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Pathophysiological role of calcium channels 
and transporters in the multiple myeloma
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Abstract 

Multiple myeloma (MM) is a common malignant tumor of plasma cells. Despite several treatment approaches in 
the past two decades, MM remains an aggressive and incurable disease in dire need of new treatment strategies. 
Approximately 70–80% of patients with MM have myeloma bone disease (MBD), often accompanied by pathological 
fractures and hypercalcemia, which seriously affect the prognosis of the patients. Calcium channels and transporters 
can mediate Ca2+ balance inside and outside of the membrane, indicating that they may be closely related to the 
prognosis of MM. Therefore, this review focuses on the roles of some critical calcium channels and transporters in MM 
prognosis, which located in the plasma membrane, endoplasmic reticulum and mitochondria. The goal of this review 
is to facilitate the identification of new targets for the treatment and prognosis of MM.
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Introduction
Multiple myeloma (MM), a malignant tumor with abnor-
mal accumulation of terminally differentiated plasma 
cells, is the second most common hematologic cancer 
after lymphoma [1, 2]. Most patients with MM will have 
varying degrees of bone destruction [3], renal insuffi-
ciency and hypercalcemia [4], which is closely related to 
calcium regulation. Studies have confirmed that serum 
calcium level reflects the ability of bone resorption and 
bone formation [5]. Hypercalcemia is an adverse prog-
nostic factor in MM [6], and it is most common in those 
myeloma patients who have the greatest tumor volume or 
patients with plasma cell leukemia (a late stage complica-
tion of myeloma) [7]. The reasons for this are still unclear, 
but they may be related to bone resorption activity pro-
duced by myeloma cells and glomerular filtration status. 
Because myeloma patients often have irreversible kidney 

damage and increased renal tubular calcium reabsorp-
tion, resulting in elevated serum calcium concentration 
and abnormal bone remodeling [7, 8]. In addition, pre-
vious studies have reported that the interaction between 
MM cells and osteoclasts accelerates bone destruction 
and bone remodeling in myeloma, which leads to an 
increase in calcium concentration in serum and bone 
marrow [7, 9]. Therefore, MM cells may be exposed to a 
high concentration of extracellular calcium in the bone 
marrow microenvironment, but so far, the relevant cal-
cium transporters/channels and mechanisms of calcium 
regulation in MM are still unclear.

Calcium channels and transporters are protein struc-
tures that exist in cell membranes, endoplasmic reticu-
lum membranes, and mitochondrial membranes. They 
can mediate Ca2+ balance inside and outside of the mem-
brane, thus maintaining the physiological functions of 
the organism. The network control of calcium channels 
and transporters which regulate intracellular Ca2+ home-
ostasis includes: (1) calcium channels or transporters that 
allow Ca2+ influx from extracellular Ca2+ storage across 
the plasma membrane (PM), such as transient receptor 
potential channel (TRP), G Protein-Coupled Receptors 
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(GPCRs) and purinergic receptor (ATP-gated cation 
channel P2X7 receptor); (2) Inositol 1,4,5-triphate recep-
tor (IP3R) or ryanodine receptor (RyR) and stromal-
interaction molecule1 (Stim1) combined with the plasma 
membrane calcium channel protein Orai1 (also known as 
CRACM1) to mediate Ca2+ release from the endoplas-
mic/sarcoplasmic reticulum (ER/SR); (3) Mitochondrial 
Voltage-Dependent Anion Channel 1 (VDAC1) and Ca2+ 
uniporter (MCU) regulate mitochondrial Ca2+ uptakes; 
(4) Ca2+-ATPase pumps Ca2+ from cytoplasm back to 
ER/SR or extracellular space [10, 11] (Fig.  1). Most fea-
tures of cancer, if not all, involve calcium signaling to 
mediate critical cellular processes, including transcrip-
tional regulation, which underlies the gene expression 
in a variety of pathways essential for tumorigenesis and 
metastasis [12]. So far, various studies have shown that 
changes in calcium channels and transporters are related 
to the proliferation, apoptosis, osteoclast differentiation 
and outcome of MM. For instance, the knockdown of 
the non-selective cation channel TRP proteins, known 
as a type of calcium channel on the cell membrane, was 
shown to result in the differentiation of osteoclast in MM 
[13, 14]. Purinergic receptor P2X7 activation induces cell 

death in human RPMI 8226 multiple myeloma cells [15]. 
Up-regulation of Stim1 or Orai1 [two critical regulators 
of Store-Operated Ca2+ Entry (SOCE)] was associated 
with the clinical outcome of MM, and Stim1 or Orai1 
down-regulation reduce cell viability, cause cell apopto-
sis and cell cycle arrest in MM cell lines [16]. In human 
CD45+ U266 myeloma cells, VDAC1 might sensitize to 
many extracellular stimuli that trigger apoptosis via the 
mitochondrial pathway [17].

Therefore, in this review, we summarize the expression, 
localization and pathophysiological role of some essen-
tial calcium channels and transporters, including the 
transient receptor potential channel (TRP) family, GPCR 
family, Purinergic receptors, SOCE channels and Mito-
chondrial Ca2+ transporters, which have been reported 
to be altered in MM (Fig. 2, Table 1).

