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Abstract

Modern quantitative mass spectrometry (MS)-based proteomics enables researchers to unravel signaling networks
by monitoring proteome-wide cellular responses to different stimuli. MS-based analysis of signaling systems usually
requires an integration of multiple quantitative MS experiments, which remains challenging, given that the overlap
between these datasets is not necessarily comprehensive. In a previous study we analyzed the impact of the yeast
mitogen-activated protein kinase (MAPK) Hog1 on the hyperosmotic stress-affected phosphorylome. Using a
combination of a series of hyperosmotic stress and kinase inhibition experiments, we identified a broad range of
direct and indirect substrates of the MAPK. Here we re-evaluate this extensive MS dataset and demonstrate that a
combined analysis based on two software packages, MaxQuant and Proteome Discoverer, increases the coverage of
Hog1-target proteins by 30%. Using protein-protein proximity assays we show that the majority of new targets
gained by this analysis are indeed Hog1-interactors. Additionally, kinetic profiles indicate differential trends of
Hog1-dependent versus Hog1-independent phosphorylation sites. Our findings highlight a previously unrecognized
interconnection between Hog1 signaling and the RAM signaling network, as well as sphingolipid homeostasis.

Keywords: Proteome discoverer, MaxQuant, Proteomics, Mitogen-activated protein kinase (MAPK), Hyperosmotic
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Methods
Yeast strain and plasmid construction
Yeast strains used in M-track assays were generated as
described in Brezovich et al., [1]. WR1242 (S288c HOG1-
TEV-ProteinA-Histone3-HA, Mat a) was obtained by
transforming a S288c HOG1-GFP strain of the yeast
strain-library available from Life Technologies (http://
clones.lifetechnologies.com; [2]) with PacI/SacI cut plas-
mid pCK902, encoding the TEV-ProteinA-Histone3-HA
cassette [1]. WR1249 (S288c HOG1-TEV-ProteinA-His-
tone3-HA, Mat α) was obtained from backcrossing
WR1242 with a S288c wild type, Mat α strain. M-track
strain WR1288 was obtained by transformation of a S288c

NUP2-GFP strain (Mat a) [2] with PacI/PmeI restriction
digests of plasmid pCK900, encoding the myc-HKMT
tagging cassette [1]. Positively tested transformants were
crossed with WR1249 resulting in the final M-track
strains. M-track strains MJ314 - MJ369 were obtained by
transformation of WR1242 with PCR amplifications of
the myc-HKMT tagging cassette. For PCR reactions a
modified version of plasmid pCK900 (pJA31 - unpub-
lished material kindly provided by Jillian Augustine)
and corresponding primers designed according to Knop
et al. [3] were used. M-track strains MJ428 - MJ440
were created similarly by transforming WR1249. M-
track strain GV1 was obtained by transforming PCR
amplifications of a N-terminal tagging cassette from plas-
mid pMJ089 (LEU2-TPI1 promoter-MYC-HKMT-GL (gly-
cine linker)-YSP2 (derivative of YIPlac211)) into WR1249.
Standard genetic manipulations methods were used to cre-
ate pMJ089. Strains GG612 and GG616 were obtained by
transformation of WR557 [4] with PCR amplifications of
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HB tagging cassettes from plasmids pWR160 [5], pWR268
[5] and pFA6a-HBH-TRP1 [6]. GG617 was obtained by
transformation of W303 Hog1as with a standard HA tag-
ging cassette. All strains and Plasmids used in this study
are listed in Additional file 12: Table S7.

Growth conditions
Yeast cells were grown shaking (200 rpm) at 30 °C in
synthetic medium (0.17% yeast nitrogen base, 0.5%
ammonium sulfate, 2% glucose, and amino acids as re-
quired) or rich medium (YPD; 1% yeast extract, 2% pep-
tone, and 2% glucose) for at least seven generations until
mid-log phase (OD600 ~ 1). SILAC yeast cells were grown
in SC supplemented with 0.05mg/ml of L-arginine: HCl
(U-13 C6, 97–99%) and L-lysine:2HCl (U-13 C6, 97–99%)
(Euriso-top), and 0.2 mg/ml of proline (Sigma). A second
culture containing non-labeled amino acids was inoc-
ulated in parallel. Cultures were incubated shaking
(180 rpm) at 30 °C for at least seven generations until
OD600 = 1. Light labeled cultures were treated with
0.5 M NaCl for times indicated. For parallel reaction
monitoring (PRM) analysis Hog1as cells expressing Kic1-,
Orm2-, and Vps53-HB tandem affinity tag fusion proteins
were grown to OD600 = 1, treated either with DMSO
(mock) or 0.25, 0.5, 5 μM as-inhibitor SPP86 (Tocris
Bioscience), followed by a 5min exposure to 0.5M NaCl.

HeLa cells growth conditions
HeLa samples [7] were kindly provided by Karl Mech-
tler. Briefly, cells were harvested, washed with 1M PBS,
suspended in lysis buffer (8M urea, 50 mM TrisHCl pH
8, 150 mM NaCl, 1 mM PMSF, complete protease inhibi-
tor, benzonase), and subsequently disrupted by sonifica-
tion. Extracts were cleared by centrifugation (15,000×g,
10 min, 4 °C) and proteins were precipitated by adding
5x excess of 100% ice-cold acetone (Applichem) (over-
night, − 20 °C) and pelleted by centrifugation 15,000×g,
30 min, 4 °C). The pellet was re-suspended in 80% ice-
cold acetone, centrifuged for 5 min at 15000×g, air-
dried for 5 min and subsequently suspended in urea
buffer (8 M urea, 0.5 M ammoniumbicarbonate). Sol-
uble proteins were reduced with dithiothreitol (DTT)
and alkylated using iodoacetamide (IAA), digested first
with Lys-C for 2 h at 30 °C, and then with trypsin
overnight at 37 °C. HeLa samples were measured in an
HPLC-MS/MS-setup using a Q-Exactive HF-X mass
spectrometer (Thermo Fisher Scientific).

Proteome discoverer original analysis [4]
Data analysis was performed using the SEQUEST algo-
rithm (Proteome Discoverer 1.3 and 1.4) using the Saccha-
romyces Genome Database (SGD) (version February 2011)
along with contaminants derived from common laboratory
contaminants database (MQ). Fixed modifications included

carbamidomethylation of cysteine, whereas variable modifi-
cations encompassed protein N-terminal acetylation, dea-
midation, oxidation of methionine, phosphorylation of
serine, threonine and tyrosine, and heavy labels of arginine
and lysine (Arg6, Lys6). Enzyme specificity was set to
“Trypsin” and a maximum of 2 missed cleavages per pep-
tide was allowed. For the assignment of phosphorylation
sites we integrated the tool phosphoRS into the Proteome
Discoverer pipeline, and considered 70% phosphorylation
probability as an adequate threshold for phosphorylation
site assignment. We performed the SEQUEST analysis
against the SGD database, as well as a decoy database (re-
versed sequences) and calculated an empirical FDR < 1% at
the level of peptide spectrum matches (PSMs). Separately,
we calculated an FDR at peptide and protein level as well
(FDR < 1%). To quantify phosphorylation events accurately,
we performed a phosphorylation site group as explained in
detail in the section “Phosphorylation site groups”. We
considered potential arginine-to-proline conversion by
calculating a correction factor based on the SILAC ra-
tio biases observed for peptide groups that are differen-
tial in the number of prolines. SILAC Heavy-to-Light
ratios were accordingly corrected, log2-transformed,
and additionally summarized at the level of phosphoryl-
ation site groups. More details on the pipeline if
required can be extracted from the individual search
files deposited at PXD004294 to PXD004300.

