
Schürmann et al. 
Cell Communication and Signaling          (2022) 20:148  
https://doi.org/10.1186/s12964-022-00953-w

REVIEW

Review of potential medical treatments 
for middle ear cholesteatoma
Matthias Schürmann1, Peter Goon1,2 and Holger Sudhoff1* 

Abstract 

Middle ear cholesteatoma (MEC), is a destructive, and locally invasive lesion in the middle ear driven by inflammation 
with an annual incidence of 10 per 100,000. Surgical extraction/excision remains the only treatment strategy available 
and recurrence is high (up to 40%), therefore developing the first pharmaceutical treatments for MEC is desperately 
required. This review was targeted at connecting the dysregulated inflammatory network of MEC to pathogenesis and 
identification of pharmaceutical targets. We summarized the numerous basic research endeavors undertaken over the 
last 30+ years to identify the key targets in the dysregulated inflammatory pathways and judged the level of evidence 
for a given target if it was generated by in vitro, in vivo or clinical experiments. MEC pathogenesis was found to be 
connected to cytokines characteristic for Th1, Th17 and M1 cells. In addition, we found that the inflammation created 
damage associated molecular patterns (DAMPs), which further promoted inflammation. Similar positive feedback 
loops have already been described for other Th1/Th17 driven inflammatory diseases (arthritis, Crohn’s disease or mul-
tiple sclerosis). A wide-ranging search for molecular targeted therapies (MTT) led to the discovery of over a hundred 
clinically approved drugs already applied in precision medicine. Based on exclusion criteria designed to enable fast 
translation as well as efficacy, we condensed the numerous MTTs down to 13 top drugs. The review should serve as 
groundwork for the primary goal, which is to provide potential pharmaceutical therapies to MEC patients for the first 
time in history.

Keywords:  Cholesteatoma, Chronic inflammation, Innate immune system, Adaptive immune response, Positive 
feedback loops, Precision medicine

Plain English summary 

Middle ear cholesteatoma (MEC) is a destructive and locally invasive ulcerated lesion in the middle ear driven by 
inflammation which occurs in 10 out of 100,000 people annually. Surgical extraction/excision is the only treatment 
strategy available and recurrence is high (up to 40% after ten years), therefore developing the first pharmaceutical 
treatments for MEC is desperately required. This review is focused on the connections between inflammation and 
MEC pathogenesis. These connections can be used as attack points for pharmaceuticals. For this we summarized the 
results of research undertaken over the last 30 + years. MEC pathogenesis can be described by specific inflammatory 
dysregulation already known from arthritis, Crohn’s disease or multiple sclerosis. A hallmark of this dysregulation are 
positive feedback loops of the inflammation further amplifying itself in a vicious circle-like manner. We have identified 
over one hundred drugs which are already used in clinic to treat other inflammatory diseases, and could potentially 
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Background
Middle ear cholesteatoma: A disease without medical 
treatment
The middle ear cholesteatoma (MEC) is an inflammatory, 
destructive, and locally invasive middle ear lesion com-
posed of proliferative keratinizing squamous epithelium 
and its subepithelial connective tissue. In general, there 
are two kinds of MECs. The rare congenital form arises 
from squamous epithelium trapped within the tempo-
ral bone during embryogenesis, and the more frequent 
acquired type of MEC which has an annual incidence 
between 7 and 15 out of 100,000 [1–4]. As disease pro-
gresses, the lesion becomes chronically and increasingly 
inflamed and this escalating inflammation leads to several 
complications. (1) Erosion of adjacent bony structures 
resulting in conductive and/or sensorineural hearing loss. 
MEC may lead to severe complications like (2) vestibu-
lar dysfunction, (3) facial palsy, (4) brain abscesses and 
other intracranial complications. Even though this severe 
disease was first described by Duverney in 1683, there 
is still no medical treatment, hence surgical removal of 
the MEC offers the only therapeutic possibility today [5]. 
Unfortunately, recurrence often occurs within 10  years 
in 40% [1] with even higher rates in children [6]. Rates of 
recurrent MECs are partly dependent on surgical tech-
niques [7] and impacted by different approaches and 
techniques [8].

The main characteristic of MEC tissue is its abundant 
and chronic inflammation. It has been shown that the 
bone erosion as well as progression and recurrence are 
associated with the high degree of inflammation, which is 
also frequently linked to infection of the MEC tissue [9].

Applicable targets in precision medicine for MEC 
therapy
Methodology
Since chronic inflammation is the major source of MEC 
pathogenesis, this review will focus on the inflamma-
tory intra- and extracellular signaling responsible for the 
etiology and pathogenicity of MEC. For this we use peer 
reviewed original research articles written in English as 
well as published review articles from the PubMed/Med-
line database between January 1990 and April 2022.

In the first section, we will focus on the signs trigger-
ing the primary inflammation as well as the intracellular 
signalling and the inflammatory output of the immune 

system residing in the MEC niche. In the second sec-
tion we discuss the mechanisms by which inflammation 
drives osteolysis, epidermal proliferation and angiogen-
esis. All of this is aimed at the identification of molecular 
targets which can be applied in precision medicine. For 
this we only sum up studies which were able to draw con-
nections between these targets and MEC pathogenesis. 
Wewill distinguish between in vitro, animal models and 
clinical data to judge the relevance of a specific cue/factor 
to the clinical outcome. In  vitro evidence were derived 
from primary cultures mostly derived from MEC tis-
sue, in  vivo correlations were exclusively obtained from 
well-established animal models of MEC. Clinical data 
was derived from either cohort studies, used to detect 
the correlations between a certain target and the clini-
cal outcome, or controlled clinical trials, always used to 
prove deregulation of this target in different control tis-
sue compared to MEC. During this review we will focus 
solely on these fractions of the signaling pathways which 
are deregulated in MEC tissue and hence more acces-
sible to pharmaceutical treatment compared to the sur-
rounding healthy tissue. To facilitate the main goal of this 
review which is the identification of possible pharma-
ceutical treatment options, we consider only targets for 
which previous investigations showed a non-contradic-
tory connection to MEC pathogenesis and those without 
available drugs within our inclusion criteria (Additional 
file 1: Table S1), described in the subsequent paragraph. 
Based on these descriptions, we will discuss possible 
medical treatments, aimed at the described roots and 
try to judge their potential to restore the proper function 
of the wrongly trained inflammatory network and their 
clinical potential. Indeed, based on the hierarchy of evi-
dence described above, we derive a table marking the dif-
ferent drugs in accordance to the level of evidence. In this 
table we will suggest drugs, which have already been used 
for and applied to the middle ear and might be directly 
tested in clinical studies. Most importantly we proposed 
numerous drugs in the context of a molecular targeted 
therapy (MTT), which are already applied systemically 
in clinic but might previously be tested for their phar-
maceutical effect on MEC in an animal model. For some 
targets numerous drugs are available. In this case we 
have suggested the ones which are already approved for 
clinical application. To enable fast translation into clini-
cal use, the vast landscape of experimental modulators of 

be repurposed to treat MEC. To improve and expedite clinical success rates, we applied certain criteria based on our 
literature searches and condensed these drugs down to the 13 top drugs. We hope the review will serve as ground-
work for the primary goal, which is to provide potential pharmaceutical therapies to MEC patients for the first time in 
history.
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inflammatory signalling only applied through an in vivo 
or in  vitro model so far were ruled out. Also excluded 
were approaches based on RNA, lytic viruses or anti-
bodies. Even though we think their topical application to 
an open wound-like tissue e.g. MECs might potentially 
work, this has never been tested and hence offers no fast 
track to translation.

