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A code within the genetic code: codon

usage regulates co-translational protein
folding
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[ Abstract .

The genetic code is degenerate, and most amino acids are encoded by two to six synonymous codons. Codon
usage bias, the preference for certain synonymous codons, is a universal feature of all genomes examined.
Synonymous codon mutations were previously thought to be silent; however, a growing body evidence now
shows that codon usage regulates protein structure and gene expression through effects on co-translational
protein folding, translation efficiency and accuracy, mRNA stability, and transcription. Codon usage regulates the
speed of translation elongation, resulting in non-uniform ribosome decoding rates on mRNAs during translation
that is adapted to co-translational protein folding process. Biochemical and genetic evidence demonstrate that
codon usage plays an important role in regulating protein folding and function in both prokaryotic and eukaryotic
organisms. Certain protein structural types are more sensitive than others to the effects of codon usage on protein
folding, and predicted intrinsically disordered domains are more prone to misfolding caused by codon usage
changes than other domain types. Bioinformatic analyses revealed that gene codon usage correlates with different
protein structures in diverse organisms, indicating the existence of a codon usage code for co-translational protein

translation kinetics and co-translational protein folding.

folding. This review focuses on recent literature on the role and mechanism of codon usage in regulating
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Background

Of the 20 standard amino acids, 18 can be encoded by two
to six synonymous codons. Preferential use of certain syn-
onymous codons, a phenomenon called codon usage bias,
has been found in all genomes evaluated [1-4]. Because
synonymous codons encode the same amino acid, they
were previously considered to be functionally redundant,
and synonymous codon mutations that do not change pro-
tein sequences were regarded as silent mutations. However,
a large body of evidence now demonstrates that codon
usage plays multiple roles regulating gene expression and
protein structure through translation-dependent and
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translation-independent mechanisms [4-8] (Fig. 1a). Syn-
onymous codons are recognized with different efficiencies
by cognate tRNAs. In different eukaryotic and prokaryotic
organisms, codon usage bias correlates with levels of cog-
nate tRNAs or with tRNA gene copy numbers [1, 9-13].
Codons with strong bias are found to be strongly enriched
in highly expressed protein encoding genes, and codon
optimization increases endogenous and heterologous gene
expression in diverse eukaryotes and prokaryotes [14—23].
Moreover, genome-wide correlations between codon usage
bias and protein levels have been observed [17, 24].
Whether codon usage bias can regulate translation
kinetics had been the subject of intense debate [25-28],
but it is now firmly established that codon usage plays
an important role in controlling the speed of translation
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Translation-dependent roles of codon usage
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Fig. 1 a The known translation-dependent roles of codon usage. b A model depicting the role of codon usage in regulating translation
elongation speed and co-translational protein folding. ¢ A model depicting that when codon usage is not optimally adapted to the co-

translational protein folding process, protein misfolding increases

elongation during mRNA translation [29-32] and that an
important role of codon usage bias is to promote transla-
tion efficiency [4, 8, 22, 23, 33-35]. Rare codons cause
ribosome stalling on an mRNA during translation, which,
in eukaryotes, can result in premature translation termin-
ation mediated by termination factors [29, 31, 36]. Im-
portantly, codon usage bias also impacts mRNA stability
in diverse organisms and can impact on translation fidelity
[6, 37—44]. In budding yeast, codon optimality has been
shown to regulate the interaction between the mRNA
deadenylation complex CCR4-NOT and ribosome during
translation due to its effect on translation kinetics, which
then affecting co-translational decay of mRNAs [45].

In addition to its translation-dependent roles, codon
usage bias has also many translation-independent roles
that influence gene expression. In fungal and mamma-
lian cells, codon usage and GC content (which is tightly
correlated with codon usage) have been shown to affect
mRNA levels by regulating transcription at the level of
chromatin structure [17, 23, 46, 47]. Moreover, codon
usage can also influence transcription by regulating pre-
mature transcription termination and splicing [48, 49].
Therefore, codon usage can influence gene expression

through multiple mechanisms at translational, transcrip-
tional and post-transcriptional levels.

In addition to the roles of codon usage in regulating gene
expression, a large body of biochemical and bioinformatic
evidence has established that co-translational protein fold-
ing is influenced by codon usage [5, 13, 20, 29, 50, 51].
These studies led to the proposal that gene codon usage
bias represents a new “code” that defines protein structures
and protein expression levels. Codon usage regulates the
speed of translation elongation, resulting in non-uniform
ribosome decoding rates on mRNAs during translation that
is adapted to co-translational protein folding. Mutations that
do not alter the protein sequence can cause protein structure
changes in proteins that are implicated in human disease
[23, 52—-54]. Thus, codon usage has a potentially underappre-
ciated role in human disease pathogenesis. This review will
focus on recent literature on the role and mechanism of
codon usage in regulating translation kinetics and co-
translational protein folding.

Codon usage regulates translation elongation speed
Because codon usage biases have been found to correlate
with tRNA copy numbers in different organisms, codon
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usage has been previously proposed to regulate mRNA
translation elongate speed because rare codons are hy-
pothesized to take longer to be recognized when their
corresponding tRNAs are present at low concentrations
[1, 4, 55, 56]. Most studies concerning this issue have re-
lied on indirect measurements and protein overexpres-
sion, which led to conflicting conclusions [28, 57-59].
The development of the ribosome profiling technique
provided a powerful tool to study ribosome translation
dynamics with codon-level resolution in many organisms
[26, 60]. Ribosome densities at individual codons should
in principle inversely correlate with translation elong-
ation speed; however, early studies based on ribosome
profiling data in several organisms found no correlations
between codon usage and ribosome density, leading to
the conclusion that codon usage does not play a signifi-
cant role in modulating translation kinetics [25-28].

Because ribosome profiling results could be influenced
by experimental conditions, cloning and sequencing
biases, methods of bioinformatic analysis, and experi-
mental noise [61-63], we previously re-examined this
issue using Neurospora and Drosophila cell-free transla-
tion systems in which translation elongation speed can
be directly measured [29, 36]. We measured the time of
first appearance of luciferase signal from mRNA tem-
plates encoding luciferase with different codon usage
profiles (luciferase folding is co-translational in these
systems), our results demonstrated clearly that preferred
codons speed up rate of translation elongation, whereas
rare codons slow translation elongation in both systems
(Fig. 1b). This indicated that the effect of codon usage
on elongation rate is a phenomenon conserved from
fungi to animals. In addition, we found that codon usage
controls ribosome traffic on mRNAs and that rare co-
dons result in ribosome pausing and accumulation of
nascent peptides of the expected sizes during translation
in both amino-acid-context dependent and independent
manners [29, 31, 36]. Furthermore, using luciferase-
encoding mRNAs with high signal to noise, we convin-
cingly demonstrated the impact of codon usage bias on
ribosome occupancy in vitro and in vivo [29]. Using an
improved ribosome profiling technique, clear genome-
wide correlations between codon usage and ribosome
occupancy were also observed [29-32], indicating that
the lack of correlation between codon usage and ribo-
some occupancy in the early ribosome profiling studies
was due to the lack of sensitivity and technical issues. Fi-
nally, the role of codon usage in translation elongation
speed was also confirmed by imaging of single mRNAs
during translation in vivo [64]. Together, these studies
firmly established a role for codon usage in regulating
translation elongation rate and demonstrated that codon
usage biases can result in uneven translation elongation
speed during mRNA translation (Fig. 1b).
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The role of translation kinetics in protein folding

After synthesis, ordered proteins become functional
once they fold properly into stable tertiary structures.
Protein misfolding results in impaired protein functions
and aggregation or rapid degradation and contributes to
many human diseases [65, 66]. Although protein struc-
tures are determined by amino acid sequences, it is now
widely accepted that folding of most proteins in vivo oc-
curs co-translationally (Fig. 1b). Folding is a modular
process that begins on the ribosome as nascent peptide
chains are synthesized. Proteins fold from the N-
terminal end to the C-terminal end [67-71]. The folding
of some protein structure elements, such as a helices,
can occur inside the ribosome exit tunnel. Once the
newly synthesized nascent chains emerge from the ribo-
some, their interactions with the ribosome, with protein
factors known as chaperones and with other folding cat-
alysts mediate the folding process [67-72]. Translation
kinetics was long proposed to influence co-translational
protein folding [73, 74]. By using strains with mutant ri-
bosomes that have slow translation speed, by altering
tRNA levels, and by growth at low temperature, it was
shown that the changes in elongation rate affect folding
of proteins overexpressed in Escherichia coli [75, 76).
Consistent with this, expression of heterologous proteins
often causes protein aggregation due to misfolding, a
phenomenon that can be corrected by growth at a low
temperature, which presumably slows translation and
enhances correct folding.

The role of codon usage in protein folding

Because codon usage bias often differs throughout a gene
coding region, codon usage is expected to result in vari-
ation of elongation speed during mRNA translation. As a
result, codon usage-influenced translation kinetics should
affect the time available for different co-translational fold-
ing events. Analyses of in vitro translation and of protein
overexpression in E. coli cells showed that replacing rare
codons with common ones can result in modest decreases
of protein activity or solubility [77, 78]. Moreover, syn-
onymous substitutions of common codons with highly
abundant tRNAs for codons predicted to slow translation
impair the folding of the multidomain protein Sufl in vitro
and in cells [76]. In addition, using a metric to predict
relative translation rates of codons based on tRNA avail-
ability, it was shown that synonymous codon
harmonization designed to mimic ribosome movement in
E .coli could significantly increase the specific activity of
firefly luciferase overexpressed in E. coli [12]. Further-
more, codon usage influences the folding of an artificially
designed fluorescent protein expressed in E. coli [79]. Im-
portantly, the impact of codon usage on co-translational
protein folding was confirmed by monitoring Forster res-
onance energy transfer in real time and by analysis of
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fluorescence intensity changes when the mammalian
gamma-B crytallin was expressed in E. coli [80]. The fold-
ing differences due to the presence of different synonymous
codon variants was also visualized by NMR spectroscopy
and shown to correlate with altered in vivo stability and
in vitro protease sensitivity [80]. Recently, analysis of chlor-
amphenicol acetyltransferase with various codon substitu-
tion in E. coli revealed that codon usage affects protein
folding and cell growth [81].

The first suggestion of the role of codon usage in
eukaryotic protein folding came from a study that
showed that transient expression of variant with a syn-
onymous single-nucleotide polymorphism in the MDRI
gene, which encodes a protein involved in multidrug re-
sistance, in human cells resulted in altered drug and in-
hibitor interactions [52]. The genetic role of the codon
usage in eukaryotic protein folding was later firmly
established by studying genes critical for circadian clock
functions in Neurospora and Drosophila [13, 20, 51]. Un-
like most genes in Neurospora, the core circadian clock
gene frequency (frq) is enriched for rare codons across
its entire open reading frame. Codon optimization of the
parts of the frq gene with preference for rare codons
abolished both overt and molecular circadian rhythms,
impaired FRQ activity, and altered FRQ stability and
phosphorylation profiles [13, 20]. Such changes are due
to changes in FRQ structure, as indicated by altered
trypsin sensitivity and resistance to freeze-thaw cycles
in vitro. Importantly, the codon optimization of different
parts of frg can result in opposite molecular pheno-
types that can be predicted by local protein strutures, in-
dicating that the codon usage-mediated changes in FRQ
structures are due to a local effect of codon usage [20].
Although frq and the Drosophila circadian clock gene
Period (Per) are not sequence homologs, codon
optimization of the parts of Per enriched for rare codons
also results in abolishment of circadian locomotor
rhythm and abnormal molecular rhythmicity due to se-
vere impairment of PER activity in the circadian negative
feedback loop and reduction of PER phosphorylation in
a location- and codon usage-dependent manner [51].
The changes in PER structure due to codon usage ma-
nipulation were demonstrated by altered PER trypsin
sensitivity and changes in thermal denaturation and ag-
gregation temperatures. It is important to note that both
of the Neurospora and Drosophila studies did not rely
on protein overexpression, and the changes in protein
activity and protein structure are not due to protein
overexpression as overexpression of the wild-type genes
lead to robust circadian rhythms [20, 51]. The roles of
codon usage in co-translational protein folding in the
Neurospora and Drosophila are further supported by
in vitro translation assays in cell-free translation systems
[29, 36]. In addition to the role of codon optimality in
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determining the speed of translation elongation and trans-
lation efficiency of luciferase mRNAs, codon usage also af-
fects luciferase folding and activity in vitro and in vivo [29,
36]. Although the codon-optimized luciferase mRNA was
translated more rapidly and resulted in more full-length
protein than wild-type mRNA, the luciferase protein pro-
duced was not as functional as the protein synthesized
from the wild-type mRNA. These results indicate that
when codon usage is not adapted to co-translational fold-
ing process, protein misfolding increases (Fig. 1c).

Interestingly, codon optimization of the cyanobacter-
ium Synechococcus circadian clock genes kaiBC did not
impair clock function [19]. On the contrary, the clock
function of cyanobacterium Synechococcus became more
robust upon codon optimization due to an increase in
KaiC protein level, which results in decreased cell
growth at low temperatures. The different outcomes of
circadian clock gene codon optimization in cyanobacter-
ium and eukaryotes suggest that differential structures
have different sensitivities to codon usage-mediated co-
translation folding (see below).

In human cells, the co-translational folding of the NBD1 do-
main of the conductance regulator CFTR, which is the trans-
membrane protein mutated in cystic fibrosis patients, occurs
through sequential compaction of different subdomains [54].
The codon optimization of a region of NBD1 domain with
non-optimal codon usage increases the protein synthesis rate
but also results in aggregation of full-length CFTR, suggesting
that translation elongation kinetics of the CFTR mRNA are
modulated by codon usage in a manner that influences the
co-translational folding of different protein regions [54]. In
addition, the synonymous single nucleotide polymorphism
(SNP) T2562G SNP in the CFIR gene introduces a codon
recognized by a tRNA that is of low abundance specifically in
human bronchial epithelia cells [53]. This SNP leads to
changes in CFTR protein stability and channel activity in HeLa
cells. Importantly, overexpression of the tRNA that recognizes
this rare codon results in wild-type levels of expression, stabil-
ity, and function of CFTR in HeLa cells, suggesting that alter-
ations in translation elongation kinetics due to the SNP cause
impaired CFTR co-translational folding [53]. Codon usage in
KRAS, which encodes an oncogenic Ras GTPase family mem-
ber, was shown to regulate the expression and protein struc-
ture of KRAS protein when expressed in human cells [22, 23].
More recently, codon usage optimization of the coagulation
factor IX and a single SNP of the ADAMTSI3 has been
shown to affect protein folding or activity [82, 83]. Together,
these studies firmly established the universal role of codon
usage in protein folding in both prokaryotes and eukaryotes.

Predicted intrinsically disordered domain structures are
sensitive to codon usage

Intrinsically disordered protein (IDP) domains are pro-
tein domains that are predicted to lack stable or ordered



Liu Cell Communication and Signaling (2020) 18:145

three-dimensional structures. IDPs have pivotal roles in
many biological processes [84—86]. Although IDPs may
not form stable structures by themselves, they are often
serve as sites critical for post-translational modifications
that are important for the overall protein structures and
as platforms for inter- or intra-molecular protein-
protein interactions [87, 88]. Although both the Neuros-
pora and Drosophila clock proteins FRQ and PER are
large proteins (989 and 1224 amino acids, respectively),
most regions of these proteins are predicted to be intrin-
sically disordered, and these proteins are extensively
phosphorylated at many sites along the entire proteins
[13, 20, 51, 87, 88] . In contrast, the cyanobacterium
Synechococcus circadian clock protein KaiC is a highly
structured protein for which a high-resolution crystal
structure available [89]. The disorder tendency plots of
the Neurospora FRQ, Drosophila PER and Synechococcus
KaiC are shown in Fig. 2. The opposite circadian pheno-
types result from codon optimization of kaiC versus frg
and Per suggest that different proteins or protein
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domains have different sensitivities to codon usage and
intrinsically disordered domains are sensitive to change
usage changes [13, 19, 20, 51]. This conclusion is further
supported by codon optimization of different regions of
the frq open reading frame: Codon optimization of the
IDP regions result in impaired clock functions, whereas
codon optimizations of the structured regions have little
or no effects on rhythmicity [13].

In the Neurospora in vitro translation system, transla-
tion of the luciferase mRNA with optimal codon usage
resulted in markedly reduced luciferase activity com-
pared to the wild-type mRNA despite production of
more luciferase protein [29]. By swapping different re-
gions of the luciferase mRNA between the wild-type and
optimized mRNAs, the region of open reading frame
that is most sensitive to codon usage changes was identi-
fied [29]. The identified region is highly conserved
among luciferase homologs and forms an unstructured
loop in the luciferase crystal structure. Thus, both the
in vitro and in vivo results suggested that compared to
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folding of well-structured proteins, co-translational fold-
ing of proteins with IDPs is more sensitive to codon
usage changes. It is likely that the co-translational fold-
ing of IDP-containing domains requires more time and
is more sensitive to changes in translation elongation
speed than the folding of well-structured domains. Alter-
natively, fast translation elongation likely interferes with
co-translational folding of the structural domains sur-
rounding IDPs.

Correlations between codon usage and protein
structures: the codon usage code for co-translational
protein folding
The differential sensitivity of different protein domains to
codon usage suggest that protein structures and codon
usage has co-evolved to fine-tune the ribosome decoding
rates on mRNAs to facilitate the co-translational folding
process [19, 29, 74]. Supporting this conclusion, bioinfor-
matics analyses of the relationship between codon usage
and protein secondary and tertiary structures uncovered
wide-spread correlations [13, 90-97]. Consistent with a role
for non-optimal codons in folding of protein domains with
IDPs, multiple studies using known structures and pre-
dicted secondary structures found that the predicated un-
structured and predicted coil domains were found to be
enriched for rare codons whereas optimal codons are pref-
erentially found in a-helical regions in proteins from E. coli,
Neurospora, yeast, C. elegans, and Drosophila [13, 90, 94].
In addition, the translational optimal codons are enriched
in buried residues in protein structures, and the association
is highest in proteins encoded by highly expressed genes in
several organisms [98]. It should be noted that regions with
buried residues in highly expressed proteins mostly are
found in well-structured protein domains. These bioinfor-
matic studies suggest that well-structured regions are usu-
ally encoded by optimal codons whereas unstructured and
structurally flexible regions are encoded by rare codons that
can induce pauses in the co-translational folding process.
Codon usage also influences other co-translational
folding-related processes. Rare codons are enriched in 5
ends of coding sequences of secreted proteins, and this
enrichment was hypothesized to promote membrane tar-
geting and secretion efficiency [99]. In Saccharomyces cer-
evisiae, codon usage in genes encoding some membrane
proteins regulates the interaction of nascent polypeptides
with the signal recognition particle (SRP), which assists
protein translocation across membranes [100]. Co-
translational recognition of nascent polypeptides by SRP is
enhanced by an elongation pause that is mediated by non-
optimal codon clusters 35 to 40 codons downstream of
the SRP-binding site. In human cells, co-translational argi-
nylation of y-actin, which regulates stability of the protein
by influencing ubiquitination, is influenced by rare codons
that slow elongation rate in the 5’ end of the gene [101].
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In Aspergillus nidulans, a pair of rare codons in the gene
encoding the urea transporter are important for the pro-
duction and localization of the UreA protein [102].

Despite the observed correlations, the codon usage to
protein structure relationship is a complex one, likely
reflecting the complexity of protein folding for diverse
protein structures. Although nonoptimal codons were
found to be enriched at domain boundaries in some
studies [76, 90, 97], a later study failed to find such a
correlation and even found a small enrichment of opti-
mal codons [95]. By analyzing homologous coding se-
quences across different eukaryotic and prokaryotic
species, some rare codon clusters were found to be con-
served, suggesting a conserved functional role for codon
optimality in regulating the folding of homologous pro-
teins [96]. Unexpectedly, the identified conserved rare
codon clusters are preferentially located within con-
served protein domains. Although the use of different
methodologies and different protein structure predic-
tions and databases underlie some apparent contradic-
tions, differences in effects of codon optimization in
different protein types and organisms also indicate the
complex nature of the co-translational folding processes.
The role of codon usage in different proteins and struc-
ture types should be dependent on co-translational fold-
ing kinetics of different proteins under different cellular
environments.

Conclusions

A growing body of biochemical, genetic, and bioinfor-
matic evidence indicates that the non-uniform decoding
rate across mRNAs mediated by codon usage represents
a “code” within genetic codons that promote optimal co-
translational protein folding process. The adaptation of
codon usage to influence the co-translational folding
process is the result of evolutionary selection for protein
function. Although there are now a few clear genetic ex-
amples showing the importance of codon usage in pro-
tein folding, more genetic evidence are needed to
demonstrate the broad impact of this mechanism in pro-
tein folding. The lack of more genetic examples is largely
due to the lack of sensitivity of the laboratory assays
used. During evolution, even a minute change in protein
function that cannot be detected by currently employed
assays can have a major effect on organism survival due
to the long time frame. Although codon usage influences
co-translational protein folding as demonstrated in bac-
terial and eukaryotic systems, how it facilitates folding of
various types of structures is still unclear. Moreover, al-
though synonymous SNPs are associated with many hu-
man diseases [103, 104], more future studies will be
needed to reveal whether silent SNPs are broad contrib-
utors to human disease development due to the role of
codon usage in protein structure and gene expression.
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