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Exosomes: mediators regulating 
the phenotypic transition of vascular smooth 
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Abstract 

Cardiovascular disease is one of the leading causes of human mortality worldwide, mainly due to atherosclerosis 
(AS), and the phenotypic transition of vascular smooth muscle cells (VSMCs) is a key event in the development of AS. 
Exosomes contain a variety of specific nucleic acids and proteins that mediate intercellular communication. The role 
of exosomes in AS has attracted attention. This review uses the VSMC phenotypic transition in AS as the entry point, 
introduces the effect of exosomes on AS from different perspectives, and discusses the status quo, deficiencies, and 
potential future directions in this field to provide new ideas for clinical research and treatment of AS.
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Introduction
Atherosclerosis (AS) is a chronic inflammatory disease 
with complex pathogenesis that involves a variety of cells, 
such as vascular smooth muscle cells (VSMCs), endothe-
lial cells (ECs), and macrophages. In the classical view of 
the mechanisms of AS, VSMCs are believed to promote 
AS via the transformation of contractive VSMCs to syn-
thetic VSMCs, migration from the middle membrane to 
the intima, and the proliferation and deposition of matrix 
proteins, which increase plaque thickness. Increasing evi-
dence indicates that the phenotypic transition of VSMCs 
is a core event in the pathophysiology of many cardiovas-
cular diseases (including AS and restenosis after angio-
plasty) [1]. Therapeutic strategies against the VSMC 
phenotypic transition may improve pathological condi-
tions related to VSMCs and provide a new therapeutic 
target for preventing and treating AS.

The exchange of information between cells is essential 
for maintaining cell function. Experimental and clinical 
studies have reported that extracellular vesicles released 
by cells help complete inter-cell communication through 
direct contact, internalization, fusion with the plasma 
membrane, and endocytosis [2]. As one of the subgroups 
of extracellular vesicles, exosomes promote the trans-
fer and exchange of microRNAs, mRNAs, and lncRNAs 
between cells and tissues, playing a critical role in the 
migration and differentiation of cells. Exosomes also play 
a crucial role in the pathophysiological processes of many 
diseases [3] and can be used as a diagnostic biomarker as 
well as a therapeutic target for AS.

In this review, we introduce the role of exosomes in the 
phenotypic transition of VSMCs and the effect of related 
pathways on AS from different perspectives to provide a 
new direction for preventing and treating AS.

Biological properties of exosomes
Extracellular vesicles are lipid-bound vesicles secreted by 
cells into the extracellular space and consist of three sub-
groups: exosomes, microvesicles, and apoptotic vesicles 
[4, 5].
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Exosomes were first discovered in reticulocytes in 
1983[6]. The classical markers of exosomes are CD9, 
CD63, and CD81 [7]. Exosomes affect recipient cells 
more efficiently than that by intercellular contact or by 
secreted factors, and they originate from intranuclear 
bodies. Specifically, exosomes are produced when intra-
cellular lysosomal particles invaginate to form polyve-
sicular bodies that fuse with the cytoplasmic membrane 
and are released into the extracellular compartment 
[7]. Although the biological origins and clinical applica-
tion pathways of microvesicles and exosomes are simi-
lar, exosomes have received more attention. Exosomes 
are more widely present in various body fluids, such 
as blood and urine, which facilitates noninvasive fluid 
biopsies in patients to diagnose disease and monitor the 
patient’s response [8]. Previous studies have shown that 
exosomes can be used as carriers to transport drugs into 
target cells, similar to nanomaterials [9, 10]. Moreover, 
exosomes have a longer circulating half-life and are bet-
ter tolerated by humans than other drug delivery systems 
[10]. The biostability and clearance patterns of exosomes 
are similar to those of synthetic nanoparticles, and 
some studies have shown that exosomes can evade par-
tial attack by the immune system and remain in circula-
tion for a long time. The immunogenicity of autologous 
or allogeneic exosomes is negligible, as repeated injec-
tions of autologous exosomes do not provoke a signifi-
cant immune response in mice [11], and most exosomal 
agents used clinically are derived from allogeneic cells 
[12]. These findings may be due to the CD47-mediated 
effect of protecting exosomes from phagocytosis by 
monocytes and macrophages [13]. Apoptotic vesicles are 
released by dead cells. Their composition and proteomic 
profile are significantly different to those of exosomes, 
and their biological role is far less extensive [14].