MaxQuant re-analysis
The following MS shotgun datasets published in Romanov
et al. [4] were considered for our re-analysis approach:
setup SR, setup I + 0′S, setup I + 5′S and setup I + 10′S.
MaxQuant (version 1.5.2.8) re-analysis was performed
using default parameters, with following features: Sac-
charomyces Genome Database (SGD) (version February
2011) was used in combination with common labora-
tory contaminants database (MQ) for peptide spectrum
matching. Modifications, such as protein N-terminal
acetylation, deamidation of asparagine and glutamine,
oxidation of methionine, and phosphorylation of serine,
threonine and tyrosine were set as variable, whereas
carbamidomethylation of cysteine was set as fixed. A
maximum of 5 variable modifications per peptide was
allowed. Enzyme specificity was set to “Trypsin/P” and a
maximum of 2 missed cleavages per peptide was allowed.
Heavy labels (‘Arg6’, ‘Lys6’) were specified, ‘Requantify’ and
“Match between runs” was activated. The option to treat
leucine and isoleucine as indistinguishable was activated.
Computational processing, log2-transformation of SILAC
ratios and correction for arginine-to-proline conversion
was performed as described in [4]. Phosphopeptides were
filtered for phosphorylation site assignment probability
≥70% and grouped by phosphorylated residues. The mass
spectrometry proteomics data have been deposited to the
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ProteomeXchange Consortium [8] via the PRIDE partner
repository with the dataset identifier PXD011935.

Phosphorylation site groups
To facilitate interpretation of phosphorylation sites, we
grouped peptides together where the same residues are
phosphorylated, regardless of potential missed cleavages
or additional modifications such as oxidation (corre-
sponding to a so-called “phosphorylation site group”).
For each biological replicate, ratios of phosphorylation
site groups were calculated as the average of all peptide
ratios available in a group. These ratios were then aver-
aged across biological replicates for the final ratio of the
phosphorylation site group.

Mass spectrometry-based screen for probing of
phosphorylation kinetics
SILAC-labeled cells were harvested by filtration, imme-
diately deep frozen in liquid N2 and suspended in TRIzol
reagent (Invitrogen) for protein extraction [4, 5]. Follow-
ing TRIzol purification [5], proteins were subjected to
dithiothreitol (DTT) and iodoacetamide, and tryptic di-
gestion. After desalting on Strata-X 33 μm Polymeric
Sorbent (8B-S100-TAK columns, Phenomenex) and dry-
ing, peptide carboxyl groups were esterified in methano-
lic HCl as described in [9]. Esterified peptides were
dried, dissolved in 30% ACN / 30% methanol / 40% H2O
and incubated for 1 h with 40 μl PHOS-Select™ iron af-
finity resin (Sigma), washed with 0.003% acetic acid, and
eluted with 50–125 mM Na2HPO4 (pH 6.0). Eluates were
analyzed on an UltiMate™ 3000 Dual LC nano-HPLC
System (Dionex, Thermo Fisher Scientific) coupled to a
hybrid linear ion trap/Fourier transform ion cyclotron
resonance mass spectrometer (LTQ-FT, Thermo Fisher
Scientific), applying settings described previously [4, 5].
The obtained spectra were searched both by SEQUEST in
the Proteome Discoverer 1.4 software package (Thermo
Fisher Scientific) and MaxQuant 1.5.2.8 against the SGD
database (version February 2011) plus contaminants, with
similar settings as described above. The data have
been deposited to the ProteomeXchange Consortium
[8] via the PRIDE partner repository with the dataset
identifier PXD011935.

Poly histidine, biotinylation signal (HB) tandem affinity
purifications
HB pull downs were performed as described elsewhere
[5]. Cells were harvested by filtration, deep frozen and
ground using a SPEX Freezer Mill 6870 (SPEX Sample-
Prep, Metuchen, NJ, USA) applying standard settings [5].
The cell powder was suspended in buffer 1 (6M guanidine
HCl, 50mM Tris pH 8.0, 5 mM NaF, 1mM PMSF, 2 mM
sodium orthovanadate 0.1% Tween, protease inhibitor
cocktail (Roche, Basel, Switzerland, 11,873,580,001), pH 8)

and cleared by centrifugation (13,500×g, 15min, 4 °C),
incubated with Ni2 + −Sepharose beads (GE Healthcare,
Buckinghamshire, UK, 17–5318-06) for 4 h at room
temperature, washed with urea buffer (8M urea, 50mM
sodium phosphate buffer pH 8.0 (and pH 6.3), 300mM
NaCl, 0.01% Tween 20). Proteins were eluted in urea
buffer pH 4.3 containing 10mM EDTA, incubated with
streptavidin-agarose beads, washed with urea wash buf-
fer containing 1% SDS and without SDS. Beads were
re-buffered to 50 mM ammonium bicarbonate (ABC).
Samples were reduced using DTT, Cys-residues were
alkylated with 20 mM iodoacetamide (IAA), incubated
with 300 ng trypsin (Trypsin Gold, Mass Spectrometry
Grade, Promega) at 37 °C overnight, quenched with tri-
fluoroacetic acid (0.5% final concentration) and desalted
using C18 Stagetips [10].

PRM analysis
Peptides were separated using a 60min gradient (HPLC
setup as described above). PRM data acquisition was
performed using a scheduled method with 6 min win-
dows for each target based on the retention time deter-
mined from a prior data-dependent (DDA) LC-MS/MS
run (analyzed using Proteome Discoverer as described
above) of 5% mock-treated samples. Raw data were ob-
tained on an Orbitrap Q-Exactive HF-X (Thermo Fisher
Scientific) mass spectrometer applying the following set-
tings: survey scan with 30 k resolution, AGC 1E6, 30 ms
IT, over a range of 380 to 1400 m/z, PRM scan with 30 k
resolution, AGC 1E5, 100 ms IT, isolation window of
0.7 m/z with 0.2 m/z offset, and NCE of 27%. Data
analysis, manual validation of all transitions (based on re-
tention time, relative ion intensities, and mass accuracy),
and relative quantification was performed in Skyline [11].
Up to six characteristic transitions were selected for each
peptide and their peak areas were summed up for peptide
quantification across charge states (total peak area).
Unphosphorylated peptides that were not affected by any
phosphorylation event were considered for normalization
of the remaining peptides of the same protein. In a second
normalization step peptides were normalized to the re-
spective median (normalized) intensity in the mock exper-
iments (in log10-space). We applied the standard t-test per
protein to compare intensities from the mock samples to
all inhibitor-treated samples together. PRM data have
been deposited to the PanoramaWeb [12] (https://panora-
maweb.org/gXvdQ2.url) and to the ProteomeXchange
Consortium [8] via the PRIDE partner repository with the
dataset identifier PXD013789.

Gel shift assays
Cells expressing candidate proteins fused to a HKMT-
myc tag were grown until mid-log phase, treated with
0.5M NaCl (final concentration) for 0, 5, 30 and 45min,
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respectively, and harvested by centrifugation (2000×g, 1
min). Protein extraction was carried out by glass bead
lysis using urea sample buffer (8M Urea, 300 mM NaCl,
50 mM Tris-HCl pH 8, 50 mM NaPO4 pH 8, 0.5% Noni-
det P-40). WCLs were mixed with 3x urea loading dye
(116 mM Tris-HCl pH 6.8, 4.9% glycerol, 7.99M Urea,
143 mM 2-mercaptoethanol, 10% SDS, bromophenol
blue) and separated on SDS-PAGE gels. Gelshifts were
visualized by Western blot using an antibody recogniz-
ing myc (4A6, Merck Millipore) or HA (12CA5). Load-
ing was controlled using an antibody recognizing Cdc28
(P7962, Sigma).

