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Abstract 

The epithelial-mesenchymal transition (EMT) is a vital driver of tumor progression. It is a well-known and complex 
trans-differentiation process in which epithelial cells undergo morphogenetic changes with loss of apical-basal polar-
ity, but acquire spindle-shaped mesenchymal phenotypes. Lysine acetylation is a type of protein modification that 
favors reversibly altering the structure and function of target molecules via the modulation of lysine acetyltransferases 
(KATs), as well as lysine deacetylases (KDACs). To date, research has found that histones and non-histone proteins can 
be acetylated to facilitate EMT. Interestingly, histone acetylation is a type of epigenetic regulation that is capable of 
modulating the acetylation levels of distinct histones at the promoters of EMT-related markers, EMT-inducing tran-
scription factors (EMT-TFs), and EMT-related long non-coding RNAs to control EMT. However, non-histone acetylation 
is a post-translational modification, and its effect on EMT mainly relies on modulating the acetylation of EMT marker 
proteins, EMT-TFs, and EMT-related signal transduction molecules. In addition, several inhibitors against KATs and 
KDACs have been developed, some of which can suppress the development of different cancers by targeting EMT. 
In this review, we discuss the complex biological roles and molecular mechanisms underlying histone acetylation 
and non-histone protein acetylation in the control of EMT, highlighting lysine acetylation as potential strategy for the 
treatment of cancer through the regulation of EMT.
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Background
The epithelial-mesenchymal transition (EMT) is a well-
known, complex, reversible cellular trans-differentiation 
process. During EMT, epithelial cells are not only capa-
ble of reorganizing the cytoskeleton and losing cell–cell 
contacts, but also gain a mesenchymal phenotype to 
facilitate cell motility, resistance to apoptosis, and ECM 
production [1, 2]. A strong association between EMT 
and embryonic organ development, tissue fibrosis, 
wound healing, and the progression of various cancers 
has been reported [3, 4]. EMT can regulate tumor migra-
tion, chemotherapeutic resistance, metastasis, and the 

acquisition of stem cell-like characteristics [1, 4]. Moreo-
ver, when epithelial cells undergo EMT, the expression of 
epithelioid markers, including E-cadherin, claudin-1, and 
EpCAM, is repressed. In contrast, mesenchymal markers, 
such as N-cadherin, αSMA, and vimentin, are upregu-
lated during this transition [4–7]. In addition, current 
evidence shows that EMT is a stepwise complex process 
with distinct intermediate states rather than functioning 
in a binary manner [8, 9]. In particular, preclinical and 
clinical observations have demonstrated that some can-
cer cells undergoing EMT only exhibit partial EMT or a 
hybrid epithelial/mesenchymal (E/M) state combining 
both epithelial and mesenchymal phenotype [10–12]. 
Therefore, further clarification of the hybrid E/M sta-
tus of different tumors with EMT and the associated 
molecular mechanisms is needed to provide promising 
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biomarkers for the diagnosis, prognosis, and treatment of 
various cancers [10].

Similar to many other biological programs, EMT is 
controlled by a series of EMT-inducing transcription fac-
tors (EMT-TFs), in particular by three main families of 
EMT-TFs, namely Snail (Snail1/Snail and Sanil2/Slug), 
Twist (Twist1 and Twist2), and ZEB (ZEB1 and ZEB2), to 
orchestrate gene expression, including the restriction of 
epithelial genes and sensitization of mesenchymal genes 
[13]. In addition, many signaling pathways, including 
JAK/STAT, NF-κB, TGF-β/Smad, and PI3-K have been 
demonstrated to be essential for the induction of EMT 
[4, 14]. More importantly, computational and experi-
mental evidence shows that different types of epigenetic 
modulation, depending on chromatin alterations [15, 16], 
DNA methylation, histone modifications [17], and non-
coding RNA [18–20], play a vital role in modulating the 
expression levels of EMT-associated genes by regulating 
chromatin accessibility, transcription factor activity, and 
the promoter status of target genes. In addition, post-
translational modifications (PTMs), including ubiquityla-
tion, phosphorylation, and sumoylation, can also control 
EMT by adjusting protein stability, intracellular localiza-
tion, protein structure, and the function of EMT-related 
molecules [21].

Lysine acetylation, a conserved protein modification, 
can transfer an acetyl group from acetyl-coenzyme A 
to lysine residues on target molecules to change their 
structures and biological functions [22]. Although acety-
lation was first discovered in histones 50 years ago [23], 
advances in proteomics in the last decade have indicated 
that non-histone proteins can also be acetylated [24]. 
Importantly, the acetylation or deacetylation levels in 
most of the identified histone and non-histone proteins 
result from the balance of opposing enzymatic activi-
ties between lysine acetyltransferases (KATs, also called 
histone acetyltransferases, HATs) and lysine deacety-
lases (KDACs, also called histone deacetylases, HDACs). 
Mammalian KATs are divided into nuclear and cyto-
plasmic KATs, according to their cellular localization. 
Nuclear KATs are classified into five families based on 
sequence similarities, including basal transcription fac-
tors, GCN5/PCAF, MYST, CBP/p300, and the nuclear 
receptor coactivator family. However, only a few cyto-
plasmic KATs have been identified, including KAT1 and 
TAT1. In addition, KDACs are divided into four classes: 
class I (HDAC1-3, 8) [22], class II (HDAC4-6, HDAC9-
10) [23], class III sirtuins (SIRT1-7) [24], and class IV 
(HDAC11) [25, 26]. The effects of acetylation on histones 
and non-histone proteins vary in various biological pro-
cesses. In particular, histone acetylation is linked to the 
control of target gene transcription [22], while non-his-
tone protein acetylation contributes to the modulation 

of enzymatic activity, protein stability, and subcellular 
localization [24]. Moreover, accumulating evidence has 
demonstrated that the acetylation of histones and non-
histone proteins is essential for EMT.

In this review, we discuss evidence on the biological 
role and molecular mechanisms associated with both 
histone and non-histone protein acetylation to control 
EMT and the potential of targeting protein acetylation to 
inhibit EMT, which is beneficial for cancer treatment.

