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Abstract 

NF-E2-related factor 2 (Nrf2) protein is a basic-region leucine zipper transcription factor that defends against endog-
enous or exogenous stressors. By inducing several cytoprotective and detoxifying gene expressions, Nrf2 can increase 
the sensitivity of the cells to oxidants and electrophiles. Transient Nrf2 activation, by its specific activators, has protec-
tive roles against carcinogenesis and cancer development. However, permanent activation of Nrf2 promotes various 
cancer properties, comprising malignant progression, chemo/radio resistance, and poor patient prognosis. Taken 
together, these findings suggest that reaching an optimal balance between paradoxical functions of Nrf2 in malig-
nancy may render a selective improvement to identify therapeutic strategies in cancer treatment. In this review, we 
describe lately discovered Nrf2 inducers and inhibitors, and their chemopreventive and/or anticancer activities.

Plain english summary 

The Nrf2 pathway signifies one of the most significant cell defense procedures against exogenous or endogenous 
stressors. Certainly, by increasing the expression of several cytoprotective genes, the transcription factor Nrf2 can 
shelter cells and tissues from multiple sources of damage including electrophilic, xenobiotic, metabolic, and oxidative 
stress. Notably, the aberrant activation or accumulation of Nrf2, a common event in many tumors, confers a selec-
tive advantage to cancer cells and is connected to malignant progression, therapy resistance, and poor prognosis. 
Therefore, lately, Nrf2 has arisen as a hopeful target in treatment of cancer, and many struggles have been made to 
detect therapeutic strategies intended at disrupting its pro-oncogenic role. By summarizing the outcomes from past 
and recent studies, this review provided an overview concerning the Nrf2 pathway and the molecular mechanisms 
causing Nrf2 hyperactivation in cancer cells. Finally, this paper also described some of the most promising therapeutic 
approaches that have been successfully employed to counteract Nrf2 activity in tumors, with a particular emphasis 
on the development of natural compounds and the adoption of drug repurposing strategies.
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Background
Despite the numerous efforts that researchers have car-
ried out to improve the cancer outcomes, the overall 
cancer mortality rate has not significantly diminished 
over the past 30  years [1–3]. Reactive oxygen species 
(ROS) and reactive nitrogen species (RNS) are produced 
in the cells as the result of normal physiological proce-
dures such as during inflammatory responses and mito-
chondrial aerobic respiration [4]. The elevated amounts 
of ROS and RNS in cancer cells can be responsible for 
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triggering oxidative stress, which leads to DNA damage, 
alterations in tumor-suppressor genes and eventually ini-
tiation, development, and progression of cancer [4–6]. 
One of the key systems that confronts oxidative stress 
and xenobiotics is the Nrf2 signaling system.

Nuclear factor erythroid 2 [NF-E2]–related factor 2 
(also called NFE2L2 or Nrf2) is a basic-region leucine 
zipper (bZIP) transcription protein and a member of 
CNC (cap ‘‘n’’ collar) family chiefly localized in the cyto-
plasm [7]. Kelch-like ECH-associated protein 1 (Keap1) 
or inhibitor of Nrf2 (INrf2) is a redox-regulated substrate 
adaptor protein for a Cullin-3/Rbx-1 ubiquitin ligase 
complex [8]. Under unstressed situations, Nrf2 protein 
is ubiquitinated by Keap1-Cullin3 E3 ubiquitin ligase 
enzymes and subsequently degraded by the proteaso-
mal machinery [4, 5]. Upon exposure to electrophiles or 
oxidative stresses, the interaction between Nrf2 and that 
complex is interrupted, followed by decreased Nrf2 deg-
radation and increased its translocation into the nucleus 
where heterodimerized with the small MAF (muscu-
loaponeurotic fibrosarcoma) proteins (MafF, MafK, 

and MafG) (Fig. 1). These proteins are necessary for the 
Nrf2-related upregulation of antioxidant response ele-
ment (ARE)-dependent target genes [5]. In response to 
the oxidative stress, about 200 cytoprotective genes are 
regulated by Nrf2 [9–12]. There are a lot of synthetic or 
plant-derived chemopreventive compounds, which exert 
their cancer-preventive roles by involving Nrf2-related 
defense responses [13–18]. Transient activation of Nrf2 
is beneficial in countering carcinogens and mutagens and 
has protective roles versus tumor initiation in normal 
cells [19–22]. Howevere, in several of pathological condi-
tions, comprising inflammation and cancer, some of the 
changes, such as somatic mutations in Nrf2,Keap1,and 
Cul3, Keap1 modification by metabolic mediators, epi-
genetically silencing of Keap1, Nrf2 transcriptional acti-
vation via oncogene-mediated signaling, and unusual 
accumulation of the proteins that disrupting the Keap1-
Nrf2 interactions, lead to prolonged activation of Nrf2 
[23–29]. Several studies have provided evidence that 
preventing the permanent activity of Nrf2 by its inhibi-
tors renders cancer cells susceptible to apoptosis and 