Protein-protein proximity assay (M-track)
M-track assays were performed as described previously
[1, 4, 13]. 25 ml cultures of respective M-track yeast
strains were grown until mid-log phase (OD600 ~ 1),
treated with 1M sorbitol (final concentration) for 40
min, harvested by filtration and immediately deep-frozen
in liquid N2. Frozen cell pellets were re-suspended in
250 μl ice-cold urea lysis buffer (8M urea, 0.3M NaCl,
50 mM Tris/HCl pH 8, 50 mM Na2HPO4/NaH2PO4 pH
6.8, 0.5 Nonident P40). Protein extraction was carried
out using a FastPrep©-24 homogenizer (mpbio) by 3 cy-
cles of 30 s of bead beating at level 5.5. Whole cell ex-
tracts were cleared from insoluble material by two
consecutive centrifugation steps (13,500×g, 20 min, 4°).
100 μl of cleared protein extract was mixed with 2x
Laemmli buffer (1M Tris-HCl pH 6.8, 10% SDS, 10%
Glycerol, 1 M DTT). Proteins were resolved by SDS-
PAGE (8%) and transferred to nitrocellulose in a sub-
merged tank. Blocking was performed overnight using
2% milk in PBS-T. Histone H3 Lysine 9 trimethylation
(me3K9H3) of protA-H3-HA tags was visualized using
an antibody recognizing me3K9H3 (1:2000 dilution in
1% yeast extract (YE) in PBST, Novus #NBP1–30141).
Membranes were incubated with primary antibody for 1 h
at 4 °C, followed by 1 h incubation at 4 °C with HRP-
conjugated goat anti-mouse (1:5000 dilution in 1% YE in
PBS-T, BioRad #170–6516) secondary antibody. No wash-
ing steps were performed between primary and secondary
antibody incubation. Loading was controlled using an anti-
body recognizing HA (1:5000 in PBS-T, 12CA5). PicoECL
(Thermo Scientific) was used for enhanced chemilumines-
cent (ECL) detection. Peak areas of me3K9H3 and HA
signals were determined by densitometric analysis of
scanned Western blot films using ImageJ [14]. Proximity
signals were calculated as follows: All signal intensities
were log2 transformed. Each Western blot experiment con-
tained a three point dilution series of the positive control
(Nup2-HKMT). Least squares linear regression was per-
formed independently to the me3K9H3 and HA signals of
to the dilution series, which was then used to correct
me3K9H3 and HA signals for unequal loading amounts

between samples and to normalize between different
Western blot experiments. Proximity signals were calcu-
lated as the log2 ratio of normalized me3K9H3 over HA
signal intensity and rescaled by subtracting the mean prox-
imity signal of the negative control (Hog1-protA-H3) and
subsequently dividing by the mean proximity signal of the
positive control (Nup2-HKMT). We used a one-tailed
Welch’s t-test to identify the statistically significant can-
didates. For each candidate, the signal intensities of all
replicates were compared against all signal intensities
of the negative control (Hog1-protA-H3). P-values were
corrected for multiple testing by using the Benjamini-
Hochberg procedure to generate q-values.

GO enrichment analysis based on yeast GO-slim
Gene ontologies were extracted from the SGD Gene
Ontology Slim Mapper (mapping file downloaded in
October, 2018), hence broad and high-level GO-terms
maintained by the Gene Ontology Consortium (GOC;
[15, 16]). MQ-, PD- derived and combined (PD- and
MQ-overlap) Hog1-dependent proteins were mapped
against the GO-Slim-terms; the background was set as the
entire proteome of Saccharomyces cerevisiae. The enrich-
ment and respective p-value for each GO-term were cal-
culated for all three sets based on the Fisher Exact test
implemented in the scipy Python package [17]. P-values
were adjusted using the Benjamini-Hochberg procedure
[18]. For further processing and visualization we consid-
ered GO-terms in “biological processes” with an adjusted
p-value ≤0.1 and a hierarchy level ≥ 2.

Protein network analysis
Protein-protein interaction network for all putative
targets of Hog1 was created using STRING database
(version 10.5) [19]. All factors listed in Fig. 2d were used
as search entries, with first neighbors automatically in-
cluded in the network by the STRING database. All
interaction predictions were based on physical, genetic,
and text mining evidence types with the minimum confi-
dence score of > 0.7 (high). Obtained isolated protein
networks were then re-analyzed separately and allowed
expansion to interactions with a lower minimum confi-
dence score. We then manually curated those additional
interactions based on literature updates [20, 21].

Boxplots
The lower and the upper hinges of the boxes correspond
to the 25% and the 75% percentile, and the bar in the
box the median. The upper and lower whiskers repre-
sent the largest and lowest values, respectively (but at
maximum 1.5 times the IQR). Points outside the whis-
kers are plotted individually. Tests were performed using
a nonparametric Mann-Whitney U-test.
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Computational methods for comparison of peptide
intensities and scores
For all comparisons between the search engines, we gen-
erally set all leucines in peptide sequences to isoleucine.
We determined whether peptides identified with both
search engines, PD and MQ, could be distinguished by
their precursor intensity, scores or peptide length from
the peptide identifications that were unique to either
one of the programs. For each software, we compared
the frequency distribution of intensities/scores/peptide
lengths from the overlap against the unique set of peptide
identifications, respectively. In the case of MQ, the follow-
ing parameters from the evidence-file were taken into
account: (1) Intensity, as defined per scan, (2) Score, as de-
fined per scan, and (3) Length, as defined per peptide. For
PD, the following parameters from the PSM-file were taken
into account: (1) Intensity, as defined per scan, (2) Xcorr, as
defined per scan, and (3) peptideLength, as defined per pep-
tide. To compare the two respective distributions against
each other, the Mann-Whitney U-test was used.

Introduction
Living cells integrate various physico-chemical stimuli via
complex intracellular signaling systems, involving highly
intertwined kinase- and phosphatase networks. Numerous
studies aimed to unravel such signaling networks using
quantitative mass spectrometry (MS)-based proteomics,
often with the focus to comprehensively identify substrates
of a given kinase or phosphatase at a specific condition [4,
5, 22–27]. To achieve this goal, dynamic changes in the
phosphorylation status of thousands of sites are monitored
across different experimental conditions. The analysis of
quantitative MS data requires sophisticated bioinformatic
processing of the raw data to ensure valid and comprehen-
sive interpretation. Several quantitative proteomics software
tools have been developed [28–33] applying different algo-
rithmic pipelines, which may or may not lead to different
outcomes on peptide identification and quantification. Two
commonly used software packages for the quantitative ana-
lysis of SILAC (stable isotope labeling with amino acids in
cell culture) MS data are Proteome Discoverer™ (PD)
[Thermo Fisher Scientific] and MaxQuant (MQ) [29]. A
major complication for integrative analysis of multiple data-
sets is the low overlap of quantified phosphopeptides. This
limited overlap poses a major problem in the field, which
caused researchers to improve software for data analysis
and develop novel technological strategies, like e.g. BoxCar
[34] or data independent acquisition methods such as
SWATH MS [35]. While the choice of software for analyz-
ing a specific dataset is mainly subject to the technical and
methodical constraints of the experiment as well as research
group conventions, it stands to reason that the use of a
broader range of tools might increase proteome coverage
and consequently lead to new biological insights [36–38].

Here we re-analyzed an extensive, quantitative MS-based
phosphoproteomics dataset [4], previously published by
our group, with an alternative software package [29,
33]. This dataset, designed to identify substrates of the
mitogen-activated protein kinase Hog1, a p38 homolog
and key regulator of the high osmolarity glycerol pathway
in Saccharomyces cerevisiae [4], comprises 204 individual
LC-MS runs, integrates four different experimental condi-
tions and led to the identification of more than 30 sub-
strate proteins of the MAPK [4]. In comparison to the
original analysis with PD (versions 1.3 and 1.4) using the
database search engine SEQUEST, our reanalysis with
MQ (version 1.5.2.8) resulted in only minor differences in
quantification of SILAC ratios. However, the number of
identified phosphorylation sites when integrating the
results of both programs was much larger. In total, 15
previously unidentified putative substrates and numerous
indirect targets of Hog1 were revealed. Identified target
proteins were further validated by their ability to directly
interact with Hog1 in vivo [1, 4, 13]. Ultimately, our
comparative analysis increased the number of identified
Hog1-substrates by roughly 30%.