Contribution of histone acetylation to EMT regulation
Epigenetics mostly regulates all biochemical processes 
by alternating the genome without changing the nucleo-
tide sequence [18]. To date, different epigenetic changes 
mediated by non-coding RNAs, DNA methylation, and 
histone modifications have been identified in the process 
of EMT [18, 27]. Although the current evidence shows 
that DNA methylation and histone modification can 
influence the transcription of target genes, the non-cod-
ing RNAs have the capability of regulating the expression 
of target genes at the post-transcriptional level [15–20], 
our information regarding epigenetic gene regulation still 
remains limited. Recent studies have shown that epige-
netic molecules can be used for the diagnosis, prediction 
of prognosis, and therapy response in cancer patients 
[18]. In addition, understanding the mechanisms respon-
sible for epigenetics-mediated EMT is vital for the dis-
covery of novel strategies to prevent EMT-related cancer 
progression. Histone acetylation, as a type of epigenetic 
modification, has a prominent effect on the opening of 
chromatin assembly and activation of target gene tran-
scription. However, histone deacetylation plays the oppo-
site role [22, 23]. In particular, many studies have revealed 
that acetylation of distinct histones, including histone 2 
(H2) [28, 29], histone 3 (H3) [30, 31], and histone 4 (H4) 
[32], at the promoter regions of certain genes, is crucial 
for the regulation of EMT. EMT marker genes, EMT-
TFs, and EMT-related long non-coding RNAs (lncRNAs) 
mediated by histone acetylation have been reported to 
benefit EMT (Table 1).

Histone acetylation in modulating the promoters of EMT 
marker genes
During EMT, different cancer cells undergo complicated 
morphogenetic changes with a decrease in epithelial 
markers, including E-cadherin and EpCAM [3, 7]. In par-
ticular, evidence shows that the modulation of histone 
acetylation at the promoters of E-cadherin and EpCAM 
stimulated by multiple cellular factors participates in the 
control of the expression of these two molecules to facili-
tate EMT. According to the results of chromatin immu-
noprecipitation (ChIP) assays, miR-N5 decreases CBP, a 
component of KATs, and mediates H3K56 deacetylation 
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Table 1  The information on histone acetylation to regulate EMT-related factors

Target molecule Molecular type The expression 
levels of target 
molecules 
during EMT

The regulator of 
target molecule

Histone 
modifier

Acetylation sites Target cells References

E-cadherin EMT-related epi-
thelioid marker

Down miR-N5 CBP H3K56 Prostate cancer 
cells

[33]

E-cadherin EMT-related epi-
thelioid marker

Down SIRT1 SIRT1 H4K16 Prostate cancer 
cells

[34]

E-cadherin EMT-related epi-
thelioid marker

Down Snail1 HDAC1, HDAC2 H3, H4 Kidney cells [35]

E-cadherin EMT-related epi-
thelioid marker

Down Snail2 HADC1, HADC2, 
HADC3

H3K4, H3K56 Lung carcinoma 
cells

[36]

E-cadherin EMT-related epi-
thelioid marker

Down ZEB1 HDAC1, HDAC2 H3, H4 Pancreatic cancer 
cells

[37]

EpCAM EMT-related epi-
thelioid marker

Down ZEB1 unknown H3K9, H3K27, H4 Lung cancer cells [38]

E-cadherin EMT-related epi-
thelioid marker

Down CPEΔN HDAC1, HDAC3 H3K9 Lung cancer cells [39]

E-cadherin EMT-related epi-
thelioid marker

Down TRIM28 unknown H3K9 Lung cancer cells [40]

E-cadherin EMT-related epi-
thelioid marker

Down HOTAIR CBP H3K27 Gastric cancer 
cells

[41]

αSMA EMT-related 
mesenchymal 
marker

Up TGF-β1 unknown H4 Lens epithelial 
cells

[42]

αSMA EMT-related 
mesenchymal 
marker

Up TGF-β2 unknown H3K27 Kidney cells [43]

N-cadherin EMT-related 
mesenchymal 
marker

Up Ajuba, Twist1 CBP H3 Colorectal cancer 
cells

[44]

vimentin EMT-related 
mesenchymal 
marker

Up unknown unknown H3 Prostate cancer 
cells

[45]

Snail1 EMT-TF Up DOT1L P300 H3 Breast cancer 
cells

[46]

Snail2 EMT-TF Up SND1 GCN5, P300, H3K9, H3K14, 
H3K18

Ovarian cancer 
cells

[48]

Snail2 EMT-TF Up KLF10 HDAC1 H3K9, H3K27 Lung adenocarci-
noma cells

[49]

Snail2 EMT-TF Up TGF-β HDAC1, HDAC3 H3K56, H3K4 HCC cells [50]

Snail2 EMT-TF Up LncRNA RP11-
367G18.1

unknown H4K16 In head and neck 
cancer cells

[51]

Twist 1 EMT-TF Up HAUSP, HIF-1a unknown H3K56 a Multiple cancer 
cells

[52]

Twist 1 EMT-TF Up Wnt/β-catenin, 
PI3-K signalings

unknown  H3K27 Gastric cancer 
cells

[53]

Twist 1 EMT-TF Up LncRNA RP11-
367G18.1

unknown H4K16 In head and neck 
cancer cells

[51]

Twist2 EMT-TF Up ACOT12 GCN5 H3 HCC cells [54]

ZEB1 EMT-TF Up MEF2D P300 H3, H4 Colorectal cancer 
cells

[55]

ZEB2 EMT-TF Up unknown unknown H3 Prostate cancer 
cells

[45]

ZEB1 EMT-TF Up DOT1L P300 H3 Breast cancer 
cells

[46]

ZEB2 EMT-TF Up DOT1L P300 H3 Breast cancer 
cells

[46]
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at the promoter of E-cadherin to suppress its expression 
in prostate cancer [33]. Based on ChIP-coupled quanti-
tative polymerase chain reaction (ChIP-qPCR) experi-
ments, SIRT1, a component of KDACs, was found to 
induce the deacetylation of H4K16, which is essential for 
E-cadherin silencing to facilitate EMT in prostate cancer 
cells [34].