It is currently believed that there are three main 
mechanisms to achieve exosomes mediated signaling 
[15]. (a) The first and most direct type of intercellular 
communication is the ligand-receptor interaction. Jux-
tacrine signaling will be delivered between exosomes 
and receptor cells through direct contact. This discov-
ery has functioned as a revelation in treating particular 
diseases. For example, pretreating ovarian cell-derived 
exosomes with proteinase K or trypsin to degrade exoso-
mal transmembrane proteins may eliminate their uptake 
by cancer cells [16, 17]. No single specific way has been 
shown for this ligand-receptor interaction. After the 
direct contact between exosomes and receptor cells, 
exosomes can trigger intrinsic signaling in the recepor 
cells [18], or the exosomes pass through the receptor 
cells and target other cell types [22]. (b) The second type 
of mechanism is that of indirect communication. Solu-
ble ligands are cleaved from exosomal transmembrane 

proteins, which interact with receptors on the surface of 
target cells and activate a variety of signaling pathways. 
Complement molecules or miRNAs shed from cells by 
exosomes act as interventional targets or introduce sub-
stances that act as protectors against disease [23]. (c) 
The third type is that of endocytosis, which includes lat-
tice-protein-mediated and/or niche protein-dependent 
endocytosis, macropinocytosis, phagocytosis, and lipid 
raft-mediated endocytosis [15, 24]. Signals delivered by 
exosomes are internalized by receptor cells through an 
endosomal mechanism [19–21]. Deformation of the cell 
membrane induced by latticin leads to the formation of 
an inwardly-facing bud and the development of a larger 
vesicle that matures and then contracts, thereby deliver-
ing the exosomal contents to the recipient cells [24]. The 
lattice proteins take up exosomes by invaginating the 
plasma membrane and are subsequently internalized by 
recipient cells after kinesin is activated. The macrocytic 
drinking action is characterized by the formation of a 
ruffled extension of the plasma membrane around the 
extracellular space, which includes the extracellular fluid 
and the components that will be internalized by the cell. 
Phagocytosis is dependent on the association between 
plasma membrane receptors and vesicle ligands. Lipid 
raft-mediated endocytosis is related to the structure 
of lipid rafts. Lipid rafts are formed from microstruc-
tural domains rich in cholesterol and sphingolipids and 
rich in protein receptors [25]. Although the interactions 
between exosomes and recipient cells may not be directly 
interfered with, some properties of exosomes have been 
used to introduce new ideas for therapy. Because of their 
lipid nature and the presence of specific ligands on their 
surface, exosomes are expected to be used as carriers for 
the therapeutic delivery of RNAs, peptides, and synthetic 
drugs [26].

Exosomes contain miRNA, mRNA, IncRNA, proteins, 
and lipids. Among them, miRNAs have attracted more 
attention than other contents by virtue of their function 
in regulating gene expression. Exosomes significantly reg-
ulate cell growth and metabolism through transcriptional 
repression of gene expression. When absorbed by specific 
cells, exosomes may play a role locally or at a distance, 
providing autocrine or paracrine signals, or inhibiting 
mRNA translation by transferring miRNA to target cells, 
which may lead to the production of new proteins, result-
ing in a protective or damaging response [6, 27, 28]. For 
example, bone-derived exosomal miRNAs are thought 
to be important in regulating the expression of genes 
involved in differentiation and communication between 
multiple cell types [29]. Exosomal miRNAs derived from 
immune cells are thought to be involved in cardiovascu-
lar disease. Exosomal miRNAs from cardiomyocytes or 
stem cells play a role in cardiac repair and regeneration 
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[30, 31]. Exosomes from fibroblasts promote myocardial 
hypertrophy through miRNA acting on target factors 
[32]. It is evident that exosomal miRNAs are important 
and contribute to the exchange of information between 
cells. Therefore, this review is mainly focused on the role 
of miRNAs in exosomes.

The role of exosomes in intercellular communication 
is expected to alter the transcriptome of recipient cells 
and have key effects on the process of VSMC-mediated 
AS. As shown in Table  1, we summarized the informa-
tion related to the exosomal components involved in this 
review.

Role of the VSMC phenotypic transition in AS
Although different cell types are involved in AS, VSMCs 
make up the thickest layer of the arterial wall, and their 
status largely reflects the state of the blood vessels. 
VSMCs are highly plastic and capable of phenotypic 
transition in response to different regulatory signals [33]. 
In normal blood vessels, VSMCs are a highly static and 
contractile phenotype associated with elevated levels of 
α-smooth muscle actin (α-SMA), SM 22α, smooth mus-
cle myosin heavy chain, and other contractile marker 
proteins [34].