Plasma membrane Ca2+ channels
TRP channels
The TRP superfamily channels consist of many non-
selective cation channels, including more than 30 mem-
bers and can be further divided into seven subgroups, i.e. 
TRPV (vanilloid), TRPC (canonical), TRPM (melastatin), 

Fig. 1  The composition of calcium channels and transporters. PM: plasmic membrane; Mit: mitochondrial; ER/SR: endoplasmic/sarcoplasmic 
reticulum; GA: Golgi apparatus; TRP: transient receptor potential channel; GPCRs: G protein-coupled receptors; Stim1: Stromal-interaction molecule1; 
RyR: ryanodine receptor; VDAC1: Voltage-Dependent Anion Channel 1; MCU: Mitochondrial Ca2+ uniporter; PMCA: Plasma membrane Ca2+-ATPase; 
SERCA: endoplasmic/sarcoplasmic reticulum Ca2+-ATPase; SPCA: secretory pathway Ca2+-ATPase
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TRPML (mucolipin), TRPP (polycystic), TRPN (no 
mechanoreceptor potential C), and TRPA (ankyrin) 
[18]. Each subgroup contains several channel subtypes, 
which have different Ca2+ selectivity, activation mecha-
nisms and interacting proteins [19]. These channels con-
sist of six transmembrane domain segments (S1–S6) and 
intracellular carboxy (C-) and amino (N-) termini in the 
pore region between S5 and S6 [20]. TRP family is one 
of the leading calcium channels [21], which regulates 
intracellular Ca2+ concentration and plays a vital role 
in various physiological functions, including mediating 
pain transmission, bone metabolism, and tumor occur-
rence and metastasis [22, 23]. For example, the TRPV 
family is related to the onset and progression of MM and 
chronic myeloid leukemia [24]. The TRPM family, espe-
cially TRPM7, has been shown to regulate B cell devel-
opment and antigen recognition [25]. The TRPC family 
is involved in the occurrence and development of acute 
T-cell leukemia tumors [26]. Next, we aim to outline the 
role of TRPV and TRPM ion channels in MM, and the 

role of TRPC in MM will be introduced in the part of 
endoplasmic reticulum SOCE.

TRPV channel structures have six highly conserved 
transmembrane domain architecture. The functional 
TRPV channels are tetrameric assemblies that surround 
a central permeation pathway [27]. The six members of 
TRPV family can be further divided into three distinct 
groups based on functional characteristics: fairly non-
selective cation channels TRPV1-3 [28], cation-selec-
tive efflux channel TRPV4 [29], and epithelial channels 
TRPV5 and TRPV6 [30, 31]. In TRPV family, studies 
have reported the importance of TRPV1, TRPV2, and 
TRPV4 in MM.

TRPM family is the largest and most diverse subfam-
ily in the TRP superfamily [32], composed of eight mem-
bers, TRPM1 to TRPM8. The TRPM channels have a 
large cytosolic domain with 732–1611 amino acids for 
per subunit [33]. Most of the TRPM channels are non-
selective Ca2+ permeable cation channels; only TRPM4 
and TRPM5 are impermeable to Ca2+[34, 35]. In this 

Fig. 2  Important Ca2+ channels/transporters in multiple myeloma cells. ER: Endoplasmic reticulum; OMM: Outernal mitochondrial membranes; 
IMM: internal mitochondrial membranes. The intracellular Ca2+ is governed by a series of proteins: (1) plasma membrane Ca2+ channels 
or transporters, such as TRPs (TRPV1, TRPV2, TRPV4, TRPM7), G Protein-Coupled Receptors (CaSR, CTR, PTH-R1), Purinergic receptors (P2X7), 
which mediate Ca2+ influx into cells. (2) Store-Operated Ca2+ Entry, as one of the major pathways for Ca2+ influx across plasma membrane. (3) 
Mitochondrial Ca2+ transporters, including VDAC1 and MCU, mediate Ca2+ transport across internal and outernal mitochondrial membranes. 
(4) Ca2+-ATPases pumping Ca2+ from cytosol to extracellular space. Ca2+ can regulate various cellular events, including gene transcription, 
proliferation, migration and apoptosis. During development of multiple myeloma, the alteration of Ca2+ channels/transporters lead to changes in 
Ca2+ permeability and distribution inside and outside the cell membrane as well as activation of various signaling pathways, providing a suitable 
microenvironment for the growth of tumor cells. Targeting the dysregulated Ca2+ channels/transporters may improve the prognosis of patients 
with MM



Page 4 of 14Li et al. Cell Commun Signal           (2021) 19:99 

Table 1  Expression, localization and phthophysiological function of calcium channels and transporters in MM

Name Related 
channels/
transporters

Main localization Compound Mechanism Pathophysiological role 
in MM

References

TRPVs TRPV1 Plasma membrane Capsaicin Activator TRPV1 inhibitor has syner-
gistic anti-MM activity with 
bortezomib

[47]

TRPV2 Plasma membrane SKF96365 Inhibitor TRPV2 promotes osteoclast 
differentiation

[13]

TRPV4 Plasma membrane – – TRPV4 activation promotes 
osteoclast differentiation 
and bone resorption

[60]

TRPMs TRPM7 Plasma membrane – – TRPM7 regulates MM cell 
motility and dissemination

[68]

GPCRs CaSR Plasma membrane CaCl2
Gadolinium
Neomycin

Activator
Activator
Activator

CaSR promotes the mitosis 
of MM cells

[57]

CTR​ Plasma membrane Calcitonin Activator CTR inhibits bone resorp-
tion by neutralizing OC 
migration and shape 
retraction, and may par-
ticipate in the osteoclast 
differentiation of MM

[85]
[89]

PTH-R1 Plasma membrane PTHrP Activator PTHrP stimulates the secre-
tion of PTH-R1, promotes 
proliferation of MM cells 
and the production of 
osteoclastogenesis factors

[90]
[92]

Purinergic receptors P2X7 Plasma membrane ATP Activator Activation of P2X7 may 
induce the apoptosis and 
prevent the proliferation of 
MM cells

[15]

SOCE Stim1 Plasma membrane, SKF-96365
DES
2-APB

Inhibitor
Inhibitor
Inhibitor

Silencing Stim1 reduces 
cell viability, leading to 
apoptosis and cell cycle 
arrest of MM cells, and the 
high expression of Stim1 
affects the clinical outcome 
of MM. In addition, Stim1 
could regulate the motility 
and dissemination of dif-
fuse large B-cell lymphoma 
(DLBCL) cells and MM cells