Fig. 1 Nrf2 pathway under homeostasis and stress conditions. Under unstressed situations, most of Nrf2 protein is ubiquitinated by Keap1-Cullin3 
E3 ubiquitin ligase enzymes and subsequently degraded by the proteasomal machinery. Upon exposure to oxidative stresses, the interaction 
between Nrf2 and that complex is interrupted, which resulted in decreased Nrf2 degradation and increased its translocation into the nucleus where 
heterodimerized with the small MAF proteins
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enhances the efficacy of chemotherapeutics [30–33]. 
Therefore, Nrf2 is involved not only in biological defense 
against carcinogenesis and cancer development but also 
in cancer development and resistance to chemo-and radi-
otherapy. In the present review, we describe Nrf2 activa-
tors and inhibitors to contribute to obtaining an optimal 
balance between the tumor-preventive or -promoting 
activities of Nrf2 (Table 1).

Molecular mechanisms of Nrf2 regulation in cancer
Somatic mutations in Keap1, Nrf2 and Cullin‑3
Initially, somatic mutations of Keap1 were recognized 
in lung tumor tissues and cell lines [34], which are the 
second most common and significant genetic modifica-
tions in lung cancer [35]. However, Keap1 mutations have 
also been reported in other human cancers, for example, 
ovary (19%), gastric (11%), liver (9%), colon (8%), pros-
tate (8%), and breast cancer (2%) [36–38]. These muta-
tions were reported in several Keap1 domains, which 
result in inactivation of Keap1 and accumulation of Nrf2 
in the nucleus of cancer cells [39–42]. Besides the Keap1 
mutations, gain of function mutations of Nrf2 have also 
been identified in human cancers for example esophageal 
carcinoma, lung, head and neck cancer [23, 27]. Interest-
ingly, almost all Nrf2 mutations occur specifically within 
either the ETGE (57%) or DLG (43%) motifs [24]. When 
the mutations occur at the ETGE motif, the high-affinity 
interaction between the keap1 and Nrf2 is destroyed [26], 
while DLG motif mutations lead to destruction of low-
affinity interaction [27] (Fig.  2). Recently, Ooiet al. [43] 
identified somatic mutations of Cul3 in sporadic papillary 

renal cell carcinoma type-2 (PRCC2). They showed that 
Cul3 mutation can be the trigger of Nrf2 activation in 
some of the sporadic PRCC2.
Epigenetic silencing of Keap1
Epigenetic changes are the most common causes of 
Keap1 gene silencing in solid tumors and are obviously 
involved in the complicated regulation of the Keap1-
Nrf2 system [44]. Multiple studies have indicated that 
epigenetic alterations in the Keap1 gene donate a growth 
advantage to cancer cells and are correlated with poor 
clinical prognosis in cancer patients [23, 45, 46]. The 
promoter hypermethylation of Keap1 that can lead to 
reduction of Keap1 expression and Nrf2 accumulation 
in the nucleus has been identified in malignant glioma 
[47], lung [48, 49], prostate [38], colorectal [50], gas-
tric [51] and breast cancers [52]. Besides the effects of 
hypermethylation, the Keap1 expression can be affected 
by several microRNAs that act as oncogenes or tumor 
suppressor-microRNAs in tumor cells [53]. For example, 
miR-7,miR-200a and miR-141 that are overexpressed in 
neuroblastoma, breast and ovarian cancer, respectively, 
down-regulate Keap1 expression through binding to the 
3′-untranslated region (3′-UTR) of Keap1 mRNA [54–
56], while inhibition of miR-200a results in up-regulation 
of Keap1 and subsequently reduction in Nrf2 activation 
[54].

The role of proteins that disrupting the Nrf2‑Keap1 
interactions
p21, an inhibitor of cyclin-dependent kinase, is one of 
the non-electrophilic activators of Nrf2 that has been 

Table 1 The selected activators and inhibitors of Nrf2 and their mechanisms of action

AA Ascorbic acid; API Apigenin; BRU Brusatol; CDDO 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid; CHR Chrysin; CUR  Curcumin; DATS Diallyl trisulfide; DMF 
Dimethylfumarate; EGCG  Epigallocatechin-3-gallate; LUT Luteolin; OPZ Oltipraz; RA Retinoic Acid; RES Resveratrol; SFN Sulforaphane; TRG  Trigonelline

Compound Type Mechanism of action Reference

Nrf2 activators SFN Isothiocyanate Electrophilic modification of Keap1-Cys-151 [87]

OPZ Organosulfur compound Electrophilic modification of Keap1-Cys-151 [107]

EGCG Catechin Oxidizing the cysteine thiols of Keap1 [110]

DMF Fumaric acid ester Electrophilic modification of Keap1-Cys-151 [127]

DATS Isothiocyanate Modification of Keap1-Cys-288 [141]

CUR Stilbene Electrophilic modification of Keap1-Cys-151 [159]

CDDO Synthetic triterpenoids Electrophilic modification of Keap1-Cys-151 [19]

API Plant flavone Epigenetic modifications of Nrf2 [179]

RES (E)-Stilbene derivate Electrophilic modification of Keap1-Cys-151 [188]

