-
tors, such as GSK2606414 and GSK2656157 [58, 59]. 
GSK2606414 has been found in the treatment of several 
cancers such as head and neck squamous cell carcinoma 
and pancreatic cancer [58, 60]. GSK2656157 has been 
found in the treatment of lung cancer and esophageal 
squamous carcinoma [59, 61]. Span et al. also found that 

PERK inhibitor GSK2606414 could improve radiotherapy 
sensitivity in BC cells [62].

Conversely, Overstimulation of the PERK pathway 
effectively induces cancer cell apoptosis, likely through 
pro-apoptotic effects of CHOP. For example, Olean-
drin, a cardiac glycoside, can induce ERS-associated, 
caspase-independent ICD in BC cells through the 
PERK-elF2α-ATF4-CHOP pathway [63]. Dihydrotan-
shinone I (DHT) has been shown to activate the PER-
elF2α-ATF4 pathway and which then triggered BC cell 
apoptosis [64]. Also, Shapiro et  al. reported that ERα 
biomodulator BHPI induces persistent ERα-dependent 
PERK activation which promotes apoptosis and necro-
sis in endocrine-resistant BC cells [65]. Inki Kim et al. 
found a new piperazine oxalate derivate (AMC-04) that 

Table 1  Drugs targeting ERS to treat breast cancer

Drugs Mechanism Effect Refs

Targeting IRE1α-XBP1 signaling

 MKC8866 Selective IRE1 RNase inhibitor MYC-driven BC apoptosis [42]

 STF083010 XBP1 splicing inhibitor Improve tamoxifen sensitivity [57]

 Doxorubicin IRE1α-XBP1 inhibitor Cell apoptosis [53]

 Palmitate IRE1-mediated XBP1 splicing activator Improve trastuzumab sensitivity in HER2+ BC [96]

Targeting PERK-elF2α-ATF4 signaling

 GSK2606414 PERK inhibitor Improve radiotherapy sensitivity [62]

 Oleandrin p-PERK activator Trigger immunogenic cell death (ICD) [63]

 DHT p-PERK activator Cell apoptosis [64]

 BHPI Persistent ERα- dependent PERK activator Endocrine-resistant BC apoptosis and necrosis [65]

 Dandelion extract p-PERK activator TNBC cell apoptosis [97]

 Ilamycin E Trigger CHOP/Bcl-2 TNBC cell apoptosis [50]

 TMAO PERK activator Promote immunotherapy in TNBC [95]

 AMC-04 Activate ATF4/CHOP/DR5 Cell apoptosis [66]

 ATA​ PERK activator HER2 + BC cell apoptosis [98]

 ISRIB eIF2α inhibitor Prevent breast cancer cells with stem-cell-like features 
(BCSC)

[69]

Targeting GRP78

 HHQ-4 GRP78 inhibitor Glucose-deprived BC cells apoptosis [74]

 Plumbagin GRP78 inhibitor Improve tamoxifen sensitivity [75]

 Kaempferol GRP78 inhibitor Cell apoptosis [76]

 Epigallocatechin gallate GRP78 inhibitor Improve taxol and vinblastine sensitivity [91]

 JI017 GRP78 activator Improve paclitaxel sensitivity [77]

 Betulinic acid GRP78 activator Improve taxol sensitivity [92]

 Prodigiosin GRP78 activator Cell apoptosis [78]

 Tunicamycin GRP78 activator Cell apoptosis [79]

 Panobinostat GRP78 hyperacetylation Cell apoptosis [80]

Targeting other pathways

 Melatonin Promote ROS Improve lapatinib sensitivity in HER2+ BC cells [81]

 DK143 Promote ROS Cell apoptosis [82]

 ErSO Open IP3R calcium channels Induce rapid and selective necrosis of ERα+ BC [83]

 MPPa-PDT Induce autophagy Cell apoptosis [84]
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induces apoptosis via activation of the ATF4/CHOP/
DR5 pathway [66].