[16]
[68]
[126]

Endoplasmic reticulum

Orai1 Plasma membrane, SKF-96365
DES
2-APB

Inhibitor
Inhibitor Inhibitor

Silencing Orai1 reduces 
cell viability, leading to 
apoptosis and cell cycle 
arrest of MM cells. And 
Orai1 regulates the motility 
and dissemination of dif-
fuse large B-cell lymphoma 
(DLBCL) cells and MM cells

[16]
[68]
[111]
[126]

Cytosol AnCoA4

TRPC1 Plasma membrane – – Knockout of TRPC1 inhibits 
the death of MM cells

[132]

Mitochondrial Ca2+ trans-
porters

VDAC1 Mitochondrion,
Nucleus

– – VDAC1 promotes the 
growth of MM cells, accel-
erates the development 
of MM, and affects the 
prognosis ofpatients

[17]
[144]

MCU Mitochondrion Ruthenium red Inhibitor MCU can reduce MM 
bortezomib resistance and 
promote MM cell apoptosis

[151]
[152]
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part, we mainly discuss the role of TRPM7 in MM 
tumorigenesis.

TRPV1 channel
TRPV1 is the first member of the TRPV family, which 
respond to low pH value (< 5), capsaicin noxious heat 
(> 43  °C) and so on [36, 37]. TRPV1 was initially dis-
covered in rat dorsal root ganglion [38], and involved 
in the regulation of calcium signaling, inflammation 
and metabolism, and was closely related to cancer [39, 
40]. The functional expression of TRPV1 has been con-
firmed in several human malignancies including breast, 
prostate, urothelial cancer and glioma [41–44], yet 
remained largely unknown in hematologic malignancies 
especially in MM. At present, drug resistance remains 
a major challenge for MM cure and calcium signaling 
was proposed to play a role in drug resistance of cancer 
cells [45]. TRPV1 has been recognized as an important 
regulator of intracellular calcium levels, and it was found 
to be highly expressed in MM cell lines (RPMI8226, 
INA6 and MM.1S) in a chip analysis of GSE5900 and 
GSE2658. Recently, a study proposed the role of TRPV1 
in MM tumor progression and bortezomib resistance. It 
is known that induction of endoplasmic reticulum (ER) 
stress is one of the main mechanisms of bortezomib-
mediated cell death. In response to ER stress conditions, 
the unfolded protein response (UPR) signaling cascade is 
activated to counteract the occurring damage [46]. Beider 
et al. found that TRPV1 inhibition (using a pharmacolog-
ical inhibitor AMG9810) resulted in calcium-dependent 
accumulation of mitochondrial reactive oxygen species 
(ROS), followed by mitochondrial instability and MM 
cell death [47]. These results are consistent with previ-
ous findings, indicating that calcium is a key regulator 
of mitochondrial function, and that calcium overload 
can impair electron transport leading to ROS generation 
[48]. In addition, TRPV1 inhibitor (AMG9810) interferes 
with calcium signaling and suppresses chemokine recep-
tor CXCR4 (CXC-Motif Receptor 4)-mediated migration 
and stromal protection. It acts synergistically with bort-
ezomib to target ubiquitin pathway and cytoprotective 
mitochondrial UPR, impairs mitochondria, destabilizes 
lysosome and promotes MM cell death. On the contrary, 
TRPV1 agonist (capsaicin) promotes calcium influx, 
resulting in transient increase in cytosolic calcium levels, 
thus supporting CXCR4-mediated activity [47]. Impor-
tantly, the combination of TRPV1 inhibitor (AMG9810) 
and bortezomib showed superior anti-MM activity 
in  vivo model of CXCR4-driven human MM engrafting 
in murine bone marrow [47]. Altogether, these results 
reveal the mechanism mediating the synergistic anti-MM 
activity of bortezomib in combination with TRPV1 inhi-
bition which may be translated into clinical practice.

TRPV2 channel
TRPV2 is widely expressed in different cells and tissues 
[49], such as B lymphocyte [50], CD34+ hematopoietic 
stem cells [51], and is a Ca2+ permeable channel that 
contributes to calcium homeostasis [28]. TRPV2 expres-
sion in some tumor cells is significantly higher than that 
in normal cells [52–54], and according to the Cancer 
Cell Line Encyclopedia (CCLE) database, the expres-
sion of TRPV2 is higher in MM cell lines compared to 
other tumor cell lines. In the study of TRPV2 expres-
sion, the protein was detected to be highly expressed in 
MM patient and MM cell lines (ARP-1, LP-1) by Immu-
nohistochemistry and Western-blot analysis technology, 
indicating that TRPV2 played a role in MM develop-
ment [13]. Numerous studies have shown that TRPV2 
expression is related to tumor prognosis. In bladder 
cancer, TRPV2 promotes tumor cell migration and 
invasion through metalloproteinase 2 (MMP2) [55]; in 
oesophagal squamous cell carcinoma, high expression of 
TRPV2 has confirmed to be related to the patient’s dis-
ease stage and overall survival [56]. Bai et  al. analyzed 
public gene expression data of bone marrow plasma 
cells from GSE24080. They found that MM patients 
with asymptomatic survival and overall survival less 
than 24 months, the transcriptional level of TRPV2 was 
significantly higher than that in patients with approxi-
mately 24 months [13]. In addition, TRPV2 is related to 
the occurrence of bone lesions in MM. Myeloma cells 
often expose to high levels of extracellular calcium con-
centrations (Cao

2+) in the microenvironment surround-
ing destructive bone lesion [57]. Laboratory studies have 
shown that a high concentration of Cao

2+ could increase 
the expression of TRPV2 in ARP-1 and LP-1 cell lines. 
TRPV2 up-regulates intracellular calcineurin protein, 
promoting the dephosphorylation of NFATc3 and accel-
erating NFATc3 to enter the nucleus, thereby enhancing 
the synthesis and secretion of osteoclast-related factors 
(such as Receptor Activator of Nuclear Factor-κ B Ligand 
(RANKL)) in MM cells, ultimately leading to MBD [13]. 
SKF96365, an inhibitor of TRPV2, proved to be able to 
inhibit RANKL-mediated osteoclast differentiation, sug-
gesting that SKF96365 may be used as a new type of 
treatment for MBD [13].