After vascular injury, VSMCs lose their contractile phe-
notype and switch to a synthetic phenotype. Cells of the 
contractile phenotype are characterized by high expres-
sion of contractile genes and low proliferation and migra-
tion rates, whereas VSMCs of the synthetic phenotype 
express lower levels of contractile genes and have higher 
proliferation and migration rates [35].

In the classical view of the AS mechanisms, the VSMC 
phenotypic transition is believed to lead to the dete-
rioration of AS. Contractive VSMCs shift to syngenesis, 
migrate from the middle membrane to the intima, pro-
liferate, and deposit matrix proteins, which have some 
compensatory significance during the early stage, but 
can cause a damage reaction and lead to plaque thick-
ening during the late stage. At the same time, synthetic 
VSMCs express a variety of fatty acid and cholesterol 
uptake receptors and perform the function of capturing 
fatty acids and cholesterol and filling the cytoplasm with 
lipid droplets, thus facilitating the absorption of lipid and 
the formation of foam cells. Foam cells are swollen vacu-
olated macrophages filled with lipid inclusions that often 
accumulate along arterial walls and are characteristic of 
some disturbed lipid metabolism conditions; foam cells 
are present during all stages of the development of AS. 
Studies have shown that 70% of foam cells are derived 
from VSMCs [36, 37]. In addition, VSMCs can be trans-
formed into a pro-inflammatory and dysfunctional 
macrophage phenotype, which assumes the function of 
macrophages, leading to the deterioration of AS [38, 39].

Vascular calcification is a risk factor for the onset of, 
and death from, AS. The process of vascular calcifica-
tion is similar to that of osteogenesis and is caused by 
the transformation of VSMCs into the osteoblast-like 
phenotype. Osteoblast-like VSMCs secrete bone-related 
protein biomarkers, which are involved in osteoblast dif-
ferentiation, maturation, and other osteogenic processes, 
ultimately leading to calcification of the intima and 
plaque formation [40–42]. However, the osteoblast-like 
phenotype transformation of VSMCs can increase plaque 
stability during the late stage of AS, and prevent plaque 
rupture, which has positive implications.

In conclusion, the phenotypic transition of VSMCs 
plays a damaging and protective role during AS. Identi-
fying the regulatory targets between them, to balance or 
reverse such processes, is a difficult problem.

Roles of exosomes in the regulation of VSMC 
proliferation and migration
Exosomes from circulation participate in the pathogen-
esis of vascular diseases. In one study, plasma-derived 
exosomes from healthy subjects did not promote the pro-
liferation and migration of VSMCs, while plasma-derived 
exosomes from peripheral artery disease (PAD) patients 
promoted the proliferation and migration of VSMCs and 
inhibited the migration of ECs [43]. This may be related 
to the finding that they contain miRNAs with different 
characteristics.

TET2 is a key regulator of the VSMC phenotypic tran-
sition. Bo Li et al. showed that low expression of TET2 in 
exosomes derived from ECs promotes proliferation and 
migration of VSMCs and intimal hyperplasia after arte-
rial injury [44]. Additionally, other studies have shown 
that exosomes released by ECs stimulated by oxidative 
stress enhance proliferation and migration of ECs and 
promote angiogenesis by reducing the expression of miR-
92a-3p in ECs [45]. Interestingly, EC-derived exosomes 
transfer miR-92A-3p to VSMCs and promote prolifera-
tion and migration, exacerbating the inflammatory reac-
tion [46]. In other words, early knockdown of exosomal 
miR-92a-3p expression promotes the proliferation and 
migration of ECs for compensatory repair, while it pro-
motes the proliferation and migration of VSMCs, leading 
to an injury reaction after delivering miR-92a-3p to the 
VSMCs.

Exosomal miR-21-3p targets the downregulation of 
PTEN and triggers the NF-kappaB pathway to promote 
proliferation and migration of VSMCs and accelerate the 
development of plaque in AS; miR-133 suppresses prolif-
eration and migration of VSMCs by downregulating SP-1, 
while miR-143/145 suppresses proliferation and differ-
entiation of VSMCs by inhibiting KLF4/5. miR-663 pro-
motes differentiation of VSMCs and inhibits proliferation 
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and migration by reducing the expression of JunB and 
matrix metalloproteinase (MMP)-9 [47–50]. Exosomes 
derived from foam cells mediate proliferation and migra-
tion of VSMCs through IncRNA LIPCAR, leading to the 
deterioration of AS [51]. Moreover, exosomes promote 
proliferation and migration of VSMCs through miR-222; 
thus, aggravating intimal hyperplasia and vascular reste-
nosis [52].