Results
Combined use of two proteomic quantitative software
packages increases coverage
System-wide characterization of signaling networks is com-
monly addressed via MS-based proteomics approaches.
The high osmolarity glycerol (HOG) response in Saccharo-
myces cerevisiae serves as a paradigm of complex signaling
networks. Elevated extracellular osmolarity results in acti-
vation of the mitogen-activated kinase (MAPK) Hog1
which in turn propagates the stress signal by phosphorylat-
ing target proteins at specific motifs, characterized by a
serine or threonine followed by a proline (S/T-P) (Fig. 1a).
We have recently conducted an extensive proteomics

study with the aim to comprehensively identify direct
substrates of Hog1 [4]. Global changes in the yeast phos-
phorylome were quantified in response to hyperosmotic
stress (setup SR). Additionally, we analyzed the effect of
Hog1-inhibition (in comparison to mock treatment) in
hyperosmotically challenged cells to determine the im-
pact of the active MAPK (setups I + 0′S, I + 5′S and I +
10′S, see [4]) (Fig. 1b). SILAC labeling was used in com-
bination with TiO2-based phosphopeptide enrichment
and strong cation exchange (SCX) fractionation to en-
able in depth analysis of the phosphorylome (Additional
file 1: Figure S1A). The dataset comprises 204 individual
LC-MS runs, which were acquired on Thermo Velos
Orbitrap and Thermo Q-Exactive instruments in a data-
dependent acquisition (DDA) mode. Raw data were ana-
lyzed with PD (versions 1.3 and 1.4) using SEQUEST for
identification of peptides from MS2 spectra. A stand-
ard target-decoy approach was employed to determine

Janschitz et al. Cell Communication and Signaling           (2019) 17:66 Page 5 of 17



Fig. 1 (See legend on next page.)
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the false discovery rate on spectrum and protein level
(FDR cut-off < 1%).
Phosphorylated S/T-P motifs that increased in abundance

in response to stress and showed sensitivity to inhibitor
treatment were considered putative Hog1-substrates
(Fig. 1b). It is important to clarify here that most
stress-induced S/T-P sites are not impacted by the
kinase at all. Out of ~ 200 proteins that were affected
by hyperosmotic stress, only around 30 proteins were
found to harbor proline directed kinase motifs (or the al-
ternative S/T-S/T-P motif) that displayed Hog1-dependent
phosphorylation behavior [4], including eight previously
described Hog1-substrates. However, several hallmark
phosphorylation sites of Hog1 were not covered, which
might be due to the inherent incompleteness of MS
shotgun approaches. We speculated that not all spectra
recorded in this dataset resulted in successful peptide
identification or quantification by the applied data
analysis workflow and that re-analysis with alternative
software might recover complementary information
and thereby potentially increase the coverage of the
Hog1-affected phosphoproteome.
We therefore re-analyzed the MS dataset (setups SR,

I + 0′S, I + 5′S and I + 10′S) by Romanov et al. using
MQ (see Methods; Fig. 1c) and integrated the results
with the PD-derived results described in [4]. Specifically,
we determined the degree of overlap of identified peptides
between PD and MQ outputs for each raw file (Fig. 1d) and
observed overlaps ranging from ~ 5 to 70% with a median
of 37.9%. We examined whether different parameters such
as MS signal intensity, peptide-spectrum-match (PSM)-
score, or peptide length might contribute to the different
coverage obtained with PD and MQ. In general, both pack-
ages show a similar performance with the exception that
low scoring PSMs are better covered by MQ, probably
stemming from differences in target-decoy approach-based
FDR-estimation between the software packages (Additional
file 1: Figure S1B-C). The level of overlap is even lower
(median 34.9%) when solely considering identified phos-
phopeptides. Ultimately, we obtained a total overlap of
30.8% for all quantified peptides (Fig. 1e).
To facilitate phosphorylation site analysis, we integrated

peptides where the same residues are phosphorylated
(regardless of potential missed cleavages or additional

modifications) to a so-called “phosphorylation site group”
(PSG), similarly to procedures described in Romanov et al.
[4]. The eventual ratio for the phosphorylation site group
is an average over all peptide ratios available in the group
across all biological replicates (see Methods), hereafter
referred to as “phosphorylation site”. A total of 19.053
phosphorylation sites could be quantified when consider-
ing all MS data files and both software packages (Fig. 1e).
Both tools commonly identified only 37.0% (7044) of all
quantified phosphorylation sites (Fig. 1e). Each data
analysis platform added a roughly equal share of unique
quantifications, namely 36.0% (6870 quantified phos-
phorylation sites) from PD and 27.0% (5139) from MQ.
Notably, the overlap between the two search engines
rises to 63.0% when comparing protein instead of phos-
phorylation site coverage (Fig. 1e). This difference in
overlap is presumably due to proteins harboring more
than one affected phosphorylation site, which could be
quantified individually by either software. Taken to-
gether, re-analyzing the raw data extended the number
of quantified phosphorylation sites by one third.
To determine reproducibility of quantification between

PD and MQ, SILAC ratios of phosphorylation sites of setup
SR covered by both programs were compared (Fig. 1f). We
observed a high level of correlation (R = 0.88), suggesting
that both software tools almost equally quantify phosphor-
ylation sites. When considering the MQ/PD-ratio for com-
monly quantified phosphorylation sites 93.43% were within
a limit of +/− 1 (log2) quantification difference (Fig. 1g).
Similar observations were made with the other setups
(Additional file 1: Figure S1E-J). We therefore con-
clude that the degree of divergence in quantification
of the two softwares is negligible and phosphorylation
site-quantifications covered in only one of the two
datasets can be considered valid.

Identification of novel direct Hog1-substrates
To identify Hog1-substrates, we focused on phospho-
peptides that increase in abundance in response to high
osmolarity but remain static if the MAPK is inhibited
(Fig. 2a, Additional file 6 Table S1). The phosphorylation
status of these sites is directly or indirectly dependent on
Hog1-activity. Whereas 204 phosphorylation sites with
such behavior were identified using PD [4], re-analysis

(See figure on previous page.)
Fig. 1 a Cartoon illustrating the HOG pathway. Its central module consists of the MAPK Hog1, the MAPK kinase (MAPKK) Pbs2, and the three
MAPKK kinases (MAPKKK) Ste11, Ssk2, and Ssk22. Upon activation by extracellular hyperosmolarity, Hog1 coordinates the osmostress response by
phosphorylating its target proteins. Ultimately, the cascade leads to the activation of downstream kinases, such as Rck2. b Illustration of
experimental conditions from Romanov et al., 2017 [4]. c Illustration of study concept. d Box- and density plot showing the degree of overlap in
% of identified peptides (grey) and phosphorylated peptides (red) between PD and MQ outputs for each raw file (dot). Black line in box plot
indicates median overlap (e) Venn diagrams showing percentage and total number of quantified peptides, quantified phosphorylation sites and
proteins identified by MQ (light blue), PD (yellow) or both (green). f Correlation of SILAC log2-ratios of mutually quantified phosphorylation sites
of setup SR. Lines indicate limits of +/− 1 quantification difference (g) Histogram displaying quantification difference calculated as MQ/PD SILAC-
ratio [log2] of quantified phosphorylation sites of setup SR. Lines indicate cut-off (+/− 1 quantification difference)
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with MQ resulted in 273 Hog1-dependent phosphoryl-
ation sites. Of those, 101 phosphorylation sites were cov-
ered by both tools. These numbers add up to a total of
172 stress- and Hog1-dependent sites uniquely identified
by MQ and 103 by PD, enhancing the size of the Hog1-
dependent phosphorylome [4] by 36.0%.
To capture cellular processes affected by Hog1-activity,

we performed a gene ontology (GO)-term analysis using
the Hog1-dependent phosphorylation sites derived from

the MQ- and the PD-based analysis, and a combination of
the results (Fig. 2b and Additional file 7 Table S2). GO-
terms derived from both search results were highly similar
(R = 0.83 for fold enrichments), with these phosphoryl-
ation sites found to be associated with signal transduction
(such as protein phosphorylation/dephosphorylation, re-
sponse to osmotic stress etc.), cell cycle regulation, endo-
cytosis, transport- and cytoskeleton-related processes,
which is in line with the general understanding of the

A

C D

B

Fig. 2 a Scatter plot displaying SILAC ratios of setups SR (x-axis) and I + 5′S (y-axis). S/T-P motifs: triangles. Other motifs: circles. Ratios are log2-
transformed. Similar analyses were made with setups I + 0′S and I + 10′S, respectively (not shown). b Results from gene ontology (GO) enrichment
for three sets of Hog1-dependent phosphorylation sites derived from MQ, PD, and both search engines. GO-terms were filtered to have at least
one q-value ≤0.1 in either set, allowing hierarchical levels ≥2 and solely “biological processes” as a GO category. The bubble size corresponds to
the number of proteins associated with a given term; the color corresponds to the fold enrichment. The GO-terms were sorted according to the
average fold-enrichment (side bar plot). On the right-hand side the PD/MQ-ratio between the respective enrichments are shown as a bar plot. In
case the ratio is ≥1 (signified by red dashed line), the enrichment of the corresponding term is higher in PD vs. MQ (yellow coloring), and vice
versa (blue coloring). c Venn diagram showing percentage and total number of stress- and Hog1-induced S/T-P motifs. Light blue: MQ, yellow:
PD, green: overlap. d Putative Hog1-target proteins identified via genuine S/T-P (left) or S/T-S/T-P (right) motifs. Color-coding similar to (c). Filled
arrowheads: known Hog1-target proteins in MQ-derived dataset. Open arrowheads: candidates that did not qualify as Hog1-substrates in [4] due
to lack of overlap between experimental setups. *: alternative phosphorylation sites found with PD or MQ
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HOG response [4, 39, 40]. Besides some other con-
nections to translational initiation and cell budding,
membrane-associated processes (adjusted p-value =
2.25 × 10− 3) were overrepresented in the MQ-derived
dataset, such as conjugation, membrane and organelle fu-
sion, as well as organelle inheritance and exocytosis, ultim-
ately giving a potentially novel context to Hog1 signaling.
We next tested whether the list of putative direct