TRPV4 channel
TRPV4, a Ca2+‐permeable channel of the TRP family, 
regulates the homeostasis of intracellular calcium con-
centrations (Cai

2+) [58]. It mediates Ca2+ influx in the 
late stage of osteoclast differentiation, thus regulating 
Ca2+ signal, which is crucial for cellular events during 
osteoclast differentiation [59]. MM patients often accom-
pany by abnormal bone metabolism, and the occurrence 
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of MBD is related to the differentiation of osteoclasts 
[13]. Studies have shown that TRPV4 gene knocked out 
mice increase bone mass by impairing bone resorption, 
and TRPV4 activation promotes osteoclast differentia-
tion and bone resorption [60]. In recent years, autophagy 
has been reported not only as an essential mechanism 
for maintaining cell homeostasis but also play a vital role 
in the regulation of osteoclastogenesis [61]. Cao and his 
colleagues found that TRPV4 up-regulated autophagy-
related proteins and Ca2+-calcineurin-NFATc1 signal-
ing, thereby promoting the secretion of osteoclast-related 
factors and modulating osteoporosis [14]. In summary, 
TRPV4 can be used as a potential therapeutic target for 
MBD and other bone resorption diseases.

TRPM7 channel
TRPM7 is an ion channel that regulates cellular magne-
sium and calcium homeostasis [62], though it specifi-
cally promotes Ca2+ influx in various cancer cells [63, 
64]. TRPM7 is essential for embryonic development, and 
deletion of TRPM7 in the chicken B cell line DT40 results 
in growth arrest and cell death [65]. Earlier, Krishna-
moorthy et  al. demonstrated for the first time that 
TRPM7 can regulate B cell development and antigen rec-
ognition [25], suggesting its role in MM tumorigenesis.

Recently, growing evidence has demonstrated that 
MM originates from BM and disseminates throughout 
the body (also called extramedullary MM), which are 
closely correlated with poor prognosis with an overall 
survival period of less than 6 months [66, 67]. It is gen-
erally believed that the BM microenvironment provides 
support for MM cell growth and survival and for the 
acquisition of aggressive phenotypes. High Ca2+ and 
altered Ca2+ signals in the BM microenvironment may 
be a key contributing factor to the pathological process 
[68]. Therefore, Ca2+ channels and transporters, which 
are molecular participants of Ca2+ homeostasis, could 
be significantly involve with MM progression in term 
of MM cell motility and dissemination. Samart et  al. 
observed that the expression of Ca2+ influx channels 
(such as TRPM7) in patient-derived MM cells are upreg-
ulated compared with normal plasma cells in a bioinfor-
matics database. They used the CRISPR/Cas9 system to 
repress TRPM7 gene expression in MM cells, which can 
significantly inhibit the migration and invasion of MM 
cells [68]. Such result can reduce the intravasation of MM 
cells from the BM into nearby blood vessels and for their 
subsequent extravasation into distant tissues [69, 70]. In 
addition, vitro and vivo experiments show that TRPM7, 
Orai1 and Stim1 (Orai1 and Stim1 will be described in 
detail in SOCE) mediated Ca2+ influx regulate MM cell 
motility and dissemination by orchestrating O-GlcNAyla-
tion homeostasis that targets integrin α4 and integrin β7 

[68]. In summary, TRPM7 is a key regulator of MM cell 
motility and dissemination, and may be a potential pre-
dictive biomarker and therapeutic targets for advanced 
MM. Further studies on the role of novel TRPM7 small 
molecule inhibitors in disseminated MM xenograft mod-
els in vivo may be beneficial to future MM treatments to 
achieve long-term disease control.

G protein‑coupled receptors (GPCRs)
GPCRs are the largest family of membrane signaling pro-
teins in the human body. The core structure of all GPCRs 
are very similar: 7 transmembrane helix domains, extra-
cellular N-terminus, and intracellular C-terminus [71]. 
There are two extra-membrane loops (Loop) and three 
intra-membrane loops. The C-terminus and the intracel-
lular loop connecting the fifth and sixth transmembrane 
helices have binding sites for protein G (guanylate bind-
ing protein). Most GPCRs belong to class A [71], which 
are rhodopsin-like receptors. Class B GPCRs can inter-
act with peptides. Class C GPCRs are dimers composed 
of two 7 TM units, which are homologous to bacterial 
proteins involved in the transport of amino acids and 
ions [72]. And there are no receptors belong to class D, 
E, F or O in the human genome [71]. GPCRs usually 
localize on the plasma membrane, which mediates the 
response of cells to various stimuli, ultimately cause cel-
lular responses [73]. Here, we mainly explain the role of 
GPCRs in the Ca2+ transport process.