Nrf2 inhibitors BRU Triterpene lactone compound Stimulation of Nrf2 poly-ubiquitination [194]

LUT Plant flavone Nrf2 mRNA degradation, Reduction of Nrf2 binding 
to AREs

[198]

TRG Coffee-derived alkaloid Prevention of nuclear translocation of NRF2 [201]

AA Natural vitamin Electrophilic modification of Keap1-Cys-151 [204]

RA Metabolite of vitamin A Prevention of nuclear translocation of NRF2 [210]

CHR Plant flavone Prevention of nuclear translocation of NRF2 [219]
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reported to relate to the DLG motif of Nrf2. Indeed, 
p21 disrupts two-site binding of Nrf2 to the Keap1 and 
results in stabilization of Nrf2 protein. Therefore, in the 
presence of p21, the expression of Nrf2 and its cytopro-
tective genes is elevated, which followed by promoted 
cell survival in response to oxidative stress [57, 58].

Another protein involved in the disruption of Keap1-
Nrf2 interactions is p62, which links to the autophagy-
mediated degradation and contains a Keap1-interacting 
region (KIR) domain. Interestingly, the STGE (Ser-Thr-
Gly-Glu) motif in KIR domain is similar to the Nrf2 ETGE 
motif and therefore is responsible for the direct interac-
tion between Keap1 and p62 proteins [59–61]. It has been 
suggested that STGE-binding motif in p62 is bound to the 
Kelch domain of Keap1 with lower affinity than ETGE 
motif [62]. However, serine phosphorylation (S351) of the 
p62 STGE motif can remarkably increase this affinity and 
facilitate p62-dependent autophagic degradation of Keap1 
which leading to subsequent activation of Nrf2 [63]. Sig-
nificantly, the unusual accumulation of p62 has been iden-
tified in certain cancers such as hepatocellular carcinoma 
[64], lung [65, 66], gastric [67, 68], breast [69, 70], and 
colon cancers [67, 71], which might increase the malignant 
behavior of these tumors through improving Nrf2 activity.

Oncogene signaling mediated‑Nrf2 upregulation
Although the Nrf2 protein level primarily is regulated 
by the mutation/degradation process, a different study 
has been conducted on the control of the Nrf2 gene 
transcription. DeNicola et al. [72] showed that the tran-
scriptional start site of Nrf2 has Jun and Myc binding 
sites and therefore, the expression of Nrf2 and its down-
stream genes can be increased remarkably by activat-
ing the oncogenic alleles of C-MYC, BRAF, and KRAS 
(C-MYCERT12,  BRAFV619E, and  KRASG12D) which fol-
lowed by more reduction in the intracellular redox envi-
ronment. In another study, promoter analysis of Nrf2 
showed that in regulatory region in exon 1 of Nrf2, a 
2-O-tetradecanoylphorbol-13-acetate (TPA) response 
element (TRE) was activated by KRAS in human non-
small cell lung cancer (NSCLC) cells [73]. The onco-
genic KRAS can induce antioxidant program through 
MAPK-mediated Nrf2 activation in pancreatic cancer. 
Furthermore, KRAS silencing or obstruction of MAP 
kinase signaling pathway efficiently decrease Nrf2 level 
and elevate ROS formation [74].

Fig. 2 Somatic mutations of Keap1 and/or Nrf2 can result in nuclear accumulation of Nrf2
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Nrf2 activators
There are many synthetic or extracted substances that 
function as Nrf2 activators (Fig.  3), which frequently 
are extracted from plants. Some examples of natu-
ral Nrf2 activators include curcumin, sulforaphane 
(SF), kahweol, resveratrol, garlic oganosulfur com-
pounds, zerumbone, epigallocatechin-3-gallate, car-
nosol, cinnamonyl-based compounds, lycopene, and 
cafestol [75–77]. Magesh et  al. [78] have categorized 
about 90 kinds of these synthetic or natural activators 
of Nrf2 in several groups: (1) isothiocyanates and sul-
foxythiocarbamates; (2) oxidizable phenols and qui-
nones; (3) Michael acceptors; (4) vicinal dimercaptans; 

(5) trivalent arsenicals; (6) dithiolethiones and diallyl 
sulfides; (7) heavy metals and metal complexes; (8) mis-
cellaneous inducers; (9) selenium-based compounds; 
(10) polyenes; and (11) hydroxyl peroxides. By inducing 
the Nrf2-mediated defense response, these chemopre-
ventive agents can activate the antioxidants, phase II 
detoxification factors, and transducers, and protect the 
cells from carcinogenic exposure [23].