By this we hope the comprehensiveness of this review 
inspires and streamlines new research into this topic, 
which might expedite the development of the first medi-
cal treatment option based on precision medicine, and 
effectively manages progression and recurrence of this 
hazardous lesion in numerous MEC patients.

Targets from initial triggers of inflammation
The chronically escalated inflammation in MEC is known 
as a predictor for its pathogenesis and pathogenicity. 
Hence, in  vivo studies have showed a decrease of MEC 
pathogenesis by systemic application of prednisolone 
used to treat various inflammatory conditions [10, 11]. 
Due to its ototoxic properties, these kinds of drugs are 
only applied topically and systemically in complicated 
cases with labyrinth fistula, brain abscess or meningitis 
[12]. But more recently the non-ototoxic drug montelu-
kast usually used for maintenance treatment of asthma or 
allergic rhinitis [13], showed similar benefits. Therefore, 
a clinical study comparing local application of montelu-
kast to traditional treatment, may enable new treatment 
options.

As already mentioned, this review focuses on a more 
targeted approach aimed at the characteristics of MEC 
disease. The main aspects of MEC tissue are tissue 
destruction, cell death as well as microbial infection. 
From these three sources the initial drivers of inflamma-
tion in MEC are derived. They can be grouped into the 
pathogen associated molecular pattern (PAMPs), which 
originate from bacteria, and damage associated molecu-
lar pattern (DAMPs), derived from stressed and dyeing 
cells (endogenous) and decomposing extracellular matrix 
(ECM; exogenous). Different studies have linked the 
PAMP Lipopolysaccharide (LPS), which originate from 
Gram (−) bacteria, to MEC formation [14] in patients, 
in vitro or in vivo MEC growth [15, 16], respectively and 
bone resorption in the clinic [14] as well as in an ani-
mal model [16]. But even though MEC often occur after 
chronic infection of the middle ear, clinical sampling has 
showed, that from nearly 40% of MEC, no bacteria could 
be cultivated [17]. But more recent studies comparing 
metagenomics approaches with conventional culture-
based techniques, have demonstrated an improvement 
of the bacteria detection rate to 100%, hence MEC can-
not be considered sterile [18, 19]. We assume, that even 
though MEC tissue is not sterile, the exact composition 

of the microbiome may define and contribute to the clini-
cal outcome. For example, the concentration of PAMPs 
like lipopolysaccharide (LPS) in MECs ranged over 4 
orders of magnitude [14]. Even though fungal infection 
of the middle ear is a very rare entity, which is almost 
exclusively seen in immunocompromised patients, the 
microbial genus most often detected in these studies has 
been found to be Aspergillus, and this fungus was most 
frequently found by culture based approaches [20, 21]. 
Interestingly, Aspergillus presence could also be linked 
to severe bone erosion in patients [18]. In any case, other 
mechanisms triggering the initial inflammation (particu-
larly in the non-infected MECs) must also be present. 
Since tissue damage is characteristic for MEC disease, 
various DAMPs are upregulated and could be linked to 
osteolysis in an animal model [22, 23].

The prevention of the generation of endogenous or 
exogenous DAMPs is directly coupled to prevention of 
MEC. Hence, a drug inhibiting MEC formation will addi-
tionally cause a negative feedback loop further reducing 
DAMP driven inflammation. PAMPs on the other hand, 
are directly linked to the presence of pathogens and are 
responsible for the signalling through the macrophage 
inducible Ca2 + -dependent lectin receptor (Mincle), 
which is able to detect PAMPs derived from fungal or 
bacterial sources, or Toll-like receptor 4 (TLR4) respond-
ing to bacterial PAMPs both characteristic for MEC. For 
bacteria, empirical broad-spectrum antibiotics are com-
monly applied post-surgery to prevent postoperative 
infection [24–26]. Due to the rise in antibiotic resistant 
bacteria (“super-bugs”), recent studies have shown that 
the application of specific drugs according to antibiotic 
susceptibility testing improved the rate of dry ear after 
surgery significantly [27, 28], a predictive factor directly 
coupled to MEC recurrence and bone destruction [29, 
30]. This suggests that a clinical study comparing broad-
spectrum antibiotic treatment vs antibiotic susceptibility 
testing based treatment with longer follow-up periods 
will be able to identify parameters like recurrence, bone 
destruction etc. and may encourage surgeons to utilize 
antibiotic susceptibility testing before surgery. Since fun-
gal infection and Mincle are coupled to MEC pathogen-
esis as well, application of antimycotics might yet be an 
additional experimental arm in this study.

Unfortunately, not only certain DAMPs and PAMPs are 
upregulated but their receptors are also expressed at a 
higher level compared to healthy tissue, further exagger-
ating the inflammatory signalling in MEC tissue. A major 
contributor in terms of DAMPs is the upregulated recep-
tor for advanced glycation end product (RAGE) [31], for 
which S100A8/A9 and particularly HMGB1 can serve as 
ligand, both known to be upregulated in MEC [31–33]. 
In vitro studies could therefore potentially prove, that the 
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adverse combination of the receptor and agonist upreg-
ulation of the HMGB1/RAGE pathway, contributes to 
MEC pathogenesis [31].

The DAMPs and PAMPs recognizing TLR4 have been 
found to be of particular importance in regards to MEC 
disease. Hence various investigations utilizing transcrip-
tomic and proteomic techniques were undertaken and 
demonstrated an upregulation of TLR4 in comparison 
to various different control samples e.g. “normal” control 
middle ear samples without any inflammation [34], con-
genital MEC [35] or external auditory canal skin [36–38] 
and even normal tissue from chronically infected mid-
dle ear [37]. As already mentioned TLR4 does not only 
recognize DAMPs already upregulated e.g. HSP27 [39], 
HSP60 and HSP70 (both 40), HMGB1 [31] and S100A8/
S100A9 [32, 33] but can also be activated by PAMPs 
derived from Aspergillus and Candida or LPS, which are 
particularly abundant in purulent MECs [14, 21]. Unfor-
tunately, an investigation utilizing Förster resonance 
energy transfer (FRET) measurements could detect a 
further amplification of the TLR4/LPS signalling through 
HSP70 by trafficking TLR4/LPS to the Golgi apparatus 
[41]. Various in  vitro assays have suggested that TLR4 
signalling is involved in the establishment of the inflam-
matory environment of the MEC niche [42] and MEC 
recurrence and proliferation [43]. Clinical data, as well 
as a Knock-out mouse model of acquired MEC directly 
linked TLR4 to the local inflammation and bone destruc-
tion [35]. TLR4 signalling is further enhanced by the trig-
gering receptor expressed on myeloid cells-1 (TREM-1), 
which is upregulated compared to healthy control skin 
[44]. TREM-1 senses DAMPs like HMGB-1 and further 
amplifies the already exaggerated TLR4 signalling in vitro 
[45]. A second way to enhance the TLR4 signalling in 
MEC, might be the presence of macrophage migration 
inhibitory factor (MIF). Since MIF is able to induce TLR4 
expression [46], the recurrent and osteolytic features of 
MEC disease may also be linked to the expression of MIF 
[47]. Due to the parallel activation of TLR4 and RAGE 
signalling in MEC and the interconnection between 
RAGE and TLR4 signalling on the intracellular level, 
these signalling inputs are able to bilaterally enhance 
each other. In this context, antibody blocking assays and 
animal models have shown that HMGB1 induced RAGE 
signalling increases the inflammatory potential of LPS in 
macrophages, one of the main immunomodulatory cells 
in MEC tissue [48]. A study which investigated various 
other PAMP recognizing receptors at the mRNA level 
found that Mincle, which is able to recognize PAMPs of 
bacterial or fungal origin respectively, is upregulated in 
comparison to external auditory canal skin and that its 
expression could be correlated to recurrence and oste-
olysis in MEC disease [49]. There are many more PRR 

receptors which are expressed in MEC tissue. But in con-
trast to TLR4, TREM-1, RAGE and Mincle, their contri-
bution to MEC pathogenesis has not been proven so far.

