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MicroRNAs as the critical regulators 
of tyrosine kinase inhibitors resistance in lung 
tumor cells
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Abstract 

Lung cancer is the second most common and the leading cause of cancer related deaths globally. Tyrosine Kinase 
Inhibitors (TKIs) are among the common therapeutic strategies in lung cancer patients, however the treatment pro‑
cess fails in a wide range of patients due to TKIs resistance. Given that the use of anti‑cancer drugs can always have 
side effects on normal tissues, predicting the TKI responses can provide an efficient therapeutic strategy. Therefore, 
it is required to clarify the molecular mechanisms of TKIs resistance in lung cancer patients. MicroRNAs (miRNAs) 
are involved in regulation of various pathophysiological cellular processes. In the present review, we discussed the 
miRNAs that have been associated with TKIs responses in lung cancer. MiRNAs mainly exert their role on TKIs response 
through regulation of Tyrosine Kinase Receptors (TKRs) and down‑stream signaling pathways. This review paves the 
way for introducing a panel of miRNAs for the prediction of TKIs responses in lung cancer patients.

Keywords: Non‑small cell lung cancer (NSCLC), Tyrosine kinase inhibitor (TKI), Resistance, MicroRNA (miRNA), 
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Background
Lung cancer is the leading cause of cancer-related mor-
tality and the third most common cancer worldwide [1]. 
Lung cancers are classified into two broad categories 
based on histopathological features: Non-Small-Cell 
Lung Cancer (NSCLC) and Small-Cell Lung Cancer 
(SCLC). NSCLC accounts for almost 85% of newly diag-
nosed lung cancer cases and has three main subclasses: 
adenocarcinoma, squamous-cell carcinoma, and large-
cell carcinoma [2]. While tremendous progress has 
been achieved in the last decade, the prognosis for lung 
cancer remains poor, with just 19% of patients survive 
for longer than five years. A substantial proportion of 
NSCLC patients have genetic alterations in Epidermal 

Growth Factor Receptor (EGFR) that activate it con-
stitutively [3–6]. Tyrosine kinases are categorized into 
the trans-membrane Receptor Tyrosine Kinases (RTKs) 
and cytoplasmic Non-Receptor Tyrosine Kinases 
(NRTKs) [7]. RTKs are involved in both extracellular 
and intracellular signaling pathways. They often serve 
as binding sites for cytoplasmic molecules that activate 
downstream pathways. RTK ligand binding triggers 
receptor dimerization and auto-phosphorylation that 
results in activation of downstream signaling molecules 
involved in cell proliferation and tumor progression [8]. 
EGFR is a transmembrane glycoprotein belonging to 
the Receptor Tyrosine Kinases (RTKs) family that acti-
vates Mitogen-Activated Protein Kinase (MAPK) and 
Phosphatidylinositol 3-Kinase (PI3K)/protein kinase B 
(AKT), and Janus Kinase (JAK)/Signal Transducer and 
Activator of Transcription (STAT) signaling pathways 
to regulate cell proliferation and angiogenesis [9–11]. 
EGFR deregulations are found in various cancers [12, 
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13]. NRTKs usually have interaction with transmem-
brane receptors and transduce extracellular signals. 
They have also a critical role in regulation of cell pro-
liferation, apoptosis, and immune response through 
PI3K/AKT and MAPK signaling pathways [14, 15]. Tar-
geting the EGFR is authorized as a first-line treatment 
option for NSCLC patients with an activating EGFR 
mutation and a second-line in patients with advanced 
NSCLC [16–19]. EGFR-Tyrosine Kinase Inhibitors 
(TKIs) inhibit EGFR phosphorylation and thus inter-
fere with MEK-ERK, PI3K-AKT, and JAK-STAT activa-
tion. For locally developed or metastatic NSCLC with 
mutant EGFR, oral administration of EGFR-TKIs such 
as Gefitinib, Erlotinib, Afatinib, and Osimertinib are 
the conventional treatment options [20, 21]. Neverthe-
less, specific NSCLC patients who carry EGFR-TKI-
sensitizing mutations do not respond to EGFR-TKIs. 
Resistance to EGFR-TKIs develops in approximately 
one year that severely reduces the long-term efficiency 
[22, 23]. MicroRNAs (miRNAs) are non-coding RNAs 

that regulate gene expression through translational 
repression and mRNA cleavage [24]. MiRNAs functions 
as oncogenes or tumor suppressor genes in regulating 
cell proliferation and apoptosis [25, 26]. They regulate 
cancer cell susceptibility to chemotherapy and prevent 
tumor cell motility and invasion [27–30]. They can also 
down-regulate the EGFR signaling transduction while 
restoring Gefitinib cytotoxicity in NSCLC cells [31]. 
Although, TKIs are effective therapeutic modalities 
in the targeted therapy of various cancers, they cause 
various adverse effects on skin and hair, anemia, hypo-
thyroidism, and diarrhea [32]. Therefore, it is required 
to detect the lung cancer patients who are resistant 
toward the TKIs to manage the therapeutic methods 
and reduce side effects. Since, the miRNAs are stable 
in body fluids; they can be used as the non-invasive 
diagnostic and prognostic markers [33, 34]. Therefore, 
in the present review we have discussed the miRNAs 
involved in regulation of TKIs response in lung cancer 
(Fig. 1) (Table 1).