Sulforaphane [1‑isothiocyanato‑4‑(methylsulfonyl)‑butane] 
(SFN)
SFN is an effective dietary isothiocyanate, which found in 
cruciferous plants like Brussels sprouts and broccoli. SFN 

Fig. 3 The common activators and inhibitors of Nrf2
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has anti-genotoxicity, anti-cancer and antioxidant activ-
ity as well as chemotherapeutic effect [79–81]. Besides 
enhancing cellular capacity in defense against oxidants, 
and electrophiles, it has been shown that sulforaphane 
is able to provoke apoptosis and reduce angiogenesis 
and cell cycle progression [82–84]. Interesting preclini-
cal investigations show that sulforaphane prevents mice 
from forming carcinogen-mediated mammary carcino-
genesis, lung, and gastric cancer, as well as colonic crypt 
foci [7, 85]. Previously, SFN was recognized as the most 
powerful activator of NQO1, but later it has been proved 
that the upregulation of NQO1 by SFN, indeed is regu-
lated by the Nrf2-Keap1 signaling [86]. According to the 
in vivo experiments, site-directed mutagenesis and mass 
spectrometry analysis, it was evidenced that SFN can 
directly modify critical Keap1 cysteine 151 which fol-
lowed by activation of the Nrf2-Keap1-ARE signaling 
[87, 88]. Thiols from Keap1 Kelch domain and isothiocy-
anate from SFN are covalently bound together which lead 
to the releasing of Nrf2 from Keap1 and finally inducing 
phase II metabolic enzymes [89, 90]. In another study, 
Kobayashi et  al. categorized SFN as class 1 ARE induc-
ers. Moreover, they found that the induction of ARE-
regulated genes in zebrafish via sulforaphane is highly 
dependent on keap1 Cys151 [88]. It has been shown 
that SFN has a protective role against cancer develop-
ment in different kinds of transgenic and carcinogen-
induced tumor models (reviewed [91, 92]). In an animal 
study, Kalpana et  al. revealed the inhibitory effect of 
SFN on benzo(a)pyrene (B(a)P)-induced lung cancer in 
the mouse, with emphasis on the effect of SFN on Nrf2 
signal pathway [93]. Besides, in some clinical trial stud-
ies, the effect of SFN, as an Nrf2 activator, was evaluated 
in patients with colon, prostate, breast, and pancreatic 
cancers [79–82]. SFN can concomitantly upregulate 
Nrf2 and its downstream target genes, including HO1, 
NQOs, GSTs, and UGTs, rapidly in less than 30 min [94]. 
Another study demonstrated that sulforaphane epigenet-
ically restored Nrf2 mRNA expression through the dem-
ethylation of its promoter CpGs in TRAMP-C1 and JB6 
cells [95, 96].

Oltipraz (4‑methyl‑5‑[2‑pyrazinyl]‑1,2‑dithiole‑ 3‑thione) 
(OPZ)
OPZ, also known as a dithiolthione substitute, is one 
of the synthetic Nrf2 inducers [97]. Previous studies 
showed that OPZ can induce a number of Phase I and II 
antioxidant enzymes, especially that ones that increase 
glutathione levels, such as glucose-6-phosphate dehydro-
genase, glutathione S-transferase (GST) and glutathione 
reductase [98–101]. The induction of GST and other 
cytoprotective enzymes has been termed the “antioxidant 
response”, which implies the possible impact of OPZ in 

cancer prevention [102, 103]. Moreover, OPZ is effec-
tive against many different kinds of common carcino-
gens such as 2-amino-1-methyl-6- phenylimidazo [4,5-b] 
pyridine (PhIP), aflatoxin B1 (AFB1) and benzo[a]pyrene 
(B[a]P) [104]. In another study, Sharma et  al. demon-
strated that oltipraz inhalation spray could inhibit B(a)
P-mediated lung carcinoma in mice [105].

OPZ also may enhance the binding activity of Nrf2 
to the ARE [100, 106]. Jia et al. [107] showed that dithi-
olethiones potentially have the ability to Keap1 cysteine 
modification. For example, 3H-1,2-dithiole-3-thione, 
which is structurally similar to OPZ, induces intermo-
lecular disulfide cross-linking between two Keap1 mono-
mers by targeting Cys273 and Cys288 [108]. Moreover, 
another study proved that Nrf2 is responsible for the 
chemopreventive effects of OPZ against bladder cancer 
[109].

Epigallocatechin‑3‑gallate (EGCG)
EGCG is known to be a potent inducer of Nrf2 among 
several polyphenols found in green tea extract [110]. 
EGCG has anti-oxidative stress and anti-inflammatory 
activities through the downregulation of cyclooxyge-
nase-2 and nitric oxide synthase [111]. According to the 
previous studies, EGCG has protective activity against 
experimentally induced prostate [112], fore-stomach 
[113], lung [114], skin [115], breast [116], and colon can-
cer [117]. Khan et  al. [118] reported that EGCG could 
inhibit the cell adhesion function and downregulate the 
expression of matrix metalloproteinases that results in 
a reduction in angiogenesis, metastasis, and invasion of 
cancer cells. In addition to its ability to function as an 
anti-angiogenic agent, EGCG can induce apoptosis in 
numerous types of cancers by stabilizing the tumor sup-
pressor p53 [119] and inactivating some transcription 
factors [119, 120].

