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Activation of the JAK/STAT3 and PI3K/AKT
pathways are crucial for IL-6 trans-
signaling-mediated pro-inflammatory
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Abstract

Background: IL-6 classic signaling is linked to anti-inflammatory functions while the trans-signaling is associated
with pro-inflammatory responses. Classic signaling is induced via membrane-bound IL-6 receptor (IL-6R) whereas
trans-signaling requires prior binding of IL-6 to the soluble IL-6R. In both cases, association with the signal
transducing gp130 receptor is compulsory. However, differences in the downstream signaling mechanisms of IL-6
classic- versus trans-signaling remains largely elusive.

Methods: In this study, we used flow cytometry, quantitative PCR, ELISA and immuno-blotting techniques to
investigate IL-6 classic and trans-signaling mechanisms in Human Umbilical Vein Endothelial Cells (HUVECs).

Results: We show that both IL-6R and gp130 are expressed on the surface of human vascular endothelial cells, and
that the expression is affected by pro-inflammatory stimuli. In contrast to IL-6 classic signaling, IL-6 trans-signaling
induces the release of the pro-inflammatory chemokine Monocyte Chemoattractant Protein-1 (MCP-1) from human
vascular endothelial cells. In addition, we reveal that the classic signaling induces activation of the JAK/STAT3
pathway while trans-signaling also activates the PI3K/AKT and the MEK/ERK pathways. Furthermore, we
demonstrate that MCP-1 induction by IL-6 trans-signaling requires simultaneous activation of the JAK/STAT3 and
PI3K/AKT pathways.

Conclusions: Collectively, our study reports molecular differences in IL-6 classic- and trans-signaling in human
vascular endothelial cells; and elucidates the pathways which mediate MCP-1 induction by IL-6 trans-signaling.
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Background
Vascular endothelial cells are constantly exposed to numer-
ous types of circulating signaling molecules; and are one of
the main targets for various pro- and anti-inflammatory cy-
tokines [1]. Interleukin-6 (IL-6) is a multifunctional cyto-
kine produced by several cell types including monocytes/
macrophages, adipocytes, hematopoietic and endothelial
cells [2]. IL-6 is known to regulate the synthesis of acute
phase proteins and is elevated in the circulation during in-
flammatory conditions [2]. Furthermore, IL-6 has been
shown to induce the expression of endothelial adhesion
molecules and chemoattractant proteins such as the Mono-
cyte Chemoattractant Protein-1 (MCP-1) [3, 4]. MCP-1
(also called CCL-2) is a potent monocyte chemoattractant
that is secreted by numerous types of cells including endo-
thelial cells and contributes to the initiation and progres-
sion of atherosclerotic plaques [5–7].
Numerous clinical trials using anti-IL-6 antibodies or

antibodies directed against the IL-6 receptor (IL-6R)
have shown therapeutic significance of blocking IL-6 sig-
naling in chronic inflammatory diseases, including ath-
erosclerosis [8, 9]. However, such systemic blockade of
IL-6 has also been associated with adverse effects includ-
ing severe infections [10, 11]. In addition, there are stud-
ies reporting a regenerative, athero-protective and
anti-inflammatory role for IL-6 [12–14]. These dual
roles of IL-6 in inflammation appears to originate from
how IL-6 interacts with the specific target cell. IL-6 can
act on target cells by binding to the membrane-bound
receptor (IL-6R) and subsequent recruitment of ubiqui-
tously expressed signal transducing gp130 receptor. This
is known as IL-6 classic signaling and it is restricted to
cells possessing membrane-bound IL-6R including hepa-
tocytes, macrophages, neutrophils and some T cell sub-
sets [15]. These cells also release the soluble receptor
(sIL-6R) into the circulation predominantly through
extracellular shedding or by alternative splicing [16–18].
Hence, IL-6 can alternatively bind to sIL-6R and induce
intra-cellular signaling via gp130 on cells that lack the
membrane-bound IL-6R, which is referred to as IL-6
trans-signaling [19, 20]. The trans-signaling is associated
with pro-inflammatory functions while the classic signaling
is linked to regenerative and anti-inflammatory functions
[21, 22]. However, little is known about the signaling mech-
anisms of IL-6 classic- and trans-signaling. In this study we
elucidated differences in classic- versus trans-signaling of
IL-6 in human vascular endothelial cells and revealed a
novel pathway by which IL-6 trans-signaling mediates its
pro-inflammatory effect.