As two core EMT-TFs, Snail1 and Snail2 are often 
upregulated and have the capability of inhibiting the 
expression of E-cadherin through a variety of molecular 
mechanisms, including histone acetylation, to facilitate 
cancer progression. It is worth noting that Snail1 can 
bind to the promoter of E‑cadherin to trigger chromatin 
changes with a loss of H3/H4 acetylation at its promoter 
and downregulate the expression of the E-cadherin gene. 
Mechanistically, based on ChIP and co-immunoprecipi-
tation (Co-IP) assays, Snail1 has been shown to interact 
with and recruit two members of HADCs, HDAC1 and 
HDAC2, to the E-cadherin promoter to facilitate H3 
and H4 deacetylation in kidney cells [35]. In addition to 
Snail1, the inhibition of E-cadherin mediated by Snail2 
has been observed to be related to the deacetylation of 
both H3K4 and H3K56 at the promoter of E-cadherin 
in lung carcinoma cells [36]. HADC1, HADC2, and 
HADC3 was found to interact with Snail2 and participate 
in the regulation of histone acetylation at the E-cadherin 
promoter. ZEB1, another well-known EMT-TF, recruits 
HDAC1 and HDAC2, as determined by ChIP and Co-IP 
assays, to the promoter of E-cadherin to inhibit H3 and 
H4 acetylation and then downregulate its expression in 
pancreatic cancer cells [37]. ZEB1 also induces downreg-
ulation of EpCAM. In particular, following ZEB1 regula-
tion, the acetylation levels of H3K9, H3K27, and H4 are 
decreased at the EpCAM promoter, as detected by ChIP 
experiments, and these reduced histone acetylation have 
a predominant role in EpCAM inhibition in lung cancer 

cells [38]. However, the KATs responsible for histone 
acetylation regulated by ZEB1 to control EpCAM have 
yet to be fully elucidated.

In addition, the N-terminal-truncated carboxypepti-
dase E (CPEΔN) protein is a crucial regulator of lung can-
cer metastasis. Sun et al. showed that CPEΔN accelerated 
EMT in lung cancer cells. Mechanistically, the CPEΔN 
protein can cause a reduction in histone H3K9 acetyla-
tion at the E-cadherin promoter, which was examined 
by ChIP assay to block its transcription [39]. HDAC1 
and HDAC3 maybe participate in the regulation of his-
tone H3K9 acetylation mediated by CPEΔN. Chen et al. 
showed that TRIM28 is implicated in TGF-β-stimulated 
EMT. E-cadherin was upregulated, while Snail1, Snail2, 
and Twist1 were decreased in TRIM28 knockdown cells. 
Moreover, elevated deacetylation of H3K9 mediated by 
TRIM28 is related to the decline of E-cadherin in lung 
cancer cells [40]. Until now, the molecular mechanisms 
that contribute to the modulation of histone acetylation 
at the E-cadherin promoter mediated by TRIM28 have 
not been fully elucidated, and are worth exploring in the 
future.

LncRNAs are non-coding RNAs of > 200  bp. Evi-
dence shows that lncRNAs play crucial regulatory roles 
in EMT in various human cancers. As an important 
lncRNA, HOX transcript antisense intergenic RNA 
(HOTAIR) contributes to the development of mul-
tiple cancers. In particular, Song et  al. showed that, 
based on the UCSC Genome Browser and ChIP assay, 
HOTAIR  is found to facilitate the decrease in his-
tone H3K27 acetylation at the E‑cadherin promoter 
to inhibit its expression and promote EMT in gastric 
cancer cells. In addition, decreased histone H3K27, 
mediated by HOTAIR, has been closely correlated with 
CBP inhibition (Table 1) [41]. In addition to HOTAIR, 
whether other lncRNAs participate in the modulation 

Table 1  (continued)

Target molecule Molecular type The expression 
levels of target 
molecules 
during EMT

The regulator of 
target molecule

Histone 
modifier

Acetylation sites Target cells References

GHET1 EMT-related 
LncRNA

Up unknown unknown H3K27 HCC cells [56]

ROR EMT-related 
LncRNA

Up CBP CBP H3K27 Retinoblastoma 
cells

[57]

TINCR EMT-related 
LncRNA

Up CBP CBP H3K27 Breast cancer 
cells

[58]

PLAC2 EMT-related 
LncRNA

Up CBP CBP H3K27 Oral squamous 
cell carcinoma 
cells

[59]

ANCR EMT-related 
LncRNA

Up HDAC3 HDAC3 H3, H4 HCC cells [32]
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of histone acetylation to regulate E-cadherin expression 
is unknown. Furthermore, although factors, such as 
EMT-TFs, CPEΔN, and lncRNA, as mentioned above, 
facilitate the inhibition of E-cadherin based on the 
modulation of histone acetylation, whether these fac-
tors affect histone acetylation at the promoters of other 
EMT epithelioid markers is not elaborated and requires 
further investigation.

Moreover, accumulating evidence has demonstrated 
that EMT is also related to elevated histone acetylation 
at the promoters of EMT-related mesenchymal mark-
ers, including αSMA, N-cadherin, and vimentin, to 
facilitate their upregulation in cancers. A recent study 
showed that the increased acetylation of histone H4 
at the αSMA promoter is associated with EMT stimu-
lated by TGF-β2, as detected by the ChIP assay in lens 
epithelial cells [42]. In addition, TGF-β1 stimulation 
also increases the recruitment of acetylated H3K27 to 
the promoters of α-SMA in kidney cells [43]. Twist1 
is a core EMT transcription factor that contributes to 
the transcription of N-cadherin, an EMT-related mes-
enchymal marker. Relying on Co-IP and ChIP experi-
ments, Wu et  al. showed that Ajuba, a multiple LIM 
domain-containing protein, can recruit CBP as well as 
Twist1 to form a protein complex at the Twist1-bind-
ing region and enhance the acetylation of histone H3 
at the N-cadherin promoter in colorectal cancer cells 
[44]. In addition, increased acetylation of histone H3 
in the vimentin promoter, as measured by the ChIP 
assay, is related to the elevation of the gene in prostate 
cancer cells [45]. However, the mechanisms related to 
the increase in histone acetylation at the promoters of 
these mesenchymal markers remain unknown.