It seems that EGCG by oxidizing or modifying Keap1 
cysteine residues accelerates disassociation of Nrf2-
Keap1 complex [121]. Moreover, EGCG is reported to 
activate Nrf2 via induction of upstream signalings, ERK 
and PI3K, which led to phosphorylation of Nrf2 serine/
threonine residue in human mammary epithelial cells 
[122]. Other studies have described that EGCG inhibits 
the expression of Bach1, an Nrf2 competitor for binding 
to ARE sites (INrf2), in cultured A549 cells [123, 124].

Dimethyl fumarate (tecfidera or DMF)
DMF, a methyl ester of fumaric acid (FA), is a chemical 
potent activator of Nrf2 [125]. The molecular mecha-
nisms which DMF exerts its effects on Nrf2 are not 
understood completely but there are some suggested 
mechanisms. DMF, by activating the Nrf2-depend-
ent anti-oxidant response pathway, stimulates the 
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anti-inflammatory and cytoprotective responses [126, 
127]. It also inhibits NF-κB-driven processes [128], 
and as an α, β carboxylic acid ester is able to bind to 
the thiol groups and modulate glutathione availability 
and production [127, 129, 130]. Ahuja et al. [131] dem-
onstrated that DMF and DMF metabolite monometh-
ylfumarate (MMF) activate the Nrf2 signaling through 
alkylation of Keap1 Cys residues and via induction of 
Bach1 exclusion from the nucleus. It has been dem-
onstrated that Nrf2 activation by MMF is dose and 
time-dependent [132]. Furthermore, pre-treatment of 
neuronal cells with a low concentration of dimethylfu-
marate, by promoting cellular GSH, could protect them 
from oxidative glutamate toxicity [133, 134].

DMF-related activation of Nrf2 exerts cytoprotective 
actions in different cell types, for example, splenocytes, 
embryonic primary cortical cells, astrocytes, microglial 
cells, renal fibroblasts, and mesangial cells. Moreover, 
a growing body of evidence suggests that DMF sup-
presses proliferation, invasion, and angiogenesis and 
promotes apoptosis of various cancer cells [135–137]. 
An animal study showed that DMF has pro-apoptotic 
and anti-proliferative activities in melanoma cells and 
postpones progression and metastasis of melanoma 
[138].

Diallyl trisulfide (DATS)
DATS is one of the well-known kinds of isothiocyanates 
(ITC) found in garlic oil and in a diversity of edible cru-
ciferous vegetables, for example, cabbage, broccoli, and 
watercress [139]. In ex and in vivo experiments, DATS 
by modification of the Keap1, Cys288, is able to activate 
Nrf2 and promote NQO1 and HO-1 expression [140, 
141].

In cardiomyoblast cells, the Nrf2 level and its nuclear 
accumulation, as well as the expression of its target 
antioxidant enzymes, were significantly higher in the 
cells treated with DATS. In addition, the Keap1 and 
GSK3β (enhancer of Nrf2 degradation) protein levels 
were significantly lower in those cells. Further analysis 
showed that DATS activates Nrf2 signaling by a MAPK-
independent pathway which followed by suppression 
of hypoglycemia-induced apoptosis [142]. Moreo-
ver, it has been demonstrated that DATS can regulate 
drug metabolism by activation of Nrf2/ARE signaling. 
Because DATS-mediated detoxifying gene expression 
was detected in a wild-type mouse, but not in Nrf2 null 
mouse [143].

Curcumin (CUR)
CUR, as a classical activator of Nrf2, is one of the well-
investigated natural chemopreventive agents extracted 

from turmeric [144] (an Indian spice). CUR has a variety 
of therapeutic properties comprise of anti-oxidant [145], 
anti-inflammatory [146, 147] and anti-cancer activities 
[148, 149]. It also has been shown that CUR, via affect-
ing the expression of AR, NQO1, GST, and HO-1, is able 
to activate a xenobiotic response in the cells [150, 151]. 
Subsequent analyses suggested that chemopreventive/
therapeutic effects of CUR may be exerted by epigenetic 
alteration [152]. CUR, at lower concentrations, had dem-
ethylating effects on the promoter region of Nrf2, which 
resulted in elevated expressions of Nrf2 and its target 
genes [153]. Besides epigenetic modifications in Nrf2, 
curcumin may indirectly phosphorylate Nrf2 at serine- 
and/or threonine-rich regions and facilitate the nuclear 
transition of Nrf2. In addition, it can directly interact with 
sensor cysteine thiol(s) of Keap1 and diminish its inhibi-
tory effect on Nrf2 [154]. Interestingly, CUR is able to 
play radiation and chemotherapy sensitizer role in some 
of the human cancers such as prostate [155], colorectal 
[156, 157] and ovarian cancer [158]. Some of the clinical 
trial studies indicated that CUR is quite safe and prob-
ably has therapeutic applicability in cancer treatment. 
Curcumin consumption for 3 months could improve the 
pre-cancerous lesions of patients with resected uterine 
cervical intraepithelial neoplasia, intestinal metaplasia, 
oral leukoplakia, and bladder cancer [159]. Despite the 
activatory effect of CUR on Nrf2 signaling, it is able to 
exert inhibitory effects on some other signalings, such as 
Notch1 [160], NF-kappa B [158] and mitochondrial sign-
aling pathways [161].