Hog1-substrates was extended by the integration of re-
sults from both programs. For this purpose we selected
sites phosphorylated at S/T-P motifs and, in addition,
sites phosphorylated at S/T-S/T-P motifs, in order to
prevent omission of targets due to incorrectly localized
phosphorylation sites. 49 S/TP (or S/T-S/T-P) motifs (40
proteins) were found within the MQ-derived set of stress-
and Hog1-dependent phosphorylation sites (Fig. 2c). 28 of
these phosphorylation sites, corresponding to 20 proteins,
have not been covered in the PD-based analysis [4]
(Fig. 2d). Seven of the 40 proteins are known substrates
of the MAPK, namely the transcription factors Hot1
and Sko1 [41, 42], the nucleoporin Nup2 [43], the endo-
cytotic factor Pan1 [5], the serine/threonine protein phos-
phatase Ppz1 [4], the MAPKAP kinase Rck2 [44], and the
protein kinase regulator Ste50 [27]. Furthermore, Hot1,
Rck2, Sko1 and Ste50 were also covered in the PD-derived
dataset [4], however, with alternative Hog1-dependent
phosphorylation sites (Additional file 6: Table S1).
Among the MQ-derived, newly identified Hog1-affected

proteins, we found interesting factors such as the p21-
activated kinase Kic1 [45, 46] and Orm2, a protein linked
to TORC1/2- and Ypk1-mediated sphingolipid homeosta-
sis [47–49]. Although two phosphorylation sites of Kic1
showed stress-responsiveness (Thr625) or susceptibility to
Hog1-inhibition (Ser723) [4] Kic1 did not qualify as a
target due to the lack of overlap between setups in the
original PD-analysis. Re-analyzing the raw data with MQ
confirmed the stress- and Hog1-dependency of Kic1
(Thr625 and Thr1073). A similar scenario occurred with
Orm2 and Ppz1 both of which did not have sufficient
coverage in the PD-analysis; the re-analysis, however, sug-
gests a Hog1-mediated phosphorylation of Thr18 of Orm2
and Ser265 of Ppz1 (Additional file 6: Table S1). The latter
has been previously identified as a Hog1-substrate, based
on Hog1-dependent phosphorylations of its paralogue
Ppz2 and its ability to interact with the kinase [4].
In total, our combined analysis revealed 15 novel

putative Hog1-target proteins (10 via genuine S/T-P
motifs), namely the kinases Kic1, Pkh1 and Ste20, the
transcription factors Hac1, Hsf1 and Tgf1, the retro-
grade transport-associated proteins Gcs1, Vps53 and
Ysp2, the mitochondria-associated proteins Mfb1 and
Psp2, and the ubiquitin-specific protease Ubp13. Further
putative targets include Far8 - a protein involved in the re-
covery from cell cycle arrest, Orm2 - a protein involved in

sphingolipid homeostasis, Sog1 - a key-component of the
RAM signaling network (and binding partner of kinase
Kic1), and finally, Pmd1 and Sap1, two proteins of
unknown function (Fig. 2d, Additional file 6: Table S1).

Phosphorylation kinetics as a proxy for Hog1-dependency
Before proceeding with further functional conclusions, it
is arguably important to examine Hog1-dependency of
phosphorylation events using orthogonal means. We
assumed that measuring a respective phosphorylation
kinetic read-out might provide such evidence to validate
Hog1-dependency. This is largely based on our recent
report on different stress-induced phosphorylation kinet-
ics at two S/T-P motifs of the early endocytosis factor
Pan1, namely Ser1003 and Thr1225 [5]. Specifically, Pan1
Thr1225 becomes directly phosphorylated by Hog1 in
response to elevated extracellular osmolarity and shows
transient phosphorylation kinetics. Phosphorylation at the
Hog1-independent S/T-P motif Ser1003, on the other hand,
continuously increases until a maximum is reached 30min
after stress induction.
We therefore implemented seven additional experi-

mental MS setups with 2–3 replicates for a reasonably
fast probing of the kinetics of a large number of phos-
phorylation sites. In a quantitative SILAC-MS setup
without prior SCX-fractionation (see Methods), global
changes in the phosphorylation pattern of wild type cells
at 0, 5, 15 and 30min after exposure to increased salt
concentrations were measured. This setup adequately
reflected the response of cells challenged with hyperos-
molarity as demonstrated by the phosphorylation kinet-
ics of the key residues of Hog1 (Thr174 and Tyr176), Pbs2
(Ser514), and Rck2 (Ser520) [44] (Fig. 3a, Additional file 8:
Table S3). Other well known phosphorylation events in
osmostress signaling, such as at Thr808 of Rgc2 [24],
Ser748, Ser1003 and Ser1253 of Pan1 [5], and Ser1307 of
Ede1 [5], also show consistent phosphorylation patterns
[4] (Fig. 3a, Additional file 3: Figure S3A and B). We
generally observed the kinetics of the quantified phos-
phorylation sites to be in good compliance with the exten-
sive phosphoproteomics dataset used for the re-analysis
approach (Additional file 8: Table S3).
We next grouped stress-induced phosphorylation sites

in Hog1-dependent and Hog1-independent sets accord-
ing to our PD-and MQ-derived quantifications. The
average phosphorylation kinetics profiles were similar
between these sets, with Hog1-dependent sites showing
a slightly higher maximum at 5 min and lower basal
levels at 30 min after stress induction (Fig. 3b). These
transient kinetics were apparent for sites, such as Ser520

of Rck2 - a main hub regulating the secondary response
of Hog1 [4] - as well as for indirect substrates of Hog1
(Fig. 3a, Additional file 3: Figure S3A). However, we also
observed sites in this set that became persistently
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phosphorylated in response to stress, such as the puta-
tive direct Hog1-substrate sites Thr196 of Tif4632 or
Ser197 of Ylr257w. Interestingly, these phosphorylation
sites have also been assigned to kinases other than Hog1
[50], which might affect the phosphorylation kinetics in
response to stress. To corroborate these results we also
determined stress-induced phosphorylation kinetics in
a hog1Δ strain. As expected, the stress-induced phos-
phorylation of Hog1-dependent sites was diminished,
whereas almost all Hog1-independent sites remained
phosphorylated in this strain background, albeit with
altered kinetic profiles due to missing feedback regulation
(Fig. 3a, b, Additional file 2: Figure S2A and B).
The difference between the stress-induced phosphoryl-

ation kinetics of Hog1-dependent and -independent sites
also became apparent in our additional analysis of pub-
lished data. Recently, Kanshin et al. examined global prop-
erties of the immediate (≤ 1min) HOG signaling response
and defined distinct clusters according to phosphorylation
kinetic profiles [22]. Applying these clustering categories
on the MS dataset by Romanov et al. we found that ~ 20%
of the Hog1-dependent phosphorylation sites (covered in
both studies, Romanov et al. and Kanshin et al.) reach a
maximum within 1 min (cluster 6), ~ 40% show a delayed
sigmoid response curve (cluster 4), while ~ 40% are static,
suggesting that these sites become phosphorylated after 1
min of stress induction. Hog1-independent phosphoryl-
ation sites, however, show a different distribution with a
substantially higher proportion of static sites (84.5%) ac-
cording to Kanshin et al. (Additional file 2: Figure S2C
and Additional file 6: Table S1).
To test whether the newly MQ-identified putative Hog1-

targets indeed follow transient phosphorylation kinetics we
first performed gel mobility shift assays. However, of all
tested candidates (12) only Kic1 and Vps53 showed a sub-
tle decrease in gel mobility at later time points of the
osmostress response (Additional file 3: Figure S3A). Orm2,
on the other hand, showed a Hog1-independent, transient
increase in gel mobility at 5min after stress induction,