Histone acetylation in modulating the promoters 
of EMT‑TFs
The EMT-TFs Snail, Twist, and ZEB, which are increased 
and activated early in the process of EMT, have been 
found to play central roles in the development of differ-
ent cancers [3]. Importantly, recent studies have shown 
that the elevation of EMT-TFs mediated by histone acet-
ylation with stimulation by different cellular factors, has 
beneficial effects on EMT. The roles of histone acetyla-
tion and the associated molecular mechanisms of EMT 
regulation by EMT TFs are described below.

Snail1 and Snail2
As two core EMT-TFs, Snail1 and Snail2 are increased 
and activated early and sufficiently to initiate EMT [13, 
27]. The histone H3 acetylation of the Snail1 promoter 
is associated with the regulation of Snail1 expression. 
Moreover, based on ChIP-qPCR analysis, the recruitment 

of P300 mediated by DOT1L was found to be related to 
acetylation of H3 at its promoter in breast cancer cells 
[46]. Notably, histone acetylation at the promoters of 
Snail2 plays an essential role in its expression to acceler-
ate EMT. For instance, increased histone H3 acetylation 
is related to elevated Snail2 expression in breast cancer 
cells [47]. Among the KATs, both GCN5 and P300 have 
been shown to contribute to histone H3K9, H3K14, and 
H3K18 acetylation at the Snail2 promoter, as examined 
by ChIP analysis. However,  loss-of-function of SND1 
results in a reduced recruitment of GCN5 and P300 to the 
Snail2 promoter, leading to a reduction in H3K9, H3K14, 
and H3K18 acetylation at its promoter to inhibit EMT in 
ovarian cancer cells [48]. Among KDACs, HDAC1 and 
HDAC3 suppress Snail2 expression by inhibiting his-
tone acetylation at its promoter. For example, based on 
ChIP-seq and ChIP analyses, Mishra et al. found that the 
transcription factor KLF10 occupying GC-rich sequences 
at the promoter of Snail2 could repress Snail2 transcrip-
tion by recruiting HDAC1, which blocked the acetylation 
of H3K9 and H3K27 at the promoter of Snail2 in lung 
adenocarcinoma cells [49]. In addition, during TGF-β-
initiated EMT, the effect of TGF-β on Snail2 expression 
is related to the inhibition of HDAC1 and HDAC3, which 
can suppress Snail2 transcription by downregulating the 
acetylation levels of H3K56 and H3K4 in hepatocellular 
carcinoma (HCC) cells [50]. Hypoxia is a major envi-
ronmental factor that induces gene reprogramming and 
initiates EMT. Under hypoxia, lncRNA RP11-367G18.1 
plays an essential role in the elevation of H4K16 acetyla-
tion at the Snail2 promoter to enhance its expression in 
head and neck cancer cells (Table 1) [51].

Twist1 and Twist2
Up to now, Twist1 also has been reported to be regu-
lated by histone acetylation. In particular, based on the 
ChIP assay, hypoxia was found to induce the polyubiq-
uitination of HAUSP, which stabilizes HIF-1α and then 
causes H3K56 acetylation at the promoter of Twist1 to 
accelerate EMT, while H3K56 acetylation mediated by 
CBP contributes to the elevation of Twist1 transcription 
in multiple cancer cells [52]. In addition, EMT induced 
by Wnt/β-catenin and PI3-K signaling is correlated with 
the acetylation of  H3K27 at the Twist1 promoter in gas-
tric cancer cells [53]. LncRNA RP11-367G18.1, induced 
by hypoxia, also increases the acetylation of H4K16 
located on the promoter of Twist1 to facilitate its expres-
sion and activation [51]. In addition to Twist1, elevated 
Twist2 expression was also found to be associated with 
an increased acetylation of H3 at the Twist2 promoter in 
HCC cells. Furthermore, the H3 acetylation of its pro-
moter can be inhibited by ACOT12 [54]. Interestingly, 
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the role of ACOT12 in the decrease of H3 acetylation at 
the Twist2 promoter, detected by the ChIP assay, can be 
abolished by GCN5 (Table 1).

ZEB1 and ZEB2
ZEB1 has also been reported to be modulated by histone 
acetylation, contributing to EMT activation. Su et  al. 
showed that MEF2D directly regulates ZEB1 transcrip-
tion by promoting histone H3 and H4 acetylation at its 
promoter to facilitate EMT. With respect to molecular 
mechanisms, MEF2D significantly increases P300-bind-
ing to the promoter of ZEB1, and P300 may account for 
the upregulation of histone acetylation at the ZEB1pro-
moter in colorectal cancer cells [55]. In addition to ZEB1, 
increased H3 acetylation is related to increase ZEB2 gene 
expression in prostate cancer [45]. Moreover, Cho et al. 
showed that, depending on Co-IP and ChIP analysis, 
DOT1L cooperates with the c-Myc-P300 complex and 
initiates histone H3 acetylation at promoters of ZEB1 and 
ZEB2 (Table 1). Meanwhile, the protein complex results 
in the dissociation of HDAC1 from the promoters of 
these genes in breast cancer cells [46].