Moreover, an integrated stress response (ISR), which 
aimed to restore cellular homeostasis, promoted phos-
phorylation of eIF2α [7, 67]. As an important eIF2α 
inhibitor, ISR inhibitor (ISRIB) was found to inhibit 
eIF2α phosphorylation by activating eIF2B, thus inhib-
iting signaling downstream from eIF2α to ATF4 [68]. 
In BC, Michael Jewer et al. (year) found that ISRIB can 
effectively prevent phenotypes of BC cells that have 
stem-cell-like features (BCSC) and improve outcomes 
with mTOR inhibitors or chemotherapy [69]. Lee et al. 
(year) also found that ISRIB combined with bortezomib 
could trigger paraptosis in BC cells [70].

Drugs activating ATF6
Unlike IRE1 and PERK, few selective modulation 
agents of ATF6 had been developed. The inhibitions of 
ATF6 such as ceapins were achieved by inhibiting the 
proteases from S1P and S2P [71]. Also, protein disulfide 
isomerase (PDI) contributed to disulfide bond rear-
rangement in ATF6 under stress conditions and several 
studies found PDI inhibitors such as 16F16 and P1 [72, 
73]. However, in BC, none inhibitors directly targeting 
ATF6 had been found.

Drugs targeting GPR78
GRP78 controls the activation of endoplasmic reticulum-
transmembrane signaling mechanisms. HHQ-4 is a qui-
noline derivate and GRP78 inhibitor that preferentially 
inhibits proliferation of glucose-deprived BC cells [74]. 
Plumbagin, another GRP78 inhibitor, was able to sensi-
tize BC cells to undergoing tamoxifen-induced cell death 
[75]. Also, Ravanan et  al. found that GRP78 inhibitor 
kaempferol could induce cell death by targeting CHOP 
and caspase 3/7 [76].

Moreover, except GRP78 inhibitors, there are some 
ERS inducers activating GRP78. For example, Seong-
Gyu Ko et  al. developed a novel herbal extract called 
JI017, which can activate GRP78 from both exosomes 
and cell lysates to induce an excessive UPR in paclitaxel-
resistant BC [77]. Ewa et al. found that prodigiosin could 
upregulate GRP78 and then induce both IRE1–JNK and 
PERK–eIF2α signaling pathways, which were essential to 
upregulate CHOP and suppress BCL2 to evoke cell death 
[78]. Tunicamycin was found to not only increase GRP78 
expression in ER-/PR-/HER2+ BC, but also in ER-/PR-/
HER2- BC, which was associated with high anti-tumori-
genic action [79].

Almost all the drugs targeting GRP78 were targeting 
the protein expression level of GRP78. Recently, a regu-
lator targeting GRP78’s post-translational modifications 

was found. For example, Balusu et al. found that panobi-
nostat, a pan-histone deacetylase (HDAC) inhibitor, was 
able to bind and hyperacetylate GRP78, which then then 
activated the PERK-elF2α-CHOP pathway to induce cell 
death [80].

Indirect activation of UPR signaling by small molecule 
therapy
Outside of the three main branches of the UPR, some 
drugs can indirectly activate the UPR through other 
mechanisms. For example, melatonin can enhance the 
cytotoxic effect of lapatinib in HER2-positive BC by 
inducting ER stress through promoting excessive UPR 
and ROS accumulation [81]. Soon Young Shin et al. found 
that the synthetic chalcone derivative DK143 can be used 
to promote BC apoptosis by inducing ROS-mediated 
activation of the UPR [82].

Moreover, David J. Shapiro et  al. discovered the com-
pound ErSO, which activates the anticipatory UPR by 
promoting a rapid efflux of calcium stored in the ER into 
the cytosol, which induces rapid and selective necrosis 
of ERα-positive BC cells in a patient-derived xenograft 
(PDX) mouse model [83]. Also, ErSO treatment induced 
XBP1s mRNA > 1,000 fold higher than the previously 
reported activator BHPI, converting the UPR from pro-
tective to toxic by opening ER IP3R calcium channels 
[65]. Bai DQ et  al. found that methyl pyropheophenyl-
chlorin photodynamic therapy (MPPa-PDT) can inhibit 
tumor growth through ERS-induced autophagy in  vitro 
and in vivo [84].