Calcium sensitive receptor (CaSR)
Calcium-Sensing Receptor (CaSR) is a class C GPCRs 
discovered in 1993 by Brown and coworkers [74]. It 
is widely distributed in the human body and partici-
pates in numerous physiological and pathological pro-
cesses, monitoring extracellular Ca2+ concentration and 
responding to various signals stimulate, and then regu-
lating Ca2+ homeostasis [74]. CaSR is a homodimer, and 
each monomer composes an N-terminal extracellular 
domain (ECD), a seven-transmembrane domain (TTM) 
and an intracellular C-tail domain (C-tail) [75]. Ca2+ is 
the primary agonist of CaSR and can bind to the ECD 
region [76], and is thought to be involved in regulating 
mitotic transitions [77]. Yamaguchi et al. found that CaSR 
can promote the mitogenic response of mouse osteo-
blastic MC3T3-E1 cell [78]. CaSR agonists (such as Ca2+, 
gadolinium (Gd3+), and neomycin) increased levels of 
inositol triphosphate (IP3), cytosolic calcium concentra-
tion and DNA synthesis through a mechanism coupled 
to the activation of G protein and PKC [74, 79]. Besides, 
the mitogen-activated protein kinase (MAPK) family 
members, p42/44 and p38 MAPK, have been confirmed 
to be involved in CaSR-stimulated mitogenic response in 
mouse osteoblastic MC3T3-E1 cell. These responses may 
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serve to ensure the availability of adequate numbers of 
osteoblastic cells at sites of recent bone resorption [80]. 
MM often accompanies by an increase in Cao

2+, which 
leads to changes of CaSR expression in hematopoietic 
precursor cells, and ultimately red blood cell precur-
sors, megakaryocytes (the precursors of blood platelets), 
monocytes, and macrophages, all of which express 
higher levels of the CaSR than white blood cells precur-
sors [81]. In human myeloma cells, such as U266, IM-9 
and RPMI8226 cells, exposure to high Ca2+ concentra-
tion augmented cell proliferation through CaSR on their 
surfaces, and further participate in a vicious cycle by 
expanding myeloma cell mass in destructive bone lesions 
[57]. Studies have reported that some basal or constitu-
tive activity of MAPK, Interleukin-6 (IL-6), insulin-like 
growth factor-1 (IGF-1) or other signaling pathways 
have been found in these myeloma cells, which can pro-
mot cell proliferation [82, 83]. This is how myeloma cells 
survive in bone marrow microenvironment, indicating 
that CaSR, at least in part, might mediate these survival 
signals to regulate the mitosis of myeloma cells. How-
ever, CaSR activators (such as Ca2+, NPS, R467) did not 
enhance IL-6 expression in these cells, indicating that 
CaSR agonists exerting a mitogenic effect on myeloma 
cells seemed to be independent of IL-6 actions [57]. In 
addition, CaSR agonists have shown to stimulate pro-
liferation of osteoblasts, monocyte-macrophages, bone 
marrow stromal cells and fibroblasts [57], which further 
supports the view that CaSR activation can promote MM 
mitosis.

Calcitonin receptor (CTR)
Calcitonin receptor (CTR) belonged to class B GPCR and 
identified originally in porcine kidney epithelial cell line 
[84]. CTR primarily expressed in osteoclasts (OCs), K562 
myeloid leukemia cells, human breast cancer, kidney, and 
mouse and human lymphocytes, with a down-regulating 
effect on its function in response to hypercalcemia [85]. 
CTR contains seven transmembrane regions, four extra-
cellular loops (ECL1-4) and four intracellular loops. It has 
proved that the ECL2 and ECL3 region are the binding 
sites of calcitonin (CT) [86]. Six structural variants have 
described, i.e. CTR-1 to -6 isoforms with most unknown 
functions. CTR structural isoforms can activate several 
heterotrimeric G proteins in response to CT stimulation, 
trigger various signal transduction mechanisms, that lead 
to intracellular Ca2+ isoform or adenylate cyclase accu-
mulation throughout PKC or PKA pathway, respectively 
[87]. The CTR-2 isoform was detected on Ocs, with 16 
amino acid deletions in the first intracellular loop [88]. Its 
main functions include the inhibition of bone resorption 
by neutralizing OCs migration and a shape retraction 
[89]. Silvestris et al. have shown that myeloma cell lines 

(U-266, MCC-2 and RPMI 8226 cells) express CTR-2 iso-
form and activate both cAMP and Ca2+ flow, suggesting 
the activation of PKA and PKC pathways. In addition, in 
myeloma cells, CT effectively inhibits bone resorption 
in vitro, supports the OC-like behavior of myeloma cells, 
indicating that CT or CTR may participate in the osteo-
clast differentiation of MM [85].

Parathyroid hormone‑related protein Receptor (PTH‑R1)
Parathyroid hormone-related protein (PTHrP) is func-
tionally similar to parathyroid hormone (PTH), which is 
the main regulator of Ca2+ homeostasis and an OC acti-
vator. The NH2 terminal fragment of PTHrP can bind to 
PTH-R1, resulting in a significant increase in intracel-
lular Ca2+ influx [90]. PTH-R1 is mainly distributed in 
bones and kidneys, and belongs to class B GPCRs. The 
receptor has seven transmembrane regions, longer extra-
cellular amino acids, and contains more than three pairs 
of disulfide bonds folded into a network. The extracel-
lular region cooperates with the helical structure of the 
transmembrane area and participates in the binding of 
ligands, and PTHrP is the only known PTH-R1 endog-
enous ligand [91]. There is little information about the 
role of PTH-R1 in MM. Previous studies reported that 
PTH-R1 highly expressed in bone marrow plasma cells of 
MM patients and MM cell lines, and PTHrP stimulated 
PTH-R1 in MM cells, promoting the proliferation of MM 
cells, and eventually the increase of Ca2+ influx, CAMP 
content [92]. Cafforio used ELISA and flow cytometry to 
demonstrated that in U266, MUS and RPMI 8226 cells, 
PTH-R1 directly participated in reinforcing both RANKL 
and monocyte chemoattractant protein 1 (MCP-1) pro-
duction, while the opposite effect could be observed after 
PTH-R1 silenced [92]. The above results have clarified 
that PTHrP promotes MM tumor biological behavior and 
development through autocrine or paracrine stimulation 
of PTH-R1, thereby reinforcing the production of osteo-
clastogenic factors. In addition, they further verified that 
the PTHrP NH2 fragment (aa 1–40) reacted with PTH-
R1 in RPMI 8226 cells, but not the NLS-middle region 
(aa 67–86), NLS middle region (aa 38–94) and COOH 
end (aa 107–139) fragments. PTH-R1 systematic analysis 
is still needed in MM patients to determine whether the 
receptor is a new marker of disease progression.