Methods
Cell culturing
Human Umbilical Vein Endothelial Cells (HUVECs, Life
technologies, USA), were cultured in 75cm2 flasks (Sarstedt,

Germany) containing complete endothelial medium [Vascu-
Life basal medium supplemented with VEGF LifeFactors kit
(LifeLine Cell Technologies, USA)] and antibiotics [Penicil-
lin (0.1 U/ml) + Streptomycin (100 ng/ml)-PEST, Gibco, Life
Technologies, USA]. The cultures were kept at 37 °C and
5% CO2 environment and cells were maintained until pas-
sage 10 by replacing medium every 48–72 h and/or
sub-culturing upon confluence.

Treatment of HUVECs
HUVECs (3 × 105 cells/well for 6-well plates and 6 × 104

cells/well for 24-well plates) were plated overnight in
complete endothelial medium containing antibiotics.
The next day, the medium was replaced with fresh anti-
biotics free medium and cells were treated with different
concentrations of IL-6, IL-6R, TNF-α and LPS (all from
R&D systems, USA) and/or pharmacological inhibitors
CP690550, Stattic and LY294002 (all from R&D systems,
USA), and PD98059 (Santa Cruz biotechnology, USA)
for different time points ranging from 5 min to 48 h. At
the end of incubations, supernatants and cells were col-
lected and kept at -80 °C until further analysis. The cells
were used to extract total protein or RNA.

Gene knockdown
HUVECs were seeded in 6-well plates (2 × 105 cells/well)
containing complete endothelial medium with antibi-
otics and incubated overnight. After washing the cells
with opti-MEM (Gibco, Life Technologies, USA), incu-
bation continued with 700 μl opti-MEM/well containing
4 μl lipofectamine (Invitrogen, USA) and a mix of 3
stealth siRNAs (10 nM of each siRNA, Invitrogen, USA)
targeting same gene. The control wells instead had
non-target siRNAs (30 nM, Invitrogen, USA). After 4 h
of incubation, 1.3 ml of complete endothelial medium
was added into each well and incubation continued. At
48 h, culture supernatants and cells were collected and
kept at -80 °C until further analysis.

Total RNA isolation and cDNA synthesis
Total RNA extraction from frozen cells was achieved
using E.Z.N.A® Total RNA Kit (OMEGA bio-tek inc,
USA) according to manufacturer’s instructions. Briefly,
TRK lysis buffer with 2% β-Mercaptoethanol was added
into each well and the lysates were then mixed with 70%
ethanol. The cell lysates were transferred into HiBind
RNA columns and centrifuged for 1 min at 10,000 g.
After washing the columns three times, RNA was eluted
using RNase free water. RNA concentrations were deter-
mined using NanoDrop™ 2000 (Thermo Fisher Scientific,
USA) spectrophotometer.
Extracted RNA were used to synthesize cDNA using high

capacity cDNA reverse transcription kit (Thermo Fisher
Scientific, USA) according to manufacturer’s instructions.
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Hence, 1 μg RNA extract was mixed with master mix com-
posed of buffer, random primers, dNTPs and reverse tran-
scriptase enzyme. The total reaction volume was adjusted
to 20 μl by adding nuclease free water. A negative control
containing master mix and water instead of RNA was also
included. The following setup was used for thermal cycling:
10 min at 25 °C, 120 min at 37 °C, 5 min at 85 °C and kept
at 4 °C before storage at − 20 °C.

Real-time PCR
mRNA expression of genes was studied using TaqMan
qPCR primers/probes according to manufacturer’s in-
structions. In short, a standard curve was prepared by
pooling equal volume of cDNA from each sample that
was then serially diluted in to 6 standards. Standards,
negative controls and unknown samples were run in du-
plicate in a 96-well PCR plate. The total reaction volume
was 10 μl consisting of LuminoCt qPCR ready mix (Sig-
ma-Aldrich, USA), TaqMan Primer/Probe (Applied Bio-
systems, Life technologies, USA), water and cDNA. The
cycling condition used was as follows: at 95 °C for 1 s
and at 60 °C for 20 s for 40 cycles in addition to one step
initialization at 95 °C for 20 s in ABI 7900HT Fast
Real-Time PCR system (Applied Biosystems). Then, rela-
tive quantities were recorded for each well and normal-
ized to the expression of housekeeping gene, GAPDH.