Histone acetylation in modulating the promoters 
of EMT‑related LncRNA
As mentioned above, lncRNAs play vital roles in EMT 
activation. Among the molecular mechanisms associated 
with the regulation of lncRNA, the increased acetyla-
tion of histones at the lncRNA promoters facilitates the 
upregulation of lncRNA to trigger EMT. For example, 
elevated H3K27 acetylation at the promoter of lncRNA 
GHET1 (gene gastric carcinoma highly expressed tran-
script 1) activates its expression to enhance EMT in 
HCC cells [56]. Using quantitative reverse transcrip-
tion PCR (RT-qPCR), the UCSC Genome Browser, and 
ChIP assays, the expression of lncRNA-ROR was found 
to be upregulated by the acetylation of histone H3K27 to 
induce EMT in retinoblastoma cells, and elevated H3K27 
acetylation at the lncRNA-ROR promoter was associated 
with CBP [57]. The expression levels of lncRNA termi-
nal differentiation-induced non-coding RNA (TINCR) 
significantly increased in trastuzumab-resistant breast 
cancer cells. The activation of TINCR by H3K27 acety-
lation positively modulated EMT in breast cancer cells. 
In addition, H3K27 acetylation in the promoter region of 
TINCR mediated by CBP has been found to be related to 
the upregulation of TINCR [58]. Chen et al. showed that 
LncRNA PLAC2 (placenta-specific protein 2) was upreg-
ulated in both oral squamous cell carcinoma cell lines 
and primary tissue samples. Enriched H3K27 acetylation 
at the PLAC2 promoter facilitates EMT in oral squamous 
cell carcinoma. Furthermore, based on ChIP experi-
ments, CBP was shown to increase the acetylation levels 

of H3K27 at the PLAC2 promoter, thereby upregulating 
PLAC2 [59]. The lncRNA ANCR has also been found to 
play vital roles in EMT regulation and tumor metastasis 
in many tumors. Wen et al. reported that elevated H3/H4 
histone acetylation at the ANCR promoter is related to 
an increase of the lncRNA. Moreover, blocking HDAC3 
can increase ANCR expression in HCC cells [32]. Cur-
rent evidence shows that many lncRNAs participate in 
the regulation of EMT in different cancers [60–62]. How-
ever, the effect of histone acetylation on the regulation of 
these lncRNAs remains largely unknown.

Contribution of non‑histone acetylation to EMT regulation
Although histones have been extensively reported to 
regulate gene transcription to control EMT, recent find-
ings indicate that non-histone proteins could also be 
frequently acetylated [22, 24]. Moreover, acetylation can 
affect the subcellular localization, stability, and enzy-
matic activity of non-histone proteins [24]. To date, the 
regulation of the acetylation of EMT marker proteins, 
EMT-TFs, and signal transduction molecules in multiple 
signaling pathways related to EMT has been investigated 
(Fig. 1).

Non‑histone acetylation in modulating EMT marker 
proteins
Among EMT-related epithelioid markers, E-cadherin 
is mainly located on the cell surface and is downregu-
lated during EMT. To date, the nuclear localization of 
E-cadherin has been observed in various types of can-
cer. However, no information regarding its function in 
nuclear translocation has been reported. Zhao et  al. 
showed that E-cadherin in the nucleus can be acetylated 
by CBP at K870 and K871 at the binding domain of the 
β-catenin promoter, while the acetylation of E-cadherin 
was reversed by SIRT2 (Fig. 1). Functionally, E-cadherin 
acetylation attenuates its interaction with β-catenin pro-
moters, increasing downstream gene expression and 
accelerating EMT in cancer cells [63]. In addition to 
E-cadherin, vimentin, another EMT marker, is acety-
lated to facilitate its expression in HCC cells. In addi-
tion, SIRT5 binds to vimentin and deacetylates it at K120 
in HCC cells [64]. However, whether other epithelioid 
and mesenchymal markers that are responsible for EMT 
could be regulated by non-histone acetylation has not 
been reported to date.

Non‑histone acetylation in modulating EMT‑TFs
As described above, an increase in histone acetylation 
at the promoters of EMT-TFs facilitates their expression 
and initiates EMT. Interestingly, emerging evidence dem-
onstrates that the acetylation of core EMT-TFs, including 



Page 7 of 14Kong et al. Cell Communication and Signaling           (2022) 20:57 	

Snail, Twist, and ZEB, also contributes to EMT in differ-
ent cancers [21]. In particular, multiple KATs and KDACs 
have been found to acetylate EMT TFs to regulate EMT 
(Fig. 1).

Snail1 and Snail2
Recent studies from different groups have reported that 
Snail1 can be acetylated to regulate its function [65–
67]. In particular, based on Co-IP and mass spectrome-
try (MS) analysis, CBP was found to acetylate K146 and 
K187 of Snail1 to enhance its target gene expression in 
many cancer cells [68]. P300 acetylates Snail1 at K187 
to facilitate its transcription in lung cancer (Fig. 1) [69]. 
Moreover, Snail1 acetylation contributes to the reduc-
tion of ubiquitylation, enhancing its stability [67]. As 
for Snail2, it has been found that the acetylation of this 
protein could promote its expression [70], and a study 
by Dai et al. showed that CBP interacts with Snail2, as 

detected by Co-IP assay, leading to the acetylation of 
Snail2 at K166 and K211. Additionally, Snail2 acetyla-
tion mediated by CBP can stabilize Snail2 and pro-
mote EMT in breast cancer [71]. However, Zhou et al. 
indicated that Snail2 undergoes acetylation-dependent 
protein degradation, and SIRT2 deacetylates Snail2 at 
K116 to prevent Snail2 degradation and extend Snail2 
stability in breast cancer cells [72]. The reasons for the 
inconsistent role of Snail2 acetylation at different lysine 
residues assessed by different groups in breast can-
cer cells are not clear. Thus, further investigations are 
needed to explore the exact effect of Snail2 acetylation 
at different lysine residues on EMT.

Twist1 and Twist2
Twist1 is acetylated by PCAF, and Twist1 acetylation pro-
motes its nuclear localization and transcriptional poten-
tial to initiate tumorigenesis. Moreover, K73, K76, and 

Fig. 1  The acetylation of EMT-related cellular factors and their associated KATs and KADCs to initiate EMT. The acetylation of EMT-related signal 
transduction molecules in TGF-β, PI3-K, and JAK/STAT pathways, to enhance the expression of EMT-TF gene expression, and then acetylation of 
EMT-TFs, including Snail1, Snail2, Twist1, ZEB1, and other transcription factors, including KLF15, YY1, and c-Jun, to regulate EMT markers expression. 
Additionally, the modulation of the acetylation of E-cadherin and vimentin can also regulate EMT. The KATs and KADCs, which have identified to 
contribute to the regulation of the acetylation of EMT-related cellular factors also were added in the Figure. EMT-TFs, EMT-inducing transcription 
factors, Ac: acetylation
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K77 in Twist1 in bladder cancer cells [73]. Twist1 is also 
acetylated by Tip60 at K73 and K76 in basal-like breast 
cancers (Fig.  1) [74]. However, whether Twist2 can be 
acetylated remains unclear.