indicating a decreased net phosphorylation (Additional
file 3: Figure S3A, B and C). Incidentally, Ypk1, the up-
stream kinase of Orm2, becomes de-phosphorylated at its
key regulatory site Thr662 [48, 51] upon elevated extracel-
lular salt stress, probably affecting Hog1-independent
phosphorylation events on Orm2 as well.
Our computational and experimental analysis thus so-

lidifies the argument that phosphorylation kinetics could
indeed be leveraged to define Hog1-dependencies, des-
pite its occasional ambiguity due to promiscuous sites
following different response patterns. To gain a more
clear-cut and interpretable kinetic signal, however, both
the experimental conditions and methodology should be
adjusted. Following the kinetic patterns upon inactiva-
tion of the MAPK, for example, would arguably provide
a more specific indication for local Hog1-dependencies.
The methodological context, on the other hand, would
require an approach where (sub-stoichiometric) kinetic
patterns are captured independently of net phosphoryl-
ation effects. Given these criteria, a targeted MS ap-
proach was deemed appropriate to provide an accurate
fingerprint of phosphorylation kinetics as a function of
hyperosmotic stress and Hog1as-inhibitor susceptibility.
Specifically, we compared inhibitor susceptibility by

measuring dose-response curves of four different repre-
sentative types of phosphorylation sites. We focused on i)
putative direct Hog1-target sites (Thr625 and Thr1073 of
Kic1 and Thr18 of Orm2), ii) S/T-S/T-P motifs (Ser790 of
Vps53), iii) putative indirect target sites (Ser511 of Kic1),
and finally iv) on phosphorylation sites that were differen-
tially quantified by PD and MQ (Ser340 of Kic1). Hog1as
cells expressing Kic1, Orm2, and Vps53 fused to a HB tan-
dem affinity tag were treated with DMSO (mock) or 0.25,
0.5, 5 μM as-inhibitor (SPP86), respectively, followed by a
5min exposure to increased extracellular salt concentra-
tions (similar to the experimental setup I + 5′S [4]). The
resulting phosphorylation patterns were analyzed using
parallel reaction monitoring (PRM). We detected strong
inhibitor susceptibility for Thr1073 of Kic1 (~ 3-fold),

(See figure on previous page.)
Fig. 3 a Heatmap showing SILAC ratios of selected phosphopeptides at 0, 5, 15 and 30 min after treatment with 0.5 M NaCl. Hallmarks: well-
known phosphorylation events of osmostress signaling. Indirect targets: stress-inducible and inhibitor-susceptible phosphopeptides
phosphorylated at non–S/T-P motif sequences [4]. Promiscuous p-sites: phosphorylation sites targeted by multiple kinases. b and c Average
stress-induced phosphorylation kinetics of Hog1-dependent (above) and Hog1-independent (below) phosphorylation sites in a wild type and
hog1Δ strain. d-g Illustration of PRM-measured phosphorylation patterns for Hog1-dependent and -independent sites upon hyperosmotic stress
(+ 0.5 M NaCl) and inhibitor treatment (SPP86). N (biological replicates) = 3. For a given phosphorylation site, the green box plots represent the
(mean) normalized intensities for the respective phosphopeptide(s). The yellow box plots illustrate the normalized intensities for
unphosphorylated counter-peptides. Significance was assessed by comparing intensities derived from all pooled inhibitor-treated samples with
those from the mock sample (t-test, p < 0.05). h Above: Representative Western blot showing M-track protein protein proximity signals obtained
for Kic1. Hog1-protA-H3: background control, Nup2: positive control. Below: Proximity signals. n = 3 replicates per sample except when indicated
differently. Ratios are log2-transformed. Black lines indicate average proximity signal. Proximity signals that differ significantly from background are
marked in green (q≤ 0.01) and orange (q≤ 0.05 and > 0.01) filled circles. Grey filled triangles: q > 0.05. N: N-terminal HKMTmyc fusion. i and j
Newly identified Hog1 network hubs based on STRING. Red filled circles: putative target proteins identified in this study. M: positive M-track signal.
Gray circles: first neighbor according to STRING. Shaded circles enclosing groups of proteins highlight functional groups. Filled lines indicate high,
dashed lines confidence score≤ 0.4 according to STRING
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Ser790 of Vps53 (~ 6-fold, Additional file 3: Figure S3D),
and Thr18 of Orm2 (~ 1.7-fold, Fig. 3d and Additional
file 6: Table S1) at low inhibitor-concentrations, valid-
ating these proteins as putative direct substrates of the
MAPK (Fig. 3d and e, Additional file 9: Table S4). The
PRM-technology allowed to distinguish the behavior of
five different phosphorylation sites on one phosphorylated
peptide of Orm2 and to narrow down the target site to
Thr18 (Additional file 3: Figure S3E). Ser511 of Kic1 - a
putative indirect target site - showed strong sensitivity to
higher inhibitor-concentrations (Fig. 3f), whereas phos-
phorylation at two adjacent sites, Ser509 and Ser512,
showed different inhibitor dose-response behavior (Add-
itional file 3: Figure S3F). Ser512 remained unaffected by
inhibitor treatment, confirming that this site responds
to stress independent of Hog1. Ser509, which was found
stress-responsive (~ 8-fold) in our MQ-derived re-analysis
dataset, was weakly affected (~ 1.6-fold) by higher
inhibitor-concentrations, confirming previous observa-
tions (Additional file 6: Table S1 and [4]). Ser340 of
Kic1 was not (~ 1.2-fold) affected by inhibitor treatment
clearly rendering it Hog-independent (Fig. 3g). PRM ana-
lysis of Thr625 of Kic1 has been compromised by various
co-eluting phosphorylated peptide isoforms (a problem
that was partly also true for Thr18 of Orm2, Additional file 4:
Figure S4A), resulting in no conclusive quantification
(~ 1.4 fold compared to 2.1 down-regulation in MQ
re-analysis, Fig. 3d, Additional file 4: Figure S4B and
C and Additional file 6: Table S1). In summary, re-
sults from our targeted MS-approach strongly corrob-
orated hypotheses on Hog1-dependencies derived from
the MQ-analyzed shotgun results (see Additional file 6:
Table S1). Putative direct S/T-P (and probably also S/T-S/
T-P) motifs generally show strong susceptibility to inhibi-
tor treatment, whereas indirect sites responded to higher
inhibitor-concentrations.

Validation of Hog1-substrate interactions
To confirm whether the candidate proteins harboring
stress- and Hog1-dependent S/T-P motifs directly inter-
act with Hog1, we performed M-track protein-protein
proximity assays [1, 4, 13]. Briefly, this assay is based on
enzymatic tagging of a histone H3-moiety (designated
protA-H3) fused to Hog1. Putative target proteins,
where the phosphorylation site could be clearly assigned
to a genuine S/T-P motif, were fused to the enzymatic
domain of the histone lysine methyltransferase SUV39
(HKMTmyc) and served as bait. We created functional
HKMTmyc tag fusions for 12 of the candidates de-
scribed above, namely: Far8, Gcs1, Hsf1, Kic1, Nup2,
Orm2, Pan1, Psp2, Sog2, Tgf1, Upb13 and Ysp2 (the
latter as C- as well as N-terminal fusion tags). Upon
close proximity to the kinase, the HKMT domain of bait
proteins catalyzes tri-methylation of the H3-moiety. Our

analysis further included an HKMTmyc-fusion of the
cytosolic thioredoxin peroxidase Tsa1 as a negative con-
trol. Background signal intensity was defined using a
yeast strain expressing only Hog1-protA-H3. Proximity
signals were detected by Western blotting using an
antibody directed against triple-methylated lysine 9 of
histone H3 (me3K9H3). Except Far8, Tgf1 and the back-
ground control Tsa1, all tested candidates showed prox-
imity signals significantly above background upon stress
treatment. Moreover, 8 of the 12 tested kinase-substrate
interactions showed induction of the proximity signal
after stress treatment (Fig. 3h and Additional file 5:
Figure S5).
In conclusion, we were able to confirm that the major-

ity of the putative Hog1-substrates, identified by our
combined analysis using two alternative MS-analysis
tools, directly interact with the MAPK. We therefore
conclude that our approach indeed could improve the
results by increasing the depth of the quantitative MS-
data analysis, thus demonstrating the great potential that
lies in revisiting published large-scale MS datasets.