Sandwich enzyme linked Immuno-sorbent assay (ELISA)
DuoSet® ELISA kits (R&D systems, USA) were used ac-
cording to manufacturer’s instruction to determine the
release of MCP-1 from HUVECs and expression of the
IL-6-receptor and gp130 in HUVEC culture superna-
tants and cell lysates. Multiskan-Ascent (Lab Systems,
Thermo Fisher Scientific, USA) Spectrophotometer was
used to read absorbance at 450 nm. For IL-6R ELISA, 2
more standards to the lower end were included to cover
low concentrations in samples.

Protein extraction and quantification
HUVECs were rinsed with PBS and lysed using ice-cold
RIPA lysis buffer (Millipore, USA). To quantify the pro-
teins, Micro BCA™ Protein Assay kit was used (Thermo
Scientific, USA) according to manufacturer’s instructions
and absorbance at 540 nm was measured using
Multiskan-Ascent (Lab Systems, Thermo Fisher Scien-
tific, USA) Spectrophotometer.

Immuno-(western) blotting
Cell lysates were mixed with 4× SDS sample buffer and
denatured for 5 min at 95 °C. Next, the mixture (10 μg
protein/well) was loaded on to 4–12% NuPAGE® Novex
Bis-Tris gels and protein separation was achieved with
MOPS/MES running buffers (both Invitrogen, USA). To
determine molecular masses of the proteins, MagicMark™

XP Western Protein Standard (Invitrogen, USA) was used.
Proteins were blotted onto Immobilon-FL PVDF
membranes (Millipore, USA). For further steps TBS-T
(10 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.1% (w/v)
Tween-20) was used. For detecting signaling proteins,
membranes were incubated with the following primary
antibodies: anti-phospho-Stat3Tyr705 antibody (Cell
Signaling Technology, USA, #9131; 1:1000 dilution),
anti-phospho-AKTSer473 antibody (Cell Signaling Technol-
ogy, USA, #4060; 1:2000 dilution), anti-phospho-ERK1/2
antibody (Cell Signaling Technology, USA, #9106; 1:2000
dilution), anti-STAT3 antibody (Cell Signaling Technol-
ogy, USA, #4904; 1:2000 dilution), anti-AKT antibody
(Cell Signaling Technology, USA, #2920; 1:2000 dilution),
anti-ERK1/2 antibody (Cell Signaling Technology, USA,
#4695; 1:1000 dilution), anti-phospho IκBαSer32 antibody
(Cell Signaling Technology, USA, #2859; 1:1000 dilution),
anti-phospho-NFκB p65Ser536 antibody (Cell Signaling
Technology, USA, #3033; 1:1000 dilution), anti-NFκB p65
antibody (Cell Signaling Technology, USA, #6956; 1:1000
dilution), anti-IκBα antibody (Santa Cruz Biotechnology,
USA, SC-371; 1:750 dilution), anti-p52 antibody (Milli-
pore, USA, #05–361; 1:1000 dilution), and anti-β-Tubulin
antibody (Millipore, USA, #05–661; 1:2000 dilution). This
was followed by incubation with horseradish peroxidase
(HRP)-conjugated goat anti-rabbit IgGs (Cell Signaling
Technology, USA, #7074; 1:2000) or horse anti-mouse
IgGs (Cell Signaling Technology, USA, #7076; 1:2000).
Protein bands were visualized using Immobilon™ Western
Chemiluniescent HRP Substrate solution from Millipore
(Millipore, USA), and chemiluminiscence was recorded by
a Li-Cor Odyssey Fc imager and analyzed with Image Stu-
dio Software (both Li-Cor Biotechnology UK Ltd., United
Kingdom). Stripping of membranes for re-probing was
done according to manufacturer’s instructions using Re-
store™ Plus western blot stripping buffer (Thermo Fisher
Scientific, USA, #46430).