Since it is hard to prevent PAMPs and particularly 
DAMPs in MEC, an inhibition of activation of PRR 
should be one of the first targeted approaches (Fig. 1). As 
described above TLR4 signalling is paramount in MEC 
pathogenesis. Interestingly, amitriptyline, a drug usu-
ally administered against migraine, inhibits the expres-
sion of TLR4- receptor and subsequent NF-kB signalling 
[50]. The up regulation of TLR4 expression, through 
MIF, might be dampened by Ibudilast known to inhibit 
MIF [51] and already applied against progressive mul-
tiple sclerosis [52]. Also, the MIF receptor antagonists 
RTL1000 [53] was evaluated for treatment of MS [54, 55]. 
After downregulating TLR4 expression the prevention of 
the activated (TLR4-MD-2-PAMP/DAMP)2 complex is 
the next pharmaceutical target. In vitro studies from our 
group, showed that LPS based MD-2-TLR4 antagonists 
might be one pharmaceutical approach against MEC [42, 
43]. The Antagonists eritoran can be used to treat septic 
shock [56, 57], JKB-122 against hepatitis [58], VB-201 for 
the therapy of psoriasis [59], ibudilast [60] or dalcetrapib 
used for cholesterol management [61] and curcumin, 
for which topical application was shown to be effective 
against some inflammatory skin disorders [62]. An MD-
2-TLR4 antagonist established in clinical practice are 
Taxanes [63] known from oncologic therapies [64]. But 
even though the (TLR4-MD-2-PAMP/DAMP)2 might 
be formed, targeted inhibition of downstream (MyD88-
dependent and MyD88-independent) pathways offers 
an additional anti-inflammatory strategy. Resatorvid is 
a selective inhibitor of TLR4 which inhibits autophagy 
and is used for various inflammatory situations, which 
include neuroprotection following brain injury, the treat-
ment of severe sepsis [65] or alcohol-related cirrhosis, 
and also inhibits both MyD88-dependent and MyD88-
independent pathways [66]. The compound resveratrol 
used against arthritis or COPD [67] and alogliptin against 
Typ-2-Diabetes [68] blocked MyD88-dependent sig-
nalling [69, 70], respectively. Naltrexone and naloxone, 
drugs well known as opioid antagonists but also applied 
against inflammatory disorders like Crohn’s disease and 
neuroinflammation respectively, are MyD88 independent 
inhibitors of TLR4 signalling [71]. To inhibit the amplifi-
cation of TLR4 signalling through TREM-1, its transcrip-
tion can be inhibited by curcumin [72], or the blocking of 
TREM-1 ligand binding domain can be achieved by pep-
tides like nangibotide already applied against septic shock 
[73–75]. RAGE can be targeted by extracellular inhibitors 
e.g. azeliragon applied against Alzheimer disease [76]. To 
target Mincle, quercetin, effective against upper respira-
tory tract infections [77], or curcumin [78], were shown 
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to inhibit Mincle induced macrophage inflammation 
[79].

Targets from extra‑ and intracellular inflammatory 
signalling pathways
As a consequence of the upregulated PRR-signalling, 
a proinflammatory environment is created with IL-1α, 
IL-6 and TNF-α being highly upregulated in the inflamed 
MEC tissue [80, 81]. Apart from the elevated expres-
sion of IL-1β, the corresponding Interleukin-1 recep-
tor (IL-1-R) is upregulated threefold in MEC epidermis 
compared to the normal aural skin [82]. This pro-inflam-
matory signalling induces several intracellular signalling 
events characteristic for MEC tissue. The main tran-
scription factors involved in this are NF-κB, AP-1 and 
HIF-1. Investigations have showed, that the expression 
of NF-κB was upregulated and more importantly the 

nuclear translocation, as well as the DNA binding activ-
ity were increased in epithelium of MEC tissue compared 
to healthy skin [83]. Furthermore, a significant correla-
tion was found between TLR4 and activated NF-κB [37] 
in MEC tissue, and we assume, that the same could be 
shown for RAGE as well. Further, another study demon-
strated a correlation between NF-kB and biomarkers of 
angiogenesis and osteolysis in MEC tissue isolated from 
patients [84]. In addition to this, the DNA-binding pro-
tein inhibitor Id1, known to be induced by chronic TLR4 
signalling [85], was proven to be abundantly expressed in 
MEC epithelium [86] where it accelerates proliferation 
and survival of keratinocytes in  vitro via NF-κB signal-
ling [87]. Two studies found that the transcription factor 
AP-1 was detectable in the nucleus of MEC epithelium 
[88], where it was much more abundant compared to 
healthy ear canal skin [89].

Fig. 1  The proinflammatory intra and extracellular signalling in MEC disease. The orange background symbolizes the MEC, red represents the 
cytoplasm of residing cells and brown their nucleus. The level of evidence linking the depicted part of the pathway to MEC parthenogenesis are 
color-coded (red, yellow and green), proinflammatory deregulation is shown in blue. Fractions which were not investigated so far but bound to 
be a vital part of the proinflammatory signalling in MEC are shown in white. The pharmaceutical treatment options accessible within the inclusion 
criteria chosen in this review are shown as blue/red pills
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Since hypoxia is common in MEC tissue, the expres-
sion of hypoxia-inducible factor 1 (HIF-1) was signifi-
cantly increased in MEC compared to normal skin [90] 
and localized to keratinocytes located on the basal layer 
[91]. Interestingly, the likelihood of relapse after surgery 
was correlated to HIF-1 expression [90]. Further, down-
stream of the PRR and cytokine receptors, the transcrip-
tion factor NF-κB is the most promising contributor to 
angiogenesis and osteoclast activation in MEC. Since 
NF-κB is a common target of various diseases, numer-
ous inhibitors have been designed and clinically tested 
(reviewed in 92). Even though the role of AP-1 has not 
been not elucidated so far, AP-1 shares many upstream 
inducers with NF-κB. Hence both transcriptional factors 
can be inhibited by the same signalling transducing pro-
tein inhibitors (Fig. 1). Particularly interesting drugs for 
MEC are inhibitors of Bruton’s Tyrosine Kinase (BTK), 
since BTK lies downstream of TLR4, TREM-1, IL-1-R 
and TNFR, the dominant links between extracellular 
and intracellular signalling in MEC. The BTK inhibi-
tors acalabrutinib [93], ibrutinib [94], zanubrutinib [95] 
and tirabrutinib [96] have been developed and applied to 
treat oncologic diseases but also various inflammatory 
skin diseases [97].