Fibroblasts are a major producer of the extracellular 
matrix and are involved in AS. Xing et  al. showed that 
exosomes from outer membrane fibroblasts downregu-
late the expression of angiotensin-converting enzyme 
through miR-155-5P, inhibit proliferation and migration 
of VSMCs, and improve the state of vascular remodeling 
[53]. Exosomal miR-221-3p derived from adipose tissue 
is absorbed by VSMCs, which significantly enhances the 
proliferation and migration of VSMCs by targeting per-
oxisome proliferator-activated receptor γ coactivator 
1a and triggering early vascular remodeling in the con-
text of obesity-related inflammation [54]. The exosomes 
derived from mesenchymal stem cells transfer miR-125b 
to VSMCs by inhibiting Myo1e, suppressing the prolif-
eration and migration of VSMCs in vitro, and restraining 
the proliferation of new intima in vivo [55].

Thus, the different exosomal components regulate 
the proliferation and migration of VSMCs to different 
degrees and participate in various processes in AS. Stud-
ies on this aspect have the potential to regulate the pro-
liferation and migration of VSMCs and thus capture the 
progression of AS.

Roles of exosomes in the regulation 
of the osteoblast‑like phenotypic transition
Vascular calcification is widespread in AS, and the cause 
of death in most AS patients is plaque rupture, which is 
mainly related to its components. Studies have shown 
[56] that the plaque most prone to rupture is composed 
of a mixture of calcified and uncalcified tissues; that is, 
early-stage calcification. This plaque is highly unstable 
but is not prone to rupture after complete calcification. 
The transformation of VSMCs into osteoblast-like cells 
is one of the ways that vascular calcification develops. 
Elucidating the mechanism of phenotypic transdifferen-
tiation of VSMC osteoblasts is the key to diagnosing and 
treating vascular calcification.

Zhou et al. [57] reported that exosomal LncRNA H19 
is highly expressed in calcified cell models, where it pro-
motes the transformation of VSMCs into the osteoblast 
phenotype by inhibiting miR-103-3p to upregulate the 
expression of osteoblast-specific markers, such as bone 
morphogenetic protein-2 and osteopontin. Research-
ers have found that microRNA profiles in the exosomes 
derived from calcified VSMCs are significantly altered, 

using deep sequencing and bioinformatics. For exam-
ple, miR-125b inhibits VSMC calcification by inhibiting 
ETS-1, and overexpression of miR-29b accelerates VSMC 
calcification. miR-128-3p promotes cardiovascular calci-
fication through the Wnt pathway [58]. However, these 
studies were conducted in a calcification model, and 
whether this pathway is also applicable to AS needs to be 
verified by a model closer to AS. Han et al. [59] showed 
that exosomes convey miR-223-3p to VSMCs to inhibit 
their osteogenic conversion and vascular calcification 
in AS by blocking the signaling pathway mediated by 
interleukin (IL)-6/STAT3; overexpression of exosomal 
miR-133a inhibits phenotypic transition of VSMCs into 
osteoblasts, and the application of miR-133a inhibitors 
promotes this process [60]. Exosomal miR-204/miR-211 
inhibits the phenotypic transition from VSMCs to osteo-
blasts in a paracrine manner [61], while vascular senes-
cence induced by miR-34a promotes the transformation 
of VSMCs into osteoblasts under high phosphorus con-
ditions [62].

Vascular endothelial growth factor (VEGF) is an 
important regulator of VSMCs and an indicator of dedif-
ferentiation from VSMCs to osteoblast cells. Progress has 
been made on the regulation of VEGF exosomal miRNAs 
[63]. Alkaline phosphatase is another important marker 
of osteogenesis, according to one study [64]. Exosomes 
of vascular ECs stimulated by hyperglycemia regulate 
calcification of VSMCs by upregulating the expression of 
alkaline phosphatase.

Thus, exosomal LncRNA H19, miR-103-3p, and miR-
133a play a key regulatory role in the phenotypic tran-
sition from VSMCs to osteoblasts. Applying specific 
inducers or blockers to intervene at different stages of 
AS may help reduce vascular calcification due to aging 
or plaque rupture events caused by incomplete calcifica-
tion. However, the problem that still needs to be solved 
is that no specific indicators are available for the degree 
of plaque development during the different times in 
which an intervention would achieve a therapeutic effect 
(Fig. 1).