2‑cyano‑3,12‑dioxooleana‑1,9(11)‑dien‑28‑oic acid(CDDO)
CDDO is a synthetic triterpenoid analog, which applied 
in two types CDDO-Imidazolide (CDDO-Im) and 
CDDO-methyl ester (CDDO-Me), and conjugated with 
electron-withdrawing groups by covalent connection. At 
low concentrations (in picomolar range), CDDO-Im and 
CDDO-Me are the most effective known Nrf2 activa-
tors that have shown anti-inflammatory, pro-apoptotic, 
anti-proliferative and cytoprotective properties [162, 
163]. Cleasby et  al. [19] indicated that CDDO-Im can 
disrupt the BTB-Cul3 interface via covalent interaction 
with reactive cysteine 151 in the BTB domain of Keap1. 
Besides Keap1, CDDO-Im interacts with several tar-
gets such as PTEN, JAK1/STAT3, ErbB2, NF-kB, PPAR, 
mTOR and results in alterations in down-stream events 
[164, 165]. Yates et al. [163] showed that CDDO-Im may 
be an effective chemopreventive agent against cancers-
mediated by electrophilic carcinogens or -associated 
with obesity. Another study showed chemopreventive 
potency of CDDO-Im against aflatoxin-induced hepatic 
tumorigenesis in an Nrf2-dependent manner [17]. More-
over, a knockout mouse study showed that CDDO-Me 
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selectively induces the Nrf2/Keap1 signaling [166]. Sig-
nificant alterations in the expression of 43 proteins were 
detected in the wild-type mice following intraperitoneal 
injection of CDDO-Me. However, among these altered 
proteins, only two proteins were similarly affected in 
Nrf2 null mice, indicating that almost all of these pro-
tein alterations were mediated through the Nrf2/Keap1 
system. High doses of CDDO-Me (micromolar range) 
can suppress cancer cell proliferation and provoke apop-
tosis and cancer cell death in various tumor types [167, 
168]. Furthermore, CDDO-Me has a higher potential to 
reduce lung tumor size in the mouse model in compare 
with CDDO-Im. Despite less efficacy in this lung cancer 
model, CDDO-Im has an effective role in the prevention 
and treatment of many other tumors including breast 
[169], prostate [170], and liver carcinogenesis [17].

Apigenin (4,5,7‑trihydroxyavone (Api))
Api is a kind of flavonoids that plentifully exists in plant-
derived beverages and vegetables including orange, 
onion, parsley, tea, wheat sprouts and chamomile [171]. 
According to the previous studies Api has different phar-
macological properties, for example, antivirus [172], 
anti-inflammatory [173], anti-oxidant [174] and anti-
cancer activity [175]. In addition, Api, because of low 
bioactivity and slow pharmacokinetics, effectively accu-
mulates in cells/tissues [176, 177]. Api potently increases 
the transcription of Nrf2 and leads to the elevated level 
of phase II detoxification proteins in t-BHP (tert-Butyl 
hydroperoxide)-treated ARPE cells (Retinal pigment 
epithelium cells). It is noteworthy that the endogenous 
mRNA and protein expressions of Nrf2 and its down-
stream gene, hemeoxygenase-1 (HO-1), considerably 
are elevated by Api, which followed by cellular protec-
tion against oxidative condition [178–180]. While knock 
down or knock out of the Nrf2 by CRISPER/Cas9 sys-
tem or specific shRNA lead to decreasing the protec-
tive effects of Api in oxidative stress conditions [178]. 
Frequently, it was reported that Api by CpG site dem-
ethylation along with attenuated activities of DNA meth-
yltransferase and histone deacetylases capable to restore 
the silenced status of Nrf2 in skin epidermal JB6 P + cell 
line [179]. Nevertheless, in contrast with the previous 
study, it has been reported that Api, via down-regulat-
ing of PI3K/Akt pathway, diminishes the expression of 
Nrf2 at both protein and mRNA levels which leads to a 
reduced expression of Nrf2-target genes in BEL-7402 
cells (human hepatocellular carcinoma cells). Moreover, 
apigenin, in combination with chrysin, directly inhibits 
the PI3K/Akt pathway, which is associated with the sur-
vival of cancer cells [181–183].