Another protein downstream of TLR4 and IL-1-R is 
Interleukin-1 receptor-associated kinase (IRAK). The 
inhibitor PF-06650833 developed against rheumatoid 
arthritis [98] is useful for inhibition of IRAK. Down-
stream of TLR4 and TNFR is the cellular inhibitor of 
apoptosis proteins (c-IAP), which can be targeted by 
inhibitors like birinapant usually used against solid 
tumors [99]. Pi3K Phosphoinositide 3-kinases PI3Ks, are 
a family of enzymes downstream of TLR4, TNFR and IL-
6-R. Their inhibition by idelalisib [100], copanlisib [101] 
or duvelisib [102] approved for the treatment of lym-
phoma and alpelisib [103] useful against breast cancer. 
Directly upstream of the activation of NF-kB is IKK a/b, 
of which the inhibitors CHS-828 [104] have been used 
against solid tumours and VGX-1027 [105] for the treat-
ment of rheumatoid arthritis. In the canonical pathway, 
proteasome degradation of IkB is crucial for the release 
of active NF-kB. Many useful proteasome inhibitors 
have been already applied in clinical practice e.g. disul-
firam against alcohol dependence [106], ixazomib [107], 
carfilzomib [108] and oprozomib to treat multiple mye-
loma [109] or marizomib developed against glioblastoma 
[110].

HIF-1 can be inhibited by several drugs already in clini-
cal practice, which act on different levels (reviewed in 
111, 112). The accumulation of HIF-1 is effectively tar-
geted by either enhancing its degradation with the drugs 
panobinostat [113], vorinostat [114], geldanamycin [115] 
and its derivative tanespimycin [116] applied against solid 

tumours and haematological malignancies or resveratrol 
used to treat against arthritis or COPD [117]. Another 
approach would be the inhibition of its expression with 
EZN-2208 [118] or EZN-2968 developed against solid 
tumours and lymphomas [119] or panzem which was 
additionally used in rheumatoid arthritis [120]. Interest-
ingly panzem reduces HIF-1 transcriptional activity as 
well, hence it could attack HIF-1 signalling on two lev-
els. Despite promising results, clinical trials with panzem 
were dismissed, due to its poor oral bioavailability. But 
topical application to MEC might revive the clinical pros-
pects for this promising drug. Alternatively, inhibition of 
HIF-1 transcriptional activity can be achieved by echino-
mycin [121] or amphotericin B [122], known for its anti-
fungal effect additionally reducing Mincle signalling. 
Finally, the drug acriflavine [123] can be used to dampen 
HIF-1 signalling by preventing HIF-1a/HIF-1b dimeriza-
tion and is also able to inhibit the growth of Gram (+) 
bacteria as well, reducing microbial driven inflammation 
on two levels.

Even though Id1 can only be linked by in  vitro mod-
els to epidermal proliferation as well as angiogenesis of 
MEC, it might be inhibited by many clinical approved 
drugs (reviewed in 124). Chief among these were 
fucoidan [125] and berberine [126], both inhibiting the 
expression of id1 and showing good effect against inflam-
matory disorders.

In conclusion, it is clear that numerous PAMPs/
DAMPs and cytokines are abundant in MEC tissue and 
can be linked to promotion of MEC characteristics via 
establishment of an inflammatory environment. Impor-
tantly, only signalling via LPS/TLR4/NF-κB was demon-
strated to contribute to the initial establishment of the 
inflammatory state of MEC disease as well as to its clini-
cal outcome. In accordance with our criteria judging the 
quality of a target, we suggest that this pathway might be 
the most promising pharmaceutical target.

Specific targeting of Innate immunoregulatory events 
in MEC disease
Due to its highly inflamed sub-epithelial connective tis-
sue, middle ear MEC is characterized by a large infiltra-
tion of inflammatory cells. Macrophages are the subset 
of myeloid-derived blood cells defined here precisely as 
CD3+ and CD68+ cells, which have been found to be 
upregulated by a factor of about five in MEC showing 
high level of bone destruction compared to external audi-
tory canal skin [127]. Other studies utilizing MEC tis-
sue of all levels of invasiveness, have detected a two to 
fourfold increase of CD11c and CD68 positive cells in 
relation to normal ear skin and characterized them as 
dermal macrophages [127, 128]. We hypothesize that the 
polarization of MEC macrophages is likely to be of the 
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proinflammatory M1 type, which is demonstrated by the 
high expression of nitric oxide synthase [129] and pro-
inflammatory cytokines [80] in MEC. Another myeloid 
cell type, dendritic cells, were also increased in acquired 
MEC compared to congenital MEC [130] and their pres-
ence could be linked to drivers of osteolysis in MEC tis-
sue in an animal model [131].

After infiltration, the differentiation of monocytes into 
proinflammatory M1 macrophages and conventional 
dendritic cells should normally be inhibited. There are 
several drugs already applied in clinic able to inhibit 
this polarization of macrophages in inflammatory dis-
orders e.g. curcumin [132], bilobalide used against com-
plications in pregnancy [133], quercetin already applied 
against COPD [134, 135], berberine [136] or rosiglita-
zone [137] known for their positive effect on diabetes, 
arctigenin [138] which is suspected to lower the risk of 
exaggerated inflammation. In regards to the dendritic 
cells abundant in MEC, substances like corticosteroids, 
long known for their application against inflammatory 
disorders [139], rapamycin, an immune modulator use-
ful in helping prevent transplant rejection [140] or cyclo-
sporine [141], known as a potent T-cell inhibitor applied 
in transplant situations where high immunosuppression 
is required, but also used against psoriasis, are capable 
of inducing the differentiation into tolerogenic dendritic 
cells priming the immune system into tolerogenic state 
against various antigens. Another myeloid cell type, the 
mast cells, are known to influence multiple features of 
persistent inflammation (reviewed in 142). In accord-
ance with that, investigations showed a three-to seven-
fold increase in MEC in relation to normal epidermal 
tissues [143], which are localized close to the epithelium 
[144] and to the eroded surfaces of the bone [145]. Since 
mast cells are known to influence various aspects of bone 
absorption, and particularly osteoclastogenesis, by his-
tamine (reviewed in 146), we suggest they also increase 
osteolysis around MEC. In addition the released hista-
mine is known to favour a proinflammatory response 
[147] further enhancing this phenotype in MEC tissue.

Due to its impact on the symptoms of inflammatory 
diseases, various drugs have been developed to inhibit 
the degranulation of mast cells e.g. in allergic conjunc-
tivitis (reviewed in 148). The most popular are sodium 
cromoglycate, also applied against asthma and allergic 
rhinitis or the more potent lodoxamide, nedocromil as 
a prophylactic in asthma, ketotifen is also used against 
inflammatory conditions like allergic rhinitis and con-
junctivitis, and chronic spontaneous urticarial. and the 
popular olopatadine additionally useful to treat aller-
gic rhinitis. The subsequent inflammatory response can 
be inhibited by the vast numbers of clinically approved 
H1-antihistamines [149, 150] acting mainly on Th1 cells 

and M1 macrophages [151] with particularly the second 
generation having less side effect on the nervous system 
and should be preferred in middle ear application. Even 
though usually applied to treat hay fever, cetirizine, fex-
ofenadine and loratadine were also effective against urti-
carial diseases and might be a treatment opportunity for 
MEC as well. Interestingly, ketotifen and olopatadine 
work as histamine 1 receptor antagonists as well and 
hence might attack histamine on two levels [148]. The 
clinically approved H2-antihistamines like nizatidine are 
known to reduce exaggerated inflammation after burn 
injury [152], and mainly reduce Th1 driven inflammation 
while newer H4-antihistamines (reviewed in 153, 154) 
mainly act on the mast cells to prevent their activation. 
Hence H4-antihistamines like toreforant have been used 
in asthma and psoriasis [155], JNJ39758979 used in clini-
cal trials to treat symptoms of atopic dermatitis [156], 
ZPL-3893787 tested against atopic dermatitis and psoria-
sis [157] and UR-63325 developed to treat atopic derma-
titis [156] might offer new opportunities.