Fig. 1 Molecular mechanisms of microRNAs involved in regulation of TKIs responses in lung tumor cells. All of the microRNAs that targeted the 
RTKs were involved in increased TKIs sensitivity in lung tumor cells. MiR‑214, miR‑21, and miR‑23a promoted TKIs resistance through PTEN targeting. 
SNHG14 and LINC0060 also increased TKIs resistance by miR‑206‑3p and miR‑149‑5p targeting and following ABCB1 and IL‑6 up regulations in lung 
tumor cells. MiR‑3127‑5p and miR‑146b‑5p were also involved in increased TKIs sensitivity through ABL and IRAK1 targeting, respectively. (Created 
with BioRender.com)
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Receptor tyrosine kinases (RTKs)
RTKs are trans-membrane proteins that are expressed 
on different cell types and are implicated in a myriad of 
cellular mechanisms including proliferation, cell survival, 
and cell–cell communication [35]. Deregulation of RTKs 
leads to the development of different diseases, most par-
ticularly, malignancies as it is reported that approximately 
30% of RTKs are mutated or aberrantly expressed in dif-
ferent human cancers [36]. EGFR is a trans-membrane 
glycoprotein with an intracellular tyrosine kinase domain 
that is autophosphorylated to activate MAPK and PI3K 
pathways [3, 37–40]. EGF triggers the tyrosine kinase 
activity of EGFR that regulates cell proliferation, migra-
tion, and apoptosis [41]. There is EGFR up regulation in 
about 60% of NSCLC patients [42]. In NSCLC patients 
with activating EGFR mutations, EGFR tyrosine kinase 
inhibitors (EGFR-TKI) have a remarkable impact and 
prolonged survival compared with standard treatments 
[43–45]. Gefitinib as an EGFR-TKI has been author-
ized for patients with EGFR mutations in exon 19 (dele-
tions) or exon 21 (Leu858Arg) [46, 47]. Compared with 
platinum-based combination chemotherapy, Gefitinib 
delays tumor progression and enhances overall survival. 
Nevertheless, many individuals develop resistance to 
TKIs throughout treatment [40, 48, 49]. Due to an EGFR 
T790M mutation in exon 20, around 50% of patients who 
initially responded to EGFR-TKI developed resistance to 
EGFR-TKI [50]. EGFR and IGF1R suppression can inhibit 
the PI3K/AKT signaling pathway. It has been shown that 
Gefitinib and miR-30a-5p mimics reduced EGFR-TKIs 
resistance [51]. The delivery of miR-7 plasmids through 
cationic liposomes may be exploited to overcome 
acquired resistance to EGFR-TKI produced by secondary 
EGFR mutations [52]. MiR-7 increased the Gefitinib sen-
sitivity through suppression of IGF1R and EGFR signal-
ing pathways in NSCLC cells [53]. It has been shown that 
up regulation of miR-133b and miR-146a while miR-7 
down regulation was associated with Erlotinib effective-
ness in NSCLC. Since, there was a correlation between 
miR-133b up-regulation and prolonged Progression-Free 
Survival (PFS) in NSCLC patients taking Erlotinib, it is 
postulated that miR-133b might improve Erlotinib sensi-
tivity. MiR-200c also increased Gefitinib sensitivity [54]. 
APCDD1L-AS1 promoted Icotinib resistance through 
miR-1322/miR-1972/miR-324-3p sponging that up reg-
ulated the SIRT5 and EGFR in lung tumor cells. SIRT5 
inhibited the EGFR autophagic degradation to induce 
Icotinib resistance [55].