Flow cytometry
EDTA detached HUVECs were washed twice with PBS
containing 1 mM EDTA and 2% FBS; and then stained
with α-CD130 (gp130)-APC (clone: 2E1B02) and
α-CD126 (IL-6Rα)-PE (clone: UV4) antibodies (BioLe-
gend, UK) for 25 min at 4 °C in the dark. Fluorescence
minus one (FMO) controls were used as negative control
for staining. 7AAD staining was performed to remove
dead cells from analyses. Stained cells were acquired
using Gallios™ Flow Cytometer (Beckman Coulter Life
Sciences, UK) and analyzed using Kaluza flow cytometry
analysis software version 1.3 (Beckman Coulter, UK).

Statistical analysis
Data were analyzed using GraphPad Prism® statistical
software version 5.0 (GraphPad Software, Inc., USA).

Zegeye et al. Cell Communication and Signaling  (2018) 16:55 Page 3 of 10



Data are presented as mean ± standard error of the mean
(SEM) of at least 3 sets of experiments. For comparison
between groups, paired t-test/Wilcoxon matched paired
test and one-way ANOVA for repeated measures
followed by Bonferroni post-hoc test was used. p value
less than 0.05 was considered as statistically significant.

Results
Expression and regulation of IL-6 receptors in vascular
endothelial cells
To study whether human vascular endothelial cells
express IL-6R and gp130, we used flow cytometry to de-
tect their surface protein expression. As depicted in
Fig. 1a & b, both IL-6R and gp130 proteins are expressed
on surface of human vascular endothelial cells. We also
assessed how different pro-inflammatory stimuli could
regulate expression of IL-6R and gp130 in these cells
using ELISA. Knockdown of IL-6 (80–90% knockdown

efficiency, Additional file 1: Figure S1) increased the levels
of IL-6R and gp130 (Fig. 1c & d). In addition, treatment of
endothelial cells with pro-inflammatory stimuli (TNF-α or
LPS) resulted in downregulation of both IL-6R and sIL-6R
while upregulating gp130 and sgp130 levels (Fig. 1e & f).
Overall, these findings demonstrate that IL-6R and gp130
are expressed on human vascular endothelial cells,
allowing for the activation of both IL-6 classic- and
trans-signaling in these cells.

MCP-1 induction in human vascular endothelial cells in
response to IL-6
Next, we investigated the response of human vascular
endothelial cells to the treatment with IL-6 alone or in
combination with sIL-6R on the expression and release
of MCP-1. We found that IL-6 in combination with
sIL-6R induced a prominent increase in MCP-1 mRNA
that peaked after 60 min, while IL-6 alone had a very

A B

C D

E F

Fig. 1 Expression and regulation of IL-6R and gp130 in human vascular endothelial cells. Flow cytometry analyses of EDTA detached endothelial cells
stained for a IL-6R and b gp130. The light grey histograms show respective FMO (fluorescence minus one) controls and the dark grey histograms
show IL-6R or gp130 stained cells. ELISA analyses of the levels of c IL-6R and d gp130 in cell lysates and medium after 48 h of IL-6 knockdown. ELISA
analyses of the levels of e IL-6R and f gp130 in cell lysates and medium after 48 h of treatment with TNF-α (50 ng/ml) and LPS (100 ng/ml). Data is
presented as mean ± SEM of at least 3–4 experiments each run-in duplicate. *p < 0.05, **p < 0.01, ***p < 0.001 compared to control
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limited effect (Fig. 2a). In addition, we show that
stimulation with IL-6 in combination with sIL-6R, but
not IL-6 alone, induced a dose-dependent release of
MCP-1 into the medium (Fig. 2b). Further, stimula-
tion of human vascular endothelial cells with combin-
ation of IL-6 and sIL-6R, but not IL-6 alone,
upregulated cell adhesion molecules VCAM-1 and
ICAM-1 (Additional file 2: Figure S2A and 2B). These
findings indicate that IL-6 requires the sIL-6R to in-
duce pro-inflammatory responses in human vascular
endothelial cells.