Pharmaceutical targets within the lymphoid cell regulation 
in MEC
As regards lymphoid lineage cells in the MEC, T lympho-
cytes are much more abundant in acquired MEC tissue 
compared to congenital MEC [158] or normal ear skin 
[127, 159]. Different studies aimed at delineating the Th1/
Th2 paradigm of inflammatory events in MECs, found 
that according to the expression profile showing TNF-α, 
IL-1β and IL-6 and lacking IL4, IL4R, IL10 and IL10R, 
the Th1 cells were likely to be dominant [80, 144].

The differentiation of T0 cells into proinflammatory Th1 
cells and their subsequent activation is another major 
proinflammatory cellular process in MEC. The differen-
tiation can be blocked by clinically approved drugs like 
beta2-agonists, a group of drugs with a long history pre-
scribed for asthma [160, 161] (with a wide range of dif-
ferent drugs) (reviewed in 162). Other drugs include 
progesterone applied against endometriosis [163], gluco-
corticoids known for their potency in suppressing various 
allergic, inflammatory, and autoimmune disorders [164], 
flavocoxid which has proven useful against osteoarthritis 
[165], epigallocatechin gallate used to treat multiple scle-
rosis [166] or phosphodiesterase-4 inhibitors regularly 
utilized in the case of inflammatory diseases like asthma, 
COPD, atopic dermatitis and psoriasis [167–169]. To 
reduce the activation of Th1 cells and inhibit Th1 cytokine 
secretion, the clinically approved drug Vitamin D3 [170] 
known as treatment primarily against osteoporosis (or 
any cause of Vit D deficiency) can be used.

The large amount of infiltrating cells in MEC tissue is 
likely due to the overexpression of the intracellular adhe-
sion molecule-1 (ICAM-1) found in vessels of acquired 
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MEC compared to normal skin [171], congenital MEC 
[158] and ear canal skin, tympanic membrane or facial 
skin (all [172]. Studies have linked the high expression of 
ICAM-1 to the level of inflammation in MEC [158] and 
in  vitro studies have demonstrated that human dermal 
microvascular endothelial cells expressed ICAM upon 
stimulation with typical M1/Th1 cytokines e. g. IL-1α, 
IL-1β, and TNF-α [173] all of which are highly upregu-
lated [81, 174]. We assume that this establishes a spiral 
of doom of self-enhancing inflammation, in which there 
is enhanced migration of Th0 and M0 cells into the tissue, 
their differentiation into M1/Th1 cells further increases 
the inflammation, and this upregulates ICAM-1 which 
again results in even more immune cell migration and 
inflammation respectively.

The enhanced expression of ICAM in MEC endothe-
lium cells, responsible for increased infiltration of MEC 
tissue, might be inhibited by several clinically applied 
drugs like resveratrol [175] or another rheumatoid arthri-
tis drug called methotrexate [176], curcumin [177] and 
especially alicaforsen which showed promising results 
against pouchitis and different kinds of inflamed colo-
rectal conditions [178].

Since T-cells seem to play a key role in the progres-
sion of inflammation in MEC disease, the role of Human 
Leukocyte Antigen-DR isotype (HLA-DR) was also more 
closely investigated in the context of MEC disease. In 
general, HLA-DR functions as MHC class II cell surface 
receptor presenting e.g. bacterial antigens to T-cells. 
HLA-DR is upregulated [144, 159] and abundantly 
expressed in macrophages present in the perimatrix of 
MEC tissue [179, 180]. The high expression of HLA-DR 
on macrophages in combination with the abundance of 
e.g. bacterial antigens results in the activation of the fre-
quently found T-cells and is thought to be an additional 
source of the immunologically activated state of the infil-
trating cells observed in MEC tissue [180, 181]. To reduce 
HLA-DR expression, Iscador usually applied against solid 
tumors can used [182].

It can be said definitively that the M1 and Th1 cells 
residing in MEC tissue are major contributors of inflam-
matory cytokines and antigen presentation via mac-
rophages and dendritic cells to Th1 cells is the most 
frequent immune regulatory event in MEC tissue (Fig. 2). 
All this is crucial in maintaining the chronic inflamma-
tory state of the MEC niche responsible for the clinical 
symptoms described in the upcoming chapters.

All the approaches mentioned above target the reduc-
tion of the proinflammatory MEC signalling initially 
triggered by PRR and amplified by proinflammatory 
extracellular signalling. In the second section we want 
to focus on the two major symptoms of MEC disease 
the osteolysis and the uncontrolled proliferation of 

keratinocytes and MEC mass supported by angiogenesis 
and their applicability as target in MEC therapy. We want 
to remind our readers, that this strategy not only targets 
the symptoms but more importantly, eliminates the “fuel 
to the fire” of the ongoing inflammation, the DAMPs 
derived from keratin debris and bone matrix.

Directly targeting links between inflammation and drivers 
of osteolysis
As mentioned above conductive hearing loss is a fre-
quent and serious complication caused by MEC disease. 
It can result from tympanic membrane rupture and/or 
changes in the ossicular chain due to fixation or most 
often bony erosion caused by the chronic inflammatory 
process [183]. Today there are two different mechanisms 
suspected to be relevant in the process of bone resorp-
tion by MEC, the (1) abundant osteoclast activation and 
(2) enzymatic digestion. These mechanisms are triggered 
and enhanced by the severe inflammation in a positive 
feedback manner as discussed. In the upcoming section 
we will highlight the main influences behind these mech-
anisms and their contributions to the clinical outcome.

A previous histo-pathological study detected an 
increase in osteoclast density [81] and other studies have 
directly linked osteoclast activation to bone destruction 
found in MEC disease [81, 184]. For osteoclast activation, 
the receptor activator for nuclear factor kappa B ligand 
(RANKL) has been identified as a key factor in promoting 
the differentiation and fusion of osteoclast precursor cells 
and activating the bone resorption by mature osteoclasts, 
while osteoprotegerin OPG on the other side is a decoy 
receptor for RANKL negatively regulating this process 
[185]. In accordance with this RANKL-positive cells and/
or the ratio of RANKL/OPG were significantly higher in 
MEC compared to every other skin sample e.g. external 
meatal skin [186, 187], post auricular skin [188] normal 
skin [189], auditory canal skin and even granulation tis-
sues [190] and RANKL expression positively correlated 
with osteolysis in MEC patients [186, 191]. In contrast to 
the upregulation of RANKL in the soft body tissue adja-
cent to the decomposing bone, there was no evidence 
found for an increase in RANKL or RANKL/OPG ration 
inside the bone tissue more distant to MEC [192]. Vari-
ous investigations have tried to shed light on the source 
of RANKL in MEC. They found, that overexpression of 
RANKL is typically expressed by activated T-cells [193, 
194] abundant in the perimatrix, but also from epithelial 
[186, 191] and fibroblastic cells [81, 186].