Met is a RTK that can be activated by Hepatocyte 
Growth Factor (HGF) to promote the MAPK and PI3K/
AKT downstream pathways. It is involved in EGFR-TKI 
resistance of NSCLC patients [56, 57]. There was miR-
130a up regulation in Gefitinib-sensitive NSCLC cells 

that promoted Gefitinib sensitivity in NSCLC cells by 
Met targeting [58]. MiR-1-3p and miR-206 may also over-
come HGF-induced Gefitinib resistance via suppression 
of c-Met signaling in EGFR mutant lung cancer cells 
[59]. Tumor Immune Microenvironment (TIME) altera-
tions have been examined before and after the develop-
ment of EGFR-TKI resistance. It has been found that 
miR-1 increased EGFR-TKI sensitivity by reduction of 
the CD8 + T cells migration. MiR-1 inhibited monocytes 
and lymphocytes motility by cytokines down regulations. 
MiR-1 reduced intratumoral CD8 + T cells in EGFR-TKI 
resistant lung cancer patients [60]. EGFR has also been 
shown to interact with the c-Met regularly [61, 62]. It 
has been shown that miR-200a reduced cell invasion and 
Gefitinib resistance in NSCLC cells through EGFR and 
c-Met down regulations [31]. There were also signifi-
cant reduced serum miR-19a levels in Gefitinib resistant 
patients. MiR-19a down regulation promoted Gefitinib 
resistance and Epithelial-to-Mesenchymal Transition 
(EMT) in Gefitinib-sensitive NSCLC cells. MiR-19a pro-
moted Gefitinib sensitivity by c-Met targeting in NSCLC 
cells [63]. Cancer Stem Cells (CSCs) are a group of tumor 
cells involved in chemo resistance [64]. Since, CSCs can 
differentiate and cause diverse cell populations to form 
tumor bulks, they are considered as the main tumor-ini-
tiating cells [65]. CD133 + populations of NSCLC-CSCs 
are responsible for increased chemotherapeutic resist-
ance and tumor relapse [66, 67]. HGF/c-Met signaling 
induced tumor progression through PI3K/AKT pathway 
[68, 69]. There was miR-128 down regulation in PC9-
CSCs. MiR-128 reversed Gefitinib resistance via c-Met/
PI3K/AKT inhibition and reducing the CSC population 
[70].

Insulin-like Growth Factor-1 Receptor (IGF1R) 
belongs to RTKs protein family that can be activated by 
autophosphorylation in conjunction with the Insulin-
like Growth Factors (IGFs) to promote MAPK and PI3K/
AKT signaling pathways. Therefore, IGF1R can control 
cell proliferation, differentiation, metabolism, and apop-
tosis [71]. It is hypothesized that aberrant IGF1R activa-
tion may increase the PI3K/AKT signaling pathway, thus 
conferring resistance to EGFR-TKIs. It has been shown 
that miR-497 can also regulate NSCLC’s resistance to 
Gefitinib. MiR-497 reduced IGF1R expression and inhib-
ited AKT1 signaling in NSCLC cells. MiR-497 may influ-
ence tumor cell responsiveness to chemotherapy and 
tumor cell resistance to EGFR-TKI via IGF1R targeting 
and AKT activation [72]. It has also been reported that 
miR-223 promoted apoptosis in tumor cells by targeting 
the IGF1R/Akt/S6 signaling pathway and increased Erlo-
tinib sensitivity [73].

The prognostic impact of the miR-1262 rs12740674 
variation has been investigated in advanced lung cancer 
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patients treated by EGFR-TKIs. The rs12740674 T allele 
was correlated with a worse prognosis. The miR-1262 
rs12740674 T allele was substantially related to poor 
prognosis following EGFR-TKI treatment. MiR-1262 also 
significantly increased the susceptibility of lung adeno-
carcinoma cells to Gefitinib [74]. MiR-4513 rs2168518 
and miR-608 rs4919510 polymorphisms were also sub-
stantially correlated with the prognosis of lung cancer 
patients treated with Gefitinib. Carriers of homozygous 
CC variant of rs4919510 had significantly longer OS and 
PFS than those with the GG variant. The carriers of hete-
rozygous GA variant of rs2168518 had also a better prog-
nosis in comparison with the GG variant. The rs4919510 
and rs2168518 polymorphisms were prognostic indica-
tors for lung cancer during Gefitinib treatment [75].

G-protein Coupled Receptor 56 (GPR56) has a pivotal 
role in cell adhesion and angiogenesis [76]. GPR124 func-
tions as an angiogenesis regulator, and abnormal tumor 
angiogenesis have been associated with anti-EGFR thera-
peutic resistance [77–81]. Gefitinib-resistant cell lines 
were sensitized to Gefitinib using miR-138-5p. Gefi-
tinib resistance was associated with miR-138-5p down 
regulation. Elevated amounts of miRNA-138-5p down-
regulated GPR124 in PC9 cells, and this modulation con-
tributed to drug sensitivity [82].