Activation of signaling pathways by IL-6 with or without
sIL-6R
In order to investigate the different signaling pathways en-
gaged, we treated human vascular endothelial cells with
IL-6 alone (classic signaling) or together with sIL-6R
(trans-signaling) for increasing durations. We then ana-
lyzed activation of different signaling pathways using
immuno-(western) blotting. We found that phosphoryl-
ation of STAT3Tyr705 is induced by both IL-6 alone and in
combination with sIL-6R (Fig. 3a, left) in a dose-dependent
manner (Additional file 3: Figure S3). When applied to-
gether with sIL-6R, very low concentrations of IL-6 (i.e.
1 ng/ml) were sufficient to induce STAT3Tyr705 phosphor-
ylation (Additional file 3: Figure S3), while higher concen-
trations (i.e. 50 ng/ml) were required to induce similar
degree of phosphorylation when IL-6 is added without
sIL-6R. Although IL-6 in combination with sIL-6R pro-
voked a stronger phosphorylation of STAT3Tyr705 com-
pared to IL-6 alone, both treatments follow similar kinetics
in which the phosphorylation peaked after 10-15 min of
stimulation (Fig. 3a, right).
In addition, we found that IL-6 alone does not induce

phosphorylation of AKTSer473 (Fig. 3b, left) or ERK1/
2Thr202/Tyr204 (Fig. 3c, left). However, when applied in
combination with sIL-6R, IL-6 causes a strong AKTSer473

(Fig. 3b, right) as well as ERK1/2Thr202/Tyr204 (Fig. 3c, left)
phosphorylation which peaked at 30 min after treatment.

We also investigated whether IL-6 induces activation of
NFκB signaling pathways by determining the level of
p-p65Ser32, pIκBSer536 and IκB for canonical NFκB activa-
tion; and the level of p100 and p52 for non-canonical
NFκB activation. The treatment of human vascular endo-
thelial cells with IL-6 alone or in combination with sIL-6R
did not cause phosphorylation of p65Ser32 or IκBSer536 nor
did it reduce the level of IκB (Additional file 4: Figure S4),
unlike the case for TNF-α stimulation (data not shown).
Moreover, the levels of p100 and p52 were not affected
by neither IL-6 alone nor in combination with sIL-6R
(Additional file 4: Figure S4). These findings indicate
that IL-6 signaling pathways are distinct; in which clas-
sic signaling engages the JAK/STAT3 pathway while
trans-signaling employs the JAK/STAT3, PI3K/AKT,
and the MEK/ERK signaling pathways. In addition, nei-
ther canonical- nor non-canonical NFκB signaling path-
ways seem to be activated by either IL-6 classic or
trans-signaling.

Pathways mediating IL-6 trans-signaling induced MCP-1
in human vascular endothelial cells
To further elucidate the pathways accounting for the
regulation of MCP-1 by IL-6 trans-signaling, we used
pharmacological inhibitors or siRNA to interfere with
the different pathways and assessed MCP-1 expression
after exposure to IL-6 in combination with sIL-6R. We
found that pre-treatment of human vascular endothelial
cells with the JAK inhibitor CP690550 prevents the
trans-signaling induced phosphorylation of STAT3Tyr705,
AKTSer473 and ERK1/2Thr202/Tyr204 (Fig. 4a). In addition,
CP690550 pre-treatment downregulated the MCP-1 ex-
pression evoked via trans-signaling in these cells (Fig. 4a).
These findings indicate that JAK is upstream of STAT3,
AKT and ERK1/2 in the signaling pathway induced by
IL-6 trans-signaling, and that JAK is crucial for the induc-
tion of MCP-1.
Knockdown of STAT3 in human vascular endothelial

cells using siRNA (knockdown efficiency 80–90%)

A B

Fig. 2 MCP-1 mRNA expression and release from human vascular endothelial cells. a qPCR analyses depicting the relative expression of MCP-1
mRNA after exposure to IL-6 (100 ng/ml) alone or in combination with sIL-6R (200 ng/ml). b ELISA data showing the MCP-1 release into medium
(48 h) induced by increasing concentrations of IL-6 alone or in combination with sIL-6R. Data is presented as mean ± SEM of 3 experiments each
run-in duplicate. *p < 0.05, **p < 0.01 compared to its respective control
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abolished the phosphorylation of STAT3Tyr705 caused by
IL-6 trans-signaling (Fig. 4b). In line with that, qPCR
analyses revealed that MCP-1 induction by IL-6
trans-signaling was eliminated in STAT3 knockdown
cells (Fig. 4b). Similarly, treating human vascular endo-
thelial cells with the PI3K inhibitor LY294002 prior to
stimulation with IL-6 combined with sIL-6R resulted in
the suppression of AKTSer473 phosphorylation (Fig. 4c).
Furthermore, MCP-1 induction by IL-6 trans-signaling

was inhibited by LY294002 pre-treatment (Fig. 4c).
Pre-treatment with the MEK inhibitor PD98059 blocked
IL-6 trans-signaling induced phosphorylation of ERK1/
2Thr202/Tyr204(Fig. 4d), but not MCP-1 expression in hu-
man vascular endothelial cells (Fig. 4d). Overall, our
findings demonstrate that IL-6 trans-signaling
employs the JAK/STAT3 and PI3K/AKT pathways to
provoke MCP-1 expression in human vascular endo-
thelial cells.