A paracrine positive regulator of RANKL signal-
ling in MEC, the parathyroid-hormone-related pro-
tein (PTHrP), is usually expressed in keratinocytes of 
the skin. Since PTHrP is known as an inflammatory 
marker [195], keratinocytes from MEC express more 
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PTHrP than normal keratinocytes [196]. Most recently 
a study demonstrated, that not only protein expres-
sion of PTHrP in MEC epithelium is significantly 
increased but also positively correlated with the expres-
sion of RANKL in osteoblasts [197] and correlated to 
the degree of bone resorption [191]. Another source 
of RANKL is known from rheumatoid arthritis, where 
the RANKL-Th17 system contributes to bone destruc-
tion in a paracrine manner. Another study showed that 
IL-17 immunoreactivity was increased and was local-
ized to CD4+ lymphocytes. Most importantly this cor-
related with the number of cells positive for RANKL 
and the degree of bone destruction [198]. We assume 
that TNF-α and INF-γ secreted by the numerous Th1 
cells triggers the production of IL-23 in macrophages, 
and IL-23 ultimately differentiates Th0 into Th17 cells 
which further enhances osteolysis in MEC disease, by 
priming fibroblasts and maybe osteoblasts with IL-17 
and thereby inducing RANKL in a paracrine manner.

As described in the previous paragraphs, the main 
driver of osteolysis is RANKL derived from inflamed 
keratinocytes, fibroblasts and Th17 cells. Inhibition of 
RANKL signalling in clinical trials by small molecules 
was achieved by bisphosphonates developed against oste-
oporosis [199], AZD4547 a new anti-cancer drug [200], 
isoflavone (useful against asthma) [201], and iguratimod, 
used to treat rheumatoid arthritis [202]. The widely used 
bisphosphonates are able to suppress RANKL expression 
[203]. PTHrP derived from epithelium inducing RANKL 
expression in osteoblasts might offer an alternative tar-
get in the MEC context. The clinically approved antitu-
mor agent cabozantinib decreased PTHrP expression and 
might be useful in this context [204]. The secretion of 
another factor responsible for osteoclast differentiation, 
IL-17, can be reduced by clinically applied drugs KD025 
[205, 206], fused pyrimidines [207] or iguratimod [208].

In vitro studies on primary MEC epithelia cells dem-
onstrated, that expression of RANKL can be induced 
by stimulation of the TLR4 by LPS [209]. However, 

Fig. 2  Regulation of Immune cell response in MEC. The colour coding is the same as in Fig. 1. Highlighted in red are the spirals of doom circles 
amplifying and exacerbating the already heightened inflammatory situation in MEC
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since clinical data demonstrated no correlation between 
RANKL expression and bacterial infection of the MEC 
[17], the correlation between osteolysis and LPS, as well 
as TLR4 might have another source. Hence the connec-
tion between proinflammatory cytokines and osteoly-
sis in MEC was further investigated in various studies. 
In vitro studies showed, that LPS initiated expression of 
TNF-α, IL-1β and IL-6 via TLR4 pushed the precursor 
cell in an autocrine manner, and primed with sub-oste-
oclastogenic doses of RANKL, into fully differentiating 
phases [210]. This is in accordance with the clinical find-
ing, that IL-1α, IL-6 and TNF-α are highly upregulated 
in the inflamed MEC tissue and known to contribute to 
osteoclast activation (reviewed in 211). As a result, stud-
ies could correlate TNF-a, IL-1α as well as IL-6 directly 
to the severity of bone destruction in MEC patients [80, 
212–214]. In accordance with this, an in  vivo model 
of MEC linked the presence of proinflammatory mac-
rophages and T-cells to bone resorption of MEC [22, 
23]. This cytokine driven maturation might explain the 
observed correlation between bone resorption and LPS 
[14], without induction of RANKL by LPS [17]. The 
central role of TLR4 was further confirmed by an TLR4 
knockdown in an animal model of acquired MEC, which 
reduced the amount of osteoclast formation and bone 
destruction significantly [35].

Other cytokines were investigated as well but no clear 
evidence was found for their correlation to bone resorp-
tion in the clinic. For example the macrophage-colony 
stimulating factor, crucial for complete osteoclastgen-
esis (reviewed in 215), was found to be overexpressed 
in MEC specimens compared to normal external meatal 
skin [193] in Th1 cells [193] and IL-1β known to promote 
osteoclast activation [216] and LPS induced bone resorp-
tion in animal models [217], is also upregulated [81]. But 
no further investigations were undertaken to elucidate 
the role of M-CSF or IL-1β driven osteolysis in MEC.

Different drugs are available to target these cytokines. 
The processing of IL-1β can be inhibited by several 
inflammasome inhibitors (reviewed in 218). Some of 
them have already been applied clinically i.e. parthe-
nolide to treat various inflammatory diseases [219], pral-
nacasan [220] or dapansutrile [221] to treat rheumatoid 
arthritis and tranilast shown to be useful against asthma 
and keloid scars [222]. For the IL-1 receptor downstream 
signalling, diacerein used against osteoarthritis in clinic 
might be a useful approach [223]. Clinical inhibition of 
IL-6 signalling is achieved by several clinically approved 
JAK inhibitors from the 1st and especially the more 
specific 2nd generation, as well as the STAT3 inhibitors 
(reviewed in 224). The most popular among these drugs 
are upadacitinib used in patients with inflammatory 
driven diseases across gastroenterology, dermatology and 

rheumatology [225], filgotinib [226] or peficitinib [227] 
efficacious in patients with rheumatoid arthritis and the 
STAT3 antisense oligonucleotide AZD9150 [228] applied 
against cancer. As regards TNF-α, numerous small mol-
ecules are suspected to be effective [229] but only Igu-
ratimod [202] was developed to the clinical stage testing 
where it was used to treat rheumatoid arthritis [230]. 
M-CSF is suspected to play an important role in osteo-
clastogenesis in MEC, and M-CSF can be decreased by 
bisphosphonates [199] and the pharmaceutical AZD4547 
[200]. M-CSF signalling might be further decreased by 
the novel M-CSFR inhibitor pexidartinib which has been 
clinically approved for cancer therapy [231].

Even though it is known that COX-2/PGE2 plays a cen-
tral role in osteoclast activation in general and in LPS 
induced osteoclast activation in particular [232] it has 
not been investigated in MEC driven osteolysis so far. 
Upregulated expression of the enzyme COX-2 needed 
for PGE2 synthesis has been localized in MEC epithe-
lium [233]; the proinflammatory prostanoid receptors 
EP1-EP3 are upregulated while the anti-inflammatory 
EP4 receptor is downregulated [234] which suggests an 
enhanced proinflammatory PGE2 signalling in MECs. 
Numerous well characterized COX-2 inhibitors are avail-
able and in particular, the ones specific to COX-2 might 
offer a treatment opportunity for MEC. Among them 
are drugs like celecoxib [235], etoricoxib [236], rofecoxib 
[237] and meloxicam [238] all proven to be useful against 
different forms of arthritis.

The presence of matrix metalloproteinases (MMPs) 
might be a driving force behind the enzymatic digestion 
of bone in MEC disease. The presence of MMPs play an 
important role in resorption of the bone by decompos-
ing the organic components of bone tissue. In accord-
ance with the well documented induction of MMP-2 and 
MMP-9 via NF-κB and AP-1, the expression of MMP-2 
as well as MMP-9 is generally upregulated in compari-
son to healthy skin and correlated to the level of inflam-
mation [239–242]. The high expression of MMP-2 was 
almost exclusively found in fibroblasts or in the inflam-
matory cells of the perimatrix [243] and positively corre-
lated to bone destruction in patients [212, 239] and the 
expression of MMP-9 was found to correlate to the level 
of osteolysis as well [212, 244].