Resveratrol (3,5,4‑trihydroxystilbene (RES))
Resveratrol, a naturally non-flavonoid polyphenol com-
pound, is found in various food and plants for example: 
cranberry, mulberry, peanut, and the skin of red grape 
with different concentrations [184, 185]. Various envi-
ronmental stress and stimulators, for examples excessive 
sunlight, UV irradiation, microbial and fungal infection, 
and mechanical injury, are capable of paving the way for 
producing the resveratrol by many plants species [184, 
186]. Originally, there are two isomeric forms of res-
veratrol, trans-resveratrol and cis-resveratrol. Although 
both isomers are biologically active, the early one is 
more stable isomer and serves as a dominant form in the 
vast majority of resveratrol’s biological functions [186]. 
Numerous in  vitro and in  vivo studies have been illus-
trated that resveratrol occupies an axial role in modu-
lating the signaling pathways associated with cellular 
growth and division, apoptosis, angiogenesis, invasion, 
and metastasis. Furthermore, resveratrol possesses anti-
diabetic, anticancer, antioxidant, and anti-inflammatory 
effects [184–187]. In breast cancer, resveratrol through 
increasing the expression of Nrf2 and UGT1A8, an 
enzyme that can metabolize the catechol estrogen, con-
tributes to the degradation of catechol estrogen [188, 
189]. Zhang et al. found that resveratrol were capable of 
elevating the expression levels of Nrf2, HO-1 and reduc-
ing the level of ROS production and Keap1. Additionally, 
they reported that cell treatment with resveratrol, sup-
pressed cell proliferation and Bcl-2 protein expression 
and stimulated expression of Bax protein and apoptosis 
[190]. According to the previous studies, it is remarkable 
to note that resveratrol is capable of activating the Nrf2/
ARE signaling pathway and exerts antioxidant protective 
effects by regulating the expression of phase II detoxifi-
cation enzymes [184, 185, 188].

Nrf2 inhibitors
In contrast with the several agents that function as Nrf2 
inducers, very few molecular components have been rec-
ognized as Nrf2 inhibitors. Since Nrf2 has multifaceted 
roles in cancer cells, Nrf2 inhibitors can be applied as 
anticancer agents [27, 77, 191]. Indirectly, Nrf2 inhibitors 
down-regulate drug detoxifying and eliminating enzymes 
and sensitize cancer cells to chemotherapeutics [76, 176]. 
According to the Nrf2 deactivation mechanisms and 
their potential applications in cancer treatment, several 
small molecules have been characterized as Nrf2 pathway 
inhibitors (Fig. 3).

Brusatol (BRU)
Brusatol is a quassinoid which is extracted from Brucea 
Javanica (Simaroubaceae), an evergreen shrub grown in 
Northern Australia and Southeast Asia [27]. Initially, it 
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was recognized as an anticancer agent against leukemia 
[192]. Brusatol changes the Nrf2 protein levels with-
out changing in the Keap1 level [193]. Moreover, bru-
satol sensitizes various types of cancer cells, including 
HeLa cells, MDA-MB-231, and A549 cell lines, to some 
chemotherapeutics such as 5-fluorouracil, carboplatin, 
paclitaxel as well as etoposide [193]. This Nrf2 inhibitor 
also reduces tumor burden and improves survival in the 
A549 xenograft mice model [194]. However, there are 
several obstacles in the application of the brusatol as a 
therapeutic agent including toxicity, drug delivery and its 
effect reversibility that is necessary to be resolved [176]. 
Although it has been indicated that brusatol has transient 
and rapid post-transcriptional inhibitory effect on Nrf2 
[195], the specificity and precise anticancer mechanism 
of brusatol have not yet been fully understood.

Luteolin (3′,4′,5,7‑tetrahydroxyflavone (LUT))
Luteolin is a natural polyphenolic flavonoid which 
obtained from various kinds of plants for example broc-
coli, celery, parsley, perilla leaf, and peppers, and charac-
terized as one of the Nrf2 inhibitors [193, 196]. Luteolin 
has a wide range of biological effects such as antibacterial, 
antioxidant, anti-inflammatory and anticancer as well 
as cytoprotective activities [197]. Luteolin considerably 
enhances the anticancer efficiency of chemotherapeutic 
drugs, such as bleomycin, oxaliplatin, and doxorubicin, 
on A549 cell lines. When applying as an Nrf2 inhibitor, 
Luteolin reverses the sensitivity of colorectal cancer cells 
to the chemotherapy agents [198]. Additionally, luteolin 
is capable to suppress the cell cycle promotion and also 
acts as an apoptosis-inducer and anti-proliferative agent 
in several cancers, for example, gastric, prostate and pan-
creatic cancer, hepatoma, melanoma, leukemia, and epi-
dermoid carcinoma [196]. It should be noted that luteolin 
in some studies has been categorized as an Nrf2 activator, 
on the other [180, 199, 200].

Trigonelline (TRG)
Trigonelline, a heterocyclic compound, is widely existing 
in plants, coffee and fenugreek seed that in comparison 
with chemicals is less toxic to humans [201]. Recently it 
has been identified that Trg has anti-diabetic, hypocholes-
terolemic, antimigraine, anticancer, as well as, Nrf2-inhib-
itory effects [196, 201] which blocks the Nrf2-dependent 
expression of proteasomal genes [193]. In another study, 
Trg reversed resistance to ferroptotic cell death in head 
and neck cancer by blocking the Nrf2 pathway, both 
in  vitro and in  vivo [202]. It has been recognized that 
using a combination of etoposide and trigonelline can 
lead to the enhancement of anticancer efficacy of etopo-
side and reduction in tumor size [196], especially in the 
tumors have high-level activity of Nrf2 [193].