A

B

C

Fig. 3 Western blot analyses showing phosphorylation of a STAT3Tyr705, b AKTSer473 and c ERK1/2Thr202/Tyr204 in human vascular endothelial cells
treated with IL-6 alone (50 ng/ml) or in combination with sIL-6R (100 ng/ml). One representative blot containing the phosphorylated protein,
total protein and β-tubulin (loading control) is shown for each pathway (left column). The signals from the phosphorylated proteins and total
proteins are first normalized to β-tubulin, and the ratio of the phosphorylated proteins and the total proteins are calculated. The graphs show
arbitrary units (a.u., control is set to 1) compiled from 3 independent experiments presented as mean ± SEM for each pathway (right column).
*p < 0.05, **p < 0.01, ***p < 0.001 compared to control
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Discussion
In this study, we elucidated differences in classic- versus
trans-signaling of IL-6 in human vascular endothelial cells.
Our results show that human vascular endothelial cells
express IL-6R and gp130 on their surface allowing for the
activation of both IL-6 classic- and trans-signaling in these
cells. We demonstrate that IL-6 classic signaling causes
transient phosphorylation of STAT3Tyr705, while
trans-signaling also leads to phosphorylation of AKTSer473

and ERK1/2Thr202/Tyr204. Further, we report that IL-6
trans-signaling induces the expression and release of the
pro-inflammatory chemokine MCP-1 in human vascular
endothelial cells, and that this is mediated via JAK/STAT3
and PI3K/AKT pathways.
The general assumption is that the expression of

IL-6R is restricted to only a few cell types, such as hepa-
tocytes and immune cells. However, we provide evidence
that IL-6R is expressed on the surface of human vascular
endothelial cells. This finding is in contrast to previous
studies which could not to determine IL-6R expression
on these cells [23], and indirect implications from the
lack in responsiveness of the cells to IL-6 [24]. We also
show that vascular endothelial cells release IL-6R in its
soluble form, and that its expression is regulated by
pro-inflammatory agents. In agreement with findings in
monocytes, TNF-α [25] and LPS [26] treatment repress
the level of both membrane-bound and soluble IL-6R in
vascular endothelial cells. On the other hand, both

TNF-α and LPS upregulate gp130 surface expression
and its release from vascular endothelial cells. This indi-
cates that pro-inflammatory stimuli render endothelial
cells to become more responsive to trans-signaling and
may favor a pro-inflammatory response. However, it is
important to note that gp130 is a common signal trans-
ducing receptor for several cytokines and might also ini-
tiate other responses. Our results show that activation of
classic signaling induces a minor induction of MCP-1
mRNA although it does not affect the protein release.
The trans-signaling, however, induces a prominent in-
crease in MCP-1 mRNA which corresponds to signifi-
cantly higher level of MCP-1 release. These latter
findings are consistent with previous reports [23, 24].
The IL-6R has only a short intracellular domain and

its signal transduction is based on ligand-binding
dependent recruitment of gp130 to which JAKs (JAK1,
JAK2 and TYK2) are closely associated [27, 28]. Hence,
IL-6 is generally known to activate JAK/STAT3 pathway
regardless of binding to soluble or membrane bound
IL-6R. In line with this, we show that both classic- and
trans-signaling of IL-6 trigger STAT3Tyr705 phosphoryl-
ation in a dose- and time-dependent manner. However,
the trans-signaling causes a markedly increased STAT3-
Tyr705 phosphorylation compared to classic signaling.
Furthermore, we report that IL-6 trans-signaling, but
not classic signaling, leads to an activation of the PI3K/
AKT and MEK/ERK pathways. It has previously been