MEK/ERK and JAK/STAT signaling pathways
The Mitogen-Activated Protein Kinase (MAPK) pathway 
regulates diverse cellular mechanisms including prolif-
eration, differentiation, and motility [83]. MAPK pathway 
is activated by kinase cascades. Consecutive activation of 
the MAPK Kinase Kinase (MAPKKK) and MAPK Kinase 
(MAPKK) promote a specific MAPK which then phos-
phorylates different proteins in the cytosol and nucleus 
to exert its biological impacts through alterations in pro-
tein function and gene transcription [84]. Three main 
subfamilies of MAPKs include ERK, JNK, and p38 [85]. 
Compromised MAPK signaling has been correlated with 
diabetes, cancers, and neurodegenerative disorders [86, 
87]. Increased p38-MAPK pathway activity was demon-
strated to be associated with higher MDR1 expression 
and multidrug resistance in tumor cells [88]. The MEK/
ERK pathway is a crucial downstream signaling cascade 
required for cell growth and neoplastic transforma-
tion. As a result, MEK inhibitors have been intensively 
explored to treat different solid tumors in clinical tri-
als [89, 90]. MEK-inhibitors have clinical responses in 
some patients, however a minority of tumors are resist-
ant [91, 92]. It has been reported that up-regulation of 
miR-17-92 via activation of the STAT3 pathway caused 
MEK inhibitor resistance. Concurrent suppression of 
the MEK and STAT or miR-17 sensitized resistant cells 
to AZD6244 treatment substantially via Bcl-2 Interacting 

Protein (BIM) up-regulating [93]. Neurofibromin 1 (NF1) 
is a GTPase-activating protein that inhibits the Ras sign-
aling pathway, which, in turn, inhibits the MAP-ERK 
kinase MiR-641 up-regulation in EGFR-TKI-resistant 
NSCLC cells promoted Erlotinib resistance in NSCLC 
cells by directly targeting NF1 via activation of ERK 
signaling. MiR-641 may also render EGFR-TKI-resist-
ant NSCLC cells susceptible to TKI therapy [94]. PELI3 
is a scaffolding protein that promotes the ETS Like-1 
protein (Elk-1) and c-Jun signaling pathways and regu-
lates innate immune responses [95, 96]. PELI3 is an E3 
ubiquitin protein ligase with a function in insulin resist-
ance and inflammation [97]. Elk1 needs to be phospho-
rylated by MAPKs to activate the FOS proto-oncogene 
[98]. There was PELI3 up-regulation in NSCLC cell lines 
and tissues which was associated with a poor prognosis. 
MiR-365a-5p reduced cell proliferation and Gefitinib 
resistance via Pellino E3 Ubiquitin Protein Ligase Family 
Member 3 (PELI3) targeting [99].

Abelson Tyrosine-Protein Kinase 1 (ABL1) is a cyto-
plasmic and nuclear tyrosine kinase involved in cell pro-
liferation, adhesion, and stress response [100]. The c-Abl 
promotes cell proliferation and tumorigenesis in various 
cancers [101–103]. Activated c-Abl also phosphorylates 
the EGFR that is resulting in reduced EGFR internaliza-
tion and increased EGFR expression. The c-Abl directly 
interacts with the Grb2 to activate Ras/ERK pathway 
[104]. There was significant miR-3127-5p down regula-
tion in recurrent NSCLC tumor tissue compared with 
initial tumors. MiR-3127-5p expression was significantly 
correlated with advanced tumor stage in NSCLC. MiR-
3127-5p significantly reduced tumor cell growth and 
invasion by targeting the c-Abl and regulating the c-Abl/
Ras/ERK pathway. Dasatinib sensitivity was also associ-
ated with miR-3127-5p down regulation in NSCLC cells 
[105].

EMT is characterized by Cadherin 1 (CDH1) down-
regulation and up regulation of the mesenchymal bio-
markers. EMT increases tumor cell motility, invasion, 
and drug resistance. Acquiring the mesenchymal phe-
notype is linked with chemo resistance and confers pri-
mary resistance to Trastuzumab, a HER2/neu inhibitor 
[106, 107]. EMT has been related to resistance to EGFR-
TKIs in NSCLC patients. Mesenchymal markers are also 
expressed in clinical samples with EGFR-TKI resistance 
[108, 109]. Zinc finger E-box-binding homeobox (ZEB) 
family proteins as the CDH1 transcriptional repressors 
are pivotal targets in the miRNA-mediated EMT pro-
cess. It has been shown that miR-200c regulated EMT 
and increased Gefitinib sensitivity via ZEB1 targeting in 
NSCLC cells. Patients with miR-200c up-regulation may 
benefit more from EGFR-TKIs compared with miR-200c 
down-regulation. MiR-200c inhibited MEK/ERK pathway 