ZEB1 and ZEB2
ZEB1 and ZEB2 are capable of binding to regulatory gene 
sequences to repress or activate transcription. Interest-
ingly, PCAF and P300 interact with ZEB1 to switch the 
protein from a transcriptional repressor to a transcrip-
tional activator [13]. Furthermore, based on Co-IP assay, 
Mizuguchi et  al. found that P300 and PCAF interact 
and form a complex with ZEB1, leading to its acetyla-
tion (Fig.  1). Moreover, acetylated ZEB1 increases miR-
200c/141 transcriptional activity to facilitate EMT [75]. 
However, acetylation sites in ZEB1 were identified by 
Mizuguchi et  al. Until now, whether acetylation affects 
the function of ZEB2 is not been well-defined.

Non‑histone acetylation in modulating other transcription 
factors
In addition to established EMT-TFs, other transcription 
factors have also been shown to regulate EMT. However, 
the effects of different acetylated transcription factors 
on the EMT are diverse. For example, transcription fac-
tor KLF15 participates in EMT. The acetylation of KLF5 
at K369 through P300 that induced by TGF-β maintains 
EMT and causes the metastasis of prostate cancer cells 
[76]. Although the acetylated transcription factor YY1 
participates in EMT, SIRT1 can inhibit EMT in renal 
tubular cells by inhibiting YY1 acetylation in diabetic 
nephropathy [77]. Acetylated ISX and BRD4 are also 
involved in EMT. Moreover, based on MS analysis, PCAF 
was found to mediate ISX acetylation at K69 and BRD4 
acetylation at K332 to facilitate EMT [78]. In addition, 
P300 was found to control EMT via the c-Myb acetyla-
tion at K471, K480, and K485 (Fig. 1) [79]. As mentioned 
above, α-SMA is an EMT-related mesenchymal marker. 
Ding et  al. found that acetylated C/EBPβ can interact 
with the αSMA promoter and facilitate TGF-β-induced 
transcription of αSMA [80]. SIRT1 reverses C/EBPβ acet-
ylation. Deacetylated C/EBPβ reverses elevated α-SMA 
expression. However, the acetylation sites of C/EBPβ 
have not been reported.

In contrast, GATA3 is a limiting factor in EMT. GATA3 
acetylation at K119 mediated by CBP contributes to the 
inhibition of EMT, indicating that the deacetylation of 
GATA3 has a promotional effect on EMT in lung adeno-
carcinoma. However, HDAC1, HDAC2 and HDAC3 can 
deacetylate GATA3 [81]. As a subunit of the transcrip-
tion factor AP-1, c-Jun, especially deacetylated c-Jun, 
contributes to the EMT. However, the downregulation 
of HDAC3 inhibits EMT in cutaneous squamous cell 

carcinoma by promoting c-Jun acetylation [82]. HIF-1α 
is also a regulator of EMT, and the deacetylation of 
HIF-1α, but not its acetylation, benefits EMT. Moreover, 
dependent on HDAC4, 14-3-3ζ was found to upregulate 
the expression of HIF-1α by promoting its deacetylation, 
which was detected by co-IP assays to facilitate EMT in 
HCC [83]. However, the acetylation sites of HIF-1α have 
not been identified. Zhu  et al. also found that MTA2 
enhances HIF-1α stability via deacetylation by interacting 
with HDAC1 to further activate HIF-1α transcriptional 
activity (Fig.  1) [84]. SIRT1 has been shown to have an 
inhibitory effect on EMT in ovarian cancer cells, with its 
inhibition of EMT being found to be related to the upreg-
ulation of CLDN5, an epithelial marker. Zhang et al. also 
found that SIRT1 could deacetylate the transcription fac-
tor KLF4 to activate CLDN5 transcription and inhibit 
EMT [85]. However, the deacetylation sites in KLF4 that 
are regulated by SIRT1 remain unknown. Together, these 
studies show that deacetylation of certain transcription 
factors also benefits EMT.

Non‑histone acetylation in modulating signal transduction 
molecules in different signaling pathways to facilitate EMT
As described in the introduction, multiple signaling 
pathways participate in the initiation of EMT. Current 
evidence indicates that acetylation of the core signal 
transduction molecules is responsible for the activation 
of these target signaling pathways and the subsequent 
induction of EMT. To date, many signal transduction 
molecules in the TGF-β/Smad, NF-κB, JAK/STAT, and 
PI3-K signaling pathways have been acetylated (Fig. 1). In 
addition, the acetylation or deacetylation of these signal 
transduction molecules plays an essential role in the acti-
vation of different signaling pathways to induce EMT.