Purinergic receptors
Purinergic receptors, namely P1 and P2 receptors, are 
widely expressed in mammalian cells and are involved 
in several physiological functions like nociception, plate-
let aggregation, inflammatory reaction etc. [93]. The P2 
receptors are divided into two groups: P2X and P2Y, each 
containing some members with different ion selectiv-
ity and regulatory properties. The P2X receptors have a 
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trimeric topology with two transmembrane domains. The 
P2X7 receptor is a member of P2X, mainly expressed in 
bones, epithelial cells and normal B lymphocytes [94]. 
ATP can activate P2X7, leading to the absorption of 
cations such as Ca2+, Na+ and K+[95]. Low activation 
of P2X7 receptor promotes cell division, while an acute 
stimulation by massive ATP causes cell death [96]. For 
instance, activation of P2X7 in chronic lymphocytic leu-
kaemia (CLL) results in cell death [97, 98] and induces the 
rapid release of cell-surface CD23 from CLL B lympho-
cytes [99]. CD23 is a ‘low affinity’, transmembrane recep-
tor for IgE that can be shed from the cell surface to form 
soluble CD23 (sCD23), which also binds IgE and exerts 
cytokine-like activities on B cells and other leukocytes 
[100]. sCD23 maintains B-cell precursors growth, pro-
motes B and T cell differentiation, and drives monocytes 
to release cytokines [101]. Compared with the plasma 
sCD23 levels of normal individuals, the sCD23 concen-
tration of CLL patients may be 5 to 300-flod higher [102]. 
In addition, individuals with low plasma sCD23 concen-
trations have a more positive prognosis than those with 
high sCD23 concentrations [103].

Although P2X7 receptor is playing a role in neopla-
sia, long-term lack of malignant cell lines expressing this 
receptor, resulting in progress limited of P2X7 receptor in 
tumorigenesis. In recent years, Farrell et al. found func-
tional P2X7 on the RPMI 8226 MM cell line. In this stud-
ies, P2X7 activation-induced death of RPMI 8226 cells, 
prevented the proliferation of RPMI 8226 cells and also 
generated CD23 shedding from myeloma cells [15]. As a 
useful marker in either diagnosis or prognosis of disease 
[104–106], sCD23 can provide useful value for further 
study of the mechanism of P2X7 in myeloma. In addi-
tion to P2X7, RT-PCR also showed that P2X4 and P2X5 
are high expressions and P2X1 is low expression in RPMI 
8226 cells, but it is still unknown whether these mRNAs 
are translated to proteins or lead to functional P2X chan-
nels [15]. At present, the physiological and pathophysi-
ological effects of P2X in myeloma remain unclear and 
requires further research to elucidate.

Store‑operated Ca2+ entry (SOCE)
Store-Operated Ca2+ Entry (SOCE), as a calcium ion 
channel, has been widely recognized as one of the major 
pathways for Ca2+ influx across PM of cells [107, 108]. 
The main components of SOCE are Stim proteins and 
Orai proteins (also known as CRAC). Stim proteins, 
located in the ER, are single-pass transmembrane pro-
teins. Their EF-hand motif of N-terminal domain serves 
as a Ca2+ sensor within the ER [109]. In response to ER 
Ca2+ depletion, Stim proteins undergo a conformational 
change, forming self-aggregation and CRAC channels at 
the ER-PM junction through a diffusion trap mechanism, 

which promotes Stim proteins binding and activating 
hexamers of the Orai pore-forming proteins to trigger 
Ca2+ entry [110]. Stim proteins have two subtypes, Stim1 
and Stim2, and there are three subtypes of Orai proteins 
in mammals, namely Orai1, Orai2 and Orai3 [110]. Orai 
proteins are four-time transmembrane membrane pro-
teins, and their N-terminus and C-terminus are both in 
the cytoplasm, and TM1 forms the pore of the ion chan-
nel. Stim and Orai proteins widely expressed in various 
organs and tissues in the human body. Their deficiency or 
malfunction can lead to alterations in Ca2+ handling and 
ultimately cause oncogenic transformation [111]. In addi-
tion, the TRPC channel has suggested to be a component 
of SOCE channels [112]. It has reported that Orai1 is 
indispensable to TRPC1 function through the dynamic 
signal complex composed of Stim1- Orai1- TRPC1 [113, 
114]. At rest, TRPC1 docked in the trafficking vesicle 
of the PM. After the storage is depleted, TRPC1 inserts 
into the PM, which is then gated and activated by Stim1, 
allowing TRPC1 mediated Ca2+ influx. TRPC1 plays 
a vital role in the overall function of the SOCE path-
way [111]. Altered SOCE activity or the remodelling of 
SOCE-expression profile have reported in numerous 
cancers, such as colorectal cancers [115], hepatocellular 
carcinoma [116], melanoma [117], breast cancer [118], 
glioblastoma [119] and clear cell renal carcinoma [120]. 
Until now, tumor cell migration is considered as a Ca2+ 
dependent process, and calcium channels are major reg-
ulators of this process [121]. In non-excitable cells, cal-
cium entry is mainly due to SOCE. Orai1 and Stim1 are 
the main calcium channels responsible for Ca2+ entry in 
lymphocytes [122, 123], and both have been described to 
be involved in the mediation of actomyosin assembly and 
the focal adhesions of cancer cell migration [124, 125]. 
Latour el al have demonstrated that Orai1 and Stim1 
could regulate diffuse large B cell lymphoma (DLBCL) 
cell motility and dissemination, promoting homing of 
tumor B cells to extra-nodal sites [126]. Although in-
depth researches have conducted, little is known about 
the role of SOCE in MM. Stim1 and Orai1 are the criti-
cal components of CRAC channels that highly expressed 
in MM bone marrow tissues. And compared with healthy 
controls, the mRNA levels and protein level of Stim1 
and Orai1 were higher in primary MM cells, KM3 and 
U266 cells [16]. Moreover, U937 and RIMP 8226 MM 
cell lines also express higher levels of Orai3 [127]. Wang 
et  al. demonstrated that SOCE inhibitors (SKF-96365, 
DES and 2-APB) affect the biological functions of human 
MM cell lines, not only inhibited the viability of MM cell 
lines, caused MM cell cycle arrest, but also induced MM 
cell apoptosis. Consistently, pretreatment of KM3 and 
U266 cells with the siRNAs of Stim1 or Orai1 for 48  h 
also reduced cell viability, leading to apoptosis and cell 
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cycle arrest in MM cell lines, indicating that SOCE plays 
a role in MM development [16]. Moreover, clinical data 
found that Stim1/Orai1 highly expressed in the stage III 
group than stage II and I group in MM. Progression-free 
survival (PFS) (15.33  months) of patients in low Stim1 
expression was greater than that of PFS (13.34  months) 
high Stim1 expression group [16]. The above results indi-
cate that Stim1/Orai1 participates in the pathogenesis of 
MM, but the mechanism by which it works requires fur-
ther research.