Discussion
Over the past decades, significant discoveries have 
helped establish ERS and UPR as the protein homeosta-
sis regulation mechanisms, which balance survival and 
progression of tumor cells [7]. While extensive research 
has focused on characterizing and modulating ERS 
between healthy and disease states, little is known about 
the role and clinical application of ERS in certain cancers 
due to the tumor specificity. In particular, several ques-
tions remain unresolved. How does ERS affect different 
molecular types of BC cells? How do ERS-targeting drugs 
impact BC cells? How can other forms of cancer therapy, 
particularly immunotherapy, be combined with ERS-tar-
geting drugs? To answer these questions, it is critical to 
gain a comprehensive understanding of the mechanisms 
and clinical applications of ERS in BC. In this review, we 
summarized the main functions and mechanisms of ERS 
in different molecular types of BC and focused on drugs 
that have potential for targeting ERS in the treatment of 
BC.

The role of ERS in BC depends on its molecular types. 
Several studies have shown that ERS responses were 
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employed by estrogen to regulate the development of 
BC cells [24]. ERα and its agonists activated the IRE1, 
PERK, and ATF6 pathways. Also, over activating the pro-
apoptotic branches of the UPR could activate a ligand-
independent apoptotic program in HER2+ BC cells [33]. 
Laurie et  al. showed that total XBP1 was overexpressed 
in luminal cancers while increased XBP1s transcriptional 
activity was more strongly associated with TNBC [40]. 
In addition to directly regulating cancer characteristics, 
ERS can be transmitted to and dynamically reprogram 
tumor-infiltrating immune cells, especially myeloid cells 
[85–87]. For example, ERS has been shown to promote 
macrophage activation and induce pro-inflammatory 
responses [88]. Also, ERS can disrupt the metabolism 
and antigen presenting capacity of dendritic cells (DCs) 
and inhibit T cell proliferation [88, 89]. Moreover, GRP78 
and CD47 co-expression results in increased tumor mac-
rophage infiltration and is associated with poor prognosis 
in BC patients [90]. Therefore, drugs targeting ERS and 
its downstream signaling pathways are essential in stop-
ping tumor growth, metastasis, and improving responses 
to chemotherapy, targeted therapy, and immunotherapy.

In summary, ERS related antitumor drugs can be 
divided into those that inhibit UPR-mediated survival 
and those that induce sustained ERS-mediated death. 
ERS-targeting drugs can not only directly promote 
apoptosis of BC cells, but also enhance the effect of 
traditional treatment. STF083010 and Plumbagin have 
been shown to promote sensitivity to tamoxifen in BC 
cells [57, 75]. Epigallocatechin gallate and betulinic acid 
can improve the sensitivity of BC cells to the chemo-
therapy taxol [91, 92]. PERK inhibitor GSK2606414 can 
improve radiotherapy sensitivity [62]. Also, due to the 
function of ERS in immune cells, targeting ERS can be a 
new strategy for immune modulation and immunother-
apy in BC treatment [90, 93]. Cubillos-Ruiz et al. found 
that the upregulation of XBP1 was related to a decrease 
in T cell infiltration [94]. TMAO has been identified as 
a drug that helps promote the efficacy of immunother-
apy in TNBC treatment [95]. Also, Oleandrin can trig-
ger ICD by activating p-PERK [63].

Although research on drugs targeting ERS has made 
significant progress, some problems remain unsolved. 
For example, IRE1 inhibitors can produce undesired 
side effects due to blocking XBP1s and increasing 
unspliced XBP1, which could lead to increased NF-κB 
in ER-positive BC [27]. Thus, it is important to develop 
new strategies to directly target XBP1. Also, PERK 
inhibitor GSK2606414 had serious toxic side effect on 
the pancreas and significantly inhibited the produc-
tion of insulin [62]. Thus, further preclinical and clini-
cal studies are necessary to evaluate their anti-tumor 

efficacy and potential side effects in combination with 
other forms of therapy.

In conclusion, ERS and UPR signaling is involved in 
promoting the development and progression of certain 
types of BC, as well as contributing to therapy resist-
ance. The significance of the UPR is specific to different 
molecular types of BC. Several studies identified that 
drugs targeting the underlying mechanisms driving the 
UPR improve treatment outcomes in BC patients. In 
the future, more clinical trials are needed to verify the 
efficacy of these specific anti-UPR drugs for the treat-
ment of BC.
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