Ascorbic acid (vitamin C, L‑ascorbic acid, AscA, AA)
Ascorbic acid which generally known as an antioxidant 
agent [176], suppresses the Nrf2/DNA complex [78] and 
through inhibition of the nucleus translocation of Nrf2, 
reduces the cellular level of peroxides [176]. Addition-
ally, AA, because of abilities in the hydrogen peroxide 
generation, is categorized as a pro-oxidant which sensi-
tizes tumor cells to the therapeutics, but sometimes has 
been observed the opposite effects [176, 203]. Based on 
S.R. Kim et  al. [204] results, AA through involving the 
Cys151Ser in the Keap1, leading to activation of PI3K/
Nrf-2 and finally inducing the HO-1 which has antioxi-
dant effects by increasing the level of reduced glutathione 
[205]. In another study,Vineetha RC et al. [206] reported 
AA by elevating the level of oxidative stress leading to the 
up regulation of Nrf2 and Bcl2 expression.

Retinoic acid (RA)
Retinoic Acid (RA), also known as All-trans-retinoic acid 
(ATRA), is a metabolite of vitamin A [207]. RA by ARE-
inducing elements, for example, tBHQ, decreases the capa-
bility of Nrf2 to mediate the induction of ARE-regulated 
genes in both in vivo and ex vivo conditions [78]. RA has 
biological functions such as regulating cell differentia-
tion, proliferation, and morphogenesis. RA by stimulation 
of cellular differentiation and suppression of cell growth 
inhibits tumorigenesis [208] and also is able to enhance 
the apoptosis [209] which this property may contribute 
to the anticancer role of RA [210]. RA exerts its effects by 
retinoid X receptors (RXR-a, b, and g) and retinoic acid 
receptors (RAR-a, b, and g), which are specific nuclear 
receptors. RARs, RXRs and/or other hormone receptors of 
the nucleus, create heterodimers and act as transcriptional 
regulators [210], which through binding to the transcrip-
tion factors like Nrf2, prevent the binding of this transcrip-
tion factors to the ARE [176]. Furthermore, the interaction 
between RAR/RXR heterodimers and other transcription 
factors like estrogen receptor, AP-1 and NF-B leads to the 
RA activation or repression and subsequently gene expres-
sion variations [211]. Although RA has been identified as 
Nrf2 inhibitor, in some studies it has been reported as an 
Nrf2 activator [23]. Therefore, prior to using RA as an anti-
cancer agent, it is necessary to carry out additional studies 
on the specificity and mechanism of its actions.

Chrysin (5,7‑dihydroxy‑2‑phenyl‑4H‑chromen‑4‑one (CHR))
Chrysin, a natural flavonoid, is found in many plant 
extracts including honey, propolis, mushroom, blue pas-
sion flower, vegetables, and fruits [212]. According to 
the literature reports, the most reliable pharmacologi-
cal activities of chrysin are antioxidant, anti-inflamma-
tory, anti-diabetic, hepatoprotective, neuroprotective, 



Page 10 of 16Pouremamali et al. Cell Communication and Signaling          (2022) 20:100 

anti-aging, and anticancer effects [213–215]. In many 
studies, it has been reported that chrysin occupies an 
axial role in many biological process for example sup-
pression the pro-inflammatory cytokines expression, 
down-regulation of nuclear factor kappa B (NF-kB), 
tumor necrosis factor α (TNF-α), and interleukin 1β (IL-
1β), up-regulation of apoptotic pathways, and inhibition 
of angiogenesis and metastasis formation [216–218]. 
Gao and colleagues have been reported a higher level of 
Nrf2 expression in BEL-7402/ADM cells. They showed 
that chrysin, by quenching ERK and PI3K-Akt pathway, 
makes a contribution to inhibition of Nrf2 and its down-
stream target genes as well as AKR1B10, HO-1, and 
MRP5 expression [219]. Additionally, Zeng et  al. [220] 
disclosed that chrysin treatment promotes the expression 
of osteogenesis genes in preosteoblast MC3T3-E1 cell 
lines by activation of ERK/MAPK signaling pathway. In 
another study, it has been revealed that chrysin reduces 
the mRNA expression of Nrf2, MRP1, NQO-1, and 
HO-1 in breast cancer MCF7 cell lines [221]. It is com-
pletely obvious that chrysin decrease both mRNA and 
protein expression levels of Nrf2, however, it should be 
emphasized that the effects of chrysin on the Nrf2-ARE 
signaling pathway appears to be cell type-specific, con-
centration dependent, and may vary depending on the 
nature of Nrf2 regulation.

Conclusion
Since Nrf2 has paradoxical roles in cancer biology, it 
is essential to understand the molecular mechanisms 
leading to tumor suppressor or oncogenic effects of 
Nrf2. Furthermore, to pave the way for identifying 
therapeutic strategies based on Nrf2 signaling in malig-
nancy treatment, it has to be considered when the spe-
cific Nrf2 inducer or inhibitor is appropriate. However, 
further studies should be conducted to find cancer tar-
geting drug candidates with good pharmacodynamic/
pharmacokinetic parameters for human cancer.
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