Page 8 of 16Maharati et al. Cell Communication and Signaling           (2022) 20:27 

to re-sensitize Gefitinib resistant NSCLC cells [110]. 
MiR-200c increased drug-resistant PC9-ZD sensitivity to 
Gefitinib via ZEB1 targeting [111]. LIN28B and LIN28A 
are RNA-binding proteins that have many biologi-
cal roles. LIN28 family reprograms the somatic cells to 
pluripotent stem cells in combination with self-renewal 
transcription factors [112]. The miR-200c/LIN28B axis 
is required to maintain EGFR-TKI resistance cells with 
EMT features. This axis has an essential role in EGFR-
TKI resistance [113]. There was significant miR-483-3p 
down regulation in Gefitinib-resistant NSCLC cells and 
lung tissues. MiR-483-3p promoted Gefitinib sensitivity 
in NSCLC by decreasing resistant cell growth and induc-
ing apoptosis. It also decreased EMT phenotype and 
metastasis in Gefitinib-resistant NSCLC cells. Moreo-
ver, miR-483-3p down regulation activated the FAK/
ERK pathway through up-regulating integrin β3. The 
miR-483-3p suppression in Gefitinib-resistance cells was 
related to promoter hyper methylation [114].

The JAK/STAT signaling pathway is implicated in mul-
tiple pathophysiological mechanisms such as cell prolif-
eration, differentiation, immunity, cytokine functions, 
and tumorigenesis [115, 116]. Following the interac-
tion of cytokines with the receptor, JAKs phosphorylate 
the STATs to form a dimer that translocates into the 
nucleus to induce the transcription of target genes [117]. 
Higher STAT3 activation is associated with increased 
risk of recurrence and shorter survival in different can-
cers [118]. JAK/STAT pathway also leads to the failure of 
conventional chemotherapy via promoting the expres-
sion of EMT-inducing transcription factors [119]. STAT3 
is an oncogenic transcription factor regularly activated 
in cancer and tumor-related myeloid cells by the IL-6 
[120]. IL6-induced STAT3 deregulation is associated with 
tumor progression in various cancers [121–123]. IL6/
STAT3 signaling may result in drug resistance [124–126]. 
EGFR mutant lung cancer cells evade Gefitinib therapy 
by over-activating STAT3 via miR-206 down regula-
tion [127]. ABR regulates various biological activities by 
inhibiting the small GTPase Rac activity. ABR dysfunc-
tion is associated with IL-6 activation. Hypoxia stimu-
lates the GTP-bound form of Rac, resulting in increased 
IL-6 production during the pathogenesis of pulmonary 
hypertension. There was significant miR-762 up regu-
lation in Gefitinib-resistant NSCLC cells compared to 
parental cells. Increased expression of miR-762, which is 
mediated by the IL6/STAT3 signaling pathway, resulted 
in Gefitinib resistance in NSCLC cells [128]. LINC00460 
is a competitive endogenous RNA decoy for the miR-
149-5p that consequently boosts IL-6 production and 
EMT-like characteristics in lung cancer cells. Patients 
with a high LINC00460 expression had a substantially 
lower PFS and OS after Gefitinib treatment [129]. It has 

been reported that miR-135 promoted Gefitinib resist-
ance in NSCLC cells. MiR-135 down-regulated CDH1 
and b-catenin while up-regulated PD-L1. MiR-135 inhibi-
tion affected the NSCLC cells by TRIM16 up-regulation. 
JAK/STAT signaling pathway was also implicated in miR-
135 and TRIM16 regulation. MiR-135 suppression down-
regulated Bcl-2 while up-regulated Bax that increased 
apoptosis [130].

PI3K/AKT signaling pathway
PI3K/AKT pathway is an intracellular signal transduc-
tion pathway that plays a crucial role in regulating cellu-
lar metabolism, proliferation, growth, and angiogenesis 
in response to extracellular signals [131, 132]. Following 
activation of PI3K by growth factors [133, 134], AKT is 
phosphorylated, activated, and localized in the plasma 
membrane and can exert different downstream effects 
such as CREB and mTOR activation, p27 inhibition, 
and FOXO localization in the cytoplasm [134–136]. The 
abnormal PI3K/AKT activation in cancer cells promotes 
the expression of ATP-Binding Cassette (ABC) trans-
porters, inhibits apoptosis, and induces tumor growth, 
thereby contributing to the reduced response to chemo-
therapeutic medications [137]. EGFR-TKIs might reduce 
EGFR downstream pathway activity, primarily through 
the PI3K/AKT pathway, which inhibits cell proliferation, 
invasion, and induction of apoptosis [138]. Phosphatase 
and Tensin Homolog (PTEN) as a suppressor of PI3K/
AKT pathway is associated with EGFR-TKIs resistance 
[139, 140]. PTEN is a tumor suppressor protein that 
converts PIP3 to PIP2 to inhibit the PI3K/AKT pathway 
[141]. There was a significant up-regulation of miR-214 in 
HCC827/GR. MiR-214 regulated the PTEN/AKT signal-
ing pathway in NSCLC EGFR mutant cells. The potential 
of miR-214 to modulate acquired resistance to Gefitinib 
in EGFR mutant cell lines was achieved through interplay 
with the PTEN/AKT signaling pathway [142]. There was 
miR-21 up regulation in advanced EGFR-TKI resistant 
NSCLC patients. MiR-21 promoted EGFR-TKI resistance 
via PTEN and PDCD4 targeting that resulted in PI3K/
AKT induction [143]. There was significant miR-23a up-
regulation in CD133 positive PC9 CSCs. Inhibition of 
miR-23a increased Erlotinib sensitivity of CSCs through 
PTEN up regulation [144].