Roles of exosomes in apoptosis of VSMCs in AS
It has been confirmed that apoptosis of VSMCs plays a 
key role in the development of AS. Excessive apoptosis of 
late VSMCs damages the structural integrity of plaque, 
increases instability of the plaque, and leads to plaque 
rupture, thereby promoting the deterioration of AS. In 
addition, the phagocytic function of macrophages is 
inhibited in the plaque environment, leading to the sec-
ondary release of inflammatory factors after apoptosis of 
VSMCs and exacerbation of the inflammatory response 
[65]. Therefore, it is of great significance to study apopto-
sis in VSMCs during AS.
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The expression of miR-106a in exosomes released by 
abdominal aortic aneurysm tissues is higher than that in 
normal tissues, and the enhanced expression of miR-106a 
promotes apoptosis of VSMCs compared with a control 
group [66]. However, other studies have reported that 
THP-1 induced by oxidized low-density lipoprotein (ox-
LDL) can be transfected into VSMCs through exosomes 
to mediate the high expression of miR-106a-3p in VSMCs 
and directly binds to CASP9 to inhibit the caspase path-
way in VSMCs, which alleviates VSMC apoptosis [67]. 
Moreover, circHIPK3 has been confirmed to be enriched 
on exosomes derived from mouse aortic smooth muscle 
and has binding sites for miR-106a-5p, which reduce the 
proliferation of VSMCs and promote apoptosis through 
the circHIPK3/miR-106a-5p/Foxo1 axis [68]; exosomal 
miR-223-5p derived from plasma inhibits VSMC activity 
and promotes apoptosis by downregulating VCAM1 and 
IGF1R [69].

Previous studies have shown increased expression 
of exosomal miR-125b-5p isolated from bone marrow 
mesenchymal stem cells in mice with AS. miR-125b-5p 
reduces the inflammatory response, lowers the lipid level, 
and slows down plaque formation in AS mice by down-
regulating Map4k4. That study also found that the pres-
ence of miR-125b-5p enhances the expression of a-SMA, 
suggesting that the apoptosis rate of VSMCs in AS mice 
decreases after the intervention [70].

All of these studies suggest that regulating the secre-
tion of exosomes to control VSMC apoptosis may be a 
new target for treating AS. Notably, apoptosis of VSMCs 
can have different effects at different stages of AS. Previ-
ous studies have shown that miRNAs, such as miR-106a, 
miR-106a-3p, miR-106a-5p, and miR-125b-5p, are medi-
ated by different exosomes from different cell sources, 
and have important effects on the balance of proliferation 
and apoptosis of VSMCs. Apoptosis of VSMCs can be 
regulated and vascular lumen stenosis can be reduced by 
promoting the secretion of specific exosomes during the 
early stage. When AS progresses to an advanced stage, 
reducing secretion with exosomal component inhibitors 
or antibodies relieves the inflammatory reaction caused 
by excessive VSMC apoptosis, improves plaque stabil-
ity, and reduces the incidence of serious cardiovascular 
events (Fig. 2).

Roles of exosomes in regulating the interaction 
between ECs and VSMCs
AS is the result of pathological changes in many types of 
cells, including ECs, VSMCs, and macrophages. Vascular 
wall lesions in AS are closely related to ECs and VSMCs. 
ECs normally regulate vasodilation, proliferation, migra-
tion of VSMCs, and intercellular adhesion through mol-
ecules that maintain vascular homeostasis [71]. During 
EC injury, NOD1 upregulates the expression of vascular 

Fig. 1 The miR-29b, LncH19/Runx2, miR-34a/TGF-β, and miR-128-3p/Wnt pathways promote the osteoblast phenotype to increase plaque stability. 
The miR-133a/Runx2, miR-204/miRr-211/BMP2, miR-125b/Ets-1, miR-223-3p/IL-6/STAT3, and miR-146a/TXNIP pathways reduce vascular calcification 
and senescence by inhibiting the phenotypic transition from VSMCs to osteoblasts and inducing plaque rupture
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cell adhesion molecule-1 (VCAM-1) through the RIP2-
NF-kappaB axis to promote the recruitment of early leu-
kocytes [72]. In contrast, the endothelium-mesenchymal 
transformation process induced by transforming growth 
factor (TGF)-β generates proinflammatory cells, second-
ary necrotic apoptosis of VSMCs, and unstable plaque 
growth, which increases the incidence of adverse cardio-
vascular events [73]. Endothelial dysfunction and exces-
sive proliferation of VSMCs accelerate the deterioration 
of AS. In previous studies, the independent mechanisms 
of ECs and VSMCs in AS have gradually been under-
stood, but the regulatory mechanism of AS through the 
exchange of information between ECs and VSMCs needs 
further work.