TGF‑β/Smad signaling pathway
The activation of the TGF-β/Smad signaling pathway 
mediated by TGF-β family receptors plays a critical 
role in the induction of EMT [4]. Previous studies have 
focused on the regulation of EMT by the acetylation of 
important signal transduction molecules in this signal-
ing pathway. In particular, based on Co-IP assay, TGF-
β1-mediated EMT has been shown to be associated with 
Smad2, Smad3, and Smad4 acetylation (Fig.  1) [86, 87]. 
TGF-β2 promotes EMT by supporting Smad2 acetylation 
[88]. More importantly, among KATs and KDACs, P300/
CBP mediates EMT by acetylating Smad2 and Smad3 
[86]. However, SIRT6 inhibits the acetylation of Smad3 
[89]. In addition, SIRT1, as well as SIRT7 can lead to an 
increase in the deacetylation of Smad4 [87, 90]. However, 
the acetylation sites of different Smad molecules have not 
been identified.
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NF‑κB signaling pathway
Current evidence has demonstrated that increased acety-
lation of p65 is responsible for NF-κB activation, which 
also facilitates EMT. For example, Huang et  al. showed 
that trichostatin A (TSA) can promote EMT in esopha-
geal squamous cell carcinoma by inducing the acetyla-
tion of p65 at K310 [91]. In addition, the interaction of 
p65 with P300 facilitates p65 acetylation, as detected by 
Co-IP experiments, which in turn interacts with the pro-
moter of ZEB1, resulting in a decrease in E-cadherin [92]. 
However, Astragaloside IV inhibited glucose-induced 
EMT in podocytes by decreasing p65 acetylation. Simi-
larly, SIRT1 contributes to p65 deacetylation in glucose-
induced podocyte EMT, whereas OPN can inhibit SIRT1 
expression and promote p65 acetylation in non-small 
cell lung cancer cells. Conversely, the overexpression of 
SIRT1 can restrict p65 acetylation, activation, and EMT 
[93, 94]. In addition, N-Myc-interacting protein (NMI) 
is capable of promoting the interaction of p65 with 
HDAC1, HDAC2, and HDAC3 and negatively regulates 
EMT by inhibiting p65 acetylation (Fig.  1) [95]. Except 
for p65, this signaling pathway is composed of a variety 
of signal transduction molecules, including IκB-α, IκB-β, 
IKKα, and IKKβ [96]. However, the information on the 
acetylation of these signal transduction molecules is not 
available.

JAK/STAT signaling pathway
The activation of the JAK/STAT signaling pathway medi-
ated by cytokine receptors has also been shown to par-
ticipate in EMT [3, 4]. In particular, STAT3 acetylation 
induced by IL-6 is required for EMT in CRC cells [97]. 
P300-dependent STAT3 acetylation, examined by the 
Co-IP assay, is necessary for EMT in renal tubular epithe-
lial cells (Fig.  1) [98]. In addition, nicotinamide adenine 
dinucleotide (NAD) is known to have a significant effect 
on all aspects of human life. However, decreased NAD 
levels induce STAT3 acetylation to facilitate its activa-
tion [99]. Until now, the acetylation sites in STAT3 that 
are modulated by different factors in various cell types 
have not been well identified. To date, it remains unclear 
whether other signal transduction molecules in the JAK/
STAT signaling pathway, including JAK1, JAK2, STAT1, 
and STAT2, can be acetylated and participate in EMT.

PI3‑K signaling pathway
The activation of the PI3-K signaling pathway, which is 
stimulated by receptor tyrosine kinases, contributes to 
sensitization of the NF-κB signaling pathway to facilitate 
EMT [4]. AKT1 is a core signal transduction molecule 
in the PI3-K pathway, and its activation is dependent on 
phosphorylation. An et al. showed that HDAC8 can bind 
to AKT1 to decrease its acetylation while increasing its 

phosphorylation (Fig.  1). A detailed investigation based 
on MS suggested that K426 in the AKT protein is the 
key amino acid residue for the HDAC8-modulated dea-
cetylation of this protein. Moreover, deacetylated AKT 
stabilizes Snail1 and activates EMT in breast cancer cells 
[100].

Targeting protein acetylation or deacetylation 
as a potential strategy to restrict EMT
Because lysine acetylation or deacetylation relies on 
KATs and KDACs, and up to now, a variety of small mol-
ecule inhibitors have been developed to suppress the 
catalytic reaction of KATs or KDACs, resulting in the 
hyperacetylation or deacetylation of histones or non-
histone proteins [25, 101]. Our review suggests that the 
acetylation of histones and non-histone proteins facili-
tates EMT. In addition, the deacetylation of certain tran-
scription factors and signal transduction molecules also 
contributes to EMT. Therefore, it is not surprising that 
KAT and KDAC inhibitors can suppress EMT.

To date, few KAT inhibitors have been investigated 
for EMT inhibition (Table 2). Current studies show that 
anacardic acid, a major constituent of cashew nutshells, 
is a non-selective KAT inhibitor [102, 103], and garcinol, 
a polyisoprenylated benzophenone derivative, mainly 
targets P300 [104] and ICG-001, a small molecule that 
inhibits CBP/β-catenin [105]. EGCG, a polyphenolic 
component from the green tea, is an inhibitor with the 
ability to suppress P300/CBP activity, blocking EMT in 
different cancer cells [86, 106]. In the future, further KAT 
inhibitors will need to be evaluated to determine their 
precise roles in the restriction of EMT in various cancer 
cells.

Several HDAC inhibitors, including belinostat, vori-
nostat, and panobinostat, have been approved for the 
treatment of cancers [25]. Furthermore, different clini-
cal trials assessing the role of HDAC inhibitors in cancer 
treatment are underway [25]. More importantly, studies 
from different research groups indicate that the effect 
of HDAC inhibitors on the inhibition of various cancer 
cells is mainly mediated by targeting EMT (Table 2). For 
example, mocetinostat, a type of benzamide, is a class I 
HDAC inhibitor [107], while suberoylanilide hydroxamic 
acid (SAHA) and TSA, a type of hydroxamic acid [106, 
108–111], are class I, II, and IV HDAC inhibitor. Valproic 
acid (VPA) and sodium butyrate, two types of short-chain 
fatty acids [112–120], are class I and II HDAC inhibitors, 
while MS-275, a type of benzamide, [121–123], is a class I 
HDAC inhibitor, and LBH589, a hydroxamic acid deriva-
tive, is a pan-KADC inhibitor [124–128]. These have all 
been identified to suppress EMT in different cancer cells.

To date, the exact molecular mechanisms that contrib-
ute to the inhibition of EMT mediated by these HDAC 
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inhibitors have yet to be well defined. Among these 
HDAC inhibitors, TSA [129], SAHA [45, 70, 130, 131], 
and VPA have been shown to facilitate EMT in various 
cancer cells [66, 132–135]. The reasons for these contra-
dictory conclusions regarding the effects of these three 
HDAC inhibitors on EMT remain unclear. Molecular 
factors involved in EMT are key targets for the devel-
opment of new therapeutic strategies for tumor sup-
pression. As mentioned above, many factors, including 
EMT-TFs, EMT-related lncRNAs, and EMT-related sig-
nalling pathways, are involved in the regulation of EMT. 
However, to date, the exact molecular targets of different 
HDAC inhibitors in various tumor types remain largely 
unknown. Therefore, further studies are needed to con-
firm the precise targets and detailed mechanisms of the 
effects of HDAC inhibitors on EMT in various types of 
cancers.