IGF1R is involved in neoplastic transformation and 
drug resistance of a wide variety of tumors [145, 146]. 
The PI3K/AKT pathway as one of the common EGFR 
downstream signaling pathways are activated by IGF1R 
[147]. IGF1R activity is related to EGFR-TKI resistance 
in NSCLC cell lines and lung cancer patients [148, 149]. 
IGF1R-TKI can overcome EGFR-TKI resistance in  vitro 
and in vivo [147, 150]. It has been shown that miR-30a-5p 
down regulated PIK3R2, hence lowering the amount of 
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p-AKT in cell lines. MiR-30a-5p inhibited cell migration 
while promoted apoptosis by PIK3R2 targeting. There-
fore, miR-30a-5p in combination with other EGFR-TKI 
agents increased tumor cell drug sensitivity [151]. Ele-
vated plasma levels of miR-30b and miR-30c were also 
associated with Erlotinib’s inadequate response in EGFR 
mutant NSCLC patients [152].

Protein Tyrosine Phosphatase Non-Receptor Type 13 
(PTPN13) belongs to the non-receptor tyrosine phos-
phatases that functions as a tumor suppressor in NSCLC 
[153]. PTPN13 dephosphorylates oncogenic proteins 
including TRIP6, HER2, and Insulin Receptor Substrate 
1 (IRS-1) [153, 154]. It can also regulate the PI3K signal-
ing via PIK3R2 dephosphorylation [155]. There was sig-
nificant miR-26a up regulation in TKI-resistant NSCLC 
cells that promoted cell growth and TKI resistance 
via PTPN13 targeting. MiR-26a also activated Src by 
PTPN13 targeting that promoted EGFR signaling [156]. 
PI3K inhibitors significantly increase NSCLC cell sus-
ceptibility to drug-induced apoptosis. It has been shown 
that miR-223 stimulated the IGF1R/PI3K/AKT signaling 
pathway and Erlotinib resistance in PC9/CD133 + cells 
[157]. Ras-related C3 botulinum toxin substrate 1 (Rac1) 
is a small GTPase from the Rho protein family that 
belongs to the Ras superfamily [158]. Rac1 is involved in 
various activities in cell differentiation, migration, pro-
liferation, vesicle trafficking, and cytoskeletal dynamics 
[158, 159]. It has been reported that miR-135a stimulated 
cell proliferation, invasion, and Gefitinib resistance in 
NSCLC cells via Rac1 targeting and regulation of PI3K/
AKT pathway [160].

Sonic hedgehog (SHH), wingless/int (WNT), 
and nuclear factor‑kB (NF‑kb) signaling pathways
The Hedgehog (Hh) pathway is a highly conserved signal 
transduction pathway that functions in cellular commu-
nications during embryonic development and is impli-
cated in organogenesis, homeostasis, and regeneration 
[161]. Studies have indicated that aberrant activation 
of the Hh pathway induces cell proliferation and differ-
entiation which culminates in tumorigenesis [162, 163]. 
Hyper-activation of Hh pathways is frequently observed 
in esophageal cancers [164], and it also promotes pros-
tate cancer progression [165]. Gli-1 up-regulation was 
observed in residual esophageal tumors after chemo-
radiotherapy [166]. Hh signaling confers multidrug 
resistance through regulating the expression of ABC 
transporters family including Multidrug Resistance Pro-
tein 1 (MDR1) [167]. Drug efflux through the ABC trans-
porters is considered the most important mechanisms 
of Multidrug Resistance (MDR) [168]. There was Small 
Nucleolar RNA Host Gene 14 (SNHG14) up-regulation 
in Gefitinib-resistant NSCLC tissues and cells. SNHG14 

increased ABCB1 protein expression by miR-206-3p 
sponging, leading to NSCLC Gefitinib resistance [169]. 
MiRNAs have a pivotal role in the regulation of the 
Sonic Hedgehog (SHH) pathway, which is essential in 
organogenesis and embryogenesis [170, 171]. It has been 
reported that under expression of miR-506 activated the 
SHH pathway promoted EGFR-TKI, migration, and EMT 
process. The expression of miR-506-3p was significantly 
reduced in Erlotinib-resistant cells [172]. GLI1 is the 
main transcription factor of Hh signaling pathway [173, 
174]. It has been observed that miR-873 suppression sig-
nificantly induced the proliferation of Gefitinib-treated 
PC9 cells, followed by GLI1 up-regulation. MiR-873 sup-
pression also enhanced angiogenesis and Gefitinib resist-
ance in NSCLC cells [175].