Exosomes act as mediators during cell-to-cell com-
munication. Endothelium-derived exosomes regulated 
various activities and functions of VSMCs. Studies have 
shown that the shear response regulator called Krup-
pel-like factor 2 in ECs significantly upregulates miR-
143/145, and these miRNAs are enriched in exosomes, 
which can be transferred to VSMCs, thus regulating 

the VSMC phenotype and participating in the entire 
AS process [74]. Zhang et  al. reported that exosomal 
LINC01005 derived from ECs induced by ox-LDL pro-
motes the VSMC phenotypic transition by regulating the 
miR-128-3p/KLF4 axis [75]. In addition, TET2 is a key 
factor in the VSMC phenotypic transition, as it protects 
ECs in AS, and exosomes in ECs transfer TET2 from ECs 
to VSMCs, slowing down the proliferation and migra-
tion of VSMCs and the formation of angiogenic intima. 
Inhibiting the EC-derived exosomal transfer of TET2 to 
VSMCs triggers platelet-derived growth factor (PDGF-
BB)-induced phenotypic transition of VSMCs, promot-
ing plaque formation and accelerating the development 
of AS [44].

Angiotensin-converting enzyme 2 (ACE2) is a prom-
ising cardiovascular target. Some research groups have 
reported that exosomes derived from endothelial pro-
genitor cells downregulate the activated NF-kappaB 
pathway by delivering functional ACE2, thereby reducing 
the phenotypic transition of VSMCs induced by angio-
tensin II (Ang II) [76]. This finding indicates that ECs 

Fig. 2 Multivesicular bodies are fused with the cytomembrane and exosomes are released. Exosomes promote the proliferation and migration 
of VSMCs through the miR-92a-3p/PTEN, miR-21-3p/PTEN/NF-kappaB, miRr-222, and lncRNA LIPCAR pathways, leading to intima hyperplasia. 
However, the TET2, miR-133, miR-143/145/KLF4/5, miR-663/JunB, and miR-155-5p/PKG1/NO/cGMP pathways improve the pathological process and 
vascular remodeling by inhibiting proliferation and migration of VSMCs. miR-106A/TIMP-2, circHIPK3/miR-106a-5p/Foxo1, and miR-26b/TGF-β/MAPK 
pathways promote apoptosis of VSMCs to promote a vascular inflammatory reaction and vascular rupture. miR-106a-3p binds CASP9 to inhibit the 
caspase pathway in VSMCs. miR-125b-5p downregulates Map4k4, and both inhibit VSMC apoptosis to reduce vascular stenosis and inflammation
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can communicate with VSMCs through exosomes at 
the precursor stage. Furthermore, vascular aging in dia-
betic patients is an important cause of AS. The vascular 
response under high glucose conditions is mainly related 
to signal transmission between ECs and VSMCs. Studies 
have shown that circRNA0077930 in exosomes secreted 
by the human vascular endothelium inhibits the expres-
sion of miR-622 and accelerates the aging of VSMCs [77]. 
In addition, data suggest that exosomal Notch3 derived 
from ECs regulates calcification and senescence in 
VSMCs through the mTOR signaling pathway under high 
glucose conditions [78].

At the same time, VSMC-derived exosomes can affect 
the function of ECs. VSMC-derived exosomes trans-
duced by KLF5 are absorbed by ECs, enhancing the 
expression of miR-155 to help exosomes transfer miR-
155 from VSMCs to ECs. However, overexpression of this 
VSMC-secreted exosomal miR-155 inhibits the prolifera-
tion and migration of ECs and reduces expression of the 
TJ glycoprotein, thus damaging endothelial barrier func-
tion as well as promoting the occurrence of AS [79].

Exosomes play an important role in information 
exchange between ECs and VSMCs. As molecular carri-
ers, miR-143/145, miR-622, and miR-155 regulate AS by 
affecting message switching between ECs and VSMCs. 
Therefore, this provides a new direction for treating AS 
by studying the mechanism of inducing or inhibiting the 
communication between ECs and VSMCs mediated by 
exosomes.

Roles of exosomes in the regulation 
of the interaction between macrophages 
and VSMCs
Many types of cells play different roles in the develop-
ment of AS. However, macrophages and VSMCs are 
dominant in terms of numbers. During the phenotypic 
transition, VSMCs acquire macrophage characteris-
tics and express macrophage markers, such as CD68 
[80]. Both have high plasticity and can phagocytose 
ox-LDL into lipid-rich foam cells, thus aggravating AS 
[81]. It has also been demonstrated that foam cells and 
necrotic cores of plaques are derived from macrophages 
and VSMCs [82], indicating a close relationship between 
these two cell types. Therefore, the activity of mac-
rophages and VSMCs is critical to the progression and 
outcome of AS, and understanding the interactions and 
molecular changes between them could be a boon for 
patients suffering from AS.