Due to their attractiveness as pharmaceutical targets, 
numerous inhibitors of MMPs were developed in the past 
and tested in clinical trials [244–246]. All these drugs 
were applied on solid tumors to prevent angiogenesis 
or metastasis e.g. chlorotoxin inhibits MMP-2 [247] or 
broad spectrum inhibitors acting on MMP-2 and MMP-9 
simultaneously like diazepinomicin [248], rebimastat 
[249], marimastat [250], arctigenin [251]. Unfortunately, 
many drugs have failed safety trials predominantly due 
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to adverse effects coupled to their systemic use, hence 
it is logical to assume a topical application may resur-
rect numerous drugs that have failed to reach the mar-
ket. Interestingly, in vitro experiments with Vitamin D3 
showed a decrease of MMP-2 and MMP-9 in inflamed 
fibroblasts [252] and in MEC Keratinocytes [253]. Since 
Vitamin D3 might has been used therapeutically against 
different forms of arthritis [254], it might offer an addi-
tional and much safer therapeutic opportunity.

It can be said definitively, that a spiral of doom lead-
ing to osteolysis is established in MEC tissue. In highly 
inflamed MEC tissue the expression of various osteo-
clastic activators TNF-α /IL-1α/IL-1β/IL-6/RANKL/ 
PTHrP/M-CSF are induced initially through TREM-1 
fuelled TLR4 signalling and subsequently in a paracrine 
manner. This leads to activation of osteoclasts and sub-
sequent osteolysis. This bone lysis is further amplified by 
the expression of MMPs in the inflamed MEC niche. As 
observed for other inflammatory osteolytic diseases (255, 
reviewed in 256), the DAMPs released from the bone tis-
sue intensifying the TREM-1/TLR4 signalling even more 

and further boosting the osteoclast activation and MMP 
secretion (Fig. 3).

Targeting the fractions of the inflammatory network 
inducing epidermal proliferation
The most prominent feature of MEC disease is the ongo-
ing proliferation of keratinocytes and the accumula-
tion of keratin debris. Several factors are upregulated in 
MEC tissue due to its inflammatory state and are known 
to stimulate the proliferation of MEC keratinocytes e.g. 
PGE2 [15, 257], TNF-α [258], IL-1α [259] or IL-6 [260]. 
To reduce the effect of these proliferative factors, PGE2, 
TNF-α, IL-1α and IL-6 can be targeted by the approaches 
described in the previous subsection.

The most important stimulation of epidermal prolif-
eration in MEC tissue is induced through paracrine sig-
nalling, via a mechanism well known from cutaneous 
wound healing and skin tissue homeostasis. In this pro-
cess keratinocytes express PTHrP as well as IL-1α and 
IL-1β. These proteins will induce the expression of epi-
dermal growth factor (EGF) and keratinocyte growth fac-
tor (KGF) in the fibroblasts of the dermis. These factors 

Fig. 3  Osteolytic signalling network in MEC. The colour coding is the same as in Fig. 1. The two spirals of doom (red arrows) are interconnected at 
the generation of exogenous DAMPs derived from ECM tissue destruction
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are vitally important in final induction of epidermal pro-
liferation. Due to the inflammatory processes described 
above the expression of PTHrP [191], IL-1α [158, 174, 
261],] and IL-1β [81, 261] are already upregulated in MEC 
keratinocytes. The expression of IL-1β might be further 
augmented by DAMPs activating the inflammasome as 
demonstrated for MEC keratinocytes [262]. In addition 
to the upregulation of the IL-1s, the interleukin-1 recep-
tor antagonist (IL-1-RA) showed a decrease compared to 
healthy skin samples [263], further enhancing the effect. 
The expression levels of KGF [264, 265] as well as EGF 
[174] were also enhanced in fibroblasts residing in MEC 
tissue compared to fibroblasts of healthy skin. The high 
expression of EGF could be attributed to the fact that 
fibroblasts derived from healthy skin showed a much 
weaker expression of epiregulin [266] after in vitro stimu-
lation with IL-1α and/or IL-1β compared to MEC fibro-
blasts. The increased expression of KGF in patients could 
be correlated with strong levels of the inflammatory infil-
trate [267] and inflammation in general [268]. The par-
acrine signalling between fibroblasts and keratinocytes is 
further enforced by the increased expression of the cor-
responding receptors KGFR [241] and EGFR [269, 270] 
in the epithelium of MEC. In particular, KGF was found 
to be one of the main players in MEC development and 
able to induce MEC formation solely by its overexpres-
sion [271–274]. In accordance with that, the expression 
of KGF and KGFR could be directly correlated to epider-
mal proliferation of MEC tissue [241, 275, 276] as well as 
to proliferation of stem/progenitor cells [273, 274] which 
might also explain the correlation between KGF/KGFR 
and pathogenesis, as well as clinical recurrence of MEC 
after surgery [264, 275].

This suggests, that due to keratinocyte hyperprolifera-
tion and the high level of inflammation in MEC tissue, 
the fibroblasts receive excess PTHrP as well as IL-1α and 
IL-1β. This establishes a spiral of doom with increased 
paracrine signalling via EGF and KGF which further 
enhances the amount of PTHrP as well as IL-1α and 
IL-1β secreting keratinocytes and keratin debris which 
further increases inflammation by PRR signalling. All this 
makes this paracrine positive feedback loop spin com-
pletely out of control. PTHrP as well as IL-1α and IL-1β 
can be targeted by the means described in the previous 
subchapter. For KGF, the main driver of epidermal prolif-
eration, targeted therapies via entrectinib [277] and laro-
trectinib [278] are available. The upregulation of different 
cytokines not only directly stimulates epidermal prolifer-
ation but more importantly fuels the paracrine feedback 
loop, which supplies growth factors to the keratinocyte. 
This will lead to more keratin debris and DAMP respec-
tively, resulting in a self-enhancing inflammation. The 
significance of the contribution of hyperproliferation to 

MEC pathogenesis is reflected in the correlation between 
upregulation of Ki67 and downregulation of p27 relative 
to meatal skin tissues and the worsening of the progno-
sis in terms of bone erosion and recurrence rates [279]. 
In addition to this, paracrine signalling experiments on 
a complex in vitro model, which utilized a co-culture of 
fibroblast and keratinocytes derived from MEC, demon-
strated an impressive reduction of viability and increase 
of apoptosis in karatinocytes after application of the 
COX-2 inhibitor [280].

Pharmaceutical targets responsible for angiogenesis 
in MEC
To support the described hyperproliferation, the abnor-
mal growth of new vessels is crucial and accordingly the 
perimatrix of MEC contained significantly more micro 
vessels in the subepithelial connective tissue compared 
to ear canal skin [281, 282]. Since EGFR is upregulated 
[269, 270] and promotes angiogenesis [283], it is not sur-
prising, that the increased density of micro vessels corre-
lated with the increased expression of EGFR in inflamed 
MEC [269]. Due to its clinical significance, several small 
molecule inhibitors of EGFR signalling were developed 
and approved for clinical application. The most common 
are afatinib [284], neratinib [285], dacomitinib [286] and 
gefitinib [287] all approved to be effective against EGFR 
driven carcinomas.