A B C D

Fig. 4 The effect of different inhibitions on IL-6 trans-signaling induced MCP-1 mRNA expression. The effect of a CP960550 (JAK inhibitor, 10 μM), b
STAT3 knockdown, c LY294002 (PI3K inhibitor, 50 μM) and d PD98059 (MEK inhibitor, 10 μM) on trans-signaling (IL-6 = 100 ng/ml, sIL-6R = 200 ng/ml)
induced MCP-1 expression is presented as mean ± SEM (n = 3 for each). Western blots show effect of CP960550, STAT3 knockdown, LY294002 and
PD98059 on IL-6 trans-signaling (IL-6 = 50 ng/ml, sIL-6R = 100 ng/ml) induced phosphorylation of downstream pathway proteins. *p < 0.05, **p < 0.01,
***p < 0.001 compared to control
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suggested that gp130-mediated activation of these path-
ways is achieved by the recruitment of SHP-2 (SH2
domain-containing protein-tyrosine phosphatase) to
intracellular domain of gp130 (Tyr759) [29]. The same
phospho-site also serves as docking site for SOCS3 (sup-
pressor of cytokine signaling 3), a key negative regulator
of IL-6 signaling pathways [30]. MCP-1 production by
human vascular endothelial cells in response to
pro-inflammatory mediators has been shown to involve
NFκB pathways [31]. Moreover, IL-6 has been shown to
trigger NFκB activation in intestinal epithelial cells
thereby promoting inflammation [32]. We found that
neither IL-6 classic- nor trans-signaling induce activa-
tion of the canonical or non-canonical NFκB pathways,
indicating that the induction of MCP-1 by IL-6
trans-signaling is independent of NFκB pathways in vas-
cular endothelial cells.
The involvement of STAT3 in IL-6 trans-signaling in-

duced MCP-1 production from vascular endothelial cells
has been previously reported by the use of STAT3 inhibi-
tors such as Stattic [24]. In our hands, however, this in-
hibitor strongly affected cell viability (data not shown) and
therefore we employed siRNA guided STAT3 knockdown
instead. In line with previous findings [24], we determined
that STAT3 is essential for the trans-signaling mediated
MCP-1 expression in vascular endothelial cells. Neverthe-
less, blockade of PI3K/AKT pathway also resulted in a
complete inhibition of trans-signaling caused AKTSer473

phosphorylation as well as MCP-1 induction. This indi-
cates that MCP-1 induction by IL-6 trans-signaling re-
quires simultaneous activation of the JAK/STAT3 and
PI3K/AKT pathways. It is well known that activation of
the JAK/STAT3 pathway leads to STAT3 dimerization
and translocation into the nucleus where it initiates gene
transcription [33]. However, the downstream effects of
PI3K signaling are mostly associated with activation of S6
kinases (e.g. S6 K1) and inhibition of 4E-binding protein 1
(4E-BP1), both participating in post-transcriptional regula-
tion [34]. Given the significant reduction in MCP-1
mRNA expression by PI3K signaling inhibition, it is likely
that activation of the PI3K pathway also activates down-
stream transcription factors. Several mechanisms by
which PI3K regulates gene transcription have been shown
previously [35–37]. Furthermore, we show that the block-
ade of the MEK/ERK pathway abolishes trans-signaling in-
duced ERK1/2Thr202/Tyr204 phosphorylation while the
MCP-1 induction remains unaffected. These findings sug-
gest that ERK1/2 activation in response to IL-6
trans-signaling has a minor role in MCP-1 induction in
human vascular endothelial cells. In contrast to our find-
ings, the MEK/ERK pathway has been shown to be in-
volved in IL-6 induced regulation of MCP-1 in fibroblasts
[38]. This may be explained by a cell type specific and dis-
tinct activation of pathways and responses caused by IL-6

trans-signaling. As expected, inhibition of JAK abrogated
trans-signaling induced phosphorylation of STAT3Tyr705,
AKTSer473, and ERK1/2Thr202/Tyr204 and abolished MCP-1
induction.

Conclusions
Put together, this study sheds light on differences in IL-6
classic- and trans-signaling on molecular level in human
vascular endothelial cells, demonstrating that concurrent
activation of the JAK/STAT3 and PI3K/AKT pathways is
essential for trans-signaling induced MCP-1 production.
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