WNT family is a group of secreted glycoproteins that 
functions as ligands binding to a Frizzled (Fz) family cell 
surface receptor to activate downstream signaling cas-
cades [176, 177]. RTK and LRP-5/6 serve as co-receptors 
to facilitate the WNT ligand and Fz receptor interac-
tion [178]. The signals are then transduced via canoni-
cal Wnt/β-catenin, non-canonical Wnt/calcium, and 
non-canonical Planar Cell Polarity (PCP) pathways [179]. 
Wnt pathway is involved in cellular differentiation, pro-
liferation, maturation, and tumorigenesis [180–182]. Wnt 
signaling is involved in progression of various cancers 
including hepatocellular carcinoma, prostate, ovarian, 
pancreas, and breast cancers [183–187]. The Wnt path-
way is responsible for the resistance of cancer cells to 
traditional chemotherapy and radiotherapy through reg-
ulating stemness and maintaining the CSCs [176]. LIM 
Homeobox (LHX) as the main subfamily of homeobox 
genes are involved in various malignancies [188]. LHX6 
inhibits the Wnt/b-catenin signaling pathway to suppress 
the breast cancer cells proliferation and invasion [189]. It 
has a critical role in lung cancer via regulation apoptosis 
and cell cycle-related genes such as Tumor protein P53 
(p53), B-Cell Lymphoma 2 (BCL-2), Cyclin D1 (CCND1), 
and Cyclin Dependent Kinase Inhibitor 1A (CDKN1A) 
[190]. There was miR-214 up regulation in the plasma of 
NSCLC patients who acquire EGFR-TKI resistance. MiR-
214 promoted the Erlotinib resistance and the metasta-
size potential in HCC827 cells through LHX6 targeting 
[191].

The NF-kB encompasses a family of closely related 
transcription factors implicated in cell survival, immune 
responses, and cytokine production [192, 193]. The 
NF-kB activation is achieved through the non-canonical 
and canonical pathways [194]. In the canonical pathway, 
NF-kB is activated following targeted phosphorylation 
and subsequent degradation of IkB [195]. NF-kB signal-
ing is involved in inflammatory and autoimmune disor-
ders as well as cancers [194, 196, 197]. It has also been 
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reported that NF-kB exerts an anti-apoptotic role and 
promotes drug resistance in tumor cells [198–200]. In 
contrast, inhibition of NF-kB enhances cancer cell sensi-
tivity to chemotherapeutic drugs via MDR1 down regu-
lation [201]. Interleukin 1 Receptor Associated Kinase 1 
(IRAK1) is serine/threonine kinase implicated in the NF-
kB-regulated inflammatory response, antiapoptosis, and 
tumor development [202]. It has been reported that there 
was significant miR-146b-5p down regulation in EGFR 
TKI-resistant cells. MiR-146b-5p increased EGFR TKIs 
sensitivity by targeting IRAK1 [203].

TNF Superfamily Member 12 (TNFSF12) belongs 
to the Tumor Necrosis Factor (TNF) protein family 
expressed in a range of organs, immune cell types, and 
tumor cells, which activates caspase 8 and caspase 9 and 
cause extrinsic and intrinsic apoptosis cascades [204]. 
RHPN1-AS1 was down-regulated in Gefitinib-resistant 
NSCLC patients and cell lines. RHPN1-AS1 regulated 
Gefitinib resistance in NSCLC by targeting the miR-
299-3p/TNFSF12 pathway. TNFSF12 also induced apop-
tosis in Gefitinib resistant tumor cells [205].