Macrophage-derived exosomes promote the VSMC 
phenotypic transition by activating the c-Jun/AP-1 
signaling pathway [83] and triggering the expression of 
MMP-2 in VSMCs through the JNK and P38 pathways 
[84], both of which accelerate the AS process. New et al. 

proposed that pro-inflammatory macrophages release 
exosomes rich in phosphatidylserine membrane adhe-
sion protein 5 and S100A9 to promote the transition of 
VSMCs into the osteoblast phenotype [85]. Moreover, 
macrophage-derived foam cells secrete more exosomes 
than macrophages to regulate the actin cytoskeleton and 
adhesion pathway, transport information molecules to 
VSMCs, and promote phosphorylation of the ERK and 
Akt pathways in VSMCs in a time-dependent manner, 
which promotes adhesion and migration of VSMCs [86].

To sum up, exosomes regulate the interactions between 
macrophages and VSMCs through multiple pathways. 
Therefore, regulating the status of VSMCs by targeting 
related exosomes to control the activities of macrophages 
and macrophage-derived foam cells can prevent AS. 
For example, exosomes derived from human mesenchy-
mal stromal cells inhibit the activation of macrophages 
through miR-147 [87].

Roles of exosomes in the regulation 
of the interactions between VSMCs
Proliferation, migration, apoptosis, and calcification of 
VSMCs play an important role in AS, and their interac-
tions are crucial for maintaining vascular wall balance. 
In vitro studies have shown that the effect of XBP1S on 
VSMCs controls the migration of ECs through exosomal 
miR-150 derived by VSMCs and the VEGFR/PI3K/Akt 
pathway driven by miR-150, thus regulating the mainte-
nance of vascular homeostasis [88]. This finding indicates 
that the interactions between VSMCs and VSMCs may 
also involve intermediary cells. However, it is unclear 
whether VSMCs can directly regulate the phenotype of 
the same cell type through exosomes (Fig. 3).

Discussion
VSMCs are highly specialized, highly plastic cells that 
exchange information with other cells and change into 
different phenotypes under the regulation of peripheral 
signaling molecules. The phenotypic transition ability of 
VSMCs is an inherent characteristic of this type of cell, 
which evolved in higher organisms. For example, during 
the early stage of AS, VSMCs switch to the proliferative 
migration phenotype, promoting intima neogenesis and 
vascular repair, while in the late stage of plaque, VSMCs 
switch to the osteoblast phenotype, promoting com-
plete plaque calcification and increasing plaque stabil-
ity. Therefore, this ability of VSMCs confers a survival 
advantage.

Exosomes may help identify novel therapeutic tar-
gets to promote vascular repair, enhance the stability of 
plaque, and promote the establishment of collateral cir-
culation, which maximizes the beneficial effects of the 
VSMC phenotypic transition. Inhibiting the expression 
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of exosomal miR-92a-3p, miR-21-3p, miR-663, and miR-
222, and promoting the expression of exosomal miR-133, 
miR-143/145, and miR155-5p effectively restrain the pro-
liferation and migration of VSMCs and improves vascular 
remodeling in AS. Regulation of exosomal LncRNA H19, 
miR-103-3p, miR-133a, miR-204/miR-211, and miR-34a 
may control the phenotypic transition from VSMC to 
osteoblast, effectively regulating vascular aging, calci-
fication, and plaque stability in AS. Exosomal miR-146a 
is expected to play a positive role in protecting VSMCs 
from osteogenic differentiation and alleviating vascu-
lar calcification by targeting the increase of TXNIP in 
VSMCs [89] and simultaneously reducing the expression 
of osteogenic genes and reactive oxygen species. Exoso-
mal miR-106a, miR-106a-3p, circHIPK3, miR-106a-5p, 
and miR-125b-5p are closely related to apoptosis of 
VSMCs. Intervening in their expression during differ-
ent stages of AS may balance the proportion of apoptotic 
cells, maintain vascular elasticity, and reduce the degree 
of obstruction. New therapeutic targets to fundamentally 
control the phenotypic transition of VSMCs and the dis-
ease progression of AS are expected.

In addition to the studies described above, two 
recent studies have suggested the therapeutic poten-
tial of exosomes. Ke et  al. suggested that endothelial 

colony-forming cell-derived exosomes regulate lipid 
homeostasis, activate autophagy, attenuate vascu-
lar endothelial injury, and play a protective role in AS 
[90]. Zhang et al. reported that mesenchymal stem cell-
derived exosomes fight against damaged ECs induced by 
ox-LDL and restore vascular activity by fetal-lethal non-
coding developmental regulatory RNA [91]. In addition, 
exosomes have a lipid bilayer membrane structure, which 
protects the encapsulated substances and targets specific 
cells or tissues. Therefore, exosomes are a well-targeted 
drug delivery system with bright prospects in precision 
medicine.

In addition to these therapeutic effects, exosomes are 
promising biomarkers for diagnosing and predicting AS. 
The measurement of exosomal miRNAs indicated [92] 
that exosomes of healthy individuals do not carry a sig-
nificant number of miRNAs, which is to say that diseases 
may occur because a large number of exosomes with 
similar functions work together, so a significant increase 
in the number of particular miRNAs can be detected. 
Moreover, exosomes are easy to isolate, carry AS-specific 
signaling molecules, and are more sensitive and specific 
than miRNAs in the circulating blood [93]. Many stud-
ies have suggested that exosomes and their encapsulated 
miRNAs have diagnostic potential in AS. For example, 

Fig. 3 Macrophage-derived exosomal miR-155-5p and miR-221-5p promote EC proliferation to help vascular angiogenesis. EC-derived exosomal 
circRNA007793 inhibits miR-622 to promote cell aging. LINC01005 promotes proliferation and migration of VSMCs by regulating the miR-128-3p/
KLF4 axis, while ACE2 down-regulates the activated NF-kappaB pathway to inhibit this process. Notch3 promotes the aging of VSMCs to ease 
vasosclerosis through the mTOR signaling pathway. VSMC-derived exosomal miR-155 inhibits EC proliferation to prevent damage to the vascular 
endothelium
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miR-16-5p, miR-486-5p, and miR-30c-5p are associated 
with the recurrence of ischemic events after carotid ath-
erosclerosis [94], while miR-30e and miR-92a are nega-
tively correlated with plasma cholesterol levels and are 
upregulated in AS [95].

Exosomes have stimulated new ideas for prevent-
ing and treating AS, but also bring new challenges. For 
example, most studies on the communication between 
specific types of cells have focused on the one-way regu-
lation of information transferred by exosomes from one 
cell type to another cell type. The interaction between 
cells is mutual, and the information exchange between 
two types of cells should also be bidirectional, particu-
larly during AS in which ECs, VSMCs, and macrophages 
interact. They are upstream and downstream emissar-
ies of each other and determine the progress and out-
comes of AS together. Therefore, the study of exosomal 
communication between multiple cells has great pros-
pects. Second, exosomes are involved in the metabolism, 
transport, and catabolism of lipids in vivo [96], and lipid 
accumulation and metabolism in VSMCs are also closely 
related to the development of AS; however, no study on 
exosomes in VSMC lipid metabolism is available. In addi-
tion, the balance point to regulate the phenotypic transi-
tion of VSMCs must be identified, and then the critical 
molecular mechanisms leading to ongoing AS will be 
found. However, how various types of cells respond to 
environmental molecules is poorly understood. When a 
specific exosomal component inhibitor is used, even if 
it has a target effect on VSMCs, it may have side effects 
on other surrounding cells, such as apoptosis, activation 
of various MMPs, or promoting the release of inflamma-
tory mediators, which could lead to deterioration of end-
stage AS and to serious cardiovascular events. Therefore, 
in addition to identifying the key exosomal components 
involved in this process, screening of specific pathways 
for the actions of these components on target cells is 
needed. More standardized in vitro isolation methods are 
needed to apply exosomes as diagnostic biomarkers.

Conclusion
In brief, the pathogenesis of AS is not only dependent 
on a single change in a particular cell but is affected by 
a variety of pathological changes in multiple cell types. 
The phenotypic transition of VSMCs is an important 
process in the development of AS, as well as a major fac-
tor affecting AS vascular wall lesions. Several studies 
have confirmed that targeting the response of VSMCs 
by exosomes can prevent or aggravate AS. Therefore, 
VSMCs can be used as a gene therapy guide vector to 
target cells. The study of the phenotypic transition of 
VSMCs regulated by exosomes will provide a new direc-
tion for preventing, diagnosing, treating, and prognosing 

AS. Future studies should focus on validating specific 
exosomal components as biomarkers for detecting an 
early risk of AS and finding novel strategies for treating 
AS with exosomal components that target VSMCs. Fur-
thermore, more research is needed to address other chal-
lenges posed by exosomes.
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