Other drivers of angiogenesis have been investigated 
as well. The most prominent is the vascular endothelial 
growth factor (VEGF), for which expression is upregu-
lated in compared to normal skin [241, 282]. A correla-
tion between NF-κB driven inflammation and VEGF was 
shown to promote the neovascularisation in MEC tis-
sue [84]. VEGF signalling can be inhibited by approved 
drugs on the level of intracellular signalling by drugs like 
sunitinib [288] or axitinib [289], which are approved for 
treatment of renal cell carcinoma or nintedanib applied 
against pulmonary fibrosis [290] or lucitanib used in clin-
ical trials against cancer [291].

Indeed other growth factors induced by inflammation 
and related to angiogenesis like bFGF [292] or TGF-β 
[293, 294] are also upregulated in MEC epithelium [295, 
296], respectively. Since it became clear that stromal 
expansion plays a rather secondary role in MEC patho-
genesis, these factors were neglected in MEC research. In 
the light of the paracrine positive feedback loop between 
epidermal and stroma cells, the stromal proliferation and 
these factors respectively may again be invoked as phar-
maceutical targets.

Due to the role of FGF/FGFR in various diseases, 
numerous pharmaceuticals targeting the signalling path-
ways have been tested [297]. Even though only ponatinib 
is approved for the treatment of chronic-phase chronic 
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myeloid leukemia [298], there are several under clini-
cal investigation in phase III trials, i.e. orantinib [299], 
cediranib [300] or lucitanib [291] used against cancerous 
disease or nintedanib to treat pulmonary fibrosis [290], 
interestingly the last two drugs work also as VEGFR 
inhibitors. For TGF-β inhibition only two clinical drugs 
are available so far, one is the antisense oligonucleotides 
AP-12009 which act directly against the mRNA of TGF-β 
[301] and the TGFB receptor antagonists like galunis-
ertib, which are both used against carcinomas [302].

Other angiogenic factors e.g. IL-8 and COX-2 are 
highly expressed in the inflamed MEC tissue [38, 233, 
303] respectively. An interesting study showed, that id1 
increased endothelial proliferation in MEC by upregulat-
ing the expression of COX-2, VEGF via ERK1/2 and IL-8 
through NF-κB [304]. Hence drugs targeting id1 not only 
reduce epidermal proliferation but angiogenesis as well.

Other upregulated angiogenic factors upon inflam-
mation are the already mentioned proteinases MMP-
2, MMP-9. These MMPs are well known to be crucial 
for the decomposition of the extracellular matrix mak-
ing the tissue susceptible for vascular outgrowth. An 

immunofluorescence correlation study in cholesteatoma 
tissue demonstrated, that correlations between NF-κB 
and these MMPs causes the intensification of angiogen-
esis in MEC [84] and can be targeted by drugs described 
in the previous subchapter.

In sum, the increase of blood supply to the MEC is sup-
ported by its own inflammation by the upregulation of 
EGFR, VEGF, MMPs and presumably COX2, bFGF or 
TGF-β. This suggests, that this increased vascularisation 
by inflammation is a self-fuelling spiral of doom, since it 
not only enables the hyperproliferation but also provides 
better access for the T-cells, mast cells or monocytes/
macrophages to the MEC further enhancing the inflam-
mation (Fig. 4).

Conclusion
To date, numerous studies to inhibit the formation or 
recurrence of MEC have been undertaken. Unfortu-
nately, many of these have focused on reducing the 
(already triggered) hyperproliferative behaviour of MEC 
epithelial cells, via cytotoxic approaches usually applied 
to cancer e. g. photodynamic therapy [305] or cytostatic 

Fig. 4  The signalling leading to epidermal proliferation and angiogenesis. The colour coding is the same as in Fig. 1. The spiral of doom involving 
the increased epidermal proliferation is shown in red and revolves around endogenous DAMP generated from dying epithelial cells
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5-fluorouracil [306]. Even though 5-fluorouracil made 
its way into clinical trials [307, 308] the results were 
insufficient to establish its application in routine clini-
cal practice for MEC. We suggest long term application 
of non-cytotoxic substances targeted on the inflamma-
tory pathways described in this review might well be a 
superior strategy. In accordance with long term applica-
tion, gradually absorbed formulations comprising non 
ototoxic carrier substances like hydrogels based on chi-
tosan glycerophosphate and hyaluronic acid [309], are 
mandatory, but are not within the remit of this review. As 
regards topical application, the MEC site shows charac-
teristics of an open wound rather than an intact epithelial 
barrier. Hence, topical application might work for many 
drugs normally not able to cross the intact epithelial bar-
rier. Indeed, local topical application, would revive the 
prospect of many drugs described in this chapter, which 
showed severe side effects in clinical trials due to sys-
temic application.

In this review we have proposed numerous molecular 
targets which appear to be vital to the deregulated inflam-
mation in MEC, and known to be correlated to MEC 
pathogenesis. Unfortunately, the connection between 
certain targets e.g. AP-1 were not investigated in such 
detail, hence specific molecular targeted therapy (MTT) 
approach for them were not included. Other targets like 
TREM-2, GMCSF, etc. (Additional file 1: Table S1) were 
clearly correlated to pathogenesis, but for these no drug 
within the restrictions applied in this review were avail-
able up to now. Also the role of cytokines important for 
Th1 differentiation like IL-12, IL-18 or INF-γ with the 
last one being also crucial for M1 polarization, have not 

been investigated in MEC pathogenesis at all, hence we 
have not suggested MTT for this targets.

In the end, we are left with 149 clinically applied drugs 
against asthma, inflammatory bowel diseases, different 
forms of arthritis, multiple sclerosis, cancer etc. (Addi-
tional file 2: Table S2). We have reduced the number of 
MTTs or drugs respectively down to a shorter list of top 
drugs (Fig. 5). This step is crucial, since the MTTs should 
be tested in an animal model of MEC first before apply-
ing for ethical approval for clinical studies, and screening 
of over a hundred drugs on thousands of animals is nei-
ther practical (with the realistic but complex MEC ani-
mal models), nor ethically sound.

The mandatory inclusion criteria for a drug is, that the 
corresponding pharmaceutical approach needs to be part 
of one of the described self-amplifying spirals of doom 
(Fig.  5). This is a vital point, since these self-amplifying 
mechanisms leading to the exaggerated inflammation is 
fundamental in MEC pathogenesis, epidermal prolifera-
tion and osteolysis.

From that group of drugs, all drugs approved for 
topical application or targeting at least two levels of a 
vicious circle simultaneously are included. Since the set 
of top drugs should include a drug for every approach 
shown in Table  1 we selected the drug not known 
to induce dermatological side effects, making them 
unsuitable for topic application to the middle ear or 
enhancing the likeliness of infection, something unde-
sirable to have in the MEC diseased middle ear. NF-κB 
has been repeatedly reported to contribute to the initial 
establishment as well as the fuelling and escalation of 
the inflammation and is a vital part of the three spirals 

Fig. 5  Flow chart of the method used to narrow down possible drugs applicable in a MTT approach for precision medicine for MEC
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of doom described, targeting this pathway should be 
most definitively considered. When careful in vivo eval-
uation unveiled a couple of MMT able to successfully 
target MEC, the complex interwoven inflammatory 
networks described in this review may offer synergis-
tic interaction between these drugs. Hence we suggest 
investigating this by performing animal experiments 
enabling calculations of isobolograms. We also want to 
mention that the MTTs described in Additional file  2: 
Table S2 are limited due to our inclusion criteria.
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