As a potential regulator of SOCE, TRPC1 widely 
expressed in most tissues, and its dysregulated activ-
ity may be a hallmark of many types of cancers, includ-
ing glioblastoma multiforme [128], breast cancer [129], 
colon cancer [130], multiple myeloma [131]. Some stud-
ies on vitro mechanisms of TRPC1 inducing an increase 
in intracellular Ca2+ in the MM cell lines, indicating that 
TRPC1 is related to the development of MM. Knockout 
of TRPC1 expression showed a reduction in MTI-101(an 
frist-in-class peptidomimetic that triggers cell death in 
MM)-induced cell death in U266 and MM.1S MM cell 
lines [132]. This study suggests that TRPC1 plays an 
important role in treating MM. However, there is still 
needed to develop more specific drugs to inhibit or acti-
vate TRPC1 function, so that the efficacy of TRPC1 as a 
potential target for cancer treatment can be verified.

Mitochondrial Ca2+ transporters
Mitochondria have shown to have a significant contri-
bution to the activity of SOCE, and the ability to chelate 
Ca2+ locally at the sites of Ca2+ release and entry was 
supposed to rule SOCE by promoting Ca2+ depletion 
of the ER and removal from Ca2+ inhibitory channels, 
respectively [133]. The uptake of mitochondrial Ca2+ 
must be precisely regulated, because excessive mitochon-
drial Ca2+ load can cause cell death [134]. Several pro-
teins mediate Ca2+ transport across internal and outernal 
mitochondrial membranes (IMM, OMM, respectively), 
including VDAC1 on OMM, and MCU and Na+ depend-
ent mitochondrial Ca2+ efflux transporter (NCLX) on 
IMM. Ca2+ is transferred to the IMM through OMM. 
VDAC1 allows Ca2+ to enter MCU, thus promoting Ca2+ 
transport to the matrix and also from IMM to cytoplasm 
[11]. This section focuses on VDAC1 and MCU function 
in the uptake and release of mitochondrial Ca2+ and their 
effects on MM.

Voltage‑dependent anion channel 1 (VDAC1)
VDAC1 is located on the outer membrane of mitochon-
dria in all eukaryotes and is a pore type protein. VDAC1 
is structurally organized into a transmembrane β-bucket 
with an N-terminal domain as an α helix [135]. It acts as 
a voltage-gated channel to control the exchange of small 

ions and metabolites on the OMM, maintaining many 
organelle functions [136, 137]. VDAC1 is the only known 
Ca2+ transporter on OMM [11, 138], which leading to 
mitochondrial Ca2+ overload, is a marker of cell apopto-
sis [139]. Recent studies have shown that apoptosis signal 
up-regulates VDAC1 in a Ca2+ dependent manner, lead-
ing to cell death [140, 141]. It is now clear that VDAC1 
is the main target against cancer. Compared with normal 
cell lines, the expression of VDAC1 increases in much 
human cancer cell lines [142]. However, research on the 
effect of VDAC1 on MM cell apoptosis is still relatively 
rare. Previous studies have indicated that the expres-
sion of CD45 in human myeloma cells is necessary for 
IL-6-induced proliferation [143]. Liu et  al. found that 
susceptibility to apoptosis by apoptotic stimulis (such as 
oxidative stress and ER stress) are increased in CD45+ 
myeloma cell line U266, which highly expressed VDAC1 
[17]. Together with the information that expression of 
VDAC1 in patients with stage III was significantly higher 
than that in patients with stage I and stage II [144], one 
could imply that VDAC1 seems to accelerate MM tumor 
growth, while increase susceptibility to apoptosis, mak-
ing it a good target candidate for MM therapy.

Ca2+ uniporter (MCU)
In IMM, the rapid absorption of Ca2+ is mediated by the 
MCU. MCU can actively shape Ca2+ signaling through-
out the cell [145, 146]. MCU is composed of two trans-
membrane and N-terminal domains and forms a complex 
in the IMM with multiple protein regulators, which have 
an impact on gating [147–149]. It is known that the dis-
regulation of intracellular Ca2+ is among the first hall-
marks of apoptosis [150], and some reports indicate that 
MCU plays an important role in bortezomib-induced 
apoptosis [151, 152]. Bortezomib is a first-in-class selec-
tive PI (proteasome inhibitor), which has been proven 
to be effective in the treatment of MM. However, most 
patients eventually develop disease recurrence, and the 
bortezomib resistance becomes the primary cause of 
recurrence and incurability of myeloma [153]. Therefore, 
there is an urgent need to identify the potential mecha-
nism of bortezomib resistance, and find some novel ther-
apeutic targets that can reduce bortezomib resistance 
in MM. Song et  al. found that mitochondrial activity is 
a determining factor in regulating apoptosis resistance 
in response to bortezomib, and compared with borte-
zomib-resistant KMS20 cells, the expression of MCU in 
bortezomib-sensitive KMS28BM cells were significantly 
higher under bortezomib stimulation [152]. Furthermore, 
the cytotoxicity of bortezomib against myeloma cells 
H929, U266 and MM.1S can be inhibited by mitochon-
drial Ca2+ uptake inhibitor ruthenium red (a cationic dye 
that blocks MCU) [151], indicating that changes in MCU 
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were related with the resistance of bortezomib. Landows-
ki’s team proposed a model in which bortezomib evokes 
an instantaneous release of Ca2+ stores, leading mito-
chondrial Ca2+ influx. Mitochondrial Ca2+ sensors asso-
ciated with uniporters initiate capacitative Ca2+ influx, 
also called CCI, a phenomenon that IP3R-activated 
depletion of ER stores is also involved in the regulation 
of Ca2+ influx from the extracellular environment [154], 
which is enhanced in bortezomib-treated cells, leading to 
apoptotic pathways activation [151]. Then, MUC blocker 
would be protective by blocking mitochondrial loading 
and CCI activation and the Ca2+-dependent signal trans-
duction pathways that initiate cell death [155]. Together, 
MCU is expected to become a new therapeutic target to 
reduce MM bortezomib resistance. However, the specific 
mechanism of MUC participation in resistance still needs 
intense investigation.

Ca2+‑ATPases
Ca2+-ATPases, which belong to the P-type pump super-
family, are involved in maintaining low cytoplasmic 
Ca2+ levels at rest and initiating organelle stores [156]. 
They quickly pump cytosolic Ca2+ ions back to intra-
cellular organelles, such as ER, or to squeeze Ca2+ ions 
into extracellular space [10]. According to their subcel-
lular location, Ca2+-ATPases can be divided into three 
subtypes: plasma membrane (plasma membrane Ca2+ 
-ATPase or PMCA), endoplasmic reticulum (Sarco/
endoplasmic reticulum Ca2+-ATPase or SERCA) and 
Golgi apparatus / Golgi-derived vesicles (secretory path-
way Ca2+-ATPase or SPCA) [157] (Fig. 1). Among them, 
SERCA is the most distinctive one, which is responsible 
for replenishing ER Ca2+ storage and maintaining correct 
folding of proteins. SERCA imbalance leads to decreased 
or overloaded Ca2+ storage in the ER lumen, increased 
ER stress, chaperones protein imbalance and lipid syn-
thesis [10, 158]. Their expression levels and tissue dis-
tribution in the body are different [159]. Mutations and 
changes in SERCA subtypes expression levels have con-
firmed in a variety of cancers, such as colon cancer, gas-
tric cancer, lung cancer, myeloid leukemia, and choroid 
plexus tumors [160]. Roti and his colleagues showed that 
SERCA inhibition preferentially damages the maturation 
of leukemia-related mutant NOTCH receptors, leading 
to G0/G1 arrest [161]. PMCA is a calcium pump that 
relies on ATP to drive Ca2+ out of the cell. When PMCA 
expression is abnormal, it will cause the disorder of Ca2+ 
balance in the cell. Studies have found that plasma mem-
brane PMCA is abnormally expressed in various malig-
nant tumors, including breast cancer [162], colon cancer 
[163], pancreatic cancer [164], and so on. PMCA proved 
to be a part of the Ca2+ exclusion system, but the role 
of each subtype of PMCA has not studied extensively. 

The main reason is the lack of specific inhibitors of each 
subtype of PMCA. The third newly discovered subtype 
is SPCA, a freshly discovered subtype, include calcium 
pumps located in the Golgi compartments and post-
Golgi vesicles [156]. Changed expression of SPCA sub-
types occurs in various types of cancer including breast, 
prostate and colon cancer [165]. The results of the above 
studies have shown that Ca2+ -ATPase is used to promote 
the escape of specific cancer cells from normal cellular 
control and accelerate tumorigenesis. Although clear evi-
dence linking Ca2+-ATPases to several malignancies, rare 
reports about the study of Ca2+-ATPase in MM. Further 
study the role of Ca2+-ATPase in MM will contribute to 
understanding the complex intracellular Ca2+ signaling 
network in MM.

Conclusion
Calcium channels and transporters play a vital role in 
the regulation of Ca2+ transport and participate in mul-
tiple physiological and pathological processes, includ-
ing the progression of cancer. Although various studies 
have reported the role of ion transporters in MM, the 
mechanism by which Ca2+ imbalance caused by defec-
tive ion transporter function leads to the occurrence of 
MM remains unclear. Therefore, it is particularly signifi-
cant to elucidate the aetiology and pathogenesis of MM 
and explore new tumor markers for early diagnosis and 
treatment. In this review, we concerned about the effects 
of various calcium channels and transporters abnormali-
ties on the development of MM, including many plasma 
membrane Ca2+ channels, SOCE, Mitochondrial Ca2+ 
transporters and Ca2+-ATPases. This review aims to 
stimulate people’s interest in and to provide a basic, sys-
tematic overview of the research in this field, thereby 
providing new directions for the prognosis and treatment 
of MM by targeting Ca2+ channels or transporters.
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