Hippo and NOTCH signaling pathways
The Hippo signaling is a structurally and functionally 
conserved pathway that has pivotal functions in regula-
tion of organ size, cell proliferation, apoptosis, and tis-
sue regeneration [206, 207]. Following the activation of 
the Hippo pathway, Mammalian Sterile 20-like kinase 
(MST1/2) is phosphorylated and promotes the activation 
of Large Tumor Suppressor (LATS1/2), which controls 
gene expression through phosphorylating and inhibit-
ing the activity of the transcriptional co-activator pro-
teins Yes-Associated Protein (YAP) and transcriptional 
co-activator with PDZ-binding motif (TAZ) [208, 209]. 
The Hippo pathway exerts tumor-suppressive functions 
and its mutations lead to the overgrowth of the affected 
cells [210]. Deregulation of the Hippo pathway also ren-
ders cancer cells resistant to chemotherapy [211]. Down-
regulation of MST1 levels has been correlated to cisplatin 
resistance in prostate tumor cells [212]. On the other 
hand, YAP up-regulation was associated with resistance 
to taxane-based therapy in ovarian cancer [213]. There 
was miR-506-3p down regulation in NSCLC cells. MiR-
506-3p reduced cell viability and apoptosis in PC-9GR 
cells after Gefitinib therapy. MiR-506-3p enhanced Gefi-
tinib-induced Bcl-2 down regulation and Bax up regula-
tion in PC 9GR cells. MiR-506-3p down regulation was 
associated with Gefitinib resistance via YAP1 regulation 
in NSCLC cells [214]. It has been shown that miR-630 
down regulation may predict an adverse response to TKI 
treatment and a poor prognosis in lung adenocarcinoma. 
TKI resistance in EGFR-mutated lung cancer cells may 
be due to a feedback loop between miR-630-YAP1-ERK 

due to a Bad down-regulation caused by ERK signaling-
induced phosphorylation. MiR-630 down regulation pro-
moted ERK activation through YAP1 up regulation that 
resulted in TKI resistance. The miR-630/YAP1/ERK axis 
promotes TKI resistance in EGFR-mutated lung tumor 
cells [215].

Notch signaling is a cell–cell communication path-
way involved in multiple cellular processes including 
embryonic development, proliferation, differentiation, 
EMT, migration, and apoptosis [216]. Following the 
interaction of the Notch receptors (NOTCH1-4) with a 
ligand–protein such as Delta-Like (DLL) and Jagged, pro-
teolytic cleavage is induced and the intracellular domain 
is released which enters the nucleus to regulate the tran-
scription of target genes [217, 218]. Aberrancies in this 
pathway have been correlated with a variety of devel-
opmental disorders of the heart, kidney, liver, and skel-
eton as well as malignancies [219, 220]. Moreover, Notch 
signaling is associated with drug resistance by promot-
ing the formation of CSCs and mediating the EMT pro-
cess [221, 222]. There were reduced levels of SNHG15 
expression in Gefitinib-resistant LUAD cells due to 
NOTCH1 impairment. In Gefitinib-resistant cells, lack 
of SNHG15 inhibited cell proliferation, migration, and 
EMT processes while promoting cell death. NOTCH-1 
promoted Gefitinib resistance through SNHG15/miR-
451/ZEB1 axis [223]. There was miR-223 up-regulation 
in the Erlotinib-resistant HCC827 cells compared with 
parental. Increased expression of miR-223 stimulated the 
AKT and Notch signaling pathways in Erlotinib-resistant 
cells. MiR-223 may be a critical onco-miRNA that modu-
lates NSCLC cell susceptibility to Erlotinib by regulating 
FBXW7. Erlotinib-resistant NSCLC patients may ben-
efit from a new therapy that targets the Notch/miR-223/
FBXW7 pathway [224].

Conclusions
TKIs are effective therapeutic modalities in the tar-
geted therapy of various cancers; however they cause 
various side effects in cancer patients. Therefore, it is 
required to detect the lung cancer patients who are 
resistant toward the TKIs to manage the therapeutic 
methods and reduce side effects. Circulating miRNAs 
are tolerant toward different pH conditions and ambi-
ent temperature, showing their importance as efficient 
diagnostic and prognostic tumor markers. Since, miR-
NAs are involved in response to the anti-cancer drugs, 
drug response can be predicted by the miRNAs expres-
sion profiling. In the present review we have summa-
rized specific miRNAs involved in the regulation of 
TKIs responses in lung tumor cells. It was observed 
that miRNAs affect the TKIs via regulation of various 
signaling pathways including NOTCH, WNT, PI3K/
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AKT, Hippo, and JAK/STAT. All of these signaling 
pathways finally regulate the EMT through the spe-
cific transcription factors such as YAP, GLI1, ZEB1, 
and CSL. This review clarifies the molecular interac-
tions between the miRNAs and signaling pathways dur-
ing the TKIs response in lung tumor cells that paves 
the way of introducing a miRNA-based panel marker 
for detection of TKIs response in lung cancer patients. 
However, there is still a lack of miRNAs serum sample 
assessment in the majority of discussed reports. There-
fore, in future studies it is necessary to evaluate the 
levels of miRNAs expressions in serum samples of lung 
cancer patients to introduce such factors as the non-
invasive markers of TKIs response prediction.
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