Conclusions
In summary, as a complex biological trans-differentiation 
process, EMT not only contributes to metastasis and 
invasion but also induces cell stemness and drug resist-
ance in various cancers. In addition to EMT, partial EMT 
or hybrid E/M states are also present in tumors [9, 10]. 
Accumulating evidence indicates that tumor progres-
sion and metastasis are favored by tumor cells in partial 
EMT or hybrid E/M states [10]. It should be noted that 
despite our understanding of the role and mechanisms 
related to EMT, partial EMT, or hybrid E/M states in 

cancer progression  is growing, much still remains to be 
elucidated. As mentioned above [15, 18, 19, 21], EMT 
could be regulated by epigenetic modulation and PTM. 
Drugs that influence epigenetic factors, including DNA 
methylation and histone modification, or target different 
types of PTMs, such as ubiquitylation, phosphorylation, 
and sumoylation, are potential therapeutic approaches 
for overcoming EMT. However, the molecular mecha-
nisms underlying the epigenetic and post-translational 
mechanisms that modulate EMT are complex. Thus, to 
better target EMT in clinical treatment, a more thorough 
understanding of the cellular factors involved in epige-
netic modulation and PTM is required.

Our review indicates that histones and non-histone 
proteins related to EMT can be acetylated. However, 
the effects of acetylation on these two proteins are 
diverse. Histone acetylation is an important epigenetic 
regulator, whereas non-histone protein acetylation is 
a critical PTM. Therefore, a better understanding of 
both the histone acetylation and non-histone acety-
lation of EMT-related cellular factors is important 
to develop a workable strategy to delete cells that 
have undergone EMT in cancer treatment. EMT-TFs, 
including Snail, Twist, and ZEB, are activated early to 
initiate EMT. Because of their vital role in modulating 
the EMT process, inhibiting their expression may be 
a highly effective way to reverse this process. In addi-
tion, many EMT-related signaling pathways, such as the 
TGF-β/Smad, NF-κB, JAK/STAT, and PI3-K signaling 

Table 2  The effect of KAT and KADC inhibitors on EMT in different cancer cells

Drug name Drug types KAT or HDAC specificity Target cancer cells The role on EMT References

Anacardic acid KAT inhibitor Non-selective KAT inhibitor Breast cancer, Prostate cancer Inhibit [102, 103]

Garcinol KAT inhibitor P300 inhibitor Breast cancer Inhibit [104]

EGCG​ KAT inhibitor P300/CBP inhibitor Lung cancer Inhibit [86, 106]

ICG-001 KAT inhibitor CBP/β-catenin inhibitor Nasopharyngeal carcinoma Inhibit [105]

Mocetinostat HDAC inhibitor class I KADC inhibitor Pancreatic cancer, Lung cancer Inhibit [106]

SAHA HDAC inhibitor class I, II and IV, KADC inhibitor Head and neck cancer, Triple-negative breast 
cancer, Breast mesenchymal cancer

Inhibit [106–109]

TSA HDAC inhibitor class I, II and IV, KADC inhibitor Breast cancer, Lung cancer Inhibit [110, 111]

Sodium butyrate HDAC inhibitor Class I, II KADC inhibitor HCC, Colorectal cancer, Bladder cancer Inhibit [112–114]

VPA HDAC inhibitor Class I, II KADC inhibitor Gastric Cancer, HCC, Prostate carcinoma, 
Renal cell carcinoma, Esophageal squamous 
cell carcinoma, Prostate carcinoma

Inhibit [115–120]

MS-275 HDAC inhibitor Class I KADC inhibitor Breast cancer, Non-small cell lung cancer Inhibit [121–123]

LBH589 HDAC inhibitor pan-KADC inhibitor Colorectal cancer, Breast cancer, Prostate 
cancer, HCC

Inhibit [124–128]

TSA HDAC inhibitor class I, II and IV, KADC inhibitor Esophageal squamous Activate [129]

SAHA HDAC inhibitor class I, II and IV, KADC inhibitor Prostate cancer, Lung cancer, Gastric cancer, 
Triple negative Breast cancer

Activate [45, 70, 130, 131]

VPA HDAC inhibitor Class I, II KADC inhibitor Colorectal cancer, Triple negative breast can-
cer, Breast cancer, HCC, Colon carcinoma

Activate [66, 132–135]
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pathways, are known to contribute to the production 
of the EMT phenotype; therefore, inhibitors of these 
pathways need to be developed to overcome EMT. Our 
review of the literature shows that the expression and 
activation of these transcription factors and signaling 
pathways can be modulated by histone or non-histone 
protein acetylation. These findings imply that targeting 
histone or non-histone protein acetylation is an ideal 
strategy for controlling these transcription factors and 
signaling pathways, thereby inhibiting EMT.

More importantly, the acetylation of histone or non-
histone proteins is controlled by KATs, and accumulat-
ing evidence indicates that KAT inhibitors can effectively 
inhibit EMT. However, the molecular targets mediated 
by KAT inhibitors that facilitate EMT suppression have 
not been fully investigated. In addition to acetylation, 
the evidence presented here shows that the histone dea-
cetylation of EMT-related epithelioid markers and the 
non-histone deacetylation of certain transcription fac-
tors and signal transduction molecules also contribute 
to EMT. The deacetylation of histone and non-histone 
proteins is mainly controlled by KADCs, and the use 
of KADC inhibitors may provide an effective treatment 
strategy for EMT. Therefore, further identification of the 
specific functions and exact mechanisms of histone and 
non-histone protein acetylation and deacetylation linked 
to EMT mediated by KATs or KADCs may provide a 
unique opportunity to target the EMT-associated cancer 
progression.
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