Discussion
In this report we present a combined analysis of an
extensive quantitative phosphoproteomic MS-shotgun
dataset using two widely used MS software tools, in
order to comprehensively capture substrate proteins of
the MAPK Hog1. Besides the Hog1-targets derived from
the original analysis with PD, a re-analysis with MQ re-
sulted in 15 additional putative substrates of Hog1, that
have not been previously associated with HOG signaling.
Given that the combination of results from multiple pro-
grams could potentially increase the number of false
positives, we validated potential targets using a protein-
protein proximity assay. The newly identified proteins
are therefore most likely genuine substrates of Hog1.

What potential lies in re-analyzing MS-data?
The idea of re-analyzing published datasets is not new
and widely used in the genomics field [52–54]. For
proteomics data, on the other hand, major initiatives
such as the ProteomeXchange Consortium [55, 56] pave
the way for streamlined submissions and dissemination
pipelines of proteomics data. Extensive MS-shotgun
datasets are constantly published and the corresponding
raw data are made available through data repositories,
such as the PRIDE or the MassIVE repository [8, 57].
Such datasets are a valuable, yet under-used, resource.
The PRIDE repository allows for detailed inspection of
post translational modifications of single proteins [58,
59], whereas the MassIVE repository [57] makes it pos-
sible to re-evaluate extensive datasets using MS-GF+.
These features, however, are usually only available for
complete submissions, which constitute only a fraction of
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all submitted datasets. Furthermore, automated re-analysis
is restricted to spectrum identification because quantitative
analyses are more complex and require detailed knowledge
about the experimental conditions and design.
We picked up this concept and adapted it to our sci-

entific question regarding the quantitative investigation
of the Hog1-dependent phosphoproteome. Somewhat
surprisingly we observed only a limited overlap between
MQ- and PD-derived results, and a roughly equal share
of uniquely quantified phosphorylation sites added by
each software. We speculate that the difference might be
due to the different scoring algorithms (Andromeda
vs. SEQUEST) but also to differences during pre-
processing steps, including MS1 peak picking, MS1 m/
z re-calibration and MS2 precursor re-evaluation. To
exclude dataset-specific effects, we analyzed an MS
test run of an HeLa cell extract with MQ (version
1.5.2.8) and PD with SEQUEST as search engine (PD
version 1.4), and obtained a similarly low level of over-
lap (Additional file 1: Figure S1K and Additional file 10:
Table S5). We therefore conclude that the differences
in the output of MQ and PD are indeed caused by
differences in the processing steps inherent to each
software package and search algorithm. However, our
study was not aimed at providing a detailed compari-
son of the packages, but rather to leverage potential
differences to confirm potential targets that would
have remained poorly quantified otherwise.

Are the newly identified candidate proteins genuine
targets of Hog1?
Our MQ-based re-analysis of the dataset revealed several
Hog1-signaling hallmark phosphorylation sites that have
been missed in the original search based on PD, such as
Ser360 of Hot1 [41], Thr361 of Nup2 [43], Thr1225 of Pan1
[5], Ser108 and Thr113 of Sko1 [42] and Thr341 of Ste50
[60, 61], confirming the validity of our approach. We
additionally recovered phosphorylation sites that did not
qualify as a target of Hog1 due to the lacking overlap be-
tween setups in the original PD-analysis, such as Thr1073

of kinase Kic1, Thr18 of Orm2 and also Ser265 of Ppz1.
In summary, the set of direct Hog1-target proteins could
be extended to 53, with 15 novel putative substrates of
the MAPK presented here for the first time.
Interestingly, we also found several sites previously con-

nected to Cdc28-mediated signaling [50, 62], to be phos-
phorylated in a stress- and Hog1-dependent manner,
indicating that these sites might constitute an integrative
hub for different signaling pathways. This set includes
Ser161 of Gcs1, Ser265 of Ppz1, Ser304 of Psp2, Ser94 of
Sko1, and Ser546 of Ste20 (Additional file 11: Table S6). In
general, we observed promiscuous phosphorylation of
many Hog1-dependent phosphorylation sites when com-
paring datasets from different studies [4, 50, 62] or from

the PhosphoGRID database [63], indicating that some
regulatory functions of Cdc28, which are also required
for hyperosmo-adaptation, might be compensated by
the MAPK, indicating that the MAPK might compen-
sate for some regulatory functions of Cdc28 which are
also required for hyperosmo-adaptation [64, 65] (Add-
itional file 11: Table S6).
The fact that almost all candidates selected for an inter-

action study provided positive signals with Hog1 strongly
supports our notion that they constitute genuine targets
of the kinase. A comprehensive list of Hog1-substrate sites
based on this and previous studies [4, 41, 43, 50, 60–62,
65–76] is provided in Additional file 11: Table S6.

Novel insights into the Hog1-mediated osmotic stress
response of yeast
Our findings regarding Kic1 and Sog2 highlight a previ-
ously unrecognized interconnection between the HOG
and RAM (regulation of Ace2 activity and cellular mor-
phogenesis) signaling network, which coordinates cell sep-
aration in Saccharomyces cerevisiae [77–82] (Fig. 3i). Both
factors constitute generally conserved [83], regulatory
components of the pathway [84]. The impact of Hog1
might therefore extend via RAM to cytoskeletal and actin
cortical patch organization, and cell morphogenesis in gen-
eral, as our GO-analysis suggests. Our combined analysis
also allowed the identification of Orm2 as a direct target of
Hog1. This evolutionary conserved protein [85] is crucial
for coordinating lipid homeostasis [86, 87] and is respon-
sive to ER- and heat-stress in yeast. Upstream of Orm2, ki-
nases Pkh1 and Ypk1 provide a sensor- and feedback loop,
which ultimately leads to phosphorylation of Orm2 (at
Ser46, Ser47 and Ser48) and release of Orm2-mediated in-
hibition of sphingolipid biosynthesis in response to heat
stress [21]. Here we describe Hog1-dependent phosphoryl-
ation of Thr18 of Orm2, a site located on the N-terminus
adjacent to the three nested consensus Ypk1 phosphoryl-
ation sites, and, interestingly, also of Ser513 of kinase Pkh1.
Generally, disturbance of sphingolipid homeostasis has
been shown to directly affect the generation of diverse
pathological phenotypes in both, yeast and mammalians
[85]. For example, Orm-like protein (ORMDL)-regulated
cellular levels of sphingolipids have been associated with
several diseases related to chronic inflammation [88] such
as rheumatoid arthritis [89], diabetes type 1 [90, 91], and
human childhood asthma [92–96].
In addition, we identify a second substrate of the

TORC2-activated kinase Ypk1 as putative Hog1 substrate,
namely the StARkin domain-containing protein Ysp2,
which mediates sterol distribution between plasma mem-
brane and endoplasmic reticulum [20]. In our previous
publication we already reported that two additional
enzymes involved in ergosterol metabolism are directly
targeted by Hog1, the acyl-CoA:sterol acyltransferase
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Are2 and lanosterol 14-a-demethylase Erg11 [4]. Taken
together, these findings strongly point towards several
connections of HOG-signaling and the regulation of
the membrane fluidity and permeability (Fig. 3j) and
could therefore provide interesting insights into the
mechanisms of plasma membrane protection during
hyperosmotic stress.
The study presented here, in combination with previous

reports [4, 24, 41, 43, 50, 60–62, 64–76, 97–99], provides
a detailed snapshot on the multiple cellular functions af-
fected by HOG signaling (Additional file 11: Table S6). In
previous efforts from Trempolec et al. a similar descriptive
snapshot [100] has been provided for the MAPK p38, the
mammalian homologue of Hog1. While we found some
interesting overlaps, such as endocytosis [5, 101], our
study relies on a systematic, MS-based approach and
could therefore provide a more complete picture on
MAPK signaling and its impact on cellular processes.
In summary, generating new strategies that could po-

tentially circumvent the incomprehensiveness and sto-
chasticity of MS shotgun data, is pivotal in the wake of
“big data” [102–105]. In this report we could demon-
strate that efforts in providing tools for re- or combina-
torial analysis could be a powerful way to fully leverage
MS datasets. Though clearly these efforts should further
encompass biological validation experiments, as well as
an enhanced biological interpretation of the phospho-
proteomics data, the choice of software and the com-
binatorial use of it seem to be a tangible parameter
when comparing interlaboratory results.

Additional files

Additional file 1: Figure S1. Related to Fig. 1. (A) Experimental
workflow for LC-MS shotgun experiments. SILAC: stable isotope labeling
with amino acids in cell culture, MS: mass spectrometry, TiO2: titanium
dioxide, SCX: strong cation exchange. (B-D) Histograms of MS-signal
intensities of precursor ions (B), PSM scores (C), and peptide lengths of
MQ-derived (top) and PD-derived (below) datasets. Light blue bins
indicate the distribution of spectra identified solely by MQ. Yellow bins:
PD. Green bins: overlap. P-values were calculated using the Mann-
Whitney U-test. (E) Correlation of SILAC log2-ratios of mutually quantified
phosphorylation sites of setup I + 5′S. (F) Histogram illustrating distribution
of SILAC-ratio quantification difference (calculated as MQ/PD SILAC-ratio
[log2]) of mutually quantified phosphorylation sites of setup I + 5′S. Lines
indicate limits of +/− 1 quantification difference. (G) and (H) Results
obtained for setup I + 10′S are illustrated similarly to (E) and (F). (I) and (J)
Setup I + 0′S. (K) Venn diagrams showing percentage and total number of
peptide identifications (IDs) obtained from a MS test run of a HeLa cell
extract sample (left) and the dataset described in [4]. Light blue: MQ, yellow:
PD, green: overlap. (PDF 21695 kb)

Additional file 2: Figure S2. Related to Fig. 3. (A) Heatmap showing
SILAC ratios of Hog1-dependent (Romanov et al., 2017 [4] and MQ-
derived) phosphopeptides at 0, 5, 15 and 30 min after treatment with 0.5
M NaCl of a wild type (left) or hog1Δ (right) strain. (B) Similar to (A)
except that results of Hog1-independent phosphorylation sites are
shown. (C) Stratification of Hog1-dependent (first two pies) and
-independent (last two pies) sites into clusters as defined by
Kanshin et al., 2015 [22]. (PDF 371 kb)

Additional file 3: Figure S3. Related to Fig. 3. (A) Gel mobility shift
assays performed on newly MQ-identified putative Hog1-targets coupled
to HKMT-myc (Kic1, Vps53, Orm2) upon 0, 5, 30 and 45 min of osmostress
(+ 0.5 M NaCl). Arrows indicate bands with altered gel mobility. (B) Gel
mobility shift assay of Orm2-HA exposed to 0, 5, 30 and 45 min of
elevated salt levels. (C) Gel mobility shift assay of Orm2-HA in an
inhibitor-susceptible Hog1as strain treated with SPP86 inhibitor or DMSO
(mock) upon elevated salt levels. (D) MS/MS spectrum indicative for
Vps53 Ser790 phosphorylation. (E) and (F) Illustration of PRM-measured
phosphorylation patterns for the Hog1-independent phosphorylation
sites Ser9, Ser15, Ser22, Ser29, Ser31, and Thr36 of Orm2 (E) and Ser512 of
Kic1 (F) upon hyperosmotic stress (+ 0.5 M NaCl) and inhibitor treatment
(SPP86). The green box plots represent the (mean) normalized intensities
for the respective phosphopeptide(s). The yellow box plots illustrate the
normalized intensities for unphosphorylated counter-peptides. Significance
was assessed by comparing intensities derived from all pooled inhibitor-
treated samples with those from the mock sample (t-test). (PDF 1297 kb)

Additional file 4: Figure S4. Related to Fig. 3. (A) to (C) Annotated MS2
Spectra and transition product peak pattern indicative for Orm2 Thr18 (A),
Kic1 Thr625 (B) and Kic1 Tyr634 (C). Note: Transition product peaks of Orm2
Thr18 are well separated from peaks of peptide isoforms. For Kic1 Thr625 as
well as Kic1 Tyr634, however, co-elution of respective phosphorylated
peptide peaks hampers unambiguous peak assignment and quantification.
#: phosphorylated amino acid. Indicative transitions used for quantification
are shown in color-code. Precursor m/z is indicated in bold. (PDF 622 kb)

Additional file 5: Figure S5. Related to Fig. 3. Scanned Western blot
films showing M-track protein protein proximity results for the individual
candidates. (A) Signals obtained from hyperosmotically challenged cells
are shown (1 M Sorbitol, 40 min). Areas picked for densitometric analysis
using ImageJ are boxed in red. Signals that have been suspended from
the analysis are indicated with a red “x”. me3: antibody recognizing
me3K9H3; HA: 12CA5 antibody (B) Same as (A) except that results
obtained from unstressed cells are shown. (PDF 5103 kb)

Additional file 6: Table S1. Related to Fig. 1. Summary of quantified
phosphorylation sites over MS experiments with MQ and PD search
engines. This table is provided in a separate Excel file (Additional file 1:
Table S1). List of quantified phosphorylation sites over MS experiments (4
experimental conditions in total), containing details on which sites were
quantified in which search engine (PD, MQ), the ratios in the 4 different
conditions, field assignment (similar to [4]), the corresponding protein
and whether an S/T-P motif has been found to be phosphorylated. The
column “assignment_figure2” provides the underlying data for Fig. 2a,
hence whether the corresponding phosphorylation site has been
commonly quantified in PD and MQ, quantified in MQ only or quantified
in PD only. The additional columns provide data on the quantified
phosphorylation sites that have been published in [22] (salt stress at time
points 0, 55″, 60″, regulatory clusters), [5] (salt stress at 5′) and [62] (salt
stress upon Cdc28 inhibition) and integrated with the PD and MQ
datasets. (XLSX 1765 kb)

Additional file 7: Table S2. Related to Fig. 2. Summary of Gene
Ontologies identified for MQ- and PD-output on Hog1-targets. The table is
provided in a separate Excel file (Additional file 7: Table S2). List summarizing
gene ontology (GO) results for Hog1-dependent phosphorylation sites
based on GO Slim mapping. The file is composed of three sheets, for (a) the
MQ-derived, (b) the PD-derived and (c) the combined (union of PD- and
MQ-derived sites) sites and their enrichment in certain gene ontologies.
Each table contains information on the GO-ID, its name and category,
proteins identified for a given GO-term, the fold-enrichment and the p-value
as well as the adjusted p-value. Finally, the tables also contain the GO level,
giving the hierarchy level of the given ontology. (XLSX 60 kb)

Additional file 8: Table S3. Related to Fig. 3 and Additional file 2:
Figure S2. List of quantified phosphorylation sites over MS experiments,
containing details on which sites were quantified in which search engine
(PD, MQ) and the ratios in the different conditions. (XLSX 212 kb)

Additional file 9: Table S4. Related to Fig. 3 and Additional file 3:
Figure S3 and S4. PRM results of Kic1-HB, Orm2-HB and Vps53-HB. Peak
intensities of transition product peaks used for quantification are listed.
Peptides used for normalization are indicated in bold. (XLSX 72 kb)
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Additional file 10: Table S5. Related to Fig. 1. List summarizing results
of the MS analysis performed on a HeLa cell extract. The file is composed
of two sheets, for the MQ-derived (version 1.5.2.8), and the PD-derived
(version 1.4) results. (XLSX 2994 kb)

Additional file 11: Table S6. Related to Fig. 2. Comprehensive list of
phosphorylation sites of Hog1-substrates identified in our study, as well
as previous studies. For each phosphorylation site, the study providing
the evidence for Hog1-dependency and Cdc28-dependency is indicated.
We also included information on the type of evidence (MS-based, M-track,
in vitro kinase assay). (A) Hog1-target proteins with at least one specific
phosphorylation site confidently identified as a direct Hog1-substrate
(MS- or other evidence). (B) Candidate proteins that show interaction with
Hog1, but do not contain distinct sites that have been identified as
Hog1-dependent. (XLSX 20 kb)

Additional file 12: Table S7. Related to Figs. 1 and 2. This table is
showing the strains and plasmids used in this study. (XLSX 31 kb)

Additional file 13: Table S8. Key resource table. (XLSX